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GLOBAL WELL-POSEDNESS OF THE MAXWELL-DIRAC

SYSTEM IN TWO SPACE DIMENSIONS

PIERO D’ANCONA AND SIGMUND SELBERG

Abstract. In recent work, Grünrock and Pecher proved that the Dirac-Klein-
Gordon system in 2d is globally well-posed in the charge class (data in L

2 for
the spinor and in a suitable Sobolev space for the scalar field). Here we obtain
the analogous result for the full Maxwell-Dirac system in 2d. Making use of the
null structure of the system, found in earlier joint work with Damiano Foschi,
we first prove local well-posedness in the charge class. To extend the solutions
globally we build on an idea due to Colliander, Holmer and Tzirakis. For this
we rely on the fact that MD is charge subcritical in two space dimensions, and
make use of the null structure of the Maxwell part.
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1. Introduction

The Maxwell-Dirac system (MD) describes the motion of an electron interacting
with an electromagnetic field. Here we study the 2d (two space dimensions) case,
where the electron is restricted to move in the (x1, x2)-plane. Then the electric
field E is constrained to the same plane, the magnetic field B is perpendicular to
it, and all fields depend only on (t, x1, x2) (not on x3), so we write x = (x1, x2),
and occasionally t = x0. The partial derivative with respect to xµ is denoted ∂µ for
µ = 0, 1, 2; we write ∂t = ∂0, and ∇ denotes the spatial gradient. The summation
convention is in effect: Roman indices j, k, . . . run over {1, 2}, greek indices µ, ν, . . .
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2 P. D’ANCONA AND S. SELBERG

over {0, 1, 2}, and repeated upper/lower indices are implicitly summed over these
ranges. Indices are raised and lowered using the metric diag(−1, 1, 1) on R1+2.

In terms of a potential A = {Aµ}µ=0,1,2 with Aµ : R
1+2 → R,

B = ∇×A = (0, 0, ∂1A2 − ∂2A1), E = ∇A0 − ∂tA,

where A = (A1, A2, 0) denotes the spatial part of A. Expressing Maxwell’s equa-
tions in terms of A, and imposing the Lorenz gauge condition

∂µAµ = 0 ( ⇐⇒ ∂tA0 = ∇ ·A),

the MD system reads (see e.g. [DFS10])

(1.1)

{
(−iαµ∂µ +Mβ)ψ = Aµα

µψ,

�Aµ = −〈αµψ, ψ 〉,

where ψ : R1+2 → CN is the Dirac spinor, M ∈ R is a constant and � = ∂µ∂
µ =

−∂2t +∆x is the D’Alembertian on R1+2. Since we work in 2d, the smallest possible
dimension of the spinor space is N = 2, and then for the 2 × 2 Dirac matrices we
can take the representation α0 = I2×2, α

1 = σ1, α2 = σ2, β = σ3, where the σj

are the Pauli matrices. Finally, 〈 ·, · 〉 is the standard C2 inner product.
Recently there has been significant progress in the regularity theory for MD and

the simpler Dirac-Klein-Gordon system (DKG),

(1.2)

{
(−iαµ∂µ +Mβ)ψ = φβψ,

(−�+m2)φ = 〈βψ, ψ 〉,

where φ is real-valued and m ∈ R is a constant.
A key question for both systems is whether global regularity holds, i.e. starting

from smooth initial data, does the solution exist for all time and stay smooth? For
small data this has been answered affirmatively by Georgiev [Geo91] in 3d, but for
large data there was until quite recently only the 1d result of Chadam [Cha73].

To make progress on the large data question in 2d and 3d, a natural strategy
is to study local (in time) well-posedness for rough data and exploit conservation
laws to extend the solutions globally.

But for both DKG and MD, the energy lacks a definite sign (see [GS79]), so the
only conserved quantity that appears to be immediately useful is the charge:

‖ψ(t)‖2L2 = const.

This constant will be called the charge constant in what follows.
The charge conservation was of course a key ingredient in Chadam’s global result

for 1d MD [Cha73], later improved for the 1d DKG case by Bournaveas [Bou00], in
the sense that the regularity requirements were lowered to the charge class (data
in L2 for the spinor and in some Sobolev space for the scalar field). Since then a
number of papers improving the local and global theory for 1d DKG have appeared,
see [Fan04, BG06, Mac07, Pec06, Pec08, Sel07, ST08, Tes09, MNT10].

As the space dimension increases, however, it becomes much more difficult to
prove local existence in the charge class, and therefore correspondingly difficult to
exploit the charge conservation. Indeed, it was to take more than thirty years from
the 1d result of Chadam until the next major breakthrough in the global theory
was achieved quite recently by Grünrock and Pecher [GP10], who proved global
well-posedness for 2d DKG. At the same time, but independently, Ovcharov [Ovc]
proved a corresponding result under a spherical symmetry assumption.
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Decisive improvements in the local theory have been made possible through
the discovery, by the authors in joint work with Damiano Foschi, of the complete
null structure of first DKG, in [DFS07b], and then MD, in [DFS10], permitting
significant progress compared to earlier local results such as [Gro66, Bou96, Bou01,
MN03, FG05, BMS05], where at most partial null structure was used.

In [GP10], Grünrock and Pecher use the DKG null structure combined with
bilinear estimates similar to those used in [DFS07a], where in particular it was
shown that 2d DKG is locally well posed for data

(1.3) ψ(0) ∈ L2(R2), φ(0) ∈ H1/2(R2), ∂tφ(0) ∈ H−1/2(R2),

with a time of existence depending only on the size of the data norm. Thus, to get
a global result it suffices—in view of the conservation of charge—to show that

‖φ(t)‖H1/2(R2) + ‖∂tφ(t)‖H−1/2(R2)

cannot blow up in finite time. In fact, Grünrock and Pecher prove this for an
equivalent norm which we shall denote D(t). In our reformulation, they prove:

Theorem 1.1. ([GP10].) The local solution of 2d DKG exists up to a time T > 0
determined by

(1.4) T 1/2[1 +D(0)] = ε,

where ε > 0 depends on the charge constant. Moreover, if D(0) ≥ 1 then

(1.5) sup
0≤t≤T

D(t) ≤ D(0) + CT 1/2,

where C depends on the charge constant.

Both DKG and MD are charge subcritical in 2d (whereas the 3d problems are
charge critical). To be precise, the critical regularity determined by scaling is half a
derivative below the regularity of the charge class data (1.3), hence the half power
of T in (1.4) is optimal, and in fact so is the half power in (1.5). The fact that
the two exponents add up to 1 enabled Grünrock and Pecher to apply a scheme
devised by Colliander, Holmer and Tzirakis [CHT08] to extend solutions globally.
We recall the argument here since a modified version of it will be used for MD.

Since the only possible impediment to global existence is D(t) becoming large,
one may assume D(t) ≫ 1 for all t ≥ 0 for which the solution exists. Now as
long as D(t) ≤ 2D(0), Theorem 1.1 can be applied repeatedly with a uniform time
increment T given by T 1/2[1 + 2D(0)] = ε. In view of (1.5) the theorem can be
applied n times, where n is the smallest integer such that nCT 1/2 > D(0). In this
way one covers a total time interval of length

nT = nCT 1/2 1

C
T 1/2 > D(0)

ε

C[1 + 2D(0)]
≥ D(0)

ε

C[3D(0)]
=

ε

3C
> 0,

the crucial point being that ε/3C is independent of D(0). Repeating the whole
argument one can therefore cover a time interval of arbitrary length.

The purpose of the present paper is to extend the result of Grünrock and Pecher
to the full MD system. This adds significant difficulties since MD has a far more
complicated null structure than DKG, and since instead of a single scalar field φ
we have to deal with the electromagnetic field (E,B). Because of these additional
difficulties, we have to face the following two issues, affecting the above global
existence argument:
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(i) For MD we are only able to prove the analog of (1.5) up to a logarithmic
loss in the factor T 1/2, i.e. the term CT 1/2 on the right hand side is replaced
by CT 1/2 log(1/T ), whereD(t) is now a certain norm of (E,B)(t) such that
local existence holds up to a time 0 < T ≪ 1 determined by (1.4).

(ii) The norm D(t) actually depends implicitly on T .

Because of these issues, we are not able to apply the scheme of Colliander,
Holmer and Tzirakis in its original form, but with some extra work—exploiting in
particular a crucial monotonicity property of our data norm with respect to T—we
are nevertheless able to obtain a global existence result. The detailed argument
is given in section 3, but as a warm-up we sketch here the argument in the much
simpler situation where we ignore the implicit dependence of D(t) on T : The local
result can then be iterated until nCT 1/2 log(1/T ) > D(0), giving a total time

∆ ≡ nT >
D(0)

log(1/T )

ε

C[1 + 2D(0)]
∼

1

log(1/T )
∼

1

logD(0)
,

where (1.4) was used. Moreover, one can easily showD(∆) ≤ 3D(0), so by a further
iteration one covers successive time intervals of length ∆1,∆2, . . . such that

∆j+1 &
1

log(3jD(0))
∼

1

j + 1

for j ≥ 0, hence
∑∞

j=1 ∆j = ∞.

Some notation: The Fourier transforms on R2 and R1+2 are defined by

f̂(ξ) =

∫

R2

e−ix·ξf(x) dx, ũ(X) =

∫

R1+2

e−i(tτ+x·ξ)u(t, x) dt dx,

where ξ ∈ R2, τ ∈ R and X = (τ, ξ). We also write Fu = ũ.
If A is a subset of R1+2, or a condition describing such a set, the multiplier PA

is defined by

P̃Au(X) = χA(X)ũ(X),

where χA is the characteristic function of A, and similarly if A ⊂ R2.
We write D = −i∇, and given h : R2 → C we denote by h(D) the multiplier

defined by

ĥ(D)f(ξ) = h(ξ)f̂(ξ).

The notation ‖·‖ is reserved for the L2-norms on both R2 and R1+2 (which one
it is will be clear from the context):

‖f‖ =

(∫

R2

|f(x)|2 dx

)1/2

, ‖u‖ =

(∫

R1+2

|u(t, x)|2 dt dx

)1/2

,

and similarly in Fourier space. For s ∈ R, the Sobolev space Hs = Hs(R2) is
defined as the completion of the Schwartz space S(R2) with respect to the norm

‖f‖Hs = ‖〈D〉sf‖ ,

where 〈ξ〉 = (1 + |ξ|2)1/2. The Besov space Ḃs
2,1 = Ḃs

2,1(R
2) is the completion of

S(R2) with respect to the norm

‖f‖Ḃs
2,1

=
∑

N>0

Ns
∥∥P|ξ|∼Nf

∥∥ ,

where N is understood to be dyadic, i.e. of the form 2j with j ∈ Z.



GLOBAL SOLUTIONS OF 2D MAXWELL-DIRAC 5

In estimates we use the shorthand X . Y for X ≤ CY , where C ≫ 1 is
either an absolute constant or depends only on quantities that are considered fixed;
X = O(R) is short for |X | . R; X ∼ Y means X . Y . X ; X ≪ Y stands for
X ≤ C−1Y , with C as above. We write ≃ for equality up to multiplication by an
absolute constant (typically factors involving 2π).

2. Main results

2.1. Local well-posedness. We consider the initial value problem for 2d MD
starting from data

ψ(0, x) = ψ0(x), E(0, x) = E0(x), B(0, x) = B0(x) = (0, 0, B3
0),

which by Maxwell’s equations [see (2.6) below] must satisfy ∇ · E0 = |ψ0|
2
and

∇ ·B0 = 0. But the latter automatically holds in 2d, since B = (0, 0, B3) does not

depend on x3, whereas the constraint ∇ ·E0 = |ψ0|
2
determines the curl-free part1

of E0, so we only specify data Edf
0 for the divergence-free part Edf . Thus,

E0 = Edf
0 +∆−1∇(|ψ0|

2
).

The data for the potential A,

Aµ(0, x) = aµ(x), ∂tAµ(0, x) = ȧµ(x) (µ = 0, 1, 2),

are fixed by choosing

a0 = ȧ0 = 0.

Then the spatial parts a = (a1, a2, 0) and ȧ = (ȧ1, ȧ2, 0) are given by, since ∇·a = 0
by the Lorenz condition,

a = −∆−1(∂2B
3
0 ,−∂1B

3
0 , 0), ȧ = −E0.

Solving the second equation in (1.1) and splitting Aµ into its homogeneous and
inhomogeneous parts, we reduce MD to a nonlinear Dirac equation

(2.1) (−iαµ∂µ +Mβ)ψ = Ahom.
µ αµψ −N (ψ, ψ, ψ),

where

�Ahom.
µ = 0, Ahom.

µ (0, x) = aµ(x), ∂tA
hom.
µ (0, x) = ȧµ(x),

and

N (ψ1, ψ2, ψ3) =
(
�−1 〈αµψ1, ψ2 〉

)
αµψ3.

Here �−1F denotes the solution of �u = F on R1+2 with vanishing data at t = 0.
Assuming the following data regularity:

(2.2)





ψ0 ∈ L2(R2,C2),

P|ξ|≥1E
df
0 ∈ H−1/2(R2,R2), P|ξ|<1E

df
0 ∈ Ḃ0

2,1(R
2,R2),

P|ξ|≥1B
3
0 ∈ H−1/2(R2,R), P|ξ|<1B

3
0 ∈ Ḃ0

2,1(R
2,R),

we can prove existence up to a time T > 0 determined by a condition like (1.4) in
Theorem 1.1, but with a norm depending implicitly on T , namely

(2.3) DT (t) =
∥∥Edf(t)

∥∥
(T )

+
∥∥B3(t)

∥∥
(T )

,

1Recall the splitting of E (or indeed any vector field) into divergence-free and curl-free parts:
E = −∆−1

∇× (∇× E) + ∆−1
∇(∇ ·E) ≡ E

df + E
cf
.
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where we use the norm ‖·‖(T ) defined by

(2.4) ‖f‖(T ) =
∥∥P|ξ|≥1/T f

∥∥
H−1/2 + T 1/2

∑

0<N<1/T

∥∥P|ξ|∼Nf
∥∥ ,

the sum being over dyadic N ’s. Recall that ‖·‖ denotes the L2-norm.

Theorem 2.1. Given initial data as in (2.2), construct data for A by choosing

a0 = ȧ0 = 0 and setting a = −∆−1(∂2B
3
0 ,−∂1B

3
0 , 0) and ȧ = −E0, and consider

the 2d MD equation (2.1).
There exists a constant ε > 0, depending only on |M | and the charge constant

‖ψ0‖
2
L2 , such that if T > 0 is so small that

(2.5) T 1/2[1 +DT (0)] ≤ ε,

then (2.1) has a solution

ψ ∈ C
(
[−T, T ];L2(R2,C2)

)

satisfying ψ(0) = ψ0.

Moreover, the solution is unique in a certain subspace of C
(
[−T, T ];L2

)
, and

depends continuously on the data. Persistence of higher regularity holds, and in

particular, if the data ψ0, E
df
0 and B3

0 are smooth, then so is ψ.

Here we mean solution in the sense of distributions on (−T, T )× R2. The fact
that the right hand side of (2.1) makes sense as a distribution is far from obvious,
but follows from the very estimates that will be used to close the iteration argument
used to prove existence.

As we show later (see Lemma 3.1), DT (0) ≤ CD1(0) for 0 < T ≤ 1, hence (2.5)
is indeed satisfied for T > 0 sufficiently small.

2.2. Growth estimate for the electromagnetic field. Having obtained ψ, we
reconstruct the full potential

Aµ = Ahom.
µ −�−1 〈αµψ, ψ 〉 ,

which by the definition of the data (aµ, ȧµ) satisfies the Lorenz gauge condition
∂µAµ = 0 (see [DFS10]). Now define

B = ∇×A = (0, 0, ∂1A2 − ∂2A1), E = ∇A0 − ∂tA.

Since �Aµ = −〈αµψ, ψ 〉, it follows that Maxwell’s equations hold:

(2.6) ∇ · E = ρ, ∇ ·B = 0, ∇×E+ ∂tB = 0, ∇×B− ∂tE = J,

where

ρ = J0 = |ψ|2 , J = (J1, J2, 0), Jµ = 〈αµψ, ψ 〉.

The first equation in (2.6) determines the curl-free part of E and implies

E = Edf +∆−1∇(|ψ|2),

where Edf = PdfE is the divergence-free part of E. Here Pdf = −∆−1∇×∇× is
the projection onto divergence-free fields. From Maxwell’s equations we know that
�E = ∇ρ+ ∂tJ and �B = −∇× J, hence

(2.7)

{
�Edf = Pdf(−∇J0 + ∂tJ),

Edf(0) = Edf
0 , ∂tE

df(0) = ∇× (0, 0, B3
0)− PdfJ(0),
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and

(2.8)

{
�B3 = ∂1J2 − ∂2J1,

B3(0) = B3
0 , ∂tB

3(0) = −(∇×Edf
0 )3.

We want to use these wave equations to prove an estimate analogous to (1.5) in
Theorem 1.1 for our norm DT (t). To be precise, we aim to prove

sup
0≤t≤T

DT (t) ≤ DT (0) + CT 1/2 log(1/T ),

but in order to avoid a constant factor C > 1 in front of the first term on the right
hand side, we first split the wave equations into first order equations and modify
DT (t) accordingly.

