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ON UNIQUENESS AND DECAY OF SOLUTION FOR HIROTA EQUATION
X. CARVAJAL AND M. PANTHEE

ABSTRACT. We address the question of the uniqueness of solution to the initial value problem
associated to the equation

dvu 4 iadiu + BOSu + iylul*u + S|ul*du + eu’d, T =0, x,t € R,

and prove that a certain decay property of the difference w1 — u2 of two solutions w1 and u2 at
two different instants of times ¢ = 0 and ¢ = 1, is sufficient to ensure that u; = uz for all the

time.

1. INTRODUCTION

In this work we consider the following equation
dpu + iad?u + BO3u + iy|u|®u + 0|u*Opu + eu?du =0, z,t ER, (1.1)

where o, 8 € R, 5 # 0, 7,d6,e € C and u = u(z,t) is a complex valued function. Our main
concern is to find a decay property satisfied by the difference of two different solutions at two
different instants of time that is sufficient to prove the uniqueness of the solution to the initial
value problem (IVP) associated to (L.IJ).

The equation (LI]), with the mixed structure of the Korteweg-de Vries (KdV) and the
Schrodinger equations, was proposed by Hasegawa and Kodama in [8, [I7] to describe the non-
linear propagation of pulses in optical fibers. This equation is also known as Hirota equation

in the literature. Several aspects of this equation including well-posedness issues, solitary wave
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solutions, unique continuation property, have been studied by various authors recently, see for
example [3], [4], [5], [18], [23] and references therein.

Study of the unique continuation property (UCP) for certain models has drawn much attention
of a considerable section of mathematicians in recent time, see for example [1], [4], [9] — [16], [19]
— [22], [24], [25] and references therein. In particular, in [4] and [5] we addressed the UCP for
the equation (LI)). In [4], we proved that if a sufficiently smooth solution u to the initial value
problem associated to (L)) is supported in a half line at two different instants of time then wu

vanishes identically. The precise statement of our result in [4] is the following.

Theorem 1.1. [4]. Let u € O([t1,t2]; H*) N C([t1,t2]; HY), s > 4 be a strong solution of the
equation ([I1) with «, 3,7,0,e € R, § # 0. If there exists t1 < to such that

Suppu('vtj) C (—OO,(I), J = 172 (12)
or, (Suppu('vtj) - (b,OO), Jj= 172)' (13)
Then u(t) =0 for all t € [t1,ta].

In our subsequent work [5], we obtained more general uniqueness property for solution of the

IVP associated to (ILT]).

Theorem 1.2. [5]. Let u,v € C([t1,ta]; H*) N C([t1,t2]; HY), s > 4 be strong solutions of the
equation (IL1) with «, 3,7,0,e € R,  # 0. If there exists b € R such that

u(z,t) = v(x,t), (z,t) € (b,00) x {t1,t2}, (1.4)
or, (u(z,t) = o(z,t), (z,t) € (—00,b) x {t1,t2}). (1.5)

Then
’LL(t) = ’U(t) Vte [tl,tg].

Remark 1.1. Theorem [1.1] is the special case of Theorem when v = 0.

Motivation to obtain the above results is the following observation. Consider the IVP associ-

ated to the linear part of (L)), i.e.,

Ut + iUz + BUgrs = 0,

u(x,0) = ugp(x).

(1.6)
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If w and v are solutions to (L6) then w := u — v is also a solution to (L.6) with initial data
w(z,0) = u(x,0) — v(z,0) := wo(x). If wy is sufficiently smooth and has compact support, then
using the Paley-Wiener theorem it is easy to see (for detail see [4]) that w = 0, i.e., u = v.
But the proof of the same property is not so simple when one considers the nonlinear terms
as well, because in this case w := uw — v is no more a solution. To overcome this situation,
we generalized and employed the techniques developed in the context of the generalized KdV
equation by Kenig-Ponce-Vega in [I3] and [14] to prove Theorems [[T] and .

Quite recently, Escauriaza, Kenig, Ponce and Vega in [7] introduced a new technique to obtain
sufficient conditions on the behavior of the difference u; — uy of two solutions w7 and usy of the
generalized KdV equation at two different instants of time ¢t = 0 and t = 1 that guarantees
u; = ug. In [7], the authors obtained a sharp decay condition to guarantee the uniqueness of
solution to the generalized KdV equation. So, there arise a natural question, whether one can
find such a decay condition to get uniqueness property for a mixed equation of the KdV and
Schrodinger type. In this work, we shall extend the approach in [7] to address this question to
the IVP associated to the Hirota equation (I.I) which has a mixed structure of the KdV and

the Schrodinger equations. Our first main result of this work is the following.

Theorem 1.3. Let uy,us € C([0,1]; H3(R)) N L2(|z|?dx)), be strong solutions of the equation
(L1) with o, 8,7,0,e € R, B # 0. If, for any a > 0,

i (50) —ua(-,0),  wi(-1) —us(- 1) € H (e da), (1.7)

then

U] = ug.

To prove Theorem [[3] we follow the techniques introduced in [7] by deriving some new es-
timates that are appropriate to work with the structure of the equation under consideration.
Although the idea and estimates are similar to the ones introduced in [7], the presence of the
Schréodinger term in the linear part creates obstacle to obtain such estimates, which can be
seen more explicitly in the derivation of the lower estimates in Section Bl The proofs of several
estimates that are crucial to prove the main results depend on the estimates obtained on our

previous works [4] and [5], where the exponential decay property of the solution was necessary.
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As observed in [4] and [5], the presence of the third order derivative in (ILI)) is fundamental
to obtain the desired exponential decay property of the solution. So we will suppose 5 # 0

throughout this work. To be more precise, let us recall the following remark from [4].

Remark 1.2. We can suppose 8 > 0. In fact, for a # 0 we can suppose 5 = |a|/3.

If B < 0 we define w(z,t) = u(—=x,t) then w is a solution to the equation (I1]) with the
coefficient of the third derivative is positive.

