
ar
X

iv
:0

80
5.

33
72

v1
  [

m
at

h.
C

V
] 

 2
2 

M
ay

 2
00

8

PROPER HOLOMORPHIC MAPPPINGS BETWEEN REINHARDT

DOMAINS IN C2

 LUKASZ KOSIŃSKI

Abstract. We describe all possibilities of existence of non-elementary proper

holomorphic maps between non-hyperbolic Reinhardt domains in C2 and the cor-

responding pairs of domains.

1. Introduction

Given α ∈ Rn, and z ∈ Cn
∗ we put |zα| := |z|α1 . . . |z|αn whenever it makes sense.

Let Ar−,r+ = {z ∈ C : r− < |z| < r+} for −∞ < r− < r+ < ∞, r+ > 0. By D we

always denote the unit disc in C. For a domain D ⊂ Cn, D \ {0} is denoted by D∗.

Following [Zwo2], for A = (Ajk)j=1,...,m, k=1,...,n ∈ Zm×n and b = (b1, . . . , bm) ∈ Cm
∗

we define:

ϕA(z) := zA := (zA
1

, . . . , zA
m

), z ∈ Cn
∗ ,

ϕA,b(z) := (b1z
A1

, . . . , bmz
Am

), z ∈ Cn
∗ .

Such maps are called elementary algebraic (or briefly elementary maps).

The aim of this paper is to describe non-elementary proper holomorphic maps

between non-hyperbolic Reinhardt domains in C2 as well as the corresponding pairs

of domains. Additionally, we obtain some partial results for proper maps between

domains of the form C2
∗, C

2 and C×C∗ and we give some more general results related

to proper holomorphic mappings.

Recall that if D,G are Reinhardt domains and f : D → G is a biholomorphic

mapping, then f can be represented as composition of automorphism of D and G

and an elementary mapping between these domains (see [Kru] and [Shi2]). Thus, the

description of non-elementary biholomorphic mappings between Reinhardt domains

reduces to the investigation of their group of automorphisms. It is a general problem

of complex geometry of Reinhardt domains considered in many papers. In [Shi1] the
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author using group-theoretic methods investigated the holomorphic equivalence of

bounded Reinhardt domains in Cn not containing the origin and determined auto-

morphisms of a certain class of Reinhardt domains. Similar results were obtained by

Barrett in [Bar], however his approach was analytic. The groups of automorphisms

of all bounded Reinhardt domains containing the origin were determined in [Sun].

This work has been extended in [Kru] by dropping the assumption that the origin

belongs to domain. The situation when domains D and G may be unbounded were

considered for example in [Shi3] and [Edi-Zwo].

Obviously, the problem of description of proper holomorphic mappings is harder to

deal with. Proper maps between non-hyperbolic, pseudoconvex Reinhardt domains

have been considered in [Edi-Zwo] and [Kos]. In the bounded case partial results

were obtained in [Ber-Pin], [Lan-Spi] and [Din-Sel]. The final result for bounded do-

mains in C2, which may be viewed as the completion of this research, has been lastly

obtained in the paper [Isa-Kru] of A.V. Isaev and N.G. Kruzhilin. The authors ex-

plicitly described all possibilities of existence of non-elementary proper holomorphic

mappings between bounded Reinhardt domains in C2.

Our results finish the problem of characterization of proper holomorphic mappings

between Reinhardt domains in C2.

2. Preliminaries and statement of results

It is well known that for any pseudoconvex Reinhardt domain D in Cn its loga-

rithmic image logD is convex. Moreover, any proper holomorphic mapping between

domains D1, D2 in Cn can be extended to a proper map between the envelopes of

holomorphy D̂1, D̂2 of D1, D2 respectively (see e.g. [Ker]).

Let us introduce some notation. First we define

Vι := Cι−1 × {0} × Cn−ι ⊂ Cn, ι = 1, . . . , n,(1)

and M :=
n⋃

ι=1

Vι.