Recall that the splitting u = u+ + u− given by

(2.9) u± =
1

2

(
u± i |D|−1

∂tu
)

transforms �u = F into

(−i∂t ± |D|) u± = −(±2 |D|)−1F.

The term |D|−1 ∂tu in (2.9) causes problems at low frequency if u = Edf , however.
To avoid this we use a general trick going back at least as far as [Pec08], and used
also in [GP10]: Adding −Edf to both sides of (2.7) gives the Klein-Gordon equation

(2.10)

{
(�− 1)Edf = Pdf(−∇J0 + ∂tJ)−Edf ,

Edf(0) = Edf
0 , ∂tE

df(0) = ∇× (0, 0, B3
0)− PdfJ(0).

The extra term −Edf on the right hand side is relatively easy to handle due to the
gain in regularity, and the key advantage is that we can now use the analog of (2.9)
for the Klein-Gordon equation: The splitting v = v+ + v− given by

(2.11) v± =
1

2

(
v ± i〈D〉−1∂tv

)

transforms (�− 1)v = G into

(−i∂t ± 〈D〉) v± = −(±2〈D〉)−1G.

Applying (2.11) to Edf and (2.9) to B3, we now write Edf = Edf
+ + Edf

− and

B3 = B3
+ +B3

−, where

2Edf
± = Edf ± i〈D〉−1∂tE

df = Edf ± i〈D〉−1
[
∇× (0, 0, B3)− PdfJ

]
,(2.12)

2B3
± = B3 ± i |D|−1

∂tB
3 = B3 ± i |D|−1 [−(∇×Edf)3

]
(2.13)

satisfy

(−i∂t ± 〈D〉)Edf
± = −(±2〈D〉)−1

[
Pdf(−∇J0 + ∂tJ)−Edf

]
,(2.14)

(−i∂t ± |D|)B3
± = −(±2 |D|)−1 (∂1J2 − ∂2J1) .(2.15)

Define the corresponding norm

(2.16) D̃T (t) =
∥∥Edf

+ (t)
∥∥
(T )

+
∥∥Edf

−(t)
∥∥
(T )

+
∥∥B3

+(t)
∥∥
(T )

+
∥∥B3

−(t)
∥∥
(T )

,

and note that D̃T (0) < ∞. Indeed, D̃T (0) ≤ CD̃1(0) by Lemma 3.1 below, and

D̃1(0) < ∞ in view of the assumption (2.2) and some straightforward Sobolev
estimates for J [see (4.14) and (4.15) below].
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Since DT (t) ≤ D̃T (t) by the triangle inequality, the iteration argument used to
prove Theorem 2.1 will also immediately give us:

Theorem 2.2. Theorem 2.1 still holds with DT (0) replaced by D̃T (0) in (2.5):

(2.17) T 1/2[1 + D̃T (0)] ≤ ε,

where ε > 0 depends only on the charge constant and |M |.

We shall prove the following growth estimate for D̃T (t).

Theorem 2.3. Let ψ be the solution of 2d MD obtained in Theorem 2.2, with ex-

istence time T satisfying (2.17), and reconstruct the electromagnetic field as above.

Then Edf
± and B3

±, as functions of t ∈ [−T, T ], describe continuous curves in the

data space (2.2), hence the same is true for Edf = Edf
+ + Edf

− and B3 = B3
+ +B3

−.

Moreover, we have

(2.18) sup
0≤t≤T

D̃T (t) ≤ D̃T (0) + CT 1/2 log(1/T ),

where C depends only on the charge constant and |M |.

Combining Theorems 2.2 and 2.3, we shall obtain the global well-posedness:

Theorem 2.4. The solution of 2d MD obtained in Theorem 2.2 extends globally

in time. In particular, for smooth data the solution is smooth on R1+2, so global

regularity holds for 2d MD.

The rest of this paper is organized as follows: In the next section we prove
Theorem 2.4, in section 4 we introduce various notation and functions spaces needed
for the proof of Theorems 2.1 and 2.2, given in sections 5–10. Finally, in section 11
we prove Theorem 2.3.

3. From local to global solutions

Here we prove that if the conclusions of Theorems 2.2 and 2.3 hold, then the
solutions extend globally in time, hence we obtain Theorem 2.4. We follow as
closely as possible the argument outlined at the end of section 1, but the fact that
our norm depends implicitly on T creates some difficulties. To resolve these we rely
crucially on the following monotonicity property of the norm (2.4):

Lemma 3.1. There exists C > 1 such that for all 0 < S < T ≤ 1 and f ∈ S(R2),

‖f‖(S) ≤ C ‖f‖(T ) .

Proof. By definition,

‖f‖(S) =
∥∥P|ξ|≥1/Sf

∥∥
H−1/2 + S1/2

∑

0<N<1/S

∥∥P|ξ|∼Nf
∥∥ ,

but the second term is clearly bounded by

T 1/2
∑

0<N<1/T

∥∥P|ξ|∼Nf
∥∥+ S1/2

∑

1/T≤N<1/S

∥∥P|ξ|∼Nf
∥∥ ,

where in turn the second term is bounded by an absolute constant times

S1/2
∑

N<1/S

N1/2
∥∥P1/T≤|ξ|<1/Sf

∥∥
H−1/2 .

∥∥P1/T≤|ξ|<1/Sf
∥∥
H−1/2 ,
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hence

‖f‖(S) .
∥∥P|ξ|≥1/Sf

∥∥
H−1/2 +

∥∥P1/T≤|ξ|<1/Sf
∥∥
H−1/2 + T 1/2

∑

0<N<1/T

∥∥P|ξ|∼Nf
∥∥

.
∥∥P|ξ|≥1/T f

∥∥
H−1/2 + T 1/2

∑

0<N<1/T

∥∥P|ξ|∼Nf
∥∥ = ‖f‖(T ) ,

where the implicit constants are absolute. �

We now proceed in two steps, first iterating the local existence result with a fixed
time increment. Then in the second step we iterate the entire first step.

3.1. First iteration. Since D̃T (0) ≤ CD̃1(0), there clearly exists 0 < T ≪ 1 such
that

(3.1) T 1/2[1 + D̃T (0)] =
ε

2
,

with ε as in (2.17). Then as long as

D̃T (t) ≤ 2D̃T (0)

we will have
T 1/2[1 + D̃T (t)] ≤ ε,

so that the solution can be continued on [t, t+T ], by Theorem 2.2. Thus we obtain
existence on successive time intervals [0, T ], [2T, 3T ], . . . , [(n−1)T, nT ], and in view
of the estimate (2.18) from Theorem 2.3, we must stop at the first n for which

(3.2) nCT 1/2 log(1/T ) > D̃T (0),

at which point we have covered a total time interval of length

(3.3) ∆ ≡ nT >
D̃T (0)

C log(1/T )

ε

2[1 + D̃T (0)]
∼

1

log(1/T )
∼

1

log D̃T (0)
,

where we used the fact, justified below, that D̃T (0) can be assumed as large as we
like:

(3.4) D̃T (0) ≫ 1,

so in particular

(3.5) log(1/T ) ∼ log D̃T (0),

in view of (3.1).
Moreover, we claim that

(3.6) D̃T (∆) ≤ 3D̃T (0).

To see this, first note that by (3.2), and using (3.1), (3.4) and (3.5),

n &
D̃T (0)

2

logD(0)
,

so by (3.4) we may assume n≫ 1, and using the definition of n we then get

D̃T (0) ≥ (n− 1)CT 1/2 log(1/T ) ≥
n

2
CT 1/2 log(1/T ),

which together with (2.18) proves (3.6).
Finally, to justify (3.4), consider the maximal interval of existence [0, T ∗). We

assume T ∗ <∞, as otherwise we already have global existence and there is nothing
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to prove. But then by translating the time origin sufficiently close to T ∗ we may
in fact assume T ∗ as small as we like, and we observe that (3.1) implies

D̃T (0) ∼ T−1/2 > (T ∗)−1/2

for small T ∗ > 0. This proves (3.4).

3.2. Second iteration. Now we iterate the first iteration, introducing a subscript
j = 1, 2, . . . on T , n and ∆ belonging to the j-th interation step. Define S0 = 0
and Sj = Sj−1 +∆j for j ≥ 1.

The initial data at the j-th step are then taken at time t = Sj−1, and the time
increment Tj is determined by the condition

(3.7) T
1/2
j [1 + D̃Tj (Sj−1)] =

ε

2
,

and the first iteration allows us to move forward by a time step

(3.8) ∆j = njTj ∼
1

log D̃Tj (Sj−1)
,

so we reach the time Sj = Sj−1 + ∆j , at which the data norm can at most have
tripled in size:

(3.9) D̃Tj (Sj) ≤ 3D̃Tj(Sj−1).

But in order to relate ∆j+1 to ∆j , we need to compare D̃Tj+1(Sj) and D̃Tj (Sj−1),

whereas (3.9) only provides a comparison of D̃Tj (Sj) and D̃Tj (Sj−1). We bridge
this gap by the following argument:

• If Tj+1 ≤ Tj, then Lemma 3.1 gives

D̃Tj+1(Sj) ≤ CD̃Tj (Sj) ≤ 3CD̃Tj (Sj−1),

where we used (3.9) at the end.
• If Tj+1 > Tj, comparison of (3.7) for j and j + 1 gives

D̃Tj+1(Sj) < D̃Tj (Sj−1).

Thus, in both cases,

D̃Tj+1(Sj) ≤ 3CD̃Tj (Sj−1)

for j ≥ 1, and induction gives

D̃Tj+1(Sj) ≤ (3C)jD̃T1(0)

for j ≥ 0, so by (3.8),

∆j+1 &
1

log((3C)jD̃T1(0))
∼

1

j + 1

for j ≥ 0, hence
∞∑

j=0

∆j+1 = ∞,

proving global existence.

4. Preliminaries

In this section we prepare the ground for the proof of Theorem 2.2.



GLOBAL SOLUTIONS OF 2D MAXWELL-DIRAC 11

4.1. Function spaces. As is usual, we split

ψ = ψ+ + ψ−, ψ± ≡ Π±ψ,

using the Dirac projections Π± = Π(±D), defined in terms of the symbol

Π(ξ) =
1

2

(
I2×2 +

ξj

|ξ|
αj

)
.

The projections are self-adjoint and orthogonal, i.e. Π+Π− = Π−Π+ = 0, so in

particular ‖ψ(t)‖2 = ‖ψ+(t)‖
2
+ ‖ψ−(t)‖

2
.

Now (2.1) splits into two equations:

(4.1) (−i∂t ± |D|)ψ± = −Π±(Mβψ) +Π±

(
Ahom.

µ αµψ
)
−Π±N (ψ, ψ, ψ),

and we introduce Xs,b spaces corresponding to (−i∂t ± |D|). More generally, con-
sider an equation of the form

[−i∂t + φ(D)] u = F,

where φ : R2 → R is a given function. Define Xs,b
φ(ξ) (for s, b ∈ R) as the completion

of S(R1+2) with respect to the norm

‖u‖Xs,b
φ(ξ)

=
∥∥〈ξ〉s〈τ + φ(ξ)〉b ũ(τ, ξ)

∥∥
L2

τ,ξ

,

where
〈ξ〉 = (1 + |ξ|2)1/2.

In fact, we use either φ(ξ) = ± |ξ| or φ(ξ) = ±〈ξ〉, but since 〈τ±|ξ|〉 ∼ 〈τ±〈ξ〉〉, the

corresponding norms are equivalent, hence the spacesXs,b
±|ξ| and X

s,b
±〈ξ〉 are identical,

and we denote them simply by Xs,b
± .

Estimating ψ± in Xs,b
± , however, one can only get the estimates in Theorems 2.1

and 2.3 with T 1/2 replaced by T 1/2−δ for arbitrarily small δ > 0. To avoid this loss,

we use instead some Besov versions of Xs,b
± , as was done in [GP10]. Similar spaces

have been used in [BHHT09] and [CKS03].

Specifically, we shall useXs,b;1
φ(ξ) andXs,b;∞

φ(ξ) , defined as the completions of S(R1+2)

with respect to the norms

‖u‖Xs,b;1
φ(ξ)

=
∑

L≥1

Lb
∥∥〈D〉sP〈τ+φ(ξ)〉∼Lu

∥∥ ,

‖u‖Xs,b;∞
φ(ξ)

= sup
L≥1

Lb
∥∥〈D〉sP〈τ+φ(ξ)〉∼Lu

∥∥ ,

where L ≥ 1 is restricted to the dyadic numbers. The spaces corresponding to
φ(ξ) = ± |ξ| or φ(ξ) = ±〈ξ〉 coincide, and we simply write

Xs,b;p
± = Xs,b;p

±|ξ| = Xs,b;p
±〈ξ〉.

Restriction to the time-slab

ST = (−T, T )× R2

is handled in the usual way. Define

‖u‖Xs,b;p
φ(ξ)

(ST ) = inf
v = u on ST

‖v‖Xs,b;p
φ(ξ)

.

This is a seminorm on Xs,b;p
φ(ξ) , but becomes a norm if we identify elements which

agree on ST , and the resulting space is denoted Xs,b;p
φ(ξ) (ST ). In other words,
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Xs,b;p
φ(ξ) (ST ) is the quotient X

s,b;p
φ(ξ) /M, where M = {v ∈ Xs,b;p

φ(ξ) : v = 0 on ST }. Since

M is a closed subspace of Xs,b;p
φ(ξ) , we conclude from general facts about quotient

spaces (see e.g. [Fol99, Section 5.1]) that Xs,b;p
φ(ξ) (ST ) a Banach space.

4.2. Basic properties of Xs,b;p
φ(ξ) . First observe that

(4.2) ‖u‖Xs,b;1
φ(ξ)

≤ Cb,b′ ‖u‖Xs,b′;∞
φ(ξ)

for b < b′,

since
∑

L≥1L
b−b′ <∞ for dyadic L’s.

Second, by standard methods one finds that

‖u‖Xs,b;1
φ(ξ)

= sup
v s.t. ‖v‖

X
−s,−b;∞
φ(ξ)

= 1

∣∣∣∣
∫
uv dt dx

∣∣∣∣ ,(4.3)

‖u‖Xs,b;∞
φ(ξ)

= sup
v s.t. ‖v‖

X
−s,−b;1
φ(ξ)

= 1

∣∣∣∣
∫
uv dt dx

∣∣∣∣ ,(4.4)

and similarly for spinor-valued u and v, replacing uv by 〈u, v 〉.
Next, observing that by the Hausdorff-Young inequality followed by Hölder’s

inequality one has
∥∥〈D〉sP〈τ+φ(ξ)〉∼Lu

∥∥
Lp

tL
2
x
. L1/2−1/p

∥∥〈D〉sP〈τ+φ(ξ)〉∼Lu
∥∥ (2 ≤ p ≤ ∞),

it follows that

(4.5) ‖u‖Lp
tH

s .
∑

L

∥∥〈D〉sP〈τ+φ(ξ)〉∼Lu
∥∥
Lp

tL
2
x
. ‖u‖

X
s,1/2−1/p;1

φ(ξ)

,

implying the embedding

X
s,1/2;1
φ(ξ) →֒ CtH

s

and also, writing ρT (t) = ρ(t/T ), where ρ is a smooth cutoff function satisfying
ρ(t) = 1 for |t| ≤ 1 and ρ(t) = 0 for |t| ≥ 2,

(4.6) ‖ρTu‖ ≤ ‖ρT ‖Lp
t
‖u‖

L
2p/(p−2)
t L2

x
. T 1/p ‖u‖

X
0,1/p;1

φ(ξ)

(2 ≤ p ≤ ∞).

Moreover, one has (see [GP10, Proposition 2.1(iii)])

(4.7) ‖ρTu‖Xs,b;1
φ(ξ)

. T 1/2−b ‖u‖
X

s,1/2;1

φ(ξ)

for 0 < b ≤ 1/2.

Finally, consider the solution of the initial value problem

(4.8) [−i∂t + φ(D)] u = F on ST , u(0) = f,

given (for sufficiently regular f and F ) by the Duhamel formula

(4.9) u(t) = e−itφ(D)f +

∫ t

0

e−i(t−t′)φ(D)F (t′) dt′.

Then for any s ∈ R and 0 < T ≤ 1, the following estimates hold:

‖u‖
X

s,1/2;1

φ(ξ)
(ST )

. ‖f‖Hs + ‖F‖
X

s,−1/2;1

φ(ξ)
(ST )

,(4.10)

‖u‖
X

s,1/2;1

φ(ξ)
(ST )

. ‖f‖Hs + T 1/2+b ‖F‖Xs,b;∞
φ(ξ)

(ST ) for −1/2 < b < 1/2.(4.11)

See section 13 for the proof, by standard methods. We remark that (4.11) is included
in [GP10, Proposition 2.1], but only for −1/2 < b < 0.
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Moreover, we will need:

(4.12) sup
t∈R

∥∥∥∥
∫ t

0

e−i(t−t′)φ(D)F (t′) dt′
∥∥∥∥
Hs

.

∥∥∥∥∥〈ξ〉
s

∫ ∣∣F̃ (τ, ξ)
∣∣

〈τ + φ(ξ)〉
dτ

∥∥∥∥∥
L2

ξ

,

which is also proved in section 13.