If B> 0 and a # 0 we define w(z,t) = u(a tx,t) with a = |a|/36, then w is a solution of

the equation

2

Wy + 1082 Wey + BaPwege + i7|w|2w + 5d|w|2wx + eaw“w, = 0,

and we have Ba® = |ala®/3.

As mentioned earlier, we are interested in finding a decay condition satisfied by the difference
of two solutions at two different instants of time ¢ = 0 and ¢ = 1 that is sufficient to get
the uniqueness of solution to the IVP associated to (LI). Note that, while treating with the
difference of two solutions, we need to address an equation with variable coefficients (see (4.2])

below). Therefore, in the first instant, we consider a more general equation,

Wy + 10Wey + PWery + a2(x, ) Wey + a1 (x, t)w, + by (x, t)W, + ag(x, t)w + bo(z, t)w =0, (1.8)
and prove the following result.
Theorem 1.4. Assume that the coefficients in (L8]) satisfy that

ag, by € LY A LS L1 A LY L83,
ay,by € LS/ A L8783 A [R5 1603 (1.9)
as € LTI AL/ LI A plpe.

and

ao, by, a1, b1, a2, (a0)z, (bo)z, (a1)z, (b1)z, (@2)z, (02) 2z, (62)zaa, (a2); € L(R x [0,1]),

az, (az)¢ € L([0,1]; Ly (R)).
(1.10)
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If w e C ([0,1]; H*(R)) N L*(|z|*dz))is a strong solution of (L8) with
3/2
w(-,0),w(-,1) € H'(e®+ dz), Va >0,
then w = 0.

Once we get this theorem, the proof of the main theorem follows by proving that the variable
coefficients involved in the equation in question satisfy the respective estimates.

Our next result is concerned with the existence of solution to the IVP associated to (L1]) that
decays asymptotically in . First, let us consider the IVP (LL6)) associated to the linear part of
(IT). The solution to the IVP (L6) is given by,

1 .
u(zx,t) = %G <3—3t> *ug(z), (1.11)

where
i8r3 3 iat!/Bax? o o
G(z) = / e s Tt Ty, (1.12)
R
With some easy calculations, one can obtain
|G(x)| = |Ai(z — 4> B?)|, (1.13)
where Ai is the usual Airy function given by
Ai(x) = / Prine i g
R
and

Oétl/g

N 2\3/577.

If 2 > 872 B2, we get

__C .3/
|Ai(z — 4n?B2)| < Ce~Cla—1m*B < o o=mm®” (1.14)
Therefore, from (LI3]) and (II4) we have, for any ¢ € [0, 1],
_C_u3/2
|G(z)| < Ce 2727, (1.15)

202

provided, = > 593
The estimate ([LI5]) shows that the decay condition in Theorem [[3]is in accordance with the

decay of the function G that describes the solution of the linear part.
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In what follows, we show the existence of a local solution to the IVP associated to (L) that
satisfies the similar decay property as the linear solution described above. More precisely, our

second main theorem reads as follows.

Theorem 1.5. There exists ug € S(R), ug # 0 and T > 0 such that the IVP associated to (1)
with data uy has a solution v € C([0,T] : S(R)) which satisfies

lu(z,t)] < ce B x>, te [0, 77,
for some constant ¢ > 0.

We organize this article in the following manner. In Sections 2] and [8] we prove some pre-
liminary estimates (upper estimate and lower estimate) which play a vital role to prove our
main theorem. In Section [4] we present a proof of a more general result, Theorem [[.4] and then
the proofs of the main results of this work, Theorem [[.3] and Theorem Before leaving this

section, let us record some notations that are used throughout this work.

Notations: We use f(f) and f(f,T) to denote the Fourier transform defined by f(g) =
\/% [e @ f(x)dx, and f(&,7) = & [ e "@EHT) f(a, 1) dudt vespectively. We use L5 LY to denote

mixed Lebesgue spaces. We write A < B if there exists a constant ¢ > 0 such that A < ¢B.

2. UPPER ESTIMATES

This section is devoted to prove upper estimates that play crucial role in the proof of the

main results. Let us first define the following operators
Hf = (0 +iad; + ) f,  Hnf = (0 + €™ (iad; + $03)e” ™). (2.1)

By Remark [[.2] we can suppose that 5 > 0 and |a|/3 = 3. Also, let us define v := e™*u, where
u is a solution to (LI]). We begin with the following result.

Lemma 2.1. The following estimate holds

lollzgerz < € (o, 0)llzz + 00 1)lz2 ) + CllHmolly 2. (2:2)
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Proof. We have
H,, = 0 + €™ (iad? + BO3)e™™® = 0y + ia(e™dpe ™) + B(e™ e ™*)3.  (2.3)

Also using (e™*0,e~™*)) = (9, —m)’, j = 1,2,3, we obtain
H,f = 0 4 BO2 + (i — 38m)d% + (38m* — 2iam)d, + iam? — fm?)f. (2.4)

The symbol of H,, is given by

it —iBE3 — (ia — 36m)E? + (36m? — 2iam)if + iam? — Bm>

(2.5)
= i(T — BE3 — al? + 3Bm2E + am?) — (Bm> — 2amé — 3pmE?).
Note that the real part of the symbol vanishes at
—a+y/a? + 332m?
§+ = b . (2.6)

36
As noted in [7], by an approximation argument, it suffices to prove ([2.2)) for v € C*°(]0, 1]; 8(R))
with 0(§,t) = 0 near &4 for all ¢ € [0, 1].
Now, consider f € C*°([0,1]; S(R)) with f(x,t) =0 for ¢ near 0 and 1 so that we can extend
f as zero outside the strip R x [0,1]. Also suppose that f(é,t) = 0 for £ near &4 for all t € R.

For such a function f, define an operator T' by

A~

ey fe.m)
T T) = S = BE — g + 35mPE + am?) — (B — 2amé —3pme) 1)

We claim that the operator 1" satisfies the estimate

ITfllpsere < ClifllLace, (2.8)

which in turn implies (2.2]).
To prove this, let us define n. € C*°(R), € € (0,1) such that

ne(t) =1, te[21—2¢]; suppn. C [g,1 —€].