With a given Reinhardt domain D we associate the following constants:

d(D) :=the maximal possible dimension of the linear subspace contained in the

logarithmic image of the envelope of holomorphy of D;

t(D) :=the number of j such that D̂ ∩ Vj 6= ∅.

Moreover, in the case D ⊂ C2 we put
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s(D) :=the number of j = 1, 2 such that Vj ∩ D̂ is equal to C;

s∗(D) :=the number of j = 1, 2 such that Vj ∩ D̂ is equal to C∗;

It turns out that the objects introduced above are invariant under proper holo-

morphic mappings f : D → G, where D,G are Reinhardt domains in C2, except for

the case when αR + β ⊂ logD for some α ∈ Q2, β ∈ R2. In particular, we shall

obtain the following

Theorem 1. Let D,G be Reinhardt domains in C2 such that the set of proper holo-

morphic mappings from D onto G is non-empty. Then

(2) d(D) = d(G).

If moreover d(D) = d(G) = 0, then

(3) (s(D), s∗(D), t(D)) = (s(G), s∗(G), t(G)).

Recall here that pseudoconvex Reinhardt domains which are algebraically bi-

holomorphic to bounded Reinhardt domains have been described by W. Zwonek

in [Zwo1]. This result is of key importance for our considerations so we quote it

below:

Theorem 2. Assume that D is a pseudoconvex Reinhardt domain in Cn. Then the

following conditions are equivalent:

(i) D is Brody hyperbolic, i.e. any holomorphic mapping from C to D is constant,

(ii) (a) logD contains no affine lines and

(b) D ∩ Vj is either empty or c-hyperbolic, j = 1, . . . , n, (viewed as domain in

Cn−1);

(iii) D is algebraically biholomorphic to a bounded Reinhardt domain, i.e. there is

A ∈ Zn×n, | detA| = 1, such that ϕA(D) is bounded and (ϕA)|D is a biholomor-

phism onto the image.

Note that a Reinhardt domain D in C2 satisfies the condition (ii) of Theorem 2 if

and only if s(D) = s∗(D) = d(D) = 0.

Let D1, D2 be Reinhardt domains in C2 and let f : D1 → D2 be a proper holo-

morphic mapping. Assume that f is non-elementary. Our aim is to get the explicit

formulas for the mapping f as well for the domains D1, D2.

In view of Theorem 2 we see that case d(Di) = s(Di) = s∗(Di) = 0, i = 1, 2,

has been described in [Isa-Kru]. Moreover, in [Edi-Zwo] and [Kos] the authors gave

the explicit formulas for all proper holomorphic mappings f : D1 → D2 between
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pseudoconvex Reinhardt domains D1 and D2 such that d(D1) = d(D2) = 1, that is

domains whose logarithmic image is equal to a strip or a half plane. One may apply

direct and tedious calculations which allow to determine all possibilities of the form

of Reinhardt domains D′
1, D

′
2 whose envelopes of holomorphy are equal to D1 and

D2 respectively and such that the restriction f |D′
1 : D

′
1 → D′

2 is proper.

On the other hand there is no proper holomorphic mapping between hyperbolic

and non-hyperbolic domains (see Lemma 6) so we shall focus our considerations on

proper holomorphic mappings between non-hyperbolic domains.

Summing up, to obtain a desired description of the set of non-elementary proper

holomorphic mappings between non-hyperbolic Reinhardt domains D1, D2 in C2

whose envelopes of holomorphy do not contain C2
∗ it suffices to confine ourselves to

the cases when d(D1) = d(D2) = 0 and s(D1) = s(D2) 6= 0 or s∗(D1) = s∗(D2) 6= 0.

Now we are in position to formulate the main result of this paper:

Theorem 3. Let D1, D2 be non-hyperbolic Reinhardt domains in C2 such that d(D1) =

d(D2) = 0 and s(Di) 6= 0 or s∗(Di) 6= 0, i = 1, 2. Assume that there is a proper,

non-elementary holomorphic mapping f : D1 → D2.