4.3. A Sobolev product estimate. We will need the following elementary fact:

Lemma 4.1. If a, b ∈ R satisfy a < 1 and a+ b > 1, then for all f, g ∈ L2(R2),
∥∥∥|D|−a 〈D〉−b(fg)

∥∥∥ ≤ Ca,b ‖f‖ ‖g‖

Proof. Note that

(4.13)
∥∥P|ξ0|.N0

(fg)
∥∥ . N0 ‖f‖ ‖g‖

by Plancherel and Cauchy-Schwarz:

∥∥P|ξ0|.N0
(fg)

∥∥ ≃

∥∥∥∥χ|ξ0|.N0

∫
f̂(ξ1)ĝ(ξ0 − ξ1) dξ1

∥∥∥∥
L2

ξ0

.
∥∥χ|ξ0|.N0

∥∥
L2

ξ0

∥∥f̂
∥∥ ‖ĝ‖ .

Thus∥∥∥|D|−a 〈D〉−b(fg)
∥∥∥ ≤

∑

0<N0<1

N−a
0

∥∥P|ξ0|∼N0
(fg)

∥∥+
∑

N0≥1

N−a−b
0

∥∥P|ξ0|∼N0
(fg)

∥∥

≤


 ∑

0<N0<1

N1−a
0 +

∑

N0≥1

N1−a−b
0


 ‖f‖ ‖g‖ ,

and the last two sums are finite if and only if a < 1 and a+ b > 1. �

In particular, we then obtain the following estimates for the current, already
used in section 2 to see that the data for Edf

± are in the correct space. First,

(4.14)
∑

0<N0<1

∥∥P|ξ0|∼N0
J(t)

∥∥ .
∑

0<N0<1

N0 ‖ψ(t)‖
2 ∼ ‖ψ(t)‖2 ,

where (4.13) was used. Second,

(4.15) ‖J(t)‖H−3/2 . ‖ψ(t)‖2 ,

by Lemma 4.1.

4.4. Some special sets. For N,L ≥ 1, r, γ > 0 and ω ∈ S1, where S1 ⊂ R2 is the
unit circle, define

Γγ(ω) =
{
ξ ∈ R2 : θ(ξ, ω) ≤ γ

}
,

Tr(ω) =
{
ξ ∈ R2 : |Pω⊥ξ| . r

}
,

K±
L =

{
(τ, ξ) ∈ R1+2 : 〈τ ± |ξ|〉 ∼ L

}
,

K±
N,L =

{
(τ, ξ) ∈ R1+2 : 〈ξ〉 ∼ N, 〈τ ± |ξ|〉 ∼ L

}
,

K±
N,L,γ(ω) =

{
(τ, ξ) ∈ R1+2 : 〈ξ〉 ∼ N, ±ξ ∈ Γγ(ω), 〈τ ± |ξ|〉 ∼ L

}
,

Hd(ω) =
{
(τ, ξ) ∈ R1+2 : |τ + ξ · ω| . d

}
,
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where θ(a, b) denotes the angle between nonzero vectors a, b ∈ R2 and Pω⊥ is the
projection onto the orthogonal complement ω⊥ of ω in R2. For later use we note
the elementary fact (see [DFS10]) that

(4.16) K±
N,L,γ(ω) ⊂ Hmax(L,Nγ2)(ω).

We shall also need the following:

Lemma 4.2. Suppose N, d, γ > 0. The estimate

∑

ω∈Ω(γ)

χHd(ω)(τ, ξ) . 1 +

(
d

Nγ2

)1/2

holds for all (τ, ξ) ∈ R1+2 with |ξ| ∼ N .

Proof. The left side equals # {ω ∈ Ω(γ) : ω ∈ A} where A is the set of ω ∈ S1 such
that |τ + ξ · ω| . d. Without loss of generality assume ξ = (|ξ| , 0). Then

A ⊂ A′ ≡

{
ω = (ω1, ω2) ∈ S1 : ω1 = −

τ

|ξ|
+O

(
d

N

)}
.

Thus, A′ is the intersection of S1 and a strip of thickness comparable to d/N , so

# {ω ∈ Ω(γ) : ω ∈ A′} . 1 +
length(A′)

γ
.

But length(A′) . (d/N)1/2, and the proof is complete. �

4.5. Angular decompositions. For γ ∈ (0, π], let Ω(γ) denote a maximal γ-
separated subset of the unit circle. We recall the following angular Whitney de-
composition:

Lemma 4.3. We have

1 ∼
∑

0<γ<1
γ dyadic

∑

ω1,ω2∈Ω(γ)
3γ≤θ(ω1,ω2)≤12γ

χΓγ(ω1)(ξ1)χΓγ (ω2)(ξ2),

for all ξ1, ξ2 ∈ R2 \ {0} with θ(ξ1, ξ2) > 0.

The straightforward proof is omitted. The condition θ(ω1, ω2) ≥ 3γ ensures that
the sectors Γγ(ω1) and Γγ(ω2) are well-separated. If separation is not needed, it is
better to use the following variation (again, we skip the easy proof):

Lemma 4.4. For any 0 < γ < 1 and k ∈ N,

χθ(ξ1,ξ2)≤kγ .
∑

ω1,ω2∈Ω(γ)
θ(ω1,ω2)≤(k+2)γ

χΓγ(ω1)(ξ1)χΓγ (ω2)(ξ2),

for all ξ1, ξ2 ∈ R2 \ {0}.

Writing uγ,ω = P±ξ∈Γγ(ω)u for a given sign, we note that

(4.17) ‖u‖2 ∼
∑

ω∈Ω(γ)

‖uγ,ω‖2

and (given signs ±1 and ±2)

(4.18)
∑

ω1,ω2∈Ω(γ)
θ(ω1,ω2).γ

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ . ‖u1‖ ‖u2‖ ,
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where we used the Cauchy-Schwarz inequality, (4.17) and the fact that, given ω2,
the set of ω1 ∈ Ω(γ) satisfying θ(ω1, ω2) ≤ kγ has cardinality at most 2k + 1.

5. Local well-posedness

The iterates {ψ
(n)
± }∞n=−1 for (4.1) are defined in the standard way, i.e. ψ

(−1)
± is

taken to be identically zero, and in the general inductive step, ψ
(n)
± is obtained by

solving (4.1) on ST with the previous iterate ψ
(n−1)
± inserted on the right hand side,

and with initial data Π±ψ0. Note that Π±ψ
(n)
± = ψ

(n)
± on ST .

We shall estimate the iterates in the norm

pn(T ) =
∥∥ψ(n)

+

∥∥
X

0,1/2;1
+ (ST )

+
∥∥ψ(n)

−

∥∥
X

0,1/2;1
−

(ST )
,

where T > 0 remains to be fixed. We also need estimates for the difference of two
successive iterates,

qn(T ) =
∑

±

∥∥ψ(n)
± − ψ

(n−1)
±

∥∥
X

0,1/2;1
±

(ST )
.

We claim that to prove Theorem 2.1, it suffices to show, for 0 < T ≤ 1,

pn+1(T ) ≤ C1 + C2T
1/2[1 +DT (0)]pn(T ) + C3T

δpn(T )
3,(5.1)

qn+1(T ) ≤ C2T
1/2[1 +DT (0)]qn(T ) + C3T

δpn(T )
2qn(T ),(5.2)

where C1 and C2 depend on the charge constant, C2 depends in addition on |M |,
C3 is an absolute constants, and δ > 0 is some small number.

In fact, the verification of the above claim consists of a completely standard
argument, which we only sketch here.

First one uses (5.1) to verify that

(5.3) pn(T ) ≤ 2C1

for all n if T > 0 is small enough. Indeed, this clearly holds for n = −1 and
all 0 < T ≤ 1, and then it follows for all n ≥ 0 by induction, provided that
2C2T

1/2[1 +DT (0)] ≤ 1/2 and 8C2
1C3T

δ ≤ 1/2. The latter condition simply says
that T ≤ ε for some ε > 0 depending only on the charge constant, whereas the
former (and stronger) condition says that

T 1/2[1 +DT (0)] ≤ ε

for some ε > 0 depending only on the charge constant and M , so this is exactly
condition (2.5) in Theorem 2.1.

Second one uses (5.2) to verify that, with the same condition on T , the sequence

of iterates ψ
(n)
± is Cauchy inX

0,1/2;1
± (ST ), hence converges in that space to a solution

of 2d MD on ST = (−T, T )× R2. Indeed, (5.2) implies qn+1(T ) ≤
1
2qn+1(T ).

This proves the local existence part of Theorem 2.1. Uniqueness in the iteration
space follows by (5.2) (or rather its analog for the difference of any two solutions
instead of two iterates). Finally, continuous dependence on the data and persistence
of higher regularity follow from standard arguments which we do not repeat here.

Note that the same argument immediately gives Theorem 2.2, since we can apply
the estimate DT (0) ≤ D̃T (0) in the right hand sides of (5.1) and (5.2).

So we need to prove (5.1) and (5.2).
The first term on the right hand side of (5.1) comes from applying (4.10) to

the homogeneous part ψ
(0)
± of ψ

(n+1)
± , while the remaining terms come from the
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inhomogeneous part, which we split into three parts corresponding to the three
terms on the right hand side of (4.1). Applying (4.11) with b = 0 and b = −1/4,
respectively, to the first two terms, and (4.10) to third, we reduce (5.1) [and in
fact also (5.2), since all the terms in (4.1) are either linear or trilinear in ψ] to
the following three estimates, where ±1, . . . ,±4 denote independent signs and the
implicit constants are absolute:

First, we need

‖MΠ±2βψ‖X0,0;∞
±2

(ST ) . |M | ‖ψ‖
X

0,1/2;1
±1

(ST )
,

but this is trivial since X0,0;∞
±2

= X0,0;∞
±1

. Second, we need

∥∥Π±2

(
Ahom.

µ αµΠ±1ψ1

)∥∥
X

0,−1/4;∞
±2

(ST )
. T 1/4[‖ψ0‖

2
+DT (0)] ‖ψ1‖X0,1/2;1

±1
(ST )

,

and third,

∥∥Π±4N
(
Π±1ψ1,Π±2ψ2,Π±3ψ3

)∥∥
X

0,−1/2;1
±4

(ST )
. T δ

3∏

j=1

‖ψj‖X0,1/2;1
±j

(ST )
.

It suffices to prove these without the restriction to ST = (−T, T )×R2, but of course
we can then insert a smooth time cutoff ρT (t) = ρ(t/T ), where ρ(t) = 1 for |t| ≤ 1
and ρ(t) = 0 for |t| ≥ 2. By (4.3) and (4.4) we therefore reduce to proving

(5.4)
∣∣I±1,±2

∣∣ . T 1/4[‖ψ0‖
2
+DT (0)] ‖ψ1‖X0,1/2;1

±1

‖ψ2‖X0,1/4;1
±2

and

(5.5)
∣∣J±1,...,±4

∣∣ . T δ ‖ψ1‖X0,1/2;1
±1

‖ψ2‖X0,1/2;1
±2

‖ψ3‖X0,1/2;1
±3

‖ψ4‖X0,1/2;∞
±4

,

where

I±1,±2 =

∫
ρAhom.

µ 〈αµΠ±1ψ1,Π±2ψ2 〉 dt dx,

J±1,...,±4 =

∫
ρ�−1 〈αµΠ±1ψ1,Π±2ψ2 〉 · 〈αµΠ±3ψ3,Π±4ψ4 〉 dt dx,

and the ψj ∈ S(R1+2) are C2-valued. Moreover, we can freely replace ψj by ρTψj

in the above integrals whenever it may be needed.
We concentrate first on the quadrilinear estimate (5.5), proved in the next four

sections by adapting the proof of the analogous estimate in 3d from [DFS10]. We
make a dyadic decomposition, use the null structure of the quadrilinear form in
the integral, reduce to various L2 bilinear estimates, and finally sum the dyadic
pieces to obtain (5.5). The main difference from the 3d case is that the L2 bilinear
estimates are different in 2d; the estimates we need have been proved by the second
author in [Sel]. The trilinear estimate (5.4) is proved in section 10.

6. The quadrilinear estimate

Here we begin the proof of (5.5). First we switch to Fourier variables in J±1,...,±4

by Plancherel’s theorem. To this end we recall the following representation of �−1,
derived from Duhamel’s formula (see [KM95, Lemma 4.4]).
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Lemma 6.1. Given G ∈ S(R1+2), set u = �−1G and consider the splitting u =
u+ + u− defined by (2.9). Then

û±(t, ξ) = ±
e∓it|ξ|

4π |ξ|

∫ ∞

−∞

eit(τ
′±|ξ|) − 1

τ ′ ± |ξ|
G̃(τ ′, ξ) dτ ′.

Moreover, multiplying by the cutoff ρ(t) and taking Fourier transform also in time,

ρ̃u±(τ, ξ) =

∫ ∞

−∞

κ±(τ, τ
′; ξ)

4π |ξ|
G̃(τ ′, ξ) dτ ′,

where

κ±(τ, τ
′; ξ) = ±

ρ̂(τ − τ ′)− ρ̂(τ ± |ξ|)

τ ′ ± |ξ|

and ρ̂(τ) denotes the Fourier transform of ρ(t).

Thus, writing ψ̃j = zj
∣∣ψ̃j

∣∣, where zj : R1+2 → C2 with |zj | = 1, and applying
the convolution formula

(6.1) ũ1u2(X0) ≃

∫
ũ1(X1) ũ2(X2) dµ

12
X0
, dµ12

X0
≡ δ(X0 −X1 +X2) dX1 dX2,

twice, we see that it suffices to prove (5.5) for

J±0,±1,...,±4 =

∫
κ±0(τ0, τ

′
0; ξ0)

|ξ0|
q1234

∣∣ψ̃j(Xj)
∣∣ dµ12

X′
0
dµ43

X0
dτ ′0 dτ0 dξ0,

where X ′
0 = (τ ′0, ξ0), X0 = (τ0, ξ0), Xj = (τj , ξj) for j = 1, . . . , 4,

q1234 = 〈αµΠ(e1)z1(X1),Π(e2)z2(X2) 〉〈αµΠ(e3)z3(X3),Π(e4)z4(X4) 〉

and ej = ±jξj/ |ξj |. We may restrict the integration to ξj 6= 0 for j = 0, . . . , 4,
hence the unit vectors ej are well-defined, as are the angles

θjk = θ(ej , ek) = θ(±jξj ,±kξk),

in terms of which the null structure of q1234 will be expressed. Note that

X ′
0 = X1 −X2, X0 = X4 −X3,

τ ′0 = τ1 − τ2, τ0 = τ4 − τ3, ξ0 = ξ1 − ξ2 = ξ4 − ξ3,

in the above integral. For simplicity we will just write J instead of J±0,±1,...,±4

from now on. Split
J = J|ξ0|<1 + J|ξ0|≥1

by restricting the integration to |ξ0| < 1 and |ξ0| ≥ 1, respectively. We first dispose
of the easy low frequency part.

6.1. Estimate for J|ξ0|<1. From Plancherel’s theorem one infers
∥∥P|ξ|<1f

∥∥ ≤ |B(0, 1)|1/2 ‖f‖L1 ,

where B(0, 1) = {ξ ∈ R2 : |ξ| < 1}. Applying also
∥∥ρ�−1F

∥∥ . ‖F‖, which follows
from [KM95, Lemma 4.3], we estimate

J|ξ0|<1 ≤
∥∥ρ�−1P|ξ|<1〈α

µΠ±1ψ1,Π±2ψ2 〉
∥∥ ∥∥P|ξ|<1〈αµΠ±3ψ3,Π±4ψ4 〉

∥∥
.
∥∥P|ξ|<1〈α

µΠ±1ψ1,Π±2ψ2 〉
∥∥ ∥∥P|ξ|<1〈αµΠ±3ψ3,Π±4ψ4 〉

∥∥
. ‖〈αµΠ±1ψ1,Π±2ψ2 〉‖L2

tL
1
x
‖〈αµΠ±3ψ3,Π±4ψ4 〉‖L2

tL
1
x

. ‖ψ1‖L4
tL

2
x
‖ψ2‖L4

tL
2
x
‖ψ3‖L4

tL
2
x
‖ψ4‖L4

tL
2
x
.
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Recalling that we can replace ψj by ρTψj , we then get the desired estimate (5.5)
for the low frequency part by applying (4.5) and (4.7) to the norms of ψ1, ψ2 and
ψ3, whereas for ψ4 we use (4.5) followed by (4.2).

6.2. Dyadic decomposition of J|ξ0|≥1. Letting N ’s and L’s denote dyadic num-
bers greater than or equal to one, we assign dyadic sizes to the weights, writing
〈τ ′0 ±0 |ξ0|〉 ∼ L′

0, 〈τj ±j |ξj |〉 ∼ Lj and 〈ξj〉 ∼ Nj for j = 0, . . . , 4, and we set
N = (N0, . . . , N4) and L = (L0, L

′
0, L1, . . . , L4). We shall use the shorthand N012

min

for the minimum of N0, N1 and N2, and similarly for other index sets than 012, for
the L’s, and for maxima. Since ξ0 = ξ1 − ξ2 in J , one of the following must hold:

N0 ≪ N1 ∼ N2 (“low output”),

N0 ∼ N12
max ≥ N12

min (“high output”),

and similarly for the index 034. In particular, the two largest of N0, N1 and N2

must be comparable, and N012
minN

012
max ∼ N0N

12
min.