Define
ve = n:(t)v(z, 1), fe(z,t) = Hp(ve)(2, 1),

then, v. = T'f.. Now (2.8)) gives,

[vellzge 2 < CllHm(ve)ll iz < Cline()vllrirz + neHm(v)l Ly 22- (2.9)
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Letting ¢ — 0, the left hand side of (2.9]) converges to ||v]| Lig )12 and the limit in the right
hand side is bounded by

C(llv(0llzz + o Dllzz) + CllHmvll L 2

Therefore, our task is to prove (Z8). As noted in [7], it is enough to prove that for f(z,t) =
f(x) ® b, (t), with f(&) = 0 near &4, with ¢y € (0,1), one has

ITfllzeerz < CllfllLe, (2.10)

where C is independent of .

Let us recall the formulas

v X(—o0.0)(E etb, b>0
(5 i —) (®=cC (o0 ) (2.11)
X(0,00) (1€, b <0,
so that for a,b € R,
itoT v X X(=o0,0)(t — 1 e(t_tO)b’ b>0
(eib) (t) = Ceita ot =) (2.12)
T—a+1 X(0,00) (t — to)e10® b <0,
Hence,
_ e f(8)
T =
f(f,T) Z{(T — ﬁ£3 _ 0452 + 35m2£ + amz) + ’L(ﬁmg — 2amé — 3ﬁm£2)} (2 13)

e f(€)
i —.
7 —a(§) +ib(E)
Combining (2.12) and (2.13)), it is clear that the operator T acting on these functions becomes

the one variable operator R given by,
RF(€) = (Xqp(e)»0y ()@@ e0MON o (t —t0)) f(€)

+ (X{o(e) <0} (£)e MO =My o (t —t0)) F(€),
for which we need to establish that

(2.14)

IRfllzz < Clfllze, (2.15)

with C independent of ¢y and m.
But, looking at the multiplier in (2.14]), the estimate (2.I5)) holds true and this completes the
proof. O
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Our next result deals with the crucial upper estimate and reads as follows.

Lemma 2.2. There exists k € Z" such that if u € C*°([0,1]; C§°(R)), then for any m > 1, the

following estimate holds:
™ ull g, ™ Dyl 1o + ™SRl e
< Cm? (|17 u(,0)) 12 + [T u(- )2 (2.16)
+ C (e Hul 7 + ™ Hull p1o1s o + 1le™ Hull 12 ).
xt x t x 't
where :]5(5) = (14 €2)Y24(€) and || - [z are restricted in [0,1].

Proof. As noted in the beginning of this section, by Remark [[.2], we can suppose that 5 > 0 and
|a|/3 = . Let us define

v=e"u e C*([0,1]; S(R)), (2.17)
then the estimate (2.16)) can be written as

Jolls, + €™ Bpe ™ 0]l g 1575 + 1™ 026 | o 12

LSL;

< Cm (|70, 0) 2 + 10 Dl ) (2.18)
+ C(IHmol 37 + [ Himoll s oy + 1Emol 113 )

The estimate (Z.I8]) will hold true if we can prove the following set of estimates
lollzs, < € (G, 0)llzz + oG, Dllzz ) + CllHmvl 7, (2.19)

[e™* Bze™ " ||

Lt < Cm’“(HJl/%«,mHm + (|72, 1>HL2> + CllHmv 15 prom (2:20)
T t x t

and
e 02e ™ ] oz < Cm (o, 0)lgz + [T0( V)2 ) + CllHpollpyzz. (221)

We start by proving the estimate (2.I9): As in Lemma 2] it is enough to prove (2.19) for
v € C([0,1] : 8(R)) such that 9(£,t) = 0 near &x. Suppose that f € C°°(]0,1] : S$(R)) with
f(x,t) =0 for ¢t near 0 and 1, so we can extend f to 0 outside the strip R x [0, 1]. Also suppose
that f (&,t) =0 for € near &, for all t € R. We will show that for the operator T" defined in (2.7))

ITflzs, < CIfl sy (2.22)
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and
1T flzs, < Cllfllziza (2.23)

for f € S(R2) with f(£,¢) = 0 for & near &4 for all ¢ € R.
The estimate (2.22)) is proved in [5]. To get (2.23]) we restrict to consider f(z,t) = f(z)®0dy,(t),
and reduce the case to show that the operator R defined in (2.14]) satisfies

17 fllzs, < ClIfL2s (2.24)

with C' independent of m and ¢y. But this is done in [5]
Now we show that estimates (2.22]) and (2.23]) imply the estimate (2.19]). For this, consider

ve(x,t) = ne(t)v(x,t), Hpyp(ve) = nt()v + neHp(v) = fi(z,t) + fa(z,t). (2.25)
Suppose,
U1($7t) :Tf1($at)a 'U2($7t) :ng(l‘,t), (226)
where both make sense because of our assumption on v. Then,
ve(x,t) = vi(x,t) + va(z, 1), (2.27)
since both sides are in /2, and have the same Fourier transform. Hence, from ([Z22)) and (Z.23)
it follows that
loellzs, < loallgs, + loallys, < ClAllzzs +Cllfello/n
o (2.28)
< Cl(t)oll a1 + Cllne(O) Hono!]