Then the following two scenarios obtain:

(i) Up to a permutation of the components of f and the variables, the map f has

the form

(4) f(z, w) = (µ1z
kB(C1z

p1wq1), µ2w
l),

where k, l ∈ N, p1, q1 > 0 are relatively prime integers, B is a non-constant

finite Blaschke product non-vanishing at 0, C1 > 0 and µ1, µ2 ∈ C∗. In this

case, the domains D1 and D2 have the form:

Di = {(z, w) ∈ C2 : Ci|z|
pi|w|qi < 1, |w| < Ei} \ (Pi × {0}), i = 1, 2,(5)

where E1, E2 > 0, p2, q2 > 0 are relatively prime integers satisfying the equation
q2
p2

= kq1
lp1

and P1 is any closed proper Reinhardt subset of C (then, obviously, P2

is of the form {µ1ζ
kB(0) : ζ ∈ P1}).

(ii) Up to a permutation of the components of f and the variables, the map f has

the form

(6) f(z, w) = ((eit1za1 + s)a2 , eit2 exp(2s̄eit1za1 + |s|2)−c2wc1c2),
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where a1, a2, c1, c2 ∈ N, s ∈ C∗ and t1, t2 ∈ R. In this case domains have the

forms

Di = {(z, w) ∈ C2 : |w| < Ci exp(−Ei|z|
ki)}, i = 1, 2,(7)

where k1 = 2a1, k2 = 2/a2 and C1, C2, E1, E2 > 0.

As mentioned before, in Section 4 we shall also obtain some results related to

proper mappings f : D → G in the case when d(D) = d(G) = 2. It is clear that for

any pseudoconvex domain D in C2, d(D) = 2 if and only if logD = R2.

3. Proofs

We start with the following

Lemma 4. Let ϕ : D1 → D2 be a proper holomorphic mapping, where D1, D2 ⊂ Cn

are pseudoconvex Reinhardt domains.

(a) Assume that d(D2) = 0 and suppose that there is a non-constant holomorphic

mapping ψ : C → D1. Then ϕ(ψ(C)) ⊂M.

(b) If ψ̃ : C → D2 is a non constant holomorphic mapping and d(D1) = 0, then

ϕ−1(ψ̃(C)) ⊂M.

Proof. a) By Lemma 6 in [Jar-Pfl] there is a nonempty open set U ⊂ Rn and there

is a positive R such that for any v ∈ U the set logD2 is contained in {x ∈ Rn :

x1v1 + . . . + xnvn < R}. Thus, there are linearly independent α1, . . . , αn ∈ Rn,

αι = (αι1, . . . , α
ι
n), such that D2 is contained in {z ∈ Cn : |zα

ι

| < eR}, ι = 1, . . . , n.

Put

(8) uι(z) = |ϕ(ψ(z))α
ι

|, z ∈ C, ι = 1, . . . , n.

Obviously uι are bounded and subharmonic functions on C, so they are constant, say

uι = ρι, ι = 1, . . . , n. It suffices to notice that ρι = 0 for some ι. Indeed, if ρι 6= 0 for

every ι = 1, . . . , n, then obviously
∑n

j=1 α
ι
j log |ϕj(ψ(z))| = log ρι. Applying Cramer

rules we would find that the mapping ϕ◦ψ would be constant (recall that α1, . . . , αn

are linearly independent). However, it would be obviously in contradiction with the

properness of the mapping ϕ (as the mapping ψ is unbounded).

b) Let α = (α1, . . . , αn) ∈ Rn
∗ and R > 1 be such that logD1 is contained in

{x ∈ Rn : x1α1 + . . . + xnαn < R} and for any t ∈ R the set {x ∈ Rn : x1α1 +
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. . .+xnαn = t}∩ logD1 is bounded. Put u(z) = |z1|
α1 . . . |zn|

αn for z ∈ D1. It is well

known that the function

(9) v(z) = vα(z) = max u(ϕ−1(ψ̃(z))), z ∈ C,

is subharmonic. As it is bounded we find that v is constant. Let ρ be such that

v = ρ. Similarly as in the previous part of the proof it is sufficient to show that ρ is

equal to 0.