As shown in [DFS10], κ±(τ0, τ
′
0; ξ0) . (L0L

′
0)

−1/2σL0,L′
0
(τ0 − τ ′0), where

σL0,L′
0
(r) =

{
〈r〉−2 if L0 ∼ L′

0,

(L0L
′
0)

−1/2 otherwise,

hence ∣∣J|ξ0|≥1

∣∣ .
∑

N ,L

JN ,L

N0(L0L′
0)

1/2
,

where

JN ,L =

∫
|q1234|σL0,L′

0
(τ0 − τ ′0)χK

±0
N0,L0

(X0)χK
±0
N0,L′

0

(X ′
0)

×
4∏

j=1

χ
K

±j
Nj,Lj

(Xj)
∣∣ψ̃j(Xj)

∣∣ dµ12
X′

0
dµ43

X0
dτ ′0 dτ0 dξ0.

To ease the notation we define uj (implicitly depending on Nj, Lj and ±j) by

ũj = χ
K

±j
Nj,Lj

∣∣ψ̃j

∣∣.

Recall that K±
N,L =

{
(τ, ξ) ∈ R1+2 : 〈ξ〉 ∼ N, 〈τ ± |ξ|〉 ∼ L

}
.

We claim that it suffices to prove, for some ε > 0,

(6.2) JN ,L . N1−ε
0 (L′

0L0L1L2L3L4)
1/2−ε

‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ .

Indeed, this gives

∣∣J|ξ0|≥1

∣∣ .
∑

N ,L

(L
1/2−ε
1 ‖u1‖)(L

1/2−ε
2 ‖u2‖)(L

1/2−ε
3 ‖u3‖)(L

1/2
4 ‖u4‖)

Nε
0 (L0L′

0L4)ε
,

and we sum the N ’s using the general estimate

(6.3)
∑

N0,N1,N2

N
−ε/2
0 aN1bN2 ≤ Cε

(∑

N1

a2N1

)1/2(∑

N2

b2N2

)1/2

,

valid for nonnegative sequences aN1 , bN2 and dyadic N0, N1, N2 ≥ 1, the largest
two of which are assumed comparable: By symmetry it suffices to consider N0 .

N1 ∼ N2 and N1 . N0 ∼ N2. First, if N0 . N1 ∼ N2, then we sum N1 ∼ N2 by
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Cauchy-Schwarz, and N0 using N
−ε/2
0 . Second, if N1 . N0 ∼ N2, then we estimate

N
−ε/2
0 . N

−ε/4
0 N

−ε/2
1 , so we can sum both N1 and N0 ∼ N2 without problems.

Applying (6.3) to the estimate for
∣∣J|ξ0|≥1

∣∣ above, we get

∣∣J|ξ0|≥1

∣∣ .
∑

L

(L0L
′
0L4)

−ε




3∏

j=1

L
1/2−ε
j

∥∥∥∥PK
±j
Lj

ψj

∥∥∥∥


L

1/2
4

∥∥∥∥PK
±4
L4

ψ4

∥∥∥∥

. ‖ψ1‖X0,1/2−ε;1
±1

‖ψ2‖X0,1/2−ε;1
±2

‖ψ3‖X0,1/2−ε;1
±3

‖ψ4‖X0,1/2;∞
±4

.

Since we may replace ψj by ρTψj , we now get (5.5) for J|ξ0|≥1 by applying (4.7) to
the norms of ψ1, ψ2 and ψ3.

So we have reduced (5.5) to proving the dyadic estimate (6.2). For this, we need
to use the null structure of the quadrilinear form, obtained in [DFS10]:

Lemma 6.2. ([DFS10].) Consider the symbol appearing in J ,

q1234 = 〈αµΠ(e1)z1,Π(e2)z2 〉〈αµΠ(e3)z3,Π(e4)z4 〉,

where the ej ∈ R2 and zj ∈ C2 are unit vectors. Defining the angles

θjk = θ(ej , ek), φ = min {θ13, θ14, θ23, θ24} ,

we have

|q1234| . θ12θ34 + φmax(θ12, θ34) + φ2.

When applying this, it is natural to distinguish the cases

φ . min(θ12, θ34),(6.4)

min(θ12, θ34) ≪ φ . max(θ12, θ34),(6.5)

max(θ12, θ34) ≪ φ.(6.6)

In certain situations, the last two cases can be treated simultaneously, by virtue of
the following simplified estimate:

Lemma 6.3. ([DFS10].) In cases (6.5) and (6.6), |q1234| . θ13θ24.

To end this section we prove the dyadic estimate (6.2) in the case (6.4). This
particularly simple case essentially corresponds, as discussed in [DFS10], to solving
the Dirac-Klein-Gordon system instead of Maxwell-Dirac. The cases (6.5) and (6.6)
are far more difficult and will be handled in the next few sections.

6.3. The case φ . min(θ12, θ34). Then

|q1234| . θ12θ34,

hence

JN ,L .

∫
T±0

L0,L′
0
FP

K
±0
N0,L′

0

Bθ12(u1, u2)(X0) · FP
K

±0
N0,L′

0

Bθ34(u3, u4)(−X0) dX0,

where the null formBθ12(u1, u2) is defined on the Fourier transform side by inserting
the angle θ12 = θ(±1ξ1,±2ξ2) in the right hand side of the convolution formula (6.1),
and the operator T±0

L0,L′
0
is defined by

T±0

L0,L′
0
F (τ0, ξ0) =

∫
a±0

L0,L′
0
(τ0, τ

′
0, ξ0)F (τ

′
0, ξ0) dτ

′
0,
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where

a±0

L0,L′
0
(τ0, τ

′
0, ξ0) =

{
〈τ0 − τ ′0〉

−2 if L0 ∼ L′
0,

(L0L
′
0)

−1/2χτ0±0|ξ0|=O(L0)χτ ′
0±0|ξ0|=O(L′

0)
otherwise.

This family of operators is uniformly bounded on L2 (see [DFS10, Lemma 3.3]):

Lemma 6.4.
∥∥T±0

L0,L′
0
F
∥∥ . ‖F‖ for F ∈ L2(R1+2).

Applying this, we get

JN ,L .

∥∥∥∥PK
±0
N0,L′

0

Bθ12(u1, u2)

∥∥∥∥
∥∥∥∥PK

±0
N0,L′

0

Bθ34(u3, u4)

∥∥∥∥ ,

and to finish we use the following null form estimate (proved in the next section):

Lemma 6.5. For all u1, u2 ∈ L2(R1+2) such that ũj is supported in K
±j

Nj,Lj
,

∥∥∥∥PK
±0
N0,L0

Bθ12(u1, u2)

∥∥∥∥ . (N0L0L1L2)
3/8 ‖u1‖ ‖u2‖ .

Thus,

JN ,L . (N0L
′
0L1L2)

3/8
(N0L0L1L2)

3/8 ‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ ,

proving (6.2) in the case φ . min(θ12, θ34).
In the next section we prepare the ground for the proof of the other cases, by

recalling various bilinear and null form estimates proved in [Sel]. In particular, we
prove Lemma 6.5.

For later use we record here the following variation on Lemma 6.4:

Lemma 6.6. ([DFS10].) Assume that L0 ≪ L′
0 or L′

0 ≪ L0. Let ω, ω′ ∈ S1,

c, c′ ∈ R and d, d′ > 0. For F,G ∈ L2(R1+2) satisfying

suppF ⊂ {(τ ′0, ξ0) : τ
′
0 + ξ0 · ω

′ = c′ +O(d′)} ,

suppG ⊂ {(τ0, ξ0) : τ0 + ξ0 · ω = c+O(d)} ,

we have, for any 0 ≤ p ≤ 1/2,

∥∥T±0

L0,L′
0
F
∥∥ .

(
d′

L′
0

)p

‖F‖ ,

and ∣∣∣∣
∫
T±0

L0,L′
0
F (τ0, ξ0) ·G(τ0, ξ0) dτ0 dξ0

∣∣∣∣ .
(

dd′

L0L′
0

)p

‖F‖ ‖G‖ .

7. Bilinear and null form estimates

A key ingredient needed for the proof of Lemma 6.5 is:

Theorem 7.1. ([Sel].) For all u1, u2 ∈ L2(R1+2) such that ũj is supported in

K
±j

Nj,Lj
, the estimate

∥∥P
K

±0
N0,L0

(u1u2)
∥∥ ≤ C ‖u1‖ ‖u2‖
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holds with

C ∼
(
N012

minL
12
min

)1/2(
N12

minL
12
max

)1/4
,(7.1)

C ∼
(
N012

minL
0j
min

)1/2(
N0j

minL
0j
max

)1/4
(j = 1, 2),(7.2)

C ∼
(
N012

minN
12
minN0L

012
med

)1/4(
L012
min

)1/2
,(7.3)

C ∼
(
(N012

min)
2L012

min

)1/2
,(7.4)

regardless of the choice of signs ±j.

The estimate (7.3) is not included in [Sel], but follows from either (7.1) or (7.2)
and the fact that N012

minN
012
max ∼ N0N

12
min.

Motivated by the convolution formula (6.1), a triple (X0, X1, X2) of vectors
Xj = (τj , ξj) ∈ R1+2 is said to be a bilinear interaction if X0 = X1 −X2. Given
signs (±0,±1,±2) we also define the hyperbolic weights hj = τj ±j |ξj |. If all three
hyperbolic weights vanish, we say that the interaction is null. If this happens, the
vectors Xj all lie on the null cone, and moreover it is clear geometrically that the
angle θ12 = θ(±1ξ1,±2ξ2) must vanish. The following more or less standard lemma
generalizes this statement. For a proof, see e.g. [Sel08].

Lemma 7.1. Given a bilinear interaction (X0, X1, X2) with ξj 6= 0, and signs

(±0,±1,±2), define hj = τj ±j |ξj | and θ12 = θ(±1ξ1,±2ξ2). Then

max (|h0| , |h1| , |h2|) & min (|ξ1| , |ξ2|) θ
2
12.

Moreover, we either have

|ξ0| ≪ |ξ1| ∼ |ξ2| and ±1 6= ±2,

in which case

θ12 ∼ 1 and max (|h0| , |h1| , |h2|) & min (|ξ1| , |ξ2|) ,

or else we have

max (|h0| , |h1| , |h2|) &
|ξ1| |ξ2| θ212

|ξ0|
.

With this information in hand, we can prove Lemma 6.5. By Lemma 7.1 we
have θ12 . (L012

max/N
12
min)

p for 0 ≤ p ≤ 1/2. Taking p = 3/8 and using (7.3),
∥∥∥∥PK

±0
N0,L0

Bθ12(u1, u2)

∥∥∥∥ .

(
L012
max

N12
min

)3/8 (
N0N

12
minL

012
minL

012
med

)3/8
‖u1‖ ‖u2‖ ,

proving Lemma 6.5.
The following improves the estimate (7.1) in certain situations.

Theorem 7.2. ([Sel].) Let ω ∈ S1, 0 < α ≪ 1 and I ⊂ R a compact interval.

Then for all u1, u2 ∈ L2(R1+2) such that ũj is supported in K
±j

Nj,Lj
, and assuming

in addition that

supp û1 ⊂
{
(τ, ξ) : θ(ξ, ω⊥) ≥ α

}
,

we have

‖Pξ0·ω∈I(u1u2)‖ .

(
|I| (N12

min)
1/2(L1L2)

3/4

α

)1/2

‖u1‖ ‖u2‖ .

The same estimate holds for ‖Pξ1·ω∈Iu1 · u2‖ and ‖u1 ·Pξ2·ω∈Iu2‖.
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Here ω⊥ ⊂ R2 is the orthogonal complement of ω, and |I| is the length of I.
The next result is a null form estimate. Recall that Tr(ω) ⊂ R2, for r > 0

and ω ∈ S1, denotes a tube (actually a strip, since we are in the plane) of radius
comparable to r around Rω.

Theorem 7.3. ([Sel].) Let r > 0 and ω ∈ S1. Then for all u1, u2 ∈ L2(R1+2) such

that ũj is supported in K
±j

Nj,Lj
,

∥∥Bθ12(PR×Tr(ω)u1, u2)
∥∥ . (rL1L2)

1/2 ‖u1‖ ‖u2‖ .

The key point here is that we are able to exploit concentration of the Fourier
supports near a null ray, which is not possible for the standard product u1u2. We
remark that in [Sel], the theorem is proved for |ξj | ∼ Nj on the support of ũj
instead of 〈ξj〉 ∼ Nj as we have here. This only makes a difference if N12

min ∼ 1, but

then the trivial estimate
∥∥PR×Tr(ω)u1 ·u2

∥∥ .
(
rN12

minL
12
min

)1/2
‖u1‖ ‖u2‖ is stronger.

In the following refinement of Theorem 7.3 we limit attention to interactions
which are nearly null, by restricting the angle to θ12 ≪ 1; the correspondingly
modified null form is denoted Bθ12≪1.

Theorem 7.4. ([Sel].) Let r > 0, ω ∈ S1 and I ⊂ R a compact interval. Assume

that N1, N2 ≫ 1 and r ≪ N12
min. Then for all u1, u2 ∈ L2(R1+2) such that ũj is

supported in K
±j

Nj,Lj
,

∥∥Pξ0·ω∈IBθ12≪1(PR×Tr(ω)u1, u2)
∥∥ . (rL1L2)

1/2

(
sup
I1

‖Pξ1·ω∈I1u1‖

)
‖u2‖ ,

where the supremum is over all translates I1 of I.

We end this section by recalling some facts, proved in [DFS10], about the bilinear
interaction X0 = X1 − X2, where we assume ξj 6= 0. Given signs (±0,±1,±2),
we define as before the hyperbolic weights hj = τj ±j |ξj | and the angles θjk =
θ(±jξj ,±kξk) for j, k = 0, 1, 2.

In Lemma 7.1 we related θ12 to the size of the weights hj and |ξj |. The sign
±0 was arbitrary, but by keeping track of the sign we can get more. In fact, since
τ0 = τ1 − τ2, we have h0 − h1 + h2 = ±0 |ξ0| − ±1 |ξ1| ±2 |ξ2| , so defining

(7.5) ±12 ≡





+ if (±1,±2) = (+,+) and |ξ1| > |ξ2|,

− if (±1,±2) = (+,+) and |ξ1| ≤ |ξ2|,

+ if (±1,±2) = (+,−),

and correspondingly in the remaining cases (±1,±2) = (−,−), (−,+) by reversing
all three signs (±12,±1,±2) above, it is clear that the following holds:

Lemma 7.2. If ±0 6= ±12, then max (|h0| , |h1| , |h2|) & |ξ0|.

In the remaining case ±0 = ±12 we have the following estimates.

Lemma 7.3. ([DFS10].) If ±0 = ±12, then

min (θ01, θ02) ∼
min (|ξ1| , |ξ2|)

|ξ0|
sin θ12.

Moreover, if ±0 = ±12 and ±1 6= ±2, then

max (θ01, θ02) ∼ θ12.
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Lemma 7.4. ([DFS10].) For all signs,

max (|h0| , |h1| , |h2|) & |ξ0|min (θ01, θ02)
2 .

Lemma 7.5. ([DFS10].) If ±0 = ±12 and ±1 = ±2, then

|ξ1| |ξ2| θ212
|ξ0|

∼ min (|ξ0| , |ξ1| , |ξ2|)max(θ01, θ02)
2 . max (|h0| , |h1| , |h2|) ,

whereas if ±0 = ±12 and ±1 6= ±2, then

max (θ01, θ02) ∼ θ12.

We now have at our disposal all the tools required to finish the proof of the main
dyadic estimate (6.2). Recall that the DKG case (6.4) has been completely dealt
with, so the remaining null regimes are (6.5) and (6.6).

8. Proof of the dyadic quadrilinear estimate, Part I

By symmetry, we may assume

L1 ≤ L2, L3 ≤ L4,

We distinguish the cases (i) L2 ≤ L′
0, (ii) L4 ≤ L0 and (iii) L2 > L′

0, L4 > L0,
but in this section we further restrict (i) and (ii) to L0 ∼ L′

0, leaving the remaining
cases for the next section. By symmetry it suffices to consider

θ12 ≪ φ . θ34,
(
=⇒ |q1234| . φθ34

)
(8.1a)

θ12, θ34 ≪ φ,
(
=⇒ |q1234| . φ2

)
,(8.1b)

where the estimates on the right hold by Lemma 6.2. By Lemma 7.1,

(8.2) θ12 . γ ≡ min

(
γ∗,

(
N0L

0′12
max

N1N2

)1/2
)
, for some 0 < γ∗ ≪ 1.

In fact, here we can choose any 0 < γ∗ ≪ 1 that we want, by adjusting the implicit
constant in (8.1a). By Lemma 7.1 we also have

(8.3) θ34 . γ′ ≡ min

(
1,
L034
max

N34
min

)1/2

.

Observe that

(8.4) φ ≤ min(θ01, θ02) + min(θ03, θ04),

since θjk ≤ θ0j + θ0k. By Lemma 7.4,

(8.5) min(θ01, θ02) .

(
L0′12
max

N0

)1/2

, min(θ03, θ04) .

(
L034
max

N0

)1/2

.