Now, letting ¢ — 0 we get the required estimate (2.19)).
Next, we prove the estimate (2:2I)): As earlier, here too we make our usual assumptions on

o(&,7). For f e 8(R?) with f(&,£) = 0 near £+ for all t € R we define

Tof(€,7) : = (i€ —m)*Tf (€, 7)

_ (i€ — m)*f(g,7) (2.29)
(T — BE — ak? + 3Bm2E + am?) — (Bm3 — 2amé — 38mE?)’
Let
Tof(z,t) = xpo1)T2f (2,1). (2.30)

‘We will show that
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T2 flleerz < CllfllLarzs (2.31)
1o fllgerz < Oz (2:32)
Before proving ([2.31) and (2:32]), we show that these estimates imply (22I). Using the
notations introduced in ([2:25]), ([2:26]) and (2:27)), the estimates (2.31)) and (2.32) yield
2 2 2
[(Ox —m) Ua”LgOLg < ”X[O,l](ax —m) UlHLgOLf + HX[O,l}(a:c —m) ’U2”Lg<>L§
SN Tafillpee 2 + 1 T2 f2l Lo 12
(2.33)
< Om*|J fillpyzz + Cllfallpre
< Cm? () Jvll 1 12 + Cllne(8) Hinv] £ 13-
Now in the limit as ¢ — 0 we get (Z2I)). So, to complete the proof of (Z2]]) it is enough to

prove (Z31)) and (Z32]).

With minor modification from the argument in [5], we get

1Tl 12 < Cll oy 2, (2.34)

which in turn implies (2.3T]).
Now we move to prove (232)). Let 0, € C3°(R) with 6,(x) = 1 for |z| < 3r and supp 6, C
{]z| < 4r} and consider
Om(€)(i€ —m)* f(€,7)
i(T — BE3 — al? + 3Bm2E + am?) — (fm3 — 2amé — 3mE?)

)
(1= 0, (£)) (i€ — m)*f(&,7) (2.35)
i(T — BE — a2 + 38m2¢ + am?) — (Bm3 — 2amé — 3mE?)

= To1J(6,7) + Toa (€,7).

@(57 7—) -

+

Let T271 = X[0,1)L2,1- From the Sobolev lemma we obtain
T2 fllpserz < ClI T2 fllz2r2 = CllITon fllrzre < CllIToallzee r2- (2.36)
Now suppose,
Gi(&, ) = O ()1 + [ /2 (i€ —m)* (&, 7),

so that
JTo1 f(x,t) = Tgi(x,t)
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and therefore from (28] and ([2.36]) it follows that
171 fllerz < Cllgrllzzzs = Cm T £l 1o (2.37)
To complete ([2:32]), it is enough to prove
HT2,2fHL;°L§ < C”JfHL}Lg' (2.38)

Arguing as in [7], the proof of this estimate can be reduced to consider functions of the form

f(z,t) = f(x) ® d§,(t); so that we just need to bound the operator

Roa(€,8) = (1 — 0 (€)) (i€ — m)2x ey <oy (€)@ TOMEy (3 (t —10) £(£), (2.39)
as
[R22fll ooz < ClIJ fll L2, (2.40)

with C independent of m and tg.

Let us write

Roof(x,t) = / (1 — 0 (€)) (i€ — m) X (b(e) <0} (€)@ ® 1Oy o ) (t —t0) f(€)dE (2.41)

and recall that a(¢) = B€3 + ag? — 3m2¢ — am?. Now, making change of variable A = a(¢) we
get d\ = (38£2 + 20 — 3pm?)dE.
From the definition of 6,,(-), the domain of integration in (2Z.41]) is equal to {|{| > 3m} where
13862 + 2a& — 38m?| = |¢|? in fact if a # 0, by Remark [L.2]
3867 + 208 — 38m?| =la] [¢* & 26 — m?|
>lal(jg* —m? —2(¢])
>|al((8/9)I]” — 21¢]) = |al [E[{(8/9)I¢] — 2} > |all€?] /9,
and the transformation is one-to-one since a'(¢) = |a(¢2 4 2¢ — m?) > €2,

Thus we have £ = £()\) and

(1 -0, e N2 - .
Roof(x,t) = /ezt)\e 3252 - 253)—(255”;:) X {b(¢)<0} (&)eli—tole )X(OOO (t —to) f(§)dA

(2.42)
- / gy (N (A, ),
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with

B0 = (1 — 0,,(€)) (i — m)
2 382 + 2af — 38m2

YA 1) = Xp(ey<0y ()OO x o o) (t — to).

2 ~
f(&),

Observe that,
W\ <O,V (\t) € R?
and
/ |0y (N, t)|dt < C vVAeR.

Therefore, using the result in [6] and taking adjoint we get,
I [ P00 0Nz < Clgelz

€7 (1 = 0 (£)) (i€ = m)* f(£) 1/2
= C</ |35£2 + 20[5 — 35m2||3552 + 20&5 _ 3Bm2|d£>

11— 0, (P12 + m2PIf (O | \1/2
< / 36€2 1 2a€ — 3pm2| %)

(2.43)

< OISl re
which is (2.32).

Finally, we supply a proof of the estimate (220): At this point too, let us make the usual

assumptions on v and ¢. For f € 8(R?) with f(£,¢) = 0 near &4 for all t € R, we define using

1)

(ZE - m)f(£7 T)

Tif(& ) = (€ =m)Tf(E,7) = i(T — BE — a2 + 3Pm2E + am?) — (Bm3 — 2amé — 3BmE?)

(2.44)
Now define,
Tlf(x7 t) = X[o,1] (t)Tlf(x7 t)' (245)
We claim that
I3 £l g0 305 < O 105 1o (2.46)

and

IT3f 1 o aos < CrllT2F 2 (247)
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As earlier, the estimate (2.20)) easily follows from the estimates (2.46]) and (2.47). Let us

recall, in [5] it was proved that

T3l yogpo7e < OIS sone o (2.49)

which implies (246]). To obtain (Z47) we write T} in the following way

A~

Hm(f)(Z€ B m)f(éa T)
i(T — BE3 — a2 + 3Bm2E + am?) — (fm3 — 2amé — 3mE?)

n (1 —0m()(i€ —m)f(&,7) (2.49)
i(T — BE3 — a2 + 38m2E + am?) — (Bm? — 2amé — 3mE?)
Tiaf(&7) + Tiaf (6,7).