Suppose not. One can see that there is a sequence {wµ}
∞
µ=1 ⊂ D1 such that

|wαµ | = ρ for any µ ∈ N and wµ → w0 ∈ ∂D1, (µ → ∞). Moreover, |wα| ≤ ρ for

every w such that ϕ(w) ∈ ψ̃(C). Take the supporting hyperplane H of logD1 at the

point logw0 and let β ∈ Rn be such that H = {x ∈ Rn : x1β1 + . . .+ xnβn = ρ̂} for

some ρ̂ ∈ R. Repeating the above reasoning (here the assumption of the boundedness

of H∩logD1 is unnecessary) applied to a function v = vβ (see (9)), we find that there

is ρ̃ < eρ̂ such that |wβ| ≤ ρ̃ for any w ∈ ϕ−1(ψ̃(C)). However, |wβµ| → eρ̂, (µ→ ∞),

which immediately gives a desired contradiction. �

Corollary 5. Let D,G ⊂ Cn be pseudoconvex Reinhardt domains such that d(D) = 0

and d(G) ≥ 1. Then the sets Prop(D,G) and Prop(G,D) are empty.

Proof. Take α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Rn such that αR+ β ⊂ logG. Note

that for any z ∈ G the set ψz(C) is contained in G, where ψz is given by a formula

(10) ψz(ζ) = (z1e
α1ζ , . . . , zne

αnζ), ζ ∈ C.

Thus, if f : D → G (or g : G → D) would be a proper holomorphic mapping

then, by Lemma 4 f−1(G) ⊂ M (resp. g(G) ⊂ M). This immediately gives a

contradiction. �

Lemma 6. Let D,G ⊂ Cn be domains. Assume that D is bounded and G is not

Brody-hyperbolic. Then there is no proper holomorphic mapping from D onto G.

Proof. Suppose that ϕ : D → G is a proper holomorphic mapping. Put A = {z ∈

D : detϕ′(z) = 0}. The set A is a variety in D and, by the properness of ϕ, A 6= D.

Moreover, there is an integer m such that #ϕ−1(w) = m for any w ∈ G \ ϕ(A).

Put

πk(λ) =
∑

1≤i1<...<ik≤m

λi1 . . . λik , λ = (λ1, . . . , λm) ∈ Cm, k = 1, . . . , m
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and π = (π1, . . . , πm). Moreover, for zj = (zj1, . . . , z
j
n) ∈ Cn, j = 1, . . . , m, define

(11) σ(z1, . . . , zm) := (π(z11, . . . , z
m
1 ), . . . , π(z1n, . . . , z

m
n )).

Obviously σ : (Cn)m → Cnm is a proper holomorphic mapping with multiplicity

equal to (m!)n.

Let ϕ−1(w) = {ζ1(w), . . . , ζm(w)}, w ∈ G \ϕ(A). Since ϕ is locally biholomorphic

near any ζi(w), i = 1, . . . , m, and the mapping σ given by the formula (11) is sym-

metric, we find that the mapping ψ = σ ◦ (ζ1, . . . , ζm) is holomorphic in G \ ϕ(A).

Because ϕ(A) is analytic in G and ψ is bounded, we may extend ψ to bounded holo-

morphic mapping on the whole G. Let ψ̃ be such an extension. Take any γ : C → G

non-constant and holomorphic. Then ψ̃ ◦ γ is bounded and holomorphic on C; in

particular, ψ̃ ◦ γ is constant.

Let us take any z′ ∈ C. If γ(z′) belongs to G \ ϕ(A), then obviously ψ̃(γ(z′)) =

σ(ζ1(γ(z)), . . . , ζm(γ(z))). Suppose now that γ(z′) is a critical value of ϕ. Let x =

(x1, . . . , xm) ∈ (Cn)m be such that ψ̃(γ(z)) = σ(x), z ∈ C.

