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Abstract

Let L be a holomorphic line bundle on a compact complex manif§laf
dimensionn, and lete” ¥ be a continuous metric oh. Fixing a measurey on
X gives a sequence of Hilbert spaces consisting of holomorggitions of ten-
sor powers ofL. We prove that the corresponding sequence of scaled Bergman
measures converges, in the high tensor power limit, to théiledqum measure of
the pair(K, ), where K is the support ofiu, as long asiy is stably Bernstein-
Markov with respect tq K, ¢). Here the Bergman measure denafgstimes the
restriction to the diagonal of the pointwise norm of the esponding orthogonal
projection operator. In particular, an extension to higfierensions is obtained of
results concerning random matrices and classical orttadgumolynomials.

1 Introduction

Let L be a holomorphic line bundle on a compact complex manifoldA hermitian
metriconL, locally represented as = e~ ¥ wherey will be called the weight of the
metric, together with a positive Borel measudjeon X, gives a scalar product on the
spaceH (X, L) of holomorphic sections af, by letting

Is][2 = /X lsPe~%dy,

which we will assume to be nondegenerate. One can choosé®mormal basigs; }
for H°(X, L) with respect to this scalar product, and define the Bergmactifan as

By,(z) = Z |si(2)[2e?.

This does not depend on the particular choice of orthonobrasis, and in fact the
Bergman function could be defined invariantly as the poiséwiorm on the diago-
nal of the Bergman kernél,(z, w), whereK,, represents the orthogonal projection
C>(X,L) — H°(X, L).

The Bergman function times the measdregives a measure,

Bw(Z)d‘LL(Z),
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called the Bergman measure. Taking tensor powers of thélindleL, which we will
write additively ask L, with the corresponding multiplied weighty, one thus gets a
sequence of measures &h

Biop(2)du(2).

If scaled by a factoi /k™, this sequence is weakly bounded, and one is interested in
the possible weak convergence of the scaled Bergman msasure

B’w(z)
kn

du(z).

In this paper we will prove that the limit does exist and isagi\by the equilibrium
measure associated (&, ©), where K denotes the support @fu, as long asiy is
stably Bernstein-Markov with respectté’, ¢). This essentially proves the conjectures
made in[[6] and[2]. The proofrelies heavily on the very reaeork [4]. Before giving
the precise statement of the theorem to be proved we wikkveprevious results.

In the case whem is smooth with stricly positive curvature forda“y (and hence
L is ample), andii the measure induced by a smooth volume farm Tian (see e.g.
[14]) and Bouche (se¢&]7]) independently showed that thiedddergman measures
By,wn /K™ converge weakly to the Monge-Ampére measure of

(dd°p)"
n!

MA (p) :=

WhenL is an arbitrary line bundle and any smooth weight ol it was recently
shown in [1] that the following weak convergence holds:
L o MA(P(9)),
where
P(y) := sup{«, 1 psh weight on, 1) < ¢ on X}. (1)

Here a plurisubharmonic weight denotes a weight with pasiturvature current. The
Monge-Ampeére operator MA is defined according to the ctadsivork of Bedford-
Taylor on any Zariski open set whef& ) is locally bounded and then extended by
zero to all of X (cf. [1]).

Next, consider the general situation where the weight isslg@ontinuous and
is a positive measure, whose support will be denote&by

A classical situation is obtained by settidg= P", L = O(1), with K compactly
included in the affine piec€”. An element inH°(kL) may then be represented by a
complex polynomiap;, of total degree at mogtand the corresponding norm as

/ IpkPe " dp
K

. One may for example l&k be a smooth domain, its boundary, or a smooth subset in
the totally real seR™, anddy the one induced by the Lesbegue measur€onThere
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is also an unbounded variant of this setting wh&res allowed to be an unbounded set
in C™, but where the weight functiop is required to satisfy the growth assumption

() 2 (1+¢)log 2|,

for somee > 0.[] This situation appears, for example, naturally in randontrima
theory, where the Bergman measusg,du represents the expected distribution of
eigenvalues of a random matrix (seéé [8], [9].][10] and [1¥]jank & + 1. Note that
the Bergman functiomBy,, (z) often is refered to as the Christoffel-Darboux function
in the classical literature about orthogonal polynomials.