Let T, = X[0,11(t)T1,1. Now from (Z37) we have

Tif(&,7) =

1Ton fllpeerz < Cm2 I fllL L2 (2.50)

and from (2.23) we get
||T0,1f||L§t <Clfllpize- (2.51)
Hence, using the interpolation argument based on the Littlewood-Paley decomposition as in

[14] we obtain
ITaall o 105 < Cmll T2 fl 2 (2.52)

Finally we interpolate between

“TNO,2f“L§t < Cllfllzizz; (2.53)

which follows from ([2:22)), with (Z37) to get
ITa2f |l o 105 < ConllT 2 f 1z, (2.54)
and this yields ([2.47]). O

In an analogous manner, as it has been worked out in [7], the above result holds for a larger

class of functions, for example:
u e C([0,1]; H*3(eP2dx) 0 H*F3(R)) n CY([0, 1]; H* (e dz) N H*(R)),

with k € Z, k > 1 and for all § > 0.
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Now we want to extend the estimates in (2.I0) in Lemma to solutions with variable

coefficients
Oy + i0d*u + BOu + az(x, t)0%u + ay (x,1)0pu + by (z, )0y + ao(z, t)u + bo(z,t)a = g. (2.55)
Let us introduce the notation
Hou = du+iad>u+ Bo3u+ay(z, t)02u+ay (x,t)dpu+by (z, )04 ag (z, ) u+bo(z, 1), (2.56)

and suppose that multiplication by ag(x,t) and by(z,t) map

87

Lf =Ly, L — LOPLM I - L, (2.57)

multiplication by ai(x,t) and by (x,t) map

LIpISA L p87 g6 6/5 _ ple/spl6/t o p16 165 pir2 (2.58)

xt
and multiplication by as(x,t) maps

LeL? — 87 peep? o pMeAspI6M - peer2 plp2 (2.59)

xt

To guarantee that the coeflficients satisfy these conditions, it is enough to consider,
ao,bo € LX/PL° L8700 LI5S,
ay,by € L3 A LI/BLS9 A L8733 (2.60)
az € LYTLY N LS LP nLLLge,

Also, if we assume that, if the coefficients satisfy

ap, bo, ai, bl, as, ama(], ambo, 890&1, 8xb1, amag, 63&2, 63(12, 8ta2 S LOO(R X [0, 1]),
(2.61)
az, Qyag € L°([0,1]; Ly (R)).
with small norms in (260]), then Lemma holds for H, instead of H. In fact we have the

following result.

Lemma 2.3. Suppose that the coefficients ag, by, a1,b1,as satisfy 2.60) and 2.61]) with small
norms in the spaces in 260). There exists k € Z*+ such that if u € C*([0,1]; C§°(R)), then for
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any m > 10||az || oo (rx[0,1))
e ull s, + €™ 0xul o105 + 1™ O2ull o 1
< om (1™ u(, 0)) 2 + 1T u( 1)) 2) (2.62)
+ C(Jle™ Haul /7 + €™ Hau| rors 1o/ + €™ Haully 12 )

Proof. Let us define

100 = 11e™ Fllzs, + €™ 0uf || yo 0/ + €05 fll ez

70 = 171 ogr + 1o sons + 1l s
From Lemma we have
flufly < Cm%<||J(€mgﬁu(',0))||L2 + [|J(e™ u(-, 1))||L2) + Cle™ Hul|2

< Cm (7™ u(-, ) g2 + 1T u(, 1)1z ) + Clle™ Hyull

(2.63)
+ H\emx(alé)xu + a00,u + asu + CL4@)H‘2
mx mx mx 1
< Cm? (17 u(,0)) 12 + 1€l D)llz2) + Clle™ Haulla + 3l
which gives the desired result. O

One can extend this result to a boarder class of solutions as in [7].

Theorem 2.4. Let the coefficients ag, by, a1,b1,as satisfy the conditions in ([260) and (2.61]).

If u = u(x,t) is a solution of
Opu + iad?u + BPu 4 as(xz,)0%u + a1 (z,t)0pu + by (x, )0y + ag(x, t)u + bo(z, t)a = 0, (2.64)
with v € C([0,1]; H'(R)) satisfying that
u(-,0), u(-,1) € H (")
for some l > 1 and a > 0, then there exist cg and Ry > 0 sufficiently large such that for R > Ry

—a l l
ull 22 ({Res<ri1yx0,1)) T 100tll 2((Reze i1} 2 (0,1)) + 102Ul L2({Rew RE1}x(0,1)) < coe™ /T

(2.65)
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Proof. Choose R so large that in the a-interval (R, o0), the coefficients ag, by, a1, b1, ay satisfy
the conditions in (2.60]) and (2.61]) with small norm in corresponding spaces in (2.60]).
Let € C*°(R) with u(x) =0if z <1 and p(x) =1 in z > 2.
For pg(x) = p(x/R), define
ur(z,t) = pr(z)u(z, ),

so that ug(z,t) satisfies the equation

8tuR+ﬂ8§§uR+z’a8§uR+a2(x, t)@guR—kal(x, t)0pur+b1(z,t)0pug+ao(x, t)ug+bo(x,t)ug = Fr
(2.66)

where,

1 1 1 1 1
Fr = B—g g+ 38— (st + 38— ppdau + ia—s ppu + 2io— ppdyu
R R R R R (2.67)

1 1 1 1
+ as(z, t)ﬁ,u’f%u + 2as(z, t)Eu}%&cu + ay(z, t)ﬁu}%u + by (, t)ﬁu}%a.

Note that, supp Fr C {z : R < z < 2R}. Let us choose, m = %Rl_l. Now, we cam use

Lemma 23] to ug with
Hynp = 0y + B2 + 0002 + figaz(z, )02 + firar (z,1)0y + firb1 (2, )0y + firao(z,t) + firbo(w, 1),

where fir(z)ur(xz) = pr(x), which assures that the coefficients fip(z)a;(z,t), j = 0,1,2 and
fr(x)bj(x,t), j = 0,1 have small norms in the corresponding spaces in (2.60) for R > Ry.
Therefore, applying ([2.62]) for R large, we get

lurll: < cm%(HJ(e’”ZUR(wU))HLz + 17 (e ur( 1))HL2> + €™ Frll2- (2.68)

With the argument similar to the one in [7], the first two terms in the right hand side of
(268)) are bounded by cq .