Take any ζ such that ϕ(ζ) = γ(z′), and let (ζn) ⊂ D \ A be such that ζn → ζ.

Observe that σ(ϕ−1(ϕ(ζn))) = ψ̃(ϕ(ζn)) → σ(x). In particular, using properness of σ,

we find that ζ ∈ σ−1(σ(x)), so we have shown that ϕ−1(γ(z′)) ⊂ σ−1(σ(x1, . . . , x1)).

It follows that for any w ∈ γ(C) ϕ−1(w) is contained in the finite set σ−1(σ(x)).

Since the mapping γ is unbounded, we immediately get a contradiction with the

properness of ϕ. �

Remark 7. Since the mapping C \ {0, 1} ∋ z → 1
z(z−1)

∈ C is proper, the above

theorem is not true if we only assume that the domainD is Brody-hyperbolic (instead

of bounded). On the other hand, since in the class of pseudoconvex Reinhardt

domains the property of Brody-hyperbolicity means, up to algebraic mappings, the

boundedness, we easily see that there is no proper holomorphic mapping between

hyperbolic and non-hyperbolic pseudoconvex Reinhardt domains.

For a Reinhardt domain D in Cn let I(D) denote the set of i = 1, . . . , n for which

the intersection Vi ∩D is not c−hyperbolic (viewed as a domain in Cn−1). Put

(12) Dhyp = D \ (
⋃

i∈I(D)

Vi).

It is clear that Dhyp = D if D is c-hyperbolic or D ⊂ Cn
∗ . In the sequel by D̂hyp we

shall denote the set (D̂)hyp.

Now we are in position to formulate the following
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Theorem 8. Let D1, D2 be pseudoconvex Reinhardt domains in C2 such that logDi

contains no affine lines, i = 1, 2 (i.e. d(D1) = d(D2) = 0). If ϕ : D1 → D2 is

a proper holomorphic mapping, then ϕ(Dhyp
1 ) ⊂ Dhyp

2 and the restriction ϕ|Dhyp
1

:

Dhyp
1 → Dhyp

2 is proper.

Proof. Obviously it suffices to prove the following statement:

1) If D1 ∩ V1 ∈ {C,C∗} then ϕ(D1 ∩ V1) is contained either in V1 or in V2. In

particular, if moreover D2∩V2 is c-hyperbolic or empty, then ϕ(D1∩V1) ⊂ V1.

2) If D2∩V1 ∈ {C,C∗} and D1∩V2 is neither C nor C∗, then D1∩V1 ∈ {C,C∗}

and ϕ−1(D2 ∩ V1) ⊂ V1.

1) From Lemma 4(a) applied to the mapping ψ(z) = (0, ez), z ∈ C, we get that

ϕ(D1 ∩ V1) ⊂ M. It follows that ϕ1(0, z)ϕ2(0, z) = 0 for any z ∈ C∗, so ϕ1(0, ·) ≡ 0

or ϕ2(0, ·) ≡ 0. The second statement is clear.

2) If D1∩V1 were neither C nor C∗, then D1 would be biholomorphic to a bounded

domain, which obviously contradicts Lemma 6. Thus D1 ∩ V1 ∈ {C,C∗}.

Suppose that D1 ∩ V2 is non-empty (in the other case Lemma 4 (b) finishes the

proof). Pseudoconvexity implies that π1(D1) is a bounded subset of C, where π1 :

C2 → C denotes a projection onto the first variable. Thus, a function given by the

formula

(13) v(z) := max |π1(ϕ
−1(0, z))|, z ∈ C∗

is constant (as bounded and subharmonic). Moreover, from Lemma 4 we get that

ϕ−1(D2 ∩ V1) ⊂M.

Now, one may easily verify that v = 0. �

Corollary 9. Let D1, D2 ⊂ C2 be Reinhardt domains such that d(D1) = d(D2) = 0.

Assume that Prop(D1, D2) is non-empty. Then

(14) (s(D1), s∗(D1), t(D1)) = (s(D2), s∗(D2), t(D2)).