We assume that uj ∈ L2(R1+2) for j = 1, 2, 3, 4 has nonnegative Fourier transform

ũj supported in K
±j

Nj,Lj
. To simplify, we introduce the shorthand

(8.6) u0′12 = P
K

±0
N0,L′

0

(u1u2) , u043 = P
K

±0
N0,L0

(u4u3) .
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We define ±12 and ±43 as in (7.5), recalling that ξ0 = ξ1 − ξ2 = ξ4 − ξ3. Note the
following important relations:

±0 = ±12, θ12 ≪ 1, N0 ≪ N1 ∼ N2 =⇒ θ01 ∼ θ02 ∼
N1

N0
θ12,(8.7)

±0 = ±12, θ12 ≪ 1, N1 . N0 ∼ N2 =⇒ θ12 ∼ θ01 ∼
N0

N1
θ02.(8.8)

This follows from Lemmas 7.3 and 7.5, and the fact, from the proof of Lemma 7.3
in [DFS10], that θ02 ≤ θ01 if |ξ1| ≤ |ξ2|. Note also that (8.7) can only happen if
±1 = ±2, by Lemma 7.1. Of course, (8.8) applies symmetrically if N2 . N0 ∼ N1.
Analogous estimates apply to the index 043.

8.1. The case L2 ≤ L′
0 ∼ L0. Then we treat the cases (8.1a) and (8.1b) simulta-

neously by using Lemma 6.3 to estimate |q1234| . θ13θ24, and pairing up u1 with
u3, and u2 with u4, by changing variables from (τ ′0, τ0, ξ0) to

τ̃ ′0 = τ1 + τ3, τ̃0 = τ2 + τ4, ξ̃0 = ξ1 + ξ3 = ξ2 + ξ4.

Then τ̃ ′0 − τ̃0 = τ ′0 − τ0, so the symbol of TL0,L′
0
is invariant under the change of

variables: a±0

L0,L′
0
(τ0, τ

′
0, ξ0) = a±0

L0,L′
0
(τ̃0, τ̃

′
0, ξ̃0). This is where we use the assumption

L0 ∼ L′
0. Using Lemma 6.4 we conclude that

JN ,L .

∫
TL0,L′

0
FB

′
θ13(u1, u3)(X̃0) · FB

′
θ24(u2, u4)(X̃0) dX̃0

.
∥∥B′

θ13(u1, u3)
∥∥ ∥∥B′

θ24(u2, u4)
∥∥ ,

where the null form B
′
θ13

(u1, u3) is defined by inserting θ13 in the convolution

formula ũ1u3(X0) ≃
∫
ũ1(X1)ũ3(X3)δ(X0 −X1 −X3) dX1 dX3. The estimates for

Bθ12 in the previous section hold also for this null form.
Recalling (8.2) and applying Lemma 4.4 to the pair (±1ξ1,±2ξ2) before making

the above change of variables, we obtain similarly

JN ,L .
∑

ω1,ω2

∥∥B′
θ13(u

γ,ω1

1 , u3)
∥∥ ∥∥B′

θ24(u
γ,ω2

2 , u4)
∥∥ ,

where the sum is over ω1, ω2 ∈ Ω(γ) satisfying θ(ω1, ω2) . γ and we write

u
γ,ωj

j = P±jξj∈Γγ(ωj)u.

Since the spatial frequency ξj of u
γ,ωj

j is restricted to a tube of radius comparable
to Njγ about Rωj, we can apply Theorem 7.3, obtaining

JΣ

N ,L .
(
N1N2γ

2L1L2L3L4

)1/2 ∑

ω1,ω2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ‖u3‖ ‖u4‖

. (N0L
′
0L1L2L3L4)

1/2
‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ ,

where we summed ω1, ω2 as in (4.18), and used the definition(8.2) of γ, taking into
account the assumption L2 ≤ L′

0. Interpolating with the crude estimate

(8.9) JN ,L . ‖u0′12‖ ‖u043‖ .
(
N2

0L
0′12
min

)1/2 (
N2

0L
034
min

)1/2
‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ ,

which follows from (7.4), we get the desired estimate (6.2), recalling that L0 ∼ L′
0.
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8.2. The case L4 ≤ L0 ∼ L′
0. If θ34 ≪ 1, then we have the analog of (8.2), so by

symmetry the argument in the previous subsection applies, with the roles of the
indices 12 and 34 reversed. We therefore assume θ34 ∼ 1. Then N34

min . L0, by
Lemma 7.1. Moreover, we may assume L2 > L′

0, since the case L2 ≤ L′
0 is done.

Now trivially estimate |q1234| . 1. Then with notation as in (8.6),

JN ,L . N
3/4
0 (L′

0L1)
3/8(N34

min)
3/4(L3L4)

3/8 ‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖

. N
3/4
0 (L0L

′
0L1L2L3L4)

3/8
‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ ,

where we used Lemma 6.4, Theorem 7.1, the assumption L2 > L′
0 and the fact that

N34
min . L0 ∼ L′

0.

8.3. The case L2 > L′
0 and L4 > L0. So far we could treat (8.1a) and (8.1b)

simultaneously, but from now on we need to separate the two, and we divide into
subcases depending on which term dominates in the right hand side of (8.4):

θ12 ≪ φ . θ34, min(θ01, θ02) ≥ min(θ03, θ04),(8.10a)

θ12 ≪ φ . θ34, min(θ01, θ02) < min(θ03, θ04),(8.10b)

θ12, θ34 ≪ φ, min(θ01, θ02) < min(θ03, θ04),(8.10c)

θ12, θ34 ≪ φ, min(θ01, θ02) ≥ min(θ03, θ04).(8.10d)

Note that the last two are symmetric, so we only consider the first three. Subcase
(8.10b) is by far the most difficult, and will be split further into subcases.

8.4. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) ≥ min(θ03, θ04). By (8.3)–(8.5),

|q1234| . φθ34 . (φθ34)
3/4 .

(
L2

N0

)3/8(
L4

N34
min

)3/8

,

hence

JN ,L .

(
L2

N0

L4

N34
min

)3/8 (
N2

0L
′
0L1

)3/8 (
N0N

034
minL0L3

)3/8 4∏

j=1

‖uj‖

= N
3/4
0 (L0L

′
0L1L2L3L4)

3/8 ‖u1‖ ‖u2‖ ‖u3‖ ‖u4‖ ,

where we used Lemma 6.4 and Theorem 7.1.

8.5. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) < min(θ03, θ04). Then

(8.11) |q1234| . φθ34 . min(θ03, θ04)

(
L4

N34
min

)p

for 0 ≤ p ≤ 1/2. By (8.2) and Lemma 4.4 applied to (±1ξ1,±2ξ2),

(8.12) JN ,L .
∑

ω1,ω2

(
L4

N34
min

)1/4 ∥∥∥∥B′
θ03

(
P

K
±0
N0,L0

F−1T±0

L0,L′
0
Fuγ,ω1,ω2

0′12 , u3

)∥∥∥∥ ‖u4‖ ,

where

(8.13) uγ,ω1,ω2

0′12 = P
K

±0
N0,L′

0

(
uγ,ω1

1 uγ,ω2

2

)
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and the sum is over ω1, ω2 ∈ Ω(γ) with θ(ω1, ω2) . γ. The spatial Fourier support
of uγ,ω1,ω2

0′12 is contained in a tube of radius comparable to N12
maxγ around Rω1.

Therefore, by Theorem 7.3, Lemma 6.4 and Theorem 7.1,
(8.14)

JN ,L .
∑

ω1,ω2

(
L4

N34
min

)1/4 (
N12

maxγL0L3

)1/2
‖uγ,ω1,ω2

0′12 ‖ ‖u3‖ ‖u4‖

.

(
L
1/2
4

(N34
min)

1/2
N12

max

(
N0L2

N1N2

)1/2

L0L3N0(N
012
min)

1/2(L′
0L1)

3/4

)1/2 4∏

j=1

‖uj‖

.

(
N0

N34
min

)1/4

N
3/4
0 L

1/2
0 (L′

0)
3/8(L1L2)

5/16(L3L4)
3/8

4∏

j=1

‖uj‖ .

Here we summed ω1, ω2 as in (4.18) and used (8.2) (recalling L′
0 < L2), the fact

that N012
minN

012
max ∼ N0N

12
min, and the assumptions L1 ≤ L2, L3 ≤ L4.

Interpolating with the trivial estimate (8.9) we then obtain (6.2) if N0 . N34
min,

but also whenever we are able to gain an extra factor (N34
min/N0)

1/4. In particular,
this happens if ±0 6= ±43, since then N0 . L4 by Lemma 7.2, so instead of (8.3) we
can use θ34 . 1 . (L4/N0)

1/4 in (8.11), thereby gaining the desired factor. Thus,
we may assume ±0 = ±43, and the same argument shows that we may assume
θ34 ≪ 1. Moreover, we can assume ±0 = ±12, since otherwise Lemma 7.2 implies
N0 . L2, hence the argument in section 8.4 applies. Next observe that by (8.8)
and (8.11), since ±0 = ±43 and θ34 ≪ 1,

(8.15) N3 ≪ N0 ∼ N4 =⇒ θ04 .
N3

N0
θ34, θ03 ∼ θ34, |q1234| .

N3

N0
θ03θ34,

so we gain a factor N3/N0 in (8.14), which is more than enough. We are therefore
left with N4 ≪ N0 ∼ N3, which is hard; we split further into N0 . N2 and
N2 ≪ N0, treated in the next two subsections. Here one should keep in mind that
±0 = ±12 = ±43, L1 ≤ L2, L3 ≤ L4, L2 > L′

0 and L4 > L0.

8.5.1. Subcase N0 . N2. Inserting P|ξ4|.N4
in front of B′

θ03
in (8.14), then instead

of Theorem 7.3 we apply Theorem 7.4, the hypotheses of which are satisfied: First,
since N4 ≪ N0 ∼ N3, we have N0, N3 ≫ 1 and θ03 ≪ 1 [by the analog of (8.15)].
Second, the hypothesis r ≪ N12

min in the theorem now becomes

(8.16) N12
maxγ ≪ N0,

with γ as in (8.2). But if (8.16) fails, then N0 ≪ N1 ∼ N2, and N0 . L2 in view
of the definition (8.2) of γ, so the argument in section 8.4 applies. Thus, we can
assume that (8.16) holds, hence Theorem 7.4 applies, so in (8.14) we can replace
‖uγ,ω1,ω2

0′12 ‖ by

sup
I

‖Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ‖ ,

where the supremum is over all intervals I ⊂ R with |I| = N4. But since γ ≪ 1,
Theorem 7.2 implies, via duality,

(8.17) sup
I

‖Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ‖ .
[
N4(N

01
min)

1/2(L′
0L1)

3/4
]1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ,



GLOBAL SOLUTIONS OF 2D MAXWELL-DIRAC 27

so in the second line of (8.14), N0(N
012
min)

1/2(L′
0L1)

3/4 inside the square root is re-

placed by N4(N
01
min)

1/2(L′
0L1)

3/4, so in effect we gain a factor (N4/N0)
1/2, recalling

that N0 . N2.

8.5.2. Subcase N0 ≫ N2. If N2 ∼ 1, we simply estimate

(8.18) JN ,L . ‖u0′12‖
∥∥u043

∥∥ .
(
N

3/2
2 (L1L2)

3/4 ·N
3/2
0 (L0L3)

3/4
)1/2 4∏

j=1

‖uj‖ ,

by Lemma 6.4 and Theorem 7.1. We therefore assume 1 ≪ N2 ≪ N0 ∼ N1. This
ensures that 〈ξ2〉 ∼ N2 can be replaced by |ξ2| ∼ N2. By (8.8) and (8.2),

(8.19) θ12 ∼ θ02 ∼
N0

N2
θ01, hence θ01 . α ≡

N2

N0
γ.

Now modify (8.12) by applying Lemma 4.4 again, this time to (±0ξ0,±1ξ1):

(8.20) JN ,L .
∑

ω1,ω2

∑

ω′
0,ω

′
1

(
L4

N4

)1/2

×

∥∥∥∥P|ξ4|.N4
B

′
θ03≪1

(
P

K
±0
N0,L0

F−1T±0

L0,L′
0
Fu

γ,ω1,ω2;α,ω
′
0,ω

′
1

0′12 , u3

)∥∥∥∥ ‖u4‖ ,

where the second sum is over ω′
0, ω

′
1 ∈ Ω(α) satisfying θ(ω′

0, ω
′
1) . α, and

u
γ,ω1,ω2;α,ω

′
0,ω

′
1

0′12 = P±0ξ0∈Γα(ω′
0)
P

K
±0
N0,L′

0

(
u
γ,ω1;α,ω

′
1

1 uγ,ω2

2

)
(8.21)

u
γ,ω1;α,ω

′
1

1 = P±1ξ1∈Γα(ω′
1)
uγ,ω1

1 .(8.22)

The spatial Fourier support of (8.21) is contained in a tube of radius comparable
to N0α ∼ N2γ around Rω′

0, whereas the one for (8.13) is of radius comparable to
N1γ, so we gain a factor (N2/N0)

1/2 when applying Theorem 7.4, compared to our
estimates in the previous subsection. On the other hand, we now have the additional
sum over ω′

0, ω
′
1. To come out on top, we have to make sure that this sum does not

cost us more than a factor (N0/N2)
1/4. For the bilinear interaction X ′

0 = X1 −X2

in (8.21) we have, by (4.16), recalling also θ(ω′
0, ω

′
1) . α and N1 ∼ N0,

X ′
0 ∈ Hmax(L′

0,N0α2)(ω
′
1), X1 ∈ Hmax(L1,N0α2)(ω

′
1).

Therefore,

(8.23) X2 = X1 −X ′
0 ∈ Hd(ω

′
1), where d = max

(
L0′1
max, N0α

2
)
,

so we can insert PHd(ω′
1)

in front of uγ,ω2

2 in (8.21). Adapting the argument from
the previous subsection we then get

(8.24)

JN ,L .

(
L4

N4

)1/4 (
N2γL0L3N4N

1/2
0 (L′

0L1)
3/4
)1/2

×
∑

ω1,ω2

∑

ω′
0,ω

′
1

∥∥uγ,ω1;α,ω
′
1

1

∥∥ ∥∥PHd(ω′
1)
uγ,ω2

2

∥∥ ∥∥u3
∥∥∥∥u4

∥∥

.

(
L
1/2
4

N
1/2
4

N2

(
L2

N2

)1/2

L0L3N4N
1/2
0 (L′

0L1)
3/4

)1/2

×B1/2
∑

ω1,ω2

∥∥uγ,ω1

1

∥∥ ‖uγ,ω2

2 ‖
∥∥u3
∥∥∥∥u4

∥∥,
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where

(8.25) B = sup
(τ,ξ), |ξ|∼N2

∑

ω′
1∈Ω(α)

χHd(ω′
1)
(τ, ξ).

If we can prove that

(8.26) B .

(
N0

N2

)1/2

,

then summing ω1, ω2 as in (4.18) we get the desired estimate.

By Lemma 4.2, B . 1 + (d/N2α
2)1/2, where d = max

(
L0′1
max, N0α

2
)
, so if d =

N0α
2, we get (8.26). The other possibility is d = L0′1

max, which happens when

N0α
2 ≤ L0′1

max. Then instead of (8.26) we only get

(8.27) B .

(
L0′1
max

N2α2

)1/2

,

but to compensate we can use the following replacement for (8.17):

(8.28) ‖Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ‖ .
(
N4(N2γ)L

0′1
min

)1/2
‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ,

which by [Sel, Lemma 1.2] reduces to the trivial fact that the intersection of the
strips {ξ0 : ξ0 · ω1 ∈ I} and Tr(ω2) has area O(r |I|), where in the present case
r ∼ N2γ and |I| = N4. Modifying (8.24) accordingly, we again get the desired
estimate.

8.6. Subcase θ12, θ34 ≪ φ, min(θ01, θ02) < min(θ03, θ04). Then

(8.29) |q1234| . φ2 . min(θ03, θ04)

(
L4

N0

)p

(0 ≤ p ≤ 1/2).

Comparing with (8.11), we then we get (8.14) with an extra factor (N34
min/N0)

1/4,
implying the desired estimate.

9. Proof of the dyadic quadrilinear estimate, Part II

It remains to consider the cases where

L0 ≪ L′
0 or L0 ≫ L′

0

and either L2 ≤ L′
0 or L4 ≤ L0 (as before we assume L1 ≤ L2 and L3 ≤ L4 by

symmetry). It suffices to consider the cases (8.10a)–(8.10c), the last two of which
we split further into

L2 ≤ L′
0, L4 > L0,(9.1a)

L2 ≤ L′
0, L4 ≤ L0,(9.1b)

L2 > L′
0, L4 ≤ L0.(9.1c)

We may assume N12
min, N

34
min ≫ 1, as otherwise trivial estimates analogous to (8.18)

apply.
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9.1. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) ≥ min(θ03, θ04). By (8.3)–(8.5),

(9.2) |q1234| . φθ34 . (φθ34)
3/4 .

(
L0′12
max

N0

)3/8 (
L034
max

N34
min

)3/8

,

so with notation as in (8.6),

JN ,L .

(
L0′12
max

N0

)3/8(
L034
max

N34
min

)3/8 ∥∥T±0

L0,L′
0
Fu0′12

∥∥∥∥u043
∥∥.

If we apply Lemma 6.4 and (7.3), we get the desired estimate except in the case
N0 ≪ N1 ∼ N2, but then we can apply the following:

Lemma 9.1. If L′
0 ≪ L0 or L′

0 ≫ L0,

∥∥T±0

L0,L′
0
Fu0′12

∥∥ .
(
N

1/2
0 N012

minL
0′12
min (L

0′12
med)

1/2
)1/2

‖u1‖ ‖u2‖ .