Now we move to bound the last term in (2.68]).

Recall that supp Fr C {z : R < z < 2R}. Now, the combination of Holder and Minkowskis
integral inequality yield,

le™ Frllz = lle™ Frll /7 + [l€™ Frll 1015 pro1 + €™ FRl| 1 12

-1
< e B (fu] + |00ul + 102X 2 Reo<ory |l ge 12 (2.69)

-1
< CleaR R‘
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Hence, from (2.68]) we obtain,

le™ ul s

gt 0]

!
o 1™ 0ull e pp < cag e (2.70)
" t

L amy {e>4R}

Once again, using Holder inequality in (2.70) we get, for sufficiently large R

o pl
[[ull 2 + |0z ul| 2 + |03l < cqre” ™. (2.71)

({4R<z<4R+1}x(0,1)) ({4R<z<4R+1}x(0,1)) L%{4R<x<4R+1}><(0,1))

Replacing 4R by R’ we obtain,

2 < —a(R' /4)!

HUHL%{R’<:¢<R’+1}x(o,1)) + ”axu”L?{R’<1<R’+1}><(O,1)) + HamuHL%{R’<z<R’+1}x(0,1)) = Cal® ’
(2.72)
which yields the required estimate (2.65]). O

3. LOWER ESTIMATES

This section is concerned with lower estimates that play fundamental role in the proof of the

main result of this work. Let us begin with following lemma.

Lemma 3.1. Assume that ¢ is a real smooth function with compact support in [0,1] and 8 # 0.

Then, there exist ¢ > 0 and M = M(||¢']loo; |¢"]loc) > 0 such that the inequality

a®/? x 2 /X 2 a3/? x 2 /X 2
a(Z4p)? (T + a(F+e®)? (2 t
= le(® (R + o )) g . + 2 e R (R + ¢( )) O0rg 2, o)
1/2 . - '
+ % ea(ﬁ—i-«p(t))Qagg L < C(ﬁ) ‘ ea(ﬁ—i-ap(t))Q (8t + za&% + ﬁai’)g‘ 12
xt xt

holds, for R > a?/BY3, a such that a® > MR, and g € C5°(R?) supported in
o | T
D= > .
{(:L",t)eR ‘R+<p(t)‘_1}

Proof. Initially we consider the case when 8 = 1. In a similar way as in [7], we define a function

flz,t) = e?@Dg(z,t) with 0(z,t) = (% + ¢(t))? and the expression
V0 (@, +i0d2 + 02) (70D f(w,0)) = (Su+ Saa)f + (Aa+ Aua)fy  (3:2)
where

Saf = _3a(9mfgc)gc - a39§f - aegcmcf - aetf; Sa,af = _iaaemmf - 2iaa9wfma



ON UNIQUENESS AND DECAY 19

and
Aaf = ft + fmwx + 3a29§fm + 3a29m0xxf; Aa,af = iaa29§f + Zaf:mv

We have S; = Sq, S; ,, = Sam A, = —Ag and A7 , = —Ag q, and therefore,

(R te(®)” (0 + iad? + 02)

= [|(Sa + Sa.0)f + (A +Aaa)f||L2

Z <{(SaAa - AaSa) + (SaAa,oa - Aa,aSa) + (Sa,oaAa - AaSa,a) + (Sa,aAa,a - Aa,aSa,oc)} f7 f> .
(3.3)

We find that
(SaAa - Aasa)f = [Sa§ Aa]f
(3.4)
= 90 (02 fox)ew + (6004 — 18a3020,2) fo)x + (=300, + abyy + 6636020, + 9a°026,..) f,
[Sa; Awalf = [Sae; Adlf = 16600, frze — 163 0,02, f — i6a> 020,40 fr + 20004 fr,  (3.5)
and

[Sa,a§Aa,a]f: _4aa29mmfmm- (36)

In [7] it was proved that, if a® > (||¢’]|co + H<,0"Hc1>éz +1)R3, then

([Sa Aalf, 1) > 220 / Fuol? dwdt+132“ / / o) Ifel dodt

016 (3.7)
216a” E 2
+ 6 // 7 +<,0(t) |f| dxdt.
From (B3) and B7) one has that
<[Sa7Aaa]f+ SaaaA ]f+ [SaocaAaoc]f f>
= 112ac // Oz frze fdxdt — i12a a/ 0. 9 ]f]Qda:dt
(3.8)

—il2a3a / / 020, fo fdzdt + idac / / Ou fo fdadt + dac? / / Ope| f|* ddt

=:1J1+1Jo+1J3+ 1y + Js5.

Integrating by parts, we observe that iJy,iJ2 +iJ3,iJs € R. Since 0(z,t) = (§ + o(t))? we

//fmfxda:dt‘ < 12—a//|fmm| dxdt + 1207 CL//|fm| dxdt. (3.9)

have that
24a \ o

liJ1] <
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Similarly

5/2 1/2(F
s+ 5] = |3 Jgr<ugr<96//< #(t)” 'f') (‘a’“R’fx‘>dxdt
(3.10)
c B // A |f|2d:ndt+48aa/ | fo2dadt.

As a® > ||¢/|| o R and (% + ¢(t))* > 1, on the support of f, we get

|ZJ4|<8// (214 (12|a||fm|)dxdt
<da [[1e's

402a
< Rﬁ// e |f|2d:17dt+ =3 / | folPdadt.

Now R > o? and a? > R3 imply that

//|fw| dudt < R4// Lt o0) 1ol dudt. (3.12)

Combining (3.9)-(B.12)) we obtain

12 644
iy +idy +ids +idy+ Js > ;//\fm\zda:dt— a // Z 4ot ]fx\zdxdt

2
5“// R |f|2dxdt.

