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Abstract

Let L be a holomorphic line bundle on a compact complex manifoldX of
dimensionn, and lete−ϕ be a continuous metric onL. Fixing a measuredµ on
X gives a sequence of Hilbert spaces consisting of holomorphic sections of ten-
sor powers ofL. We prove that the corresponding sequence of scaled Bergman
measures converges, in the high tensor power limit, to the equilibrium measure of
the pair(K,ϕ), whereK is the support ofdµ, as long asdµ is stably Bernstein-
Markov with respect to(K,ϕ). Here the Bergman measure denotesdµ times the
restriction to the diagonal of the pointwise norm of the corresponding orthogonal
projection operator. In particular, an extension to higherdimensions is obtained of
results concerning random matrices and classical orthogonal polynomials.

1 Introduction

Let L be a holomorphic line bundle on a compact complex manifoldX. A hermitian
metriconL, locally represented ash = e−ϕ whereϕ will be called the weight of the
metric, together with a positive Borel measuredµ onX, gives a scalar product on the
spaceH0(X,L) of holomorphic sections ofL, by letting

||s||2ϕ :=

∫
X

|s|2e−ϕdµ,

which we will assume to be nondegenerate. One can choose an orthonormal basis{si}
forH0(X,L) with respect to this scalar product, and define the Bergman function as

Bϕ(z) :=
∑
i

|si(z)|
2e−ϕ.

This does not depend on the particular choice of orthonormalbasis, and in fact the
Bergman function could be defined invariantly as the pointwise norm on the diago-
nal of the Bergman kernelKϕ(z, w), whereKϕ represents the orthogonal projection
C∞(X,L) → H0(X,L).

The Bergman function times the measuredµ gives a measure,

Bϕ(z)dµ(z),
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called the Bergman measure. Taking tensor powers of the linebundleL, which we will
write additively askL, with the corresponding multiplied weightkϕ, one thus gets a
sequence of measures onX,

Bkϕ(z)dµ(z).

If scaled by a factor1/kn, this sequence is weakly bounded, and one is interested in
the possible weak convergence of the scaled Bergman measures,

Bkϕ(z)

kn
dµ(z).

In this paper we will prove that the limit does exist and is given by the equilibrium
measure associated to(K,ϕ), whereK denotes the support ofdµ, as long asdµ is
stably Bernstein-Markov with respect to(K,ϕ). This essentially proves the conjectures
made in [6] and [2]. The proof relies heavily on the very recent work [4]. Before giving
the precise statement of the theorem to be proved we will review previous results.

In the case whenϕ is smooth with stricly positive curvature formddcϕ (and hence
L is ample), anddµ the measure induced by a smooth volume formωn, Tian (see e.g.
[14]) and Bouche (see [7]) independently showed that the scaled Bergman measures
Bkϕωn/k

n converge weakly to the Monge-Ampère measure ofϕ,

MA(ϕ) :=
(ddcϕ)n

n!
.

WhenL is an arbitrary line bundle andϕ any smooth weight onL it was recently
shown in [1] that the following weak convergence holds:

Bkϕ

kn
ωn

∗
−→ MA(P (ϕ)),

where
P (ϕ) := sup{ψ, ψ psh weight onL,ψ ≤ ϕ on X}. (1)

Here a plurisubharmonic weight denotes a weight with positive curvature current. The
Monge-Ampère operator MA is defined according to the classical work of Bedford-
Taylor on any Zariski open set whereP (ϕ) is locally bounded and then extended by
zero to all ofX (cf. [1]).

Next, consider the general situation where the weight is merely continuous anddµ
is a positive measure, whose support will be denoted byK.

A classical situation is obtained by settingX = Pn, L = O(1), with K compactly
included in the affine pieceCn. An element inH0(kL) may then be represented by a
complex polynomialpk of total degree at mostk and the corresponding norm as

∫
K

|pk|
2e−kϕdµ

. One may for example letK be a smooth domain, its boundary, or a smooth subset in
the totally real setRn, anddµ the one induced by the Lesbegue measure onC

n. There
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is also an unbounded variant of this setting whereK is allowed to be an unbounded set
in Cn, but where the weight functionϕ is required to satisfy the growth assumption

ϕ(z) ≥ (1 + ε) log |z|2,

for someε > 0. 1 This situation appears, for example, naturally in random matrix
theory, where the Bergman measureBkϕdµ represents the expected distribution of
eigenvalues of a random matrix (see [3], [9], [10] and [11]) of rank k + 1. Note that
the Bergman functionBkϕ(z) often is refered to as the Christoffel-Darboux function
in the classical literature about orthogonal polynomials.

In the special case whenX = P1, L = O(1), andK a compact subset of the affine
pieceC1 it was shown very recently by Bloom-Levenberg that if the measuredµ has
the Bernstein-Markov property, i.e. for everyδ > 0 there exist a constantC such that

sup
z∈K

{|s(z)|2e−kϕ} ≤ Ceδk||s||2L2(e−kϕdµ),

for all k and alls ∈ H0(kL), then

Bkϕ

kn
dµ

∗
−→ MA(PK(ϕ)).

