We gratefully acknowledge support from
the Simons Foundation and member institutions.

Multimedia

New submissions

[ total of 6 entries: 1-6 ]
[ showing up to 2000 entries per page: fewer | more ]

New submissions for Wed, 15 May 24

[1]  arXiv:2405.08465 [pdf, other]
Title: How to Surprisingly Consider Recommendations? A Knowledge-Graph-based Approach Relying on Complex Network Metrics
Subjects: Information Retrieval (cs.IR); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Multimedia (cs.MM); Social and Information Networks (cs.SI)

Traditional recommendation proposals, including content-based and collaborative filtering, usually focus on similarity between items or users. Existing approaches lack ways of introducing unexpectedness into recommendations, prioritizing globally popular items over exposing users to unforeseen items. This investigation aims to design and evaluate a novel layer on top of recommender systems suited to incorporate relational information and suggest items with a user-defined degree of surprise. We propose a Knowledge Graph (KG) based recommender system by encoding user interactions on item catalogs. Our study explores whether network-level metrics on KGs can influence the degree of surprise in recommendations. We hypothesize that surprisingness correlates with certain network metrics, treating user profiles as subgraphs within a larger catalog KG. The achieved solution reranks recommendations based on their impact on structural graph metrics. Our research contributes to optimizing recommendations to reflect the metrics. We experimentally evaluate our approach on two datasets of LastFM listening histories and synthetic Netflix viewing profiles. We find that reranking items based on complex network metrics leads to a more unexpected and surprising composition of recommendation lists.

[2]  arXiv:2405.08555 [pdf, other]
Title: Dual-Branch Network for Portrait Image Quality Assessment
Subjects: Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM)

Portrait images typically consist of a salient person against diverse backgrounds. With the development of mobile devices and image processing techniques, users can conveniently capture portrait images anytime and anywhere. However, the quality of these portraits may suffer from the degradation caused by unfavorable environmental conditions, subpar photography techniques, and inferior capturing devices. In this paper, we introduce a dual-branch network for portrait image quality assessment (PIQA), which can effectively address how the salient person and the background of a portrait image influence its visual quality. Specifically, we utilize two backbone networks (\textit{i.e.,} Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it. To enhance the quality-aware feature representation of the backbones, we pre-train them on the large-scale video quality assessment dataset LSVQ and the large-scale facial image quality assessment dataset GFIQA. Additionally, we leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features. Finally, we concatenate these features and regress them into quality scores via a multi-perception layer (MLP). We employ the fidelity loss to train the model via a learning-to-rank manner to mitigate inconsistencies in quality scores in the portrait image quality assessment dataset PIQ. Experimental results demonstrate that the proposed model achieves superior performance in the PIQ dataset, validating its effectiveness. The code is available at \url{https://github.com/sunwei925/DN-PIQA.git}.

[3]  arXiv:2405.08619 [pdf, other]
Title: ALMol: Aligned Language-Molecule Translation LLMs through Offline Preference Contrastive Optimisation
Authors: Dimitris Gkoumas
Subjects: Computation and Language (cs.CL); Multimedia (cs.MM)

The field of chemistry and Artificial Intelligence (AI) intersection is an area of active research that aims to accelerate scientific discovery. The integration of large language models (LLMs) with scientific modalities has shown significant promise in this endeavour. However, challenges persist in effectively addressing training efficacy and the out-of-distribution problem, particularly as existing approaches rely on larger models and datasets. In this context, we focus on machine language-molecule translation and deploy a novel training approach called contrastive preference optimisation, which avoids generating translations that are merely adequate but not perfect. To ensure generalisability and mitigate memorisation effects, we conduct experiments using only 10\% of the data. Our results demonstrate that our models achieve up to a 32\% improvement compared to counterpart models. We also introduce a scalable fine-grained evaluation methodology that accommodates responsibility.

[4]  arXiv:2405.08745 [pdf, other]
Title: Enhancing Blind Video Quality Assessment with Rich Quality-aware Features
Subjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM)

In this paper, we present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos. Motivated by previous researches that leverage pre-trained features extracted from various computer vision models as the feature representation for BVQA, we further explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features to help the BVQA model to handle complex distortions and diverse content of social media videos. Specifically, we use SimpleVQA, a BVQA model that consists of a trainable Swin Transformer-B and a fixed SlowFast, as our base model. The Swin Transformer-B and SlowFast components are responsible for extracting spatial and motion features, respectively. Then, we extract three kinds of features from Q-Align, LIQE, and FAST-VQA to capture frame-level quality-aware features, frame-level quality-aware along with scene-specific features, and spatiotemporal quality-aware features, respectively. Through concatenating these features, we employ a multi-layer perceptron (MLP) network to regress them into quality scores. Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets. Moreover, the proposed model won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge. The code is available at \url{https://github.com/sunwei925/RQ-VQA.git}.

[5]  arXiv:2405.08813 [pdf, other]
Title: CinePile: A Long Video Question Answering Dataset and Benchmark
Comments: Project page with all the artifacts - this https URL
Subjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Multimedia (cs.MM)

Current datasets for long-form video understanding often fall short of providing genuine long-form comprehension challenges, as many tasks derived from these datasets can be successfully tackled by analyzing just one or a few random frames from a video. To address this issue, we present a novel dataset and benchmark, CinePile, specifically designed for authentic long-form video understanding. This paper details our innovative approach for creating a question-answer dataset, utilizing advanced LLMs with human-in-the-loop and building upon human-generated raw data. Our comprehensive dataset comprises 305,000 multiple-choice questions (MCQs), covering various visual and multimodal aspects, including temporal comprehension, understanding human-object interactions, and reasoning about events or actions within a scene. Additionally, we evaluate recent video-centric LLMs, both open-source and proprietary, on the test split of our dataset. The findings reveal that even state-of-the-art video-centric LLMs significantly lag behind human performance in these tasks, highlighting the complexity and challenge inherent in video understanding. The dataset is available at https://hf.co/datasets/tomg-group-umd/cinepile

Replacements for Wed, 15 May 24

[6]  arXiv:2309.05950 (replaced) [pdf, other]
Title: Language Models as Black-Box Optimizers for Vision-Language Models
Comments: Published at CVPR 2024. Project site: this https URL
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Multimedia (cs.MM)
[ total of 6 entries: 1-6 ]
[ showing up to 2000 entries per page: fewer | more ]

Disable MathJax (What is MathJax?)

Links to: arXiv, form interface, find, cs, recent, 2405, contact, help  (Access key information)