> ([Sa; Aalf + [Sa; Ag,al f + [Saa; Al f + [Sa,ai Aaal f, f)

> 50 ([ 1ual? i+ B // & o) 1ol ot
164a m
+F// E—Fgﬁ(t) |f|2dl‘dt,

which concludes the proof of the Lemma when g = 1.

Now if 8 > 0, § # 1 (see Remark [[LZ) we use the case 8 = 1 with o = a/f*? and
g(x,t) = g(8/3z,t). Finally, we perform a change of variable 2 := /3 to obtain (BI)).

This inequality, (3.3]) and (BEI) yield

e EmHEW? (9, + iad? + OP)

O

In an analogous manner as in [7], we have the following result.



ON UNIQUENESS AND DECAY 21

Lemma 3.2. Assume that ¢ is a real smooth function with compact support in [0,1] and that

ao, a1, bo, by are complex functions in L>°(R?). Then there exist ¢ > 0,

Ry = Ro([|4'lloos 19" lloc llaolloos lanlloc) > 1, and M = M([|¢"[lso; " ]loc) > 0

such that the inequality
5/2 a3/2

+ -
r, R

a

Ed x 2 alZ x 2
= el E+e(t)? <E + (’p(t)) g e FHe(®)? (E + go(t)) 09

2
L:L‘t

<c

T (g + 0G0 + Biawa + a1(2, )90 + b1 (0,030 + ao(w,1)g + bo(w,09)| , (3.13)

xt

holds, for R > Ry + o2, a such that a > MR3/?, and g € C§°(R?) supported in
{(:Et ) ER?: ‘R )‘21}.
Theorem 3.3. Let u € C([0,1]; H*>(R)) be a solution of
up + i0tgy + PUgey + ao(, t)uge + a1 (x, t)uy + by (x, t)ay + ag(z, t)u + bo(x,t)a =0, (3.14)
with by, by, ag, a1, az, (a2)z, (a2)zz € L2 (R?) and as, (ag); € LP(R : LL(R)). If
/R/Ol(\uy? + |ug|? + |ugs|*) (z, t)dodt < A?, (3.15)

and
5/8
/ / (x,t)dxdt > 1, (3.16)

then there exist constants Ry, cg,c1 > 0 depending on
A, N[bolloos [1B1]loos [1aolloos a1 oo [lazlloo, 10azlloos |03azloos lazll oo £ s [|Bsa2 oo Ly
such that for R > Ry

1 rR 1/2
§(R) = 6u(R) = </ / (\u!2 + ]ux\z + \umP)(az,t)dxdt> > coe_cle/z. (3.17)
0 JrR-1

Proof. Considering the gauge transformation

v(z,t) = ulz, t)et/ 30 Jo az(st)ds (3.18)
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the equation for v = v(x,t) can be written as

vy — (%/0 Oras(s,t)ds | v + i« <vm — %agvm + < 58 202 + —= 952 > >

_ a9 1 2 _ a% CL2
+ 05 (Uxmv Bvxx < —0zag + 9,82(12) Vp + < 2753 + 52 Ozaz — 3565(;&2) U)

a2 3 _ _
az0zaz  as azay agby _ ashby \ _
T - D) T T T o5 - 5,5 Y2 b — a5
+ agv 35 < 38 +952>v+alv 3ﬁv+aov 351) +<0 33 v
=0t + 10y + BUggr + a1 (2, )0y + do(x,t)v + by (2, )Ty + bo(z, )7 = 0. (3.19)

where agp, a1, b~0, by are complex functions in L°(IR?).

As in [7], we define the functions fr(z) = 1if x < R—1, Op(x) = 0if 2 > R, pu(z) =1
ifx>2 px)=0if z <1and ¢(t) =3if t € [3/8,5/8], ¢(t) = 0if t € [0,1/4] U [3/4,1],
0<0Op,u<1 0 peC®R),0<p<3and ¢ € C5°(R) and the function

gla.t) = br(e) (5 + o) vl 1), (@.8) € Rx[0,1],

so that g has support on (—2R, R) x (0,1) and can be assumed to satisfy the hypothesis of
Lemma 311
Using (B.14)) one has that

gt + iagxx + Bg:c:c:c + dlgx + Blg:c + dog + BOg

= p (% + so(t)) (z‘aogw +2i00Wu, + 8090 + 300, + 3600 v + 61000 + 5109@)

i 2) 1) 3) 2) 1)
+ Or(x) (M(l) <(p(1) + C;) v+ za/;%—Q’u + 2zaMR vz + ﬂ/;%—gv + 3ﬂ/;%—2vx + Sﬂ%vm>
. 0( )#(1) 5 9 p® 2501 e 6 9 M(l) P p®
+ 21« R U+ ﬁ R v+ 5 R R2 v+ 5 R —V, + 01 RFU

(3.20)

The remaining part of the proof follows as in [7]. In fact, using the definitions of O, 1, ¢ and

B.I6) we get

a5/2

R3

a/2
. > c—ze. (3.21)
xt

a(Z+p)? (T 2
e\ r <R+so(t)) g

On the other hand, we observe that the first term in the right-hand side of ([3.:20]) is supported

in [R— 1, R] x [0,1] where ea(@/Bte()* < ¢l6a and in the remaining terms in the right-hand
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side of (B20) we have e?@/B+e(®)* < ¢da Thus (I3) and BI5) imply that for a > M; R3/?
(M, as in Lemma [3.2)),

a’/? P 2 (T 2
2 ||ealFHe@)® (2
= || EE (S et) g .
<c || e FHO (g, + i0ges + Bours + a1(x, 1) ge + b1 (2, )G + ao(x, )g + bo(x, t)g)( L
xt
§61€16a50(R) + e A. (3.22)

Combining (3:21]) and (322)) it follows that

5/2
c%ega < 61616“51,(}2) +c1e*A, Va> M, R32.

In particular, for a = M; R3? with R sufficiently large we obtain
dy(R) > coe_clR3/2.

By the hypothesis on the coefficients ag, a;,as and the definitions (BI7)), ([BI8]) we conclude
that
du(R) ~ 64(R) > coe_clR3/2.