Proof of Lemma 9.1. If L0′12
max = L12

max, this holds by Lemma 6.4 and (7.2), so we

assume L0′12
max = L′

0. Since θ12 ≪ 1, we have θ12 . γ with γ as in (8.2), and
we reduce to estimating S =

∑
ω1,ω2

∥∥T±0

L0,L′
0
Fuγ,ω1,ω2

0′12

∥∥, where ω1, ω2 ∈ Ω(γ) with

θ(ω1, ω2) . γ. By (4.16),

(9.3) suppFuγ,ω1,ω2

0′12 ⊂ Hd′(ω1), where d′ = max
(
L12
max, N

12
maxγ

2
)
,

so by Lemma 6.6,

S .
∑

ω1,ω2

(
d′

L′
0

)p

‖uγ,ω1,ω2

0′12 ‖ (0 ≤ p ≤ 1/2).

Taking p = 1/4, we note that if d′ = L12
max, we get the desired estimate by using

(7.2) and summing ω1, ω2 as in (4.18). If d′ = N12
maxγ

2 ∼ N0L
′
0/N

12
min, on the other

hand, then (7.1) implies the estimate we need. �

9.2. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) < min(θ03, θ04), L2 ≤ L′
0, L4 > L0.

Observe that (8.11) holds. Now repeat the argument leading to (8.14), but use
Lemma 9.1 instead of Lemma 6.4 and Theorem 7.1, hence
(9.4)

JN ,L .
∑

ω1,ω2

(
L4

N34
min

)1/4 (
N12

maxγL0L3

)1/2 ∥∥T±0

L0,L′
0
Fuγ,ω1,ω2

0′12

∥∥ ‖u3‖ ‖u4‖

.

(
L
1/2
4

(N34
min)

1/2
N12

max

(
N0L

′
0

N1N2

)1/2

L0L3N0(N
012
min)

1/2(L1L2)
3/4

)1/2 4∏

j=1

‖uj‖

.

(
N0

N34
min

)1/4

N
3/4
0 L

1/2
0 (L′

0)
1/4(L1L2L3L4)

3/8
4∏

j=1

‖uj‖ ,

so interpolating with the trivial estimate (8.9) we obtain (6.2) ifN0 . N34
min, but also

whenever we are able to gain an extra factor (N34
min/N0)

1/4. Now we continue as in
section 8.5, reducing finally to the difficult case N4 ≪ N0 ∼ N3. Then we proceed
as in section 8.5.1. We may assume (8.16) [otherwise N0 . L′

0, and then (9.2)
holds], hence Theorem 7.4 applies, so in (9.4) we can replace

∥∥T±0

L0,L′
0
Fuγ,ω1,ω2

0′12

∥∥ by

(9.5) sup
I

∥∥∥T±0

L0,L′
0
FPξ0·ω1∈Iu

γ,ω1,ω2

0′12

∥∥∥ ,
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where the supremum is over I ⊂ R with |I| = N4. By Theorem 7.2,

(9.6) sup
I

‖Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ‖ .
(
N4(N

12
min)

1/2(L1L2)
3/4
)1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ .

If we combine this with Lemma 6.4, we get

(9.7) l.h.s.(9.5) .
(
N4(N

12
min)

1/2(L1L2)
3/4
)1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ,

but we need

(9.8) l.h.s.(9.5) .
(
N4(N

012
min)

1/2(L1L2)
3/4
)1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ .

If this holds, then we gain the necessary factor (N4/N0)
1/4 in (9.4).

We prove (9.8) for N0 ≪ N1 ∼ N2, as otherwise it reduces to (9.7). Recalling
(9.3) from the proof of Lemma 9.1, we use Lemma 6.6 followed by either (9.6) or

(9.9) sup
I

‖Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ‖ .
(
N4(N

01
min)

1/2(L′
0L1)

3/4
)1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ,

which follows from Theorem 7.2 via duality, recalling γ ≪ 1. Specifically, if d′ =
L12
max, we use (9.9), whereas (9.6) is used if d′ = N12

maxγ
2. Then (9.8) follows.

9.3. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) < min(θ03, θ04), L2 ≤ L′
0, L4 ≤ L0.

For the remainder of section 9, we change the notation from (8.2), writing now

(9.10) θ12 . γ ≡

(
N0L

0′12
max

N1N2

)1/2

.

By (8.4) and (8.5),

(9.11) φ . min(θ03, θ04) .

(
L0

N0

)p

(0 ≤ p ≤ 1/2),

hence |q1234| . φθ34 . (L0/N0)
pθ34, so applying Lemma 4.4 to (±1ξ1,±2ξ2) and

Lemma 4.3 to (±3ξ3,±4ξ4), and recalling (8.3),

(9.12) JN ,L .
∑

ω1,ω2

∑

0<γ34.γ′

∑

ω3,ω4

(
L0

N0

)p

γ34

×

∫
T±0

L0,L′
0
Fuγ,ω1,ω2

0′12 (X0) · Fu
γ34,ω4,ω3

043 (X0) dX0,

where γ′ is defined as in (8.3), uγ,ω1,ω2

0′12 is defined as in (8.13), uγ34,ω4,ω3

043 is similarly
defined, and the sum is over ω1, ω2 ∈ Ω(γ) with θ(ω1, ω2) . γ, dyadic γ34 and
ω3, ω4 ∈ Ω(γ34) satisfying 3γ34 ≤ θ(ω3, ω4) ≤ 12γ34, hence θ34 ∼ γ34 in uγ34,ω4,ω3

043 .
Recall that the spatial Fourier support of uγ,ω1,ω2

0′12 is contained in a tube of radius
r ∼ N12

maxγ around Rω1. Covering R by almost disjoint intervals I of length r,

uγ,ω1,ω2

0′12 =
∑

I

Pξ0·ω1∈Iu
γ,ω1,ω2

0′12 ,

where the sum has cardinality O(N0/r). Fix I. Then ξ0 is restricted to a cube of
sidelength r, and tiling by translates of this cube we may assume without loss of
generality that the ξj are restricted to such cubes Qj, for j = 1, 2, 3, 4.

By (9.3),

(9.13) τ ′0 + ξ0 · ω1 = O(d′), where d′ = max
(
L2, N

12
maxγ

2
)
.
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Moreover, as proved in [DFS10, Section 9.4],

(9.14) τ0 + ξ0 · ω3 = c+O(d), where d = max

(
L4,

r2

N34
min

, rγ34

)
,

and c ∈ R depends on (Q3, Q4) and (ω3, ω4). So by Lemmas 6.4 and 6.6, we can
dominate the integral in (9.12) by the product of

(9.15)

(
min

(
1,
d′

L′
0

))3/8

‖uγ,ω1,ω2

0′12 ‖

and

(9.16)

(
d

L0

)1/4

‖uγ34,ω4,ω3

043 ‖ .

By Theorem 7.2,

(9.17) ‖uγ,ω1,ω2

0′12 ‖ . C
∥∥uγ,ω1

1

∥∥∥∥uγ,ω2

2

∥∥

holds with

C2 ∼ r(N01
min)

1/2(L′
0L1)

3/4,(9.18)

C2 ∼ r(N12
min)

1/2(L1L2)
3/4.(9.19)

Noting that

(9.20)
d′

L′
0

∼ max

(
L2

L′
0

,
N0

N12
min

)
,

we use (9.19) if N0 ∼ N12
max, and otherwise the minimum of (9.18) and (9.19), hence

(9.21) (9.15) .
(
r(N012

min)
1/2(L1L2)

3/4
)1/2 ∥∥uγ,ω1

1

∥∥∥∥uγ,ω2

2

∥∥.

Next we claim that

(9.22) ‖uγ34,ω4,ω3

043 ‖ . C
∥∥uγ34,ω3

3

∥∥∥∥uγ34,ω4

4

∥∥

holds with

C2 ∼ r2L3,(9.23)

C2 ∼ r(N34
min)

1/2(L3L4)
3/4,(9.24)

C2 ∼
rL3L4

γ34
.(9.25)

In fact, (9.25) holds due to the assumption θ(ω3, ω4) ≥ 3γ34, by the argument
in [Sel, Section 3.3]; (9.24) holds by Theorem 7.2, and (9.23) reduces to a trivial
volume estimate (see [Sel, Lemma 1.1]). Interpolating (9.23) and (9.25) we also get

(9.26) C2 ∼
r2L3L

1/2
4

(rγ34)1/2
≤
r2(L3L4)

3/4

(rγ34)1/2
,

and since d1/2 times the minimum of (9.23), (9.24) and (9.26) is . r2(L3L4)
3/4,

(9.27) (9.16) .

(
r2(L3L4)

3/4

L
1/2
0

)1/2 ∥∥uγ34,ω3

3

∥∥∥∥uγ34,ω4

4

∥∥.
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Estimating the integral in (9.12) by the product of (9.21) and (9.27), summing the

ω’s as in (4.18), estimating γ34 . γ
1/2
34 and using

∑
γ
1/2
34 ∼ (γ′)1/2, where the sum

is over dyadic 0 < γ34 . γ′, we conclude, taking p = 3/8,

(9.28)

JN ,L .

(∑

I

r

N0

)
(rγ′)1/2

(
N012

min

L0

)1/4

N
5/8
0 (L0L1L2L3L4)

3/8
4∏

j=1

‖uj‖

.
(N12

maxγγ
′)1/2

(L0L′
0)

1/4

(
N012

min

N0

)1/4

N
7/8
0 (L0L

′
0L1L2L3L4)

3/8
4∏

j=1

‖uj‖ ,

where we summed I using the fact that the index set has cardinality O(N0/r), and
used the definition r ∼ N12

maxγ. Thus, if the expression

(9.29) A =
(N12

maxγγ
′)2N012

min

N0L0L′
0

is O(1), we get the desired estimate. In view of (9.10), (8.3) and the assumptions
L2 ≤ L′

0 and L4 ≤ L0,

(9.30) A .
(N12

max)
2N012

min

N0L0L′
0

N0L
′
0

N1N2
min

(
1,

L0

N34
min

)
.

In particular,

(9.31) A .
N12

maxN
012
min

N12
minN

34
min

.
N0

N34
min

,

where we used the fact that N012
minN

012
max ∼ N0N

12
min. The only remaining case is then

N34
min ≪ N0. If ±0 6= ±43, then N0 . L0 by Lemma 7.2, so we can estimate the

minimum in (9.30) by 1 . L0/N0, gaining a factor N34
min/N0 compared to (9.31).

If, on the other hand, ±0 = ±43, then by Lemma 7.3 and (8.3),

min(θ03, θ04) .
N34

min

N0
θ34 .

N34
min

N0

(
L0

N34
min

)1/2

=

(
N34

min

N0

)1/2(
L0

N0

)1/2

,

which means that compared to (9.11) we gain a factor (N34
min/N0)

3/8 (since we took
p = 3/8 above), which then appears to the fourth power in A, so we have more
than enough improvement.

9.4. Subcase θ12 ≪ φ . θ34, min(θ01, θ02) < min(θ03, θ04), L2 > L′
0, L4 ≤ L0.

The only difference from the previous case is that now L2 > L′
0, instead of L2 ≤ L′

0.
This difference only shows up in the expression (9.10) for γ, however, and this
expression is not used explicitly until the estimate (9.20). But in the present case,
d′/L′

0 > 1, so the minimum in (9.15) is equal to one, and instead of (9.21) we
use (9.17) with C as in (9.18). The argument then goes through without problems
except when N2 ≪ N0 ∼ N1. To be precise, instead of (9.29) we will now have

(9.32) A =
(N12

maxγγ
′)2N01

min

N0L0L2
,

leading to

(9.33) A .
(N12

max)
2N01

min

N0L0L2
·
N0L2

N1N2
·min

(
1,

L0

N34
min

)
=
N01

min

N012
min

× r.h.s.(9.30),

so we are done except for N2 ≪ N0 ∼ N1. Then we must gain a factor N2/N0

in (9.32). We assume N2 ≫ 1, since otherwise (8.18) applies, and we assume
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±0 = ±12, as otherwise (9.2) applies. Thus (8.19) holds, and we use this to make
an extra angular decomposition for (±0ξ0,±1ξ1). In view of (8.23), we then replace

uγ,ω1

1 and uγ,ω2

2 by u
γ,ω1;α,ω

′
1

1 and PHd(ω′
1)
uγ,ω2

2 , with d as in (8.23) and ω′
1 ∈ Ω(α).

The spatial output ξ0 is restricted to a tube of radius r′ ∼ N0α ∼ N2γ around Rω′
1,

replacing r ∼ N0γ used in the previous section. Decomposing into cubes as in the
previous section, applying (9.17), (9.18) and (9.27), with r replaced by r′, we get

JN ,L .
(r′γ′)1/2

(L0L2)1/4
N

7/8
0 (L0L

′
0L1L2L3L4)

3/8
B1/2

4∏

j=1

‖uj‖ ,

where B is given by (8.25). So now instead of (9.29) we have

A =
(r′γ′)2

L0L2
B2,

and (9.30) is replaced by

A .
N2

2

L0L2
·
N0L2

N1N2
min

(
1,

L0

N34
min

)
B2 .

N2

L0
min

(
1,

L0

N34
min

)
B2.

When (8.26) holds we are done, since then we get

(9.34) A .
N0

L0
min

(
1,

L0

N34
min

)
.

and by the same argument as at the end of the previous subsection we also know
how to deal with the case N34

min ≪ N0. If (8.26) fails, we only have (8.27). But

to compensate we can use the fact that (9.17) holds with C2 ∼ r′(N2γ)L
0′1
min, as

follows from (8.28). In effect we then get (9.34).

9.5. Subcase θ12, θ34 ≪ φ, min(θ01, θ02) < min(θ03, θ04), L2 ≤ L′
0, L4 > L0.

Then

|q1234| . φ2 . min(θ03, θ04)
2 . min(θ03, θ04)

(
L4

N0

)1/2

,

and we proceed as in section 8.5, but recalling also that we have Lemma 9.1 at our
disposal. The result is that we can dominate JN ,L by the last line of (8.14), but

without the factor (N0/N
34
min)

1/4, so interpolating with the trivial estimate (8.9) we
obtain (6.2).

9.6. Subcase θ12, θ34 ≪ φ, min(θ01, θ02) < min(θ03, θ04), L2 ≤ L′
0, L4 ≤ L0. We

modify the argument from subsection 9.3. Since θ12, θ34 ≪ 1, (9.10) holds, and

(9.35) θ34 . γ′ ≡

(
N0L0

N3N4

)1/2

.

Now |q1234| . φ2, and (9.11) holds, hence the factor γ34 in (9.12) must be replaced
by (L0/N0)

q for some 0 ≤ q ≤ 1/2. Taking q = 0 or q = 1/4 we get (9.28), but
with the factor

(γ′)1/2 ∼ min

(
1,

L0

N34
min

)1/4

replaced by

min

(
1,
L0

N0

)1/4 ∑

0<γ34.γ′

1,
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bur of course the sum diverges.
To fix the problem, observe that the separation assumption θ(ω3, ω4) ≥ 3γ34 is

only needed when we apply the null form estimate (9.25), i.e. when rγ34 dominates
in the definition of d in (9.14), but then

γ34 &
r

N34
min

∼
N12

max

N34
min

γ =
N12

max

N34
min

(
N0L

′
0

N1N2

)1/2

.

On the other hand, we also have the upper bound (9.35) for γ34. The cardinality
of the this set of dyadic numbers γ34 is O(log〈L0〉). Recall that we used symmetry
to assume that the second term in (8.4) dominates, hence we will also pick up
the symmetric factor O(log〈L′

0〉) in the final estimate. So to summarize, if θ34 &

r/N34
min, then effectively the factor (γ′)1/2 in the last line of (9.28) is replaced by

min (1, L0/N0)
1/4

log〈L0〉 log〈L′
0〉, hence we gain a factor N34

min/N0 in the right hand
side of (9.31), so we get the desired estimate (6.2).

It remains to consider θ34 ≪ r/N34
min, but then we do not need the separation,

so here we can avoid summation over γ34 altogether by using Lemma 4.4 instead
of Lemma 4.3, hence we do not pick up any logarithmic factors.

9.7. Subcase θ12, θ34 ≪ φ, min(θ01, θ02) < min(θ03, θ04), L2 > L′
0, L4 ≤ L0. This

follows by the argument from section 9.4 with the same modifications as in the
previous subsection.

10. Proof of the trilinear estimate

Here we prove (5.4) for given signs ±1,±2:

(10.1) |I| . T 1/4[‖ψ0‖
2
+DT (0)] ‖ψ1‖X0,1/2;1

±1

‖ψ2‖X0,1/4;1
±2

,

where

DT (0) = T 1/2
∑

0<N0<1/T

∥∥P|ξ0|∼N0
(Edf

0 , B
3
0)
∥∥+

∥∥P|ξ|≥1/T (E
df
0 , B

3
0)
∥∥
H−1/2

and

I =

∫
ρAhom.

µ 〈αµΠ±1ψ1,Π±2ψ2 〉 dt dx

≃

∫
ρ̃Ahom.

j (X0)σ
j(X1, X2)

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
−X0

dX0

with

σj(X1, X2) = 〈αjΠ(±1ξ1)z1(X1),Π(±2ξ2)z2(X2) 〉.