Proof. Any proper holomorphic map between domainsD1, D2 may be extended to the

proper map between their envelopes of holomorphy D̂1, D̂2, respectively. Moreover,

it is well known (see Corollary 0.3 [Isa-Kru]) that if there exists a proper holomorphic

mapping between two given bounded domains, then there also exists an elementary

algebraic proper holomorphic mapping between these domains.

Thus, our result is a direct consequence of Theorem 8 and properties of algebraic

mappings. �
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Note, that applying the methods used in previous theorems we may easily show

Proposition 10. There are no proper holomorphic mappings between domains D,G

and G,D in the following cases:

1. D ⊂ {z ∈ D′ : u(z) < 0}, where u is some plurisubharmonic function on the

domain D′ ⊂ Cn, non constant on D and G = Cn \ E for some pluripolar set E

in Cn.

2. D is hyperconvex (i.e. there is a negative plurisubharmonic exhaustion function

for D) and G is not Brody-hyperbolic.

Proof. 1. Obviously Prop(Cn \ E,D) = ∅.

Suppose that ϕ : D → Cn\E is proper and holomorphic. Put v(z) = maxu(ϕ−1(z)),

z ∈ Cn \ E. It is seen that the function v is constant. In particular, there is ρ < 0

such that u ≤ ρ and u(w0) = ρ for some w0 ∈ D; a contradiction.

2. It is clear that the set Prop(G,D) is empty. Suppose that ϕ : D → G is

proper and holomorphic. Let u be a negative plurisubharmonic exhaustion func-

tion for D and let ψ : C → G be a non-constant holomorphic mapping. Put

v(ζ) = maxu(ϕ−1(ψ(ζ))), ζ ∈ C. The function v is subharmonic on C. Since v < 0,

it is constant. So we find that ϕ−1(ψ(C)) is a relatively-compact subset of D; a

contradiction. �

Proposition 11. Let D,G ⊂ C2 be pseudoconvex Reinhardt domains. If d(D) 6=

d(G), then there is no proper holomorphic mapping between D and G.

Proof. In the view of Corollary 5 it suffices to consider the case when d(D) = 2 or

d(G) = 2. However, this immediately follows from Proposition 10. �

Proof of Theorem 1. It is a direct consequence of Corollary 9 and Proposition 11. �

Proof of Theorem 3. Take any f : D1 → D2 proper and holomorphic and suppose

that it is non-elementary. Let f : D̂1 → D̂2 also denotes its extension to the proper

mapping between the envelopes of holomorphy of D1 and D2. By Proposition 11

d(D1) = d(D2).

First we consider the case d(D1) = d(D2) = 0. Then, by Theorem 8 the restriction

f | bDhyp
1

: D̂hyp
1 → D̂hyp

2 is also proper.

If s(D1) = 2 or s∗(D1) = t(D1) = 1, then D̂hyp
1 would be contained in C2

∗ and

from the description obtained in [Isa-Kru] we find that f | bDhyp
1

would be elementary

algebraic. It is clear that the identity principle gives a contradiction.
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Therefore, we may assume, that t(D1) = t(D2) = 2, s(D1) = s(D2) = 1 and

s∗(D1) = s∗(D2) = 0. Up to a permutation of components we may suppose that

D̂i ∩ V2 = V2 and D̂i ∩ V1 is bounded, i = 1, 2. Therefore, there are k1, k2 ∈ N such

that 2̂Di is contained in {(z, w) ∈ C2 : |z||w|k < ci} for some positive constants

ci, i = 1, 2. It follows that ΦAi
, where Ai =

(
1 ki
0 1

)
, is a biholomorphic mapping

from D̂hyp
i onto the bounded set ΦAi

(D̂hyp
i ), i = 1, 2. In particular,

(15) g := ΦA2 ◦ f ◦ ΦA−1
1

: ΦA1(D̂
hyp
1 ) → ΦA2(D̂

hyp
2 )

is a proper holomorphic mapping between two bounded domains in C2. Now, using

description obtained in [Isa-Kru] it is straightforward to observe that two possibilities

may hold:

(i) D̂hyp
i = {(z, w) ∈ C2 : Ci|z|

pi|w|piki+qi < 1, 0 < |w| < C ′
i}, where pi, qi

are relatively prime integers such that piki + qi > 0, pi > 0, qi ≤ 0 and

Ci, C
′
i > 0, i = 1, 2.