4. PROOF OF THE MAIN RESULTS

This section is devoted to provide proofs of the main results of this work. First, let us begin

with the proof of the Theorem [L.4l

Proof of Theorem [T.4L If u # 0, we can suppose that u satisfies the hypothesis of Theorem
B3l and therefore
0u(R) > coe™ 7, (4.1)

and apply Theorem 2.4l with [ = 3/2, a > 8¢y, ¢; as above we have

Su(R) < ce ®B?/8,

which is a contradiction with ([@1]) for R sufficiently large. O

Now we are position to supply proof if the first main result of this work.
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Proof of Theorem [I.3l Let uj, us be strong solutions of the equation (LI), then their
difference w = uq — uo satisfies the following equation

Opw + iad*w + BAZw + Say (x,t)0pw + €by (2, )0 + ag(z, t)w + bo(z, t)w = 0, (4.2)

where a1(z,t) = |u1|?, b1 (z,t) = u2, ap(w,t) = iy(|ur|?® + |uz|?) + dtadrus + €(ur + ug)dyiia and
bo(xz,t) = iyuiug + dugOyus.
To conclude the proof of the theorem, it is sufficient to prove that w, ag, a1, bg, b1 satisfy the

hypotheses of Theorem [[.4l As in [7], this is a consequence of the estimates
loull ey < lollge oo llull Lo e (4.3)

For the sake of completeness, we present the proofs of the estimates correcting some mistakes
present in [7].

‘We need show that
ag, by € LY A LIS/BLIO A L8783 gy by e LIS/ A L8783 A L1615 16/3,

We will prove the estimates only for by and by, because those for ag and ay are similar. Using

the hypothesis

uj € C([0,1] : H* N L*(|z2dz)), j=1,2, (4.4)

we have (see [7])
‘x’uﬁ "T‘2/3(uj)x7 ’x‘1/3(uj)xx7 (U])x:c:c € Lw([ov 1]7 Li)v J=12 (45)
uj, [2Puy € L2([0,1), L), j=1,2. (4.6)

Thus, (£3), (£8) and Holders inequality yield

+
lurus|| ass < cllullzgy sup [[(2)'* szl < elluillrgg sup (luallzz + [|lzuz] L2)-
wt t€0,1] te[0,1]

Similarly

+
lur (uz)e | pags < ellunllngg sup [1(2)? (u2)ollrz < cllunllegg sup (luzllzz + |zl (u2)all2)-
zt t€[0,1] t€[0,1]
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Now we will prove that by € Lglcﬁ/ 13L2 /% We have,

e 9/13 13/16
Hu1U2||L16/13L16/9 <cllu1 || </%/ (|u2|16/9dt> d:l?) , 4/13 <p < 15/13,
x t

9/16
<clurls ([ [ @ ®dsar)
1679 9/16
<clurls ([ Neyual Y at)

<cllurllrg sup (uzllrz + [[zuzllL2).
t€[0,1]

Analogously, using 4/13 < p < 35/39, we get

lJur (u2)o| 16715 1670 < cllunllpoe sup ([Juzllze + |23 (u2)ellz2)-
Lo Ly “ 1e0.) ’ ’

)

8/7L§/3

Now we will prove that by € Ly . Similarly as in [7], we get

3/8
hustallyyr e Sellwnllozs ( // <w>4*/3\u218/3dxdt>

1/4 3/4
<elfurllgz 1e)* el gz sup @) el 0 <<
¥ tefo,1 ®

and we have similar estimate for [|u1(u2)z|| s/7 5/3.
x t

16/15Li6/3

Finally, it is sufficient to prove that by = u? € Ly . In fact (see [7])

3/8 5/8
ol sons s < el llzgs Gy 3 1) S 173

Using (4.4)-([4.6]) we conclude the proof of the theorem. O
In what follows, we provide the proof of the second main result about the decay property of

the solution to the Hirota equation.

Proof of Theorem The proof of this theorem is very similar to the proof of Theorem 1.4
in [7]. For the sake of clarity, we provide a brief idea pointing out the differences that arise in

our case.

Let ¢ € C§°(R), ¢ > 0, suppep C (—4,6), 6 € (0,1/8) and [ (z)dz = 1.
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We consider the IVP
Ut + 10Uy + PUger + F(u) =0, (z,t) € R x [0,AT]
u(x,0) = up(z) =V (1)p =St * 9,
where F(u) = iy|u|*u + 6|u?0,u + eu?d,u, and e, AT are sufficiently small.

Without loss of generality we can suppose 8 =1 (Remark [L.2]).
Let V(t)up be the solution of IVP (4.7) when 8 = 1 and let V,(t)ug be the solution of IVP

(@) when g = 0.
Let us consider ¢ = V_,, thus ¢ = V¢, then

V(t)p = S+ Voo = Sy %9,

where Sy % f(x) = %Az(%) x f(z) and Ai(z) is the Airy function.

The solution to the IVP (41 (see [7] and [12]) is obtained by iterating
t
B0 =) =eSupex o+ [ Sy Fu)(E)at,
0

n=1,2,--- in the ball

lwllz,sn < 2e(1S1* ¥l + la*S1 ¢l 2), (4.8)

where

lwllz,s e = sup([w(t)l|zs + la*w(@)ll2) + w2 5o o2y + 105 0Ol e r2oyy-  (4.9)
] t

The sequence {u™} converges in the norm given by (4.9)), for 7' > 0 sufficiently small, inside the
ball defined in (4.8)).
Using the induction principle, the integral equation and properties of S; * ¢ (Airy function),

for t € [1,1 4+ AT], AT > 0 small enough (see [7]), we obtain

3/2

e, it >1/2,
[F™ (a,t)] <ee® S1, i |2 <1/2, (4.10)
1/(1+2%)%, if zeR.

This inequality, properties of Airy function, a limit process and the same argument as in [7] for

¢ sufficiently small, yield the desired result. O
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