HereXj = (τj , ξj) and we write ψ̃j = zj
∣∣ψ̃j

∣∣ with |zj| = 1. The convolution measure

dµ12
−X0

is given by the rule in (6.1), hence X0 = X2 −X1. Recall also that we can
insert the time cut-off ρT in front of the ψj in I whenever needed.

Corresponding to the regions |ξ0| < 1/T and |ξ0| ≥ 1/T we split

I = I|ξ0|<1/T + I|ξ0|≥1/T .

and claim that

(10.2) I|ξ0|<1/T .


 ∑

0<N0≤1/T

∥∥P|ξ0|∼N0
(Edf

0 , B
3
0)
∥∥+ T−1/2 ‖ψ0‖

2


 ‖ψ1‖ ‖ψ2‖
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and

(10.3) I|ξ0|≥1/T .
(∥∥P|ξ|≥1/T (E

df
0 , B

3
0)
∥∥
H−1/2 + ‖ψ0‖

2
)
‖ψ1‖X0,1/4;1

±1

‖ψ2‖X0,1/4;1
±2

.

But we are allowed to insert ρT in front of the ψ’s, and in (10.2) we use (4.6) to get

(10.4) ‖ρTψ1‖ ‖ρTψ2‖ . T 1/2 ‖ψ1‖X0,1/2;1
±1

T 1/4 ‖ψ2‖X0,1/4;1
±2

,

whereas in (10.3) we get from (4.7),

(10.5) ‖ρTψ1‖X0,1/4;1
±1

. T 1/4 ‖ψ1‖X0,1/2;1
±1

.

Combining (10.2)–(10.5) we obtain (10.1), hence it suffices to prove the claimed
estimates (10.2) and (10.3).

For convenience we shall denote by c = 1/T ≫ 1 the cutoff point between low
and high frequencies.

By our choice of data, Ahom.
0 = 0. Using (2.9) we split Ahom.

j = Ahom.
j,+ + Ahom.

j,−

for j = 1, 2, and we split I accordingly. Note that

Ãhom.
j,±0

(X0) = δ(τ0 ±0 |ξ0|)

(
âj(ξ0)

2
±0

i ̂̇aj(ξ0)
2 |ξ0|

)
= δ(τ0 ±0 |ξ0|)

g±0

j (ξ0)

|ξ0|
1/2

,

where

g±0

j (ξ0) = |ξ0|
1/2

(
âj(ξ0)

2
±0

i ̂̇aj(ξ0)
2 |ξ0|

)
.

Since a = −∆−1(∂2B
3
0 ,−∂1B

3
0 , 0) and ȧ = −E0 = −Edf

0 −∆−1∇(|ψ0|
2
),

(10.6)

∥∥χ|ξ0|≥cg
±0
∥∥ .

∥∥P|ξ|≥c(E
df
0 , B

3
0)
∥∥
H−1/2 +

∥∥∥|ψ0|
2
∥∥∥
H−3/2

.
∥∥P|ξ|≥c(E

df
0 , B

3
0)
∥∥
H−1/2 + ‖ψ0‖

2
,

where
∥∥|ψ0|

2∥∥
H−3/2 . ‖ψ0‖

2
by Lemma 4.1.

10.1. Estimate for I = I|ξ0|≥c. We want (10.3), but in view of (10.6) it suffices
to prove

(10.7) I .
(∥∥χ|ξ0|≥cg

±0
∥∥+ ‖ψ0‖

2
)
‖ψ1‖X0,1/4;1

±1

‖ψ2‖X0,1/4;1
±2

for

I =

∫
χ|ξ0|≥cρ̂(τ0 ±0 |ξ0|)

g±0

j (ξ0)

|ξ0|
1/2

σj(X1, X2)
∣∣∣ψ̃1(X1)

∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
−X0

dX0

with any combination of signs ±0,±1,±2. Taking the absolute value and using
dyadic decomposition we get, since ρ̂ is rapidly decreasing,

(10.8) |I| .
∑

N ,L

IN ,L

N
1/2
0 L0

,

where N = (N0, N1, N2) with Nk ∼ 〈ξj〉, L = (L0, L1, L2) with Lk = 〈τk ±k |ξk|〉
and

IN ,L =

∫
χ|ξ0|≥c

χ
K

±0
N0,L0

(X0)

〈τ0 ±0 |ξ0|〉

∣∣σj(X1, X2)g
±0

j (ξ0)
∣∣ ũ1(X1)ũ2(X2) dµ

12
−X0

dX0

with ũk = χ
K

±k
Nk,Lk

∣∣ψ̃k

∣∣. Note the implicit summation over j = 1, 2.
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Since ∇ · a = 0 and ∇ · ȧ = − |ψ0|
2
, we observe that

(10.9) ξj0g
±0

j (ξ0) ≃ |ξ0|
−1/2 ̂|ψ0|

2
(ξ0).

Using this property, it was proved in [DFS10] that σj = σj(X1, X2) satisfies

(10.10)
∣∣σjg±0

j (ξ0)
∣∣ . θ12

∣∣g±0(ξ0)
∣∣+min(θ01, θ02)

∣∣g±0(ξ0)
∣∣+ |ξ0|

−3/2
∣∣∣̂|ψ0|

2
(ξ0)

∣∣∣

where

θkl = θ(±kξk,±lξl).

Correspondingly we split

IN ,L . I1
N ,L + I2

N ,L + I3
N ,L.

10.2. Estimate for I1
N ,L. Defining

ũ0(X0) = χ
K

±0
N0,L0

(X0)
χ|ξ0|≥c |g

±0(ξ0)|

〈τ0 ±0 |ξ0|〉

and using (7.3) and Lemma 7.1 we get, for 0 ≤ p ≤ 1/2,

I1
N ,L =

∫
θ12ũ0(X0)ũ1(X1)ũ2(X2) dµ

12
−X0

dX0

.

(
L012
max

N12
min

)p (
N012

minN
12
minN0L

012
med

)1/4
L
1/2
0 ‖u0‖ ‖u1‖ ‖u2‖ ,

and estimating L012
medL

012
max ≤ L0L1L2,

(10.11)
∑

N ,L

I1
N ,L

N
1/2
0 L0

.
∑

N ,L

(
L012
max

N12
min

)p−1/4(
N012

min

N0

)1/4
(L1L2)

1/4

L
1/4
0

‖u0‖ ‖u1‖ ‖u2‖ .

If we exclude for the moment the case N0 ≪ N1 ∼ N2, and take p = 1/4, (10.11)
gives the desired estimate: We first sum the N ’s using the factor (N012

min/N0)
1/4 for

the smallest N and Cauchy-Schwarz for the two largest N ’s. Then we sum L0, and

finally we sum L1 and L2 using the definition of the norm on X
0,1/4;1
± , obtaining

∑

N ,L

I1
N ,L

N
1/2
0 L0

.

∥∥∥∥
χ|ξ0|≥cg

±0(ξ0)

〈τ0 ±0 |ξ0|〉

∥∥∥∥ ‖ψ1‖X0,1/4;1
±1

‖ψ2‖X0,1/4;1
±2

.
∥∥χ|ξ0|≥cg

±0
∥∥ ‖ψ1‖X0,1/4;1

±1

‖ψ2‖X0,1/4;1
±2

as required for (10.7).
There remains the interaction N0 ≪ N1 ∼ N2. Then we need to find a way to

sum N0. If N0 ≥ L012
max, there is no problem, since we can take p = 1/2 instead of

p = 1/4 in (10.11), thereby gaining an extra factor

(
L012
max

N12
min

)1/4

≤

(
L012
max

N0

)1/4

which can be used to sum N0 if N0 & L012
max. But what if N0 < L012

max? Then instead
of (7.3) we use (7.2), obtaining (estimating trivially θ12 . 1),

I1
N ,L .

(
N

3/2
0 L0(L

12
min)

1/2
)1/2

‖u0‖ ‖u1‖ ‖u2‖ ,
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hence

(10.12)
I1
N ,L

N
1/2
0 L0

.
N

1/4
0 (L12

min)
1/4

L
1/2
0

‖u0‖ ‖u1‖ ‖u2‖ .

First sum N1 ∼ N2 using Cauchy-Schwarz, then sum N0 using

(10.13)
∑

N0<L012
max

N
1/4
0 ∼ (L012

max)
1/4 ≤ (L0L

12
max)

1/4,

then sum L0 using the remaining factor L
−1/4
0 , and finally sum L1 and L2 as above.

10.3. Estimate for I2
N ,L. The difference from the previous subsection is that θ12

is replaced by

min(θ01, θ02) .

(
L012
max

N0

)p

(0 ≤ p ≤ 1/2),

and this is better than the estimate we used for θ12 except if N0 ≪ N1 ∼ N2. But
in that case, by (7.2),

I2
N ,L

N
1/2
0 L0

.
1

N
1/2
0 L0

(
L012
max

N0

)p (
N

3/2
0 L0(L

12
min)

1/2
)1/2

‖u0‖ ‖u1‖ ‖u2‖ .

If N0 ≥ L012
max, we take p = 1/2, obtaining (since L12

minL
012
max ≤ L0L1L2)

I2
N ,L

N
1/2
0 L0

.

(
L012
max

N0

)1/4
L
1/4
1 L

1/4
2

L
1/4
0

‖u0‖ ‖u1‖ ‖u2‖ ,

so summing is no problem. If N0 < L012
max, then with p = 0 we get (10.12) for I2

N ,L,

and using (10.13) we can again sum.

10.4. Estimate for I3
N ,L. We may assume θ12 ≪ 1, since otherwise the estimate

for I1
N ,L applies to IN ,L as a whole by simply estimating

∣∣σj(X1, X2)
∣∣ . 1.

Then by Lemma 7.1,

θ12 . γ ≡

(
N0L

012
max

N1N2

)1/2

,

hence

I3
N ,L . N

−3/2
0

∫
χθ12.γ ũ0(X0)ũ1(X1)ũ2(X2) dµ

12
−X0

dX0

with

ũ0(X0) = χ
K

±0
N0,L0

(X0)

∣∣∣̂|ψ0|
2
(ξ0)

∣∣∣
〈τ0 ±0 |ξ0|〉

.

By Lemma 4.4 applied to the pair (±1ξ1,±2ξ2),

(10.14) I3
N ,L . N

−3/2
0

∑

ω1,ω2

∫
ũ0(X0)ũ

γ,ω1

1 (X1)ũ
γ,ω2

2 (X2) dµ
12
−X0

dX0,

where the sum is over ω1, ω2 ∈ Ω(γ) with θ(ω1, ω2) . γ and u
γ,ωj

j = P±jξj∈Γγ(ωj)u.
So in the last integral, ξ1, ξ2 are both restricted to a tube of radius

r ∼ N12
maxγ ∼

(
N12

maxN0L
012
max

N12
min

)1/2
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around Rω1, hence the same is true for ξ0 = ξ2 − ξ1, so we get

I3
N ,L . N

−3/2
0

∑

ω1,ω2

∥∥PR×Tr(ω1)u0
∥∥
∥∥∥∥PK

±0
N0,L0

(
uγ,ω1

1 uγ,ω2

2

)∥∥∥∥

. N
−3/2
0

∑

ω1,ω2

∥∥∥PTr(ω1)P〈ξ0〉∼N0
|ψ0|

2
∥∥∥

×
(
N

1/2
0 N012

minL0(L
12
min)

1/2
)1/2

‖uγ,ω1

1 ‖ ‖uγ,ω2

2 ‖ ,

where we used (7.2). Applying the estimate (by Plancherel and Cauchy-Schwarz
this reduces to the obvious fact that the area of intersection of a strip of width r
and a disk of radius N0 is comparable to rN0)

(10.15) sup
ω∈S1

∥∥∥PTr(ω)P〈ξ0〉∼N0
|ψ0|

2
∥∥∥ . (rN0)

1/2 ‖ψ0‖
2
,

and summing ω1, ω2 as in (4.18), we then obtain

I3
N ,L . N

−3/2
0 (rN0)

1/2 ‖ψ0‖
2
(
N

1/2
0 N012

minL0(L
12
min)

1/2
)1/2

‖u1‖ ‖u2‖

.

(
N12

maxN
012
min

N0N12
min

)1/4

L
1/2
0

(
L12
minL

012
max

)1/4
‖ψ0‖

2 ‖u1‖ ‖u2‖

. L
1/2
0

(
L12
minL

012
max

)1/4
‖ψ0‖

2 ‖u1‖ ‖u2‖

. L
3/4
0 (L1L2)

1/4 ‖ψ0‖
2 ‖u1‖ ‖u2‖ ,

where we used N012
minN

012
max ∼ N0N

12
min and L12

minL
012
max ≤ L0L1L2. Thus,

∑

N ,L

I3
N ,L

N
1/2
0 L0

. ‖ψ0‖
2
∑

N ,L

(L
1/4
1 ‖u1‖)(L

1/4
2 ‖u2‖)

N
1/2
0 L

1/4
0

,

so summing the N ’s is easy (if N0 ∼ N12
max, all the N ’s can be summed using the

factor N
−1/2
0 ; if N0 ≪ N1 ∼ N2, we sum N1 ∼ N2 using Cauchy-Schwarz and N0

using the factor N
−1/2
0 ), we can sum L0 using the factor L

−1/4
0 , and finally we sum

L1 and L2 using the definition of the norm on X
0,1/4;1
± , obtaining

∑

N ,L

I3
N ,L

N
1/2
0 L0

. ‖ψ0‖
2 ‖ψ1‖X0,1/4;1

±1

‖ψ2‖X0,1/4;1
±2

as needed for (10.7).

10.5. Estimate for I = I|ξ0|<c. Since
∣∣σj(X1, X2)

∣∣ . 1, it suffices to prove the
bound (10.2) for

I1 =

∫

|ξ0|<c

|ρ̂(τ0 ±0 |ξ0|)| |â(ξ0)|
∣∣∣ψ̃1(X1)

∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
−X0

dX0,

I2 =

∫

1≤|ξ0|<c

|ρ̂(τ0 ±0 |ξ0|)|

∣∣̂̇a(ξ0)
∣∣

|ξ0|

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
−X0

dX0,

I3 =

∫

|ξ0|<1

∣∣∣∣
ρ̂(τ0 + |ξ0|)− ρ̂(τ0 − |ξ0|)

|ξ0|

∣∣∣∣
∣∣̂̇a(ξ0)

∣∣
∣∣∣ψ̃1(X1)

∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
−X0

dX0.
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Since ρ̂ is rapidly decreasing and a = −∆−1(∂2B
3
0 ,−∂1B

3
0 , 0),

I1 .

∫
χ|ξ0|<c |â(ξ0)|

〈τ0 ±0 |ξ0|〉2

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X0 +X1)

∣∣∣ dX1 dX0

≤

∫
χ|ξ0|<c |â(ξ0)|

〈τ0 ±0 |ξ0|〉2
dX0 ‖ψ1‖ ‖ψ2‖

.

∫
χ|ξ0|<c |â(ξ0)| dξ0 ‖ψ1‖ ‖ψ2‖

.

∫ χ|ξ0|<c

∣∣∣B̂3
0(ξ0)

∣∣∣
|ξ0|

dξ0 ‖ψ1‖ ‖ψ2‖

≤
∑

0<N0<c

(∫

|ξ0|∼N0

1

|ξ0|
2 dξ0

)1/2 ∥∥P|ξ0|∼N0
B3

0

∥∥ ‖ψ1‖ ‖ψ2‖

.
∑

0<N0<c

∥∥P|ξ0|∼N0
B3

0

∥∥ ‖ψ1‖ ‖ψ2‖ .

Similarly, since ȧ = −E0 = −Edf
0 −∆−1∇(|ψ0|

2),

I2 .


 ∑

1≤N0<c

∥∥P|ξ0|∼N0
Edf

0

∥∥+
∫

|ξ0|<c

1

〈ξ0〉2

∣∣∣̂|ψ0|
2
(ξ0)

∣∣∣ dξ0


 ‖ψ1‖ ‖ψ2‖

.


 ∑

1≤N0<c

∥∥P|ξ0|∼N0
Edf

0

∥∥+
(∫

|ξ0|<c

dξ0
〈ξ0〉

)1/2 ∥∥∥|ψ0|
2
∥∥∥
H−3/2


 ‖ψ1‖ ‖ψ2‖

.


 ∑

1≤N0<c

∥∥P|ξ0|∼N0
Edf

0

∥∥+ c1/2 ‖ψ0‖
2


 ‖ψ1‖ ‖ψ2‖ ,

where
∥∥|ψ0|

2∥∥
H−3/2 . ‖ψ0‖

2
by Lemma 4.1.

Finally, since ρ̂(τ0 + |ξ0|)− ρ̂(τ0 − |ξ0|) = 2 |ξ0|
∫ 1

0
ρ̂ ′(τ0 − |ξ0|+ 2s |ξ0|) ds,

I3 .

∫ 1

0

∫

|ξ0|<1

|ρ̂ ′(τ0 − |ξ0|+ 2s |ξ0|)|
∣∣̂̇a(ξ0)

∣∣ dX0 ds ‖ψ1‖ ‖ψ2‖

.

∫

|ξ0|<1

∣∣̂̇a(ξ0)
∣∣ dξ0 ‖ψ1‖ ‖ψ2‖

≤

(∫

|ξ0|<1

∣∣∣Êdf
0 (ξ0)

∣∣∣ dξ0 +
∫

|ξ0|<1

1

|ξ0|

∣∣∣̂|ψ0|
2
(ξ0)

∣∣∣ dξ0
)
‖ψ1‖ ‖ψ2‖

.