(ii) D̂hyp
1 = {(z, w) ∈ C2 : 0 < |w| < C1 exp(−E1|z|

2a1 |w|2k1a1−2b1), and D̂c
2 =

{(z, w) ∈ C2 : 0 < |w| < C2 exp(−E2|z|
2/a2 |w|2k2/a2−2b2/a2c2), where ai, bi, ci ∈

N, Ci, Ei > 0, i = 1, 2.

First suppose that (i) holds. From [Isa-Kru] it follows that g must be of the form

g(z, w) = (λ1z
awbB(C1z

p1wq1), λ2w
c), (z, w) ∈ Φ(D̂hyp

1 ), where a, b, c ∈ Z, a, c >

0, aq1 − bp1 < 0, q2
p2

= aq1−bp1
cp1

, B is a Blaschke product non-vanishing at 0 and

λ1, λ2 ∈ C∗. Put q̃i = piki + qi. It is obvious that pi and q̃i are relatively prime.

Moreover, from the form of D̂i we get that q̃i > 0. An easy computation gives

f(z, w) = (µ1z
awak1−ck2+bB(C1z

p1wq̃1), µ2w
c), (z, w) ∈ D̂hyp

1 ,

for some constants µ1, µ2. Since f may be extended properly on D̂1, ak1−ck2+b = 0.

Moreover, it is clear that q̃2
p2

= aq̃1
cp1
.

It is straightforward to see that any Reinhardt subdomain of D̂1 mapped properly

by f onto a Reinhardt domain and whose envelopes of holomorphy coincides with

D̂1 is equal to D̂1 \ P1 × {0}, where P1 is any closed Reinhardt subset of C.

Now suppose that (ii) holds. Denote m1 := k1a1 − b1, m2 := k2c2 − b2. Similarly

as before, taking into account the form of D̂1 and D̂2 one can see that m1, m2 ≥ 0.
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For s ∈ C∗ and t1, t2 ∈ R put h1(z) := eit1z+s, h2(z) = eit2 exp(2s̄eit1z+ |s|2), z ∈

C. An easy calculation and formula for the mapping g (see [Isa-Kru]) give

f(z, w) = (h1(z
a1wm1)a2h2(z

a1wm1)m2w−m2c2, h2(z
a1wm2)−c2wc1c2),(16)

(z, w) ∈ D̂hyp
1 .

Since f may be extended through V1, m1 = m2 = 0.

Finally, one may easily verify that any Reinhardt subdomain of D̂1 whose envelope

of holomorphy coincides with D̂1 and which is mapped properly by f onto a Reinhardt

domain is equal to D̂1. �

4. Remarks on the proper holomorphic mappings f : D → G between

Reinhardt domains in case d(D) = d(G) = 2

It is well known that the structure of Aut(C2), Aut(C2
∗), Aut(C×C∗) is very com-

plicated and the full description of these groups seems to be not known. Proper

maps are harder to deal with, so description of the set of proper holomorphic

mappings between pseudoconvex Reinhardt domains D1 and D2 in the case, when

logDi = R2, i = 1, 2, is more difficult.

Below we present some partial results related to these problems.

Proposition 12. The sets Prop(C×C,C×C∗), Prop(C×C,C∗×C∗) and Prop(C×

C∗,C∗ × C∗) are empty.

Proof. First suppose that f : C2 → C × C∗ is proper and holomorphic. Obviously

there exists a holomorphic mapping ψ : C2 → C2 such that f = (ψ1, e
ψ2). One can

easily verify that the mapping ψ is proper; in particular ψ is surjective. Thus there

is a discrete sequence (zn)n∈N ⊂ C2 such that ψ(zn) = (0, 2nπi), n ∈ N. It follows

that f(zn) = (0, 1) for n ∈ N. From this we immediately get a contradiction.