In the special case wheXi = P!, L = O(1), andK a compact subset of the affine
pieceC! it was shown very recently by Bloom-Levenberg that if the swgady has
the Bernstein-Markov property, i.e. for every> 0 there exist a constant such that

sup{[s(z)[e ™"} < Ce™ |3l 2o roap),
zeK
forall k and alls € H°(kL), then

DL 5 MA(Pre(9))

Here Pk () is defined as the upper semicontinuous (usc) regularizefitre weight
obtained by replacing in formula [1) by the compact sét, assumed to be locally
nonpluripolar. The corresponding measure (P ()) is called the equilibrium mea-
sure of (K, ). See alsol[2] for results concerning the case whers a pseudocon-
cave domain, and [12] concerning analytic domain€in where the latter reference
is based on classical results of Szeqd [13] and CarlemandBterning orthogonal
polynomials.

It was conjectured by Bloom-Levenberg inl([6]) that the weakvergence holds
also inP™ for n > 1, under the Bernstein-Markov assumptiondyn The correspond-
ing conjecture in the more general line bundle setting wagenia [2].

In this paper we prove this under slightly stronger assuongti namely that the
measurely is stably Bernstein-Markov with respect &, ©), meaning that not only
is du Bernstein-Markov with respect @, ), but also with respect t0K, p + cu)
for any small perturbatiop + cu of the weightyp.

Theorem 1.1. Let X be a compact complex manifold,a line bundle overX with a
continuous weighp, K a compact subset of, and d;. a measure stably Bernstein-
Markov with respect tq K, ¢). Then the sequence of Bergman measiitgsdy./k"
converges weakly to the equilibrium measure(A(y)).

The corresponding result also holds in the unbounded getti@™ refered to above
with essentially the same proof (compare remark 9.2lin [4]).

In all the classical cases refered to above, the meakuvéll be stably Bernstein-
Markov, seel[4],[[6] and references therein.

1Hencey does not extend to a continuous metric@al) — P,
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As pointed out above, the proof relies heavily on the venenéavork [4]. The
starting point is the fact that the Bergman measure reptedles differential of a cer-
tain functional F;, defined on the affine space of all continuos weights (for a fixed
compact sef in X). It was shown in[[4] thalf;, converges to a concave functiorfal
with continuous Frechet differential, under the assunmptiatdy. has the Bernstein-
Markov property. Moreover, the differential ¢f was shown to be represented by the
equilibrium measure MAPk (¢)). The new key observation that we make is thats
in fact concave for any. Then an elementary calculus lemma gives the convergence
on the level of derivatives and hence concludes the prodfefiieorem.

It is a pleasure to thank Bo Berndtsson and Sébastien Boocksr fruitful dis-
cussions related to the topic of the present paper. The eu#ne also grateful to the
Mittag-Leffler institute (Stockholm) and Institut Fouri@renoble) where parts of this
work was carried out.

2 Proof of Theorem 1.1

In ([4]) Berman-Boucksom introduced the notion of a relatbapacity, (Px (¢)) of
a weighted compact s€k’, ¢). This capacity has the property thatifis a smooth
function, and one differentiates the perturbed capa&ity¥x (» + cu)) with respect to
g, one gets that

Eo(Pr(p +eu)) = / uMA (Pk (¢ + eu)).
M
The main result in [([4]) states thatdf: is Bernstein-Markov with respect {ds, ¢),
then the relative capacity is given as a limit of logarithmtumes,

Eo(Prc(p)) = lim 2T D!

o W 10g vol 82 (d/L, ks@)

Here volB?(dpu, k¢) means the volume of the unit ball #° (kL) with respect to the
L?(e~*¢du)-norm, where the volume is computed relative the unique Hezasure
on H°(kL) which gives volume one to the unit ball determined by a fixehiohitrary
reference weighpy. This in turn establishes a connection to the Bergman fancitf
one differentiates the functidng vol B2 (du, ¢ + €u), it is not hard to see(([4]) that

(log vol B*(du, ¢ + cu)). :/ uBy 4 cudt.
M

Definition 2.1. We say that: is a Bernstein-Markov direction tQK, ¢, du) if for all
smalle, du is Bernstein-Markov with respect {d<, ¢ + cu), as it was defined in the
introduction.