HerePK(ϕ) is defined as the upper semicontinuous (usc) regularizationof the weight
obtained by replacingX in formula (1) by the compact setK, assumed to be locally
nonpluripolar. The corresponding measure MA(PK(ϕ)) is called the equilibrium mea-
sure of(K,ϕ). See also [2] for results concerning the case whenK is a pseudocon-
cave domain, and [12] concerning analytic domains inC1, where the latter reference
is based on classical results of Szegö [13] and Carleman [8]concerning orthogonal
polynomials.

It was conjectured by Bloom-Levenberg in ([6]) that the weakconvergence holds
also inPn for n > 1, under the Bernstein-Markov assumption ondµ. The correspond-
ing conjecture in the more general line bundle setting was made in [2].

In this paper we prove this under slightly stronger assumptions, namely that the
measuredµ is stably Bernstein-Markov with respect to(K,ϕ), meaning that not only
is dµ Bernstein-Markov with respect to(K,ϕ), but also with respect to(K,ϕ + εu)
for any small perturbationϕ+ εu of the weightϕ.

Theorem 1.1. LetX be a compact complex manifold,L a line bundle overX with a
continuous weightϕ, K a compact subset ofX, anddµ a measure stably Bernstein-
Markov with respect to(K,ϕ). Then the sequence of Bergman measuresBkϕdµ/k

n

converges weakly to the equilibrium measure MA(PK(ϕ)).

The corresponding result also holds in the unbounded setting inCn refered to above
with essentially the same proof (compare remark 9.2 in [4]).

In all the classical cases refered to above, the measuredµ will be stably Bernstein-
Markov, see [4], [6] and references therein.

1Henceϕ does not extend to a continuous metric onO(1) → P
n.
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As pointed out above, the proof relies heavily on the very recent work [4]. The
starting point is the fact that the Bergman measure represents the differential of a cer-
tain functionalFk defined on the affine space of all continuos weights (for a fixed
compact setK in X). It was shown in [4] thatfk converges to a concave functionalF
with continuous Frechet differential, under the assumption thatdµ has the Bernstein-
Markov property. Moreover, the differential ofF was shown to be represented by the
equilibrium measure MA(PK(ϕ)). The new key observation that we make is thatFk is
in fact concave for anyk. Then an elementary calculus lemma gives the convergence
on the level of derivatives and hence concludes the proof of the theorem.

It is a pleasure to thank Bo Berndtsson and Sébastien Boucksom for fruitful dis-
cussions related to the topic of the present paper. The authors are also grateful to the
Mittag-Leffler institute (Stockholm) and Institut Fourier(Grenoble) where parts of this
work was carried out.

2 Proof of Theorem 1.1

In ([4]) Berman-Boucksom introduced the notion of a relative capacityE0(PK(ϕ)) of
a weighted compact set(K,ϕ). This capacity has the property that ifu is a smooth
function, and one differentiates the perturbed capacityE0(PK(ϕ+ εu)) with respect to
ε, one gets that

E0(PK(ϕ+ εu))′ε =

∫
M

uMA(PK(ϕ+ εu)).

The main result in ([4]) states that ifdµ is Bernstein-Markov with respect to(K,ϕ),
then the relative capacity is given as a limit of logarithmicvolumes,

E0(PK(ϕ)) = lim
k→∞

(n+ 1)!

2kn+1
log vol B2(dµ, kϕ).

Here volB2(dµ, kϕ) means the volume of the unit ball inH0(kL) with respect to the
L2(e−kϕdµ)-norm, where the volume is computed relative the unique Haarmeasure
onH0(kL) which gives volume one to the unit ball determined by a fixed but arbitrary
reference weightϕ0. This in turn establishes a connection to the Bergman function. If
one differentiates the functionlog vol B2(dµ, ϕ+ εu), it is not hard to see ([4]) that

(log vol B2(dµ, ϕ+ εu))′ε =

∫
M

uBϕ+εudµ.

Definition 2.1. We say thatu is a Bernstein-Markov direction to(K,ϕ, dµ) if for all
smallε, dµ is Bernstein-Markov with respect to(K,ϕ + εu), as it was defined in the
introduction.

Lemma 2.2. Letu be a smooth function onX , and define the functionf by

f(ε) := log volB2(dµ, ϕ+ εu).

Thenf ′′ ≤ 0.
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Proof. We know that

f ′(ε) =

∫
uBϕ+εudµ,

whereBϕ+εu denotes the Bergman function.
LetKϕ(z, w) be the Bergman kernel. Since the kernel is holomorphic in thefirst

variable, the reproducing property gives that

Kϕ(z, z) =

∫
Kϕ(w, z)Kϕ(z, w)e

−ϕ(w)dµ(w). (2)

If we assume that the weightϕ depends on a parameterε, differentiating with respect
to ε gives

Kϕ(z, z)
′

ε =

∫
Kϕ(w, z)

′

εKϕ(z, w)e
−ϕ(w)dµ(w) +

+

∫
Kϕ(w, z)Kϕ(z, w)