To show that Prop(C2,C2
∗) = ∅ we proceed similarly.

Now suppose that g : C×C∗ → C2
∗ is holomorphic and proper. It is seen that there

exists a holomorphic mapping ϕ : C2 → C2 such that g(z, ew) = (eϕ1(z,w), eϕ2(z,w)) for

z, w ∈ C.

Fix z ∈ C and put g̃i = gi(z, ·), ϕ̃i = ϕi(z, ·), i = 1, 2. Since g̃i(e
w) = eϕ̃i(w),

we find that ϕ̃′
i(w) = ζi(e

w), w ∈ C, where ζi is a holomorphic function given

by the formula ζi(λ) =
λg̃′i(λ)

g̃i(λ)
, λ ∈ C∗. Expanding ζi to the Laurent series gives

ϕ̃i(w) = aiw +
∑

n∈Z∗

aine
nw for some ai = ai(z), ain = ain(z) ∈ C.
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Thus, there is a holomorphic mapping ϕ̂i(·) = ϕ̂i(z, ·) on C∗ such that ϕ̃i(w) =

aiw + ϕ̂i(e
w), w ∈ C. Since eaiw = g̃i(ew)

eϕ̂i(e
w) we immediately find that ai ∈ Z, i = 1, 2.

Therefore ϕi(z, w) = ai(z)w + ϕ̂i(z, e
w), z, w ∈ C, i = 1, 2. In particular

(17) g(z, w) = (wa1(z)eϕ̂1(z,w), wa2(z)eϕ̂2(z,w)), (z, w) ∈ C× C∗.

It is straightforward to verify that ai(z) =
1

2πi

∫
∂D

∂gi
∂λ

(z,λ)

gi(z,λ)
dλ, z ∈ C, whence ai is

constant (recall that ai(z) ∈ Z) and therefore ϕ̂i is holomorphic on C×C∗, i = 1, 2.

Note that we may assume that a2 = 0 (if a1a2 6= 0 one may compose g with a proper

holomorphic mapping F : C2
∗ → C2

∗ given by the formula F (z, w) = (za2 , w
a1

za2
)).

Put

h(z, w) = (wa1eϕ̂1(z,w), ϕ̂2(z, w)), (z, w) ∈ C× C∗,

and notice that the mapping h : C× C∗ → C∗ × C is proper.

Now, in order to get a contradiction one may proceed exactly as in the case of

Prop(C2,C× C∗). �

Corollary 13. Prop(A× C, A× C∗) is empty for any domain A ⊂ C.

Proof. If #(C \ A) ≤ 1 the result follows directly from Proposition 12. Assume

that #(C \ A) > 1 and let f : A × C → A × C∗ be proper and holomorphic. By

the uniformization theorem there is an universal covering π : D → A and there is

ψ ∈ O(D× C,D) such that

f(π(λ), w) = (π(ψ(λ, w)), f2(π(λ), w)) for any (λ, w) ∈ D× C.

Fix any λ ∈ D and note that the mapping ψ(λ, ·) is constant. From properness of f

it easily follows that the mapping f2(π(λ), ·) : C → C∗ is proper; a contradiction. �

Remark 14. Since φ : C∗ ∋ z → z+1/z ∈ C is proper, there exist proper holomorphic

maps from C2
∗ onto C2, from C2

∗ onto C× C∗, and from C× C∗ onto C2. Obviously

such maps cannot be algebraic.

On the other hand, the above results and the ones obtained in [Isa-Kru] and [Kos]

imply that if there exists a proper holomorphic mapping between two Reinhardt

domains D1, D2 ⊂ C2 such that αR + β is not contained in logD1 for any α ∈

Q2, β ∈ R2 (hence also in logD2, see [Kos]), then there also exists an elementary

algebraic mapping between these domains.
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