Lemma 2.2. Letu be a smooth function o, and define the functiofi by
f(g) :=logvol B*(du, ¢ + cu).

Thenf” < 0.
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Proof. We know that
f/(g) = /U/Bga-i—audﬂu

whereB,, .., denotes the Bergman function.
Let K, (z, w) be the Bergman kernel. Since the kernel is holomorphic irfitae

variable, the reproducing property gives that
Ky(z,2) = /Kg,(w,z)Kg,(z,w)e_“"(w)du(w). (2)

If we assume that the weightdepends on a parameterdifferentiating with respect
to e gives

Kole2)e = [ Kolw 2Kl w)e " duu) +
+ [ Kotw K (e w)e W duw) -
- [ el K w2 K w)e () =
= 2e [ Ko, 2Kz w)e ) -
- [ etwrlK v P duw), €
But again by the reproducing property,
[ Eelw 2w dut) = Kol 2)
which is real, thus the equatidn (3) becomes
Kol 2. = [ pllKaw.2)Pe " du(w) (4
By definition we have that
B, (2) i= Ky(z,2)e™ ¢
Differentiating this with respect te, we get
By (2)L i= Ko(2,2)te™ %) — p(2) K, (2,2)e™ %) =
— [ ol w2 e ) -

- / ()| K o (w, 2) P # )0 gy (a0) =

- / (W) — (=) Ko, ) Pe= =9 dpu(uw), (5)
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where we have used equatiofis (2) did (3). Sineey’. we have that
1= ([ uBorasdnyt = [ o) Bo()dn() =
= [ [ oot = ol K ) ) du(z) =
== [ [ (el = 2K 2) e () +
+ [ [ etwtoto) — eI . 2) e duu)du(:) =
== | [ (et = @2 . 2) e ) () -

(by the antisymmetry in the variablesandw)

- [ [ et = @I w2 ) du(z) =

== [ [ (et = 2 K 2) e () - 1
by equation[(b). This gives that
7 =172 [ [ (otw) = PR, 2) e (),
thus f” is nonpositive. O

Here we have assumed thafc) := ¢ + eu depends linearly oa. The general
formulais

1= =172 [ [ (otw) = K, 2) e uuyan(:) +
+ [ o) Badn(o)

showing thatf is concave ifp is concave ire.

Lemma 2.3. Let f;, be a sequence of functions converging pointwise to a fumétio
on the interval(—1, 1). Furthermore, assume that for all, f;/ < 0, and thatF” is
continuous. Then it holds that the derivativgsconverge pointwise té”.

Proof. We pick an arbitrary point if—1, 1), which we can for simplicity assume to
be the origin. Sincg;/ is negative f/, is decreasing. Thus for ary> 0 we have the
inequalites

0 5
e [ fide > £1(0) > 1/ / fldz,
—e 0

fx(0) = fr(=¢) > £1(0) > fr(e) = fk(o)'

9 9
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Letting e be fix while k tends to infinity we get

w > lim sup £ (0) > lim inf f,.(0) > M
k—o0 e

so by the Mean Value Theorem and the continuity-6fve see that

Tim f;(0) = F'(0).

2.1 End of proof of Theorem 1.1

Proof. Let us denote by} the functions

(n+1)!
kn+1

fe(e) == log vol B2 (du, ¢ + eu),
and byF’ the function

F(e) := & (Pk (p + eu)).
That f; converges pointwise té' is the content of Theorem 1.2 i {[4]). By lemma
(2.2) we know thatf” < 0. ThatF" is continuous follows from Theorem 5.7 in{([4]),
which states that the derivative 8§( Pk (¢ + €u)) is Lipschitz. Since

B
fx(0) =/u k’:"dm

and

F(0) = [ uMA(Pi(e))
lemmaf2.2) and (2]3) give that

lim u%duz /uMA(PK(go)).

k—o0

Sinceu is an arbitrary smooth function this concludes the proofleédrem 1.1. [
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