′

εe
−ϕ(w)dµ(w) −

−

∫
ϕ(w)′εKϕ(w, z)Kϕ(z, w)e

−ϕ(w)dµ(w) =

= 2Re

∫
Kϕ(w, z)

′

εKϕ(z, w)e
−ϕ(w)dµ(w) −

−

∫
ϕ(w)′ε|Kϕ(w, z)|

2e−ϕ(w)dµ(w). (3)

But again by the reproducing property,
∫
Kϕ(w, z)

′

εKϕ(z, w)e
−ϕ(w)dµ(w) = Kϕ(z, z)

′

ε,

which is real, thus the equation (3) becomes

Kϕ(z, z)
′

ε =

∫
ϕ(w)′ε|Kϕ(w, z)|

2e−ϕ(w)dµ(w). (4)

By definition we have that

Bϕ(z) := Kϕ(z, z)e
−ϕ(z).

Differentiating this with respect toε, we get

Bϕ(z)
′

ε := Kϕ(z, z)
′

εe
−ϕ(z) − ϕ(z)′εKϕ(z, z)e

−ϕ(z) =

=

∫
ϕ(w)′ε|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w) −

−

∫
ϕ(z)′ε|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w) =

=

∫
(ϕ(w)′ε − ϕ(z)′ε)|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w), (5)
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where we have used equations (2) and (3). Sinceu = ϕ′

ε we have that

f ′′ = (

∫
uBϕ+εudµ)

′

ε =

∫
ϕ(z)′εBϕ(z)

′

εdµ(z) =

=

∫
z

∫
w

ϕ(z)′ε(ϕ(w)
′

ε − ϕ(z)′ε)|Kϕ(w, z)|
2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) =

= −

∫
z

∫
w

(ϕ(w)′ε − ϕ(z)′ε)
2|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) +

+

∫
z

∫
w

ϕ(w)′ε(ϕ(w)
′

ε − ϕ(z)′ε)|Kϕ(w, z)|
2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) =

= −

∫
z

∫
w

(ϕ(w)′ε − ϕ(z)′ε)
2|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) −

(by the antisymmetry in the variablesz andw)

−

∫
z

∫
w

ϕ(z)′ε(ϕ(w)
′

ε − ϕ(z)′ε)|Kϕ(w, z)|
2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) =

= −

∫
z

∫
w

(ϕ(w)′ε − ϕ(z)′ε)
2|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) − f ′′,

by equation (5). This gives that

f ′′ = −1/2

∫
z

∫
w

(ϕ(w)′ε − ϕ(z)′ε)
2|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w)dµ(z),

thusf ′′ is nonpositive.

Here we have assumed thatϕ(ε) := ϕ + εu depends linearly onε. The general
formula is

f ′′ = −1/2

∫
z

∫
w

(ϕ(w)′ε − ϕ(z)′ε)
2|Kϕ(w, z)|

2e−ϕ(w)−ϕ(z)dµ(w)dµ(z) +

+

∫
ϕ(z)′′εBϕ(z)dµ(z),

showing thatf is concave ifϕ is concave inε.

Lemma 2.3. Let fk be a sequence of functions converging pointwise to a function F
on the interval(−1, 1). Furthermore, assume that for allk, f ′′

k ≤ 0, and thatF ′ is
continuous. Then it holds that the derivativesf ′

k converge pointwise toF ′.

Proof. We pick an arbitrary point in(−1, 1), which we can for simplicity assume to
be the origin. Sincef ′′

k is negative,f ′

k is decreasing. Thus for anyε > 0 we have the
inequalites

1/ε

∫ 0

−ε

f ′

kdx ≥ f ′

k(0) ≥ 1/ε

∫ ε

0

f ′

kdx,

i.e.
fk(0)− fk(−ε)

ε
≥ f ′

k(0) ≥
fk(ε)− fk(0)

ε
.
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Lettingε be fix whilek tends to infinity we get

F (0)− F (−ε)

ε
≥ lim sup

k→∞

f ′

k(0) ≥ lim inf
k→∞

f ′

k(0) ≥
F (ε)− F (0)

ε
,

so by the Mean Value Theorem and the continuity ofF ′ we see that

lim
k→∞

f ′

k(0) = F ′(0).

2.1 End of proof of Theorem 1.1

Proof. Let us denote byfk the functions

fk(ε) :=
(n+ 1)!

2kn+1
log vol B2(dµ, ϕ+ εu),

and byF the function
F (ε) := E0(PK(ϕ+ εu)).

Thatfk converges pointwise toF is the content of Theorem 1.2 in ([4]). By lemma
(2.2) we know thatf ′′ ≤ 0. ThatF ′ is continuous follows from Theorem 5.7 in ([4]),
which states that the derivative ofE0(PK(ϕ+ εu)) is Lipschitz. Since

f ′

k(0) =

∫
u
Bkϕ

kn
dµ,

and

F ′(0) =

∫
uMA(PK(ϕ)),

lemma (2.2) and (2.3) give that

lim
k→∞

∫
u
Bkϕ

kn
dµ =

∫
uMA(PK(ϕ)).

Sinceu is an arbitrary smooth function this concludes the proof of Theorem 1.1.
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