∥∥P|ξ0|<1E

df
0

∥∥+
(∫

|ξ0|<1

dξ0
|ξ0|

)1/2 ∥∥∥|D|−1/2
P|ξ0|<1(|ψ0|

2
)
∥∥∥


 ‖ψ1‖ ‖ψ2‖

.

( ∑

0<N0<1

∥∥P|ξ0|∼N0
Edf

0

∥∥+ ‖ψ0‖
2

)
‖ψ1‖ ‖ψ2‖ ,

where we estimated∥∥∥|D|−1/2
P|ξ0|<1(|ψ0|

2
)
∥∥∥ ≤

∥∥∥|D|−1/2 〈D〉−1(|ψ0|
2
)
∥∥∥ . ‖ψ0‖

2
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by Lemma 4.1.
This completes the proof of the trilinear estimate.

11. Estimates for the electromagnetic field

Here we prove Theorem 2.3.
Denote by SW

± (t) = e−it(±|D|) and SKG
± (t) = e−it(±〈D〉) the propagators of the

evolution operators −i∂t ± |D| and −i∂t ± 〈D〉 respectively. Then by Duhamel’s
principle applied to (2.14) and (2.15),

Edf
± (t) = SKG

± (t)Edf
± (0)(11.1)

−

∫ t

0

SKG
± (t− s)(±2〈D〉)−1

[
Pdf(−∇J0 + ∂tJ)− ρTE

df
]
(s) ds,

B3
±(t) = SW

± (t)B3
±(0)−

∫ t

0

SW
± (t− s)(±2 |D|)−1 (∂1J2 − ∂2J1) (s) ds,(11.2)

for |t| ≤ T .
Since SW

± (t) and SKG
± (t) are unitary,
∥∥SKG

± (t)Edf
± (0)

∥∥
(T )

=
∥∥Edf

± (0)
∥∥
(T )

,
∥∥SW

± (t)B3
±(0)

∥∥
(T )

=
∥∥B3

±(0)
∥∥
(T )

,

for all t, and this takes care of the first term on the right hand side of (2.18), hence
it remains to prove that, for some C depending only on the charge norm and |M |,

(11.3) sup
|t|≤T

‖Ij(t)‖(T ) ≤ CT 1/2 log(1/T )

for the inhomogeneous terms

I1(t) =

∫ t

0

SW
± (t− s) |D|−1

(∂1J2 − ∂2J1) (s) ds,

I2(t) =

∫ t

0

SKG
± (t− s)〈D〉−1Pdf(−∇J0 + ∂tJ)(s) ds,

I3(t) =

∫ t

0

SKG
± (t− s)〈D〉−1(ρTE

df)(s) ds.

These are defined for |t| ≤ T , but after choosing an extension of ψ we can consider
all t ∈ R and insert the cutoff ρT (t) = ρ(t/T ) in front of ψ, so that

(11.4) Jµ = 〈αµρTψ, ρTψ 〉.

The extensions (or representatives, to be precise) of ψ± ∈ X
0,1/2;1
± (ST ), which

we still denote ψ± for convenience, can of course be chosen so that

‖ψ±‖X0,1/2;1
±

≤ 2 ‖ψ±‖X0,1/2;1
±

(ST )
,

and in view of (5.3) we then have

(11.5) ‖ψ±‖X0,1/2;1
±

≤ C1,

where C1 only depends on the charge constant. We may further assume

Π±ψ± = ψ±,
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since this already holds on ST , and replacing ψ± by Π±ψ± it will hold globally;
moreover, applying Π± does not increase the norm. Having thus chosen the exten-
sions ψ±, we define the extension of ψ itself by

ψ = ψ+ + ψ−,

and note that Π±ψ = ψ± by orthogonality of the projections.
Writing ψj = ρTψ±j for given signs ±j , and applying (6.1) to (11.4), we now

note that

J̃κ(X0) ≃
∑

±1,±2

∫
〈ακΠ(±1ξ1)z1(X1),Π(±2ξ2)z2(X2) 〉

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
,

where Xj = (τj , ξj) and ψ̃j = zj
∣∣ψ̃j

∣∣ with |zj| = 1.
Observe that the symbol of (1/i)∂κ is Xκ

0 = τ0 for κ = 0, and Xκ
0 = ξκ0 for

κ = 1, 2, where we write ξ0 = (ξ10 , ξ
2
0). Thus,

|F (∂1J2 − ∂2J1) (X0)| ≤
∑

±1,±2

∑

k,l=1,2;k 6=l

F±1,±2

kl (X0),(11.6)

|F [Pdf(−∇J0 + ∂tJ)] (X0)| ≤
∑

±1,±2

∑

k=1,2

F±1,±2

k0 (X0),(11.7)

where

F±1,±2

κλ (X0) =

∫
|σκλ(X1, X2)|

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0

and the symbol

σκλ(X1, X2) = Xκ
0 〈αλΠ(±1ξ1)z1(X1),Π(±2ξ2)z2(X2) 〉

−Xλ
0 〈ακΠ(±1ξ1)z1(X1),Π(±2ξ2)z2(X2) 〉

has the following null structure:

Lemma 11.1. ([DFS10].) For any choice of signs ±0,±1,±2, and writing θκλ =
θ(±κξκ,±λξλ) for κ, λ = 0, 1, 2, we have

|σkl(X1, X2)| . |ξ0| θ12 + |ξ0|min(θ01, θ02),(11.8)

|σk0(X1, X2)| . |ξ0| θ12 + |ξ0|min(θ01, θ02) + |τ0 ±0 |ξ0|| ,(11.9)

for k, l = 1, 2.

To simplify the notation, summations over ±1,±2 [such as in (11.7) and (11.6)]
will be tacitly assumed from now on. Moreover, the sign ± appearing in the defi-
nitions of the Ij will be denoted ±0.

Corresponding to (11.8) and (11.9), respectively, we now split

I1 = I1,1 + I1,2,

I2 = I2,1 + I2,2 + I2,3,

by restricting in Fourier space. In fact, for all these terms except I2,3 we shall prove

something stronger than (11.3), namely ‖Ij,k(t)‖(1) ≤ CT 1/2. In other words, we

will show that

sup
|t|≤T

∥∥P|ξ0|≥1Ij,k(t)
∥∥
H−1/2 ≤ CT 1/2,(11.10)

sup
|t|≤T

∑

0<N0<1

∥∥P|ξ0|∼N0
Ij,k(t)

∥∥ ≤ CT 1/2,(11.11)
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for j, k = 1, 2. This is stronger than (11.3) since by Lemma 3.1, ‖f‖(T ) . ‖f‖(1).

11.1. Estimate for I1,1 with |ξ0| ≥ 1. Now |σkl| . |ξ0| θ12, so recalling (11.6)
and applying (4.12) with φ(ξ) = ± |ξ| we get

(11.12)

∥∥P|ξ0|≥1I1,1(t)
∥∥
H−1/2

.

∥∥∥∥
∫

1

〈ξ0〉1/2〈τ0 ±0 |ξ0|〉
θ12

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
dτ0

∥∥∥∥
L2

ξ0

= sup
‖f‖=1

∣∣∣∣
∫

f(ξ0)

〈ξ0〉1/2〈τ0 ±0 |ξ0|〉
θ12

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
dτ0 dξ0

∣∣∣∣

. sup
‖f‖=1

∑

N ,L

1

N
1/2
0 L0

(
L012
max

N12
min

)p

L
1/2
0

∥∥χ〈ξ0〉∼N0
f
∥∥
∥∥∥∥PK

±0
N0,L0

(u1u2)

∥∥∥∥

for 0 ≤ p ≤ 1/2, where we used Lemma (7.1) to estimate

(11.13) θ12 .

(
L012
max

N12
min

)p

and we write ũj = χ
K

±j
Nj,Lj

∣∣ψ̃j

∣∣.
Assuming L1 ≤ L2 by symmetry, we split into the three cases L1 ≤ L0 ≤ L2,

L1 ≤ L2 ≤ L0 and L0 ≤ L1 ≤ L2.

11.1.1. The case L1 ≤ L0 ≤ L2. Then we take p = 1/4 and use (7.2), so we estimate
the above sum by

∑

N ,L

χL1≤L0

(
L2

N12
min

)1/4

(
N012

minN
1/2
0 L

1/2
0 L1

)1/2

N
1/2
0 L

1/2
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖

=
∑

N ,L

χL1≤L0

(N012
min)

1/2L
1/2
1 L

1/4
2

(N0N12
min)

1/4L
1/4
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖

∼
∑

N ,L

χL1≤L0

(
N012

min

N012
max

)1/4
L
1/2
1 L

1/4
2

L
1/4
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖

where we used N0N
12
min ∼ N012

maxN
012
min. Now we sum the N ′s. Recalling that the two

largest N ’s are comparable, we use (N012
min/N

012
max)

1/4 to sum the smallest N , and
the two largest N ’s are summed using Cauchy-Schwarz. Thus we are left with

∑

L

χL1≤L0

L
1/2
1 L

1/4
2

L
1/4
0

‖f‖

∥∥∥∥PK
±1
L1

ψ1

∥∥∥∥
∥∥∥∥PK

±2
L2

ψ2

∥∥∥∥ .

Next we sum L0 using
∑

L0 : L0≥L1

L
1/2
1

L
1/4
0

∼ L
1/4
1 ,

and finally, the summations of L1 and L2 give the X0,1/4;1-norms of ψ1 and ψ2. So
we have shown that the part of the last line of (11.12) corresponding to L1 ≤ L0 ≤
L2 is bounded by an absolute constant times

(11.14) ‖ψ1‖X0,1/4;1
±1

‖ψ2‖X0,1/4;1
±2

= ‖ρTψ±1‖X0,1/4;1
±1

‖ρTψ±2‖X0,1/4;1
±2

≤ CT 1/2,
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where we used (4.7) and (11.5), hence C only depends on the charge constant.

11.1.2. The case L1 ≤ L2 ≤ L0. Taking p = 1/4 and using (7.1) gives

∑

N ,L

χL1≤L0

(
L0

N12
min

)1/4

(
N012

min(N
12
min)

1/2L1L
1/2
2

)1/2

N
1/2
0 L

1/2
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖

=
∑

N ,L

χL1≤L0

(
N012

min

N0

)1/2
L
1/2
1 L

1/4
2

L
1/4
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖ ,

so the argument in the previous subsection works except when N0 ≪ N1 ∼ N2,
which we now assume. The problem is then that we have no way of summing N0.
To resolve this, divide into N0 < L0 and N0 ≥ L0. In the latter case we can pick up
an extra factor (L0/N1)

1/4 ≪ (L0/N0)
1/4 by choosing p = 1/2 instead of p = 1/4,

allowing us to sum N0. That leaves N0 < L0. Then we use
∥∥∥∥PK

±0
N0,L0

(u1u2)

∥∥∥∥ .
(
N0L1

)1/4(
N1L2

)1/8(
N2

0L1

)1/4
‖u1‖ ‖u2‖

obtained by interpolation between (7.1) and (7.4). Taking p = 1/8, we thus get

∑

N ,L

χL1≤L2≤L0χN0<L0

(
L0

N1

)1/8

(
N

3/2
0 N

1/4
1 L1L

1/4
2

)1/2

N
1/2
0 L

1/2
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖

=
∑

N ,L

χL1≤L2≤L0χN0<L0

N
1/4
0 L

1/2
1 L

1/8
2

L
3/8
0

∥∥χ〈ξ0〉∼N0
f
∥∥ ‖u1‖ ‖u2‖ ,

and summing N0 < L0 we replace N
1/4
0 by L

1/4
0 ; then we are still left with L

1/8
0

in the denominator, and summing L0 ≥ L2 we end up with just L
1/2
1 ≤ L

1/4
1 L

1/4
2 ,

which is what we want.

11.1.3. The case L0 ≤ L1 ≤ L2. Then we do not use (11.12) at all, but apply
instead (4.5) with p = ∞ followed by (4.11) with b = 0 to obtain

(11.15)

sup
|t|≤T

∥∥P|ξ0|≥1I1,1(t)
∥∥
H−1/2 .

∥∥P|ξ0|≥1I1,1
∥∥
X

−1/2,1/2;1
±0

(ST )

. T 1/2 sup
L0≥1

∥∥∥∥∥

∫ χ
K

±0
L0

(X0)

〈ξ0〉1/2
θ12

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0

∥∥∥∥∥
L2

X0

.

Of course, we only do this for the part of I1,1 corresponding to the restriction
L0 ≤ L1 ≤ L2, which is tacitly assumed. Now it suffices to show that

∥∥∥∥∥

∫ χ
K

±0
L0

(X0)

〈ξ0〉1/2
θ12

∣∣∣ψ̃(X1)
∣∣∣
∣∣∣ψ̃(X2)

∣∣∣ dµ12
X0

∥∥∥∥∥
L2

X0

. ‖ψ1‖X0,1/2;1
±1

‖ψ2‖X0,1/2;1
±2

uniformly in L0, since the right hand side equals

‖ρTψ±1‖X0,1/2;1
±1

‖ρTψ±2‖X0,1/2;1
±2

. ‖ψ±1‖X0,1/2;1
±1

‖ψ±2‖X0,1/2;1
±2

≤ C,

where we use (4.7) and (11.5), so C only depends on the charge constant.
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To prove the desired estimate, observe that

(11.16)

∥∥∥∥∥

∫ χ
K

±0
L0

(X0)

〈ξ0〉1/2
θ12

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0

∥∥∥∥∥
L2

X0

= sup
‖G‖=1

∣∣∣∣∣

∫ G(X0)χK
±0
L0

(X0)

〈ξ0〉1/2
θ12

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
dτ0 dξ0

∣∣∣∣∣

. sup
‖G‖=1

∑

N ,L1,L2

1

N
1/2
0

(
L2

N12
min

)p ∥∥χ〈ξ0〉∼N0
G
∥∥
∥∥∥∥PK

±0
N0,L0

(u1u2)

∥∥∥∥

for 0 ≤ p ≤ 1/2, recalling that L0 ≤ L2 = L12
max. Take p = 1/4 and use (7.2) to

estimate the summand by

(
L2

N12
min

)1/4

(
N012

minN
1/2
0 L1L

1/2
0

)1/2

N
1/2
0

∥∥χ〈ξ0〉∼N0
G
∥∥ ‖u1‖ ‖u2‖

=
(N012

min)
1/2L

1/2
1 L

1/4
0 L

1/4
2

(N0N12
min)

1/4

∥∥χ〈ξ0〉∼N0
G
∥∥ ‖u1‖ ‖u2‖

.

(
N012

min

N012
max

)1/4

L
1/2
1 L

1/2
2

∥∥χ〈ξ0〉∼N0
G
∥∥ ‖u1‖ ‖u2‖

where we used N0N
12
min ∼ N012

maxN
012
min. This gives the desired bound. For later use

we note that the above argument actually works for L0 ≤ L2 (we do not need to
assume L0 ≤ L1).

11.2. Estimate for I1,2 with |ξ0| ≥ 1. The only difference from the previous
subsection is that θ12 is replaced by min(θ01, θ02), so (11.13) is replaced by

min(θ01, θ02) .

(
L012
max

N0

)p

(0 ≤ p ≤ 1/2),

by Lemma 7.4. Therefore, it suffices to look at the case N0 ≪ N1 ∼ N2. By
symmetry we assume L1 ≤ L2.

11.2.1. The case L0 ≤ L2. Then we modify (11.15) and (11.16) in the obvious way,
and use (7.2) to estimate the summand in the last line of (11.16) by

(
L2

N0

)p

(
N

3/2
0 L1L

1/2
0

)1/2

N
1/2
0

‖G‖ ‖u1‖ ‖u2‖ .

(
L2

N0

)p−1/4

L
1/2
1 L

1/2
2 ‖G‖ ‖u1‖ ‖u2‖ .

If N0 < L2 we take p = 0, otherwise p = 1/2. In either case we can then sum N0

without problems, and we get the desired estimate.

11.2.2. The case L1 ≤ L2 ≤ L0. Here we use the obvious analog of (11.12). We
may assume θ12 ≪ 1 [otherwise we trivially reduce to (11.12)], so by Lemma 7.1,

(11.17) θ12 . γ ≡

(
N0L0

N1N2

)1/2
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Applying Lemma 4.4, then instead of the summand in the last line of (11.12) we
now have
∑

ω1,ω2

1

N
1/2
0 L0

(
L0

N0

)p ∥∥χHd(ω1)(X0)χ〈ξ0〉∼N0
f(ξ0)

∥∥
L2

X0

∥∥∥∥PK
±0
N0,L0

(
uγ,ω1

1 uγ,ω2

2

)∥∥∥∥ ,

where the sum is over ω1, ω2 ∈ Ω(γ) with θ(ω1, ω2) . γ, and the restriction of X0

to the thickened null hyperplane Hd(ω1) = {X0 : τ0 + ξ0 · ω1 = O(d)} with

d = max
(
L2, N1γ

2
)
∼ max

(
L2,

N0L0

N1

)

comes from applying (4.16) to F(uγ,ω1

1 uγ,ω2

2 )(X0). Now estimate

∑

ω1,ω2

1

N
1/2
0 L0

(
L0

N0

)p

d1/2
∥∥χ〈ξ0〉∼N0

f(ξ0)
∥∥
L2

ξ0

∥∥∥∥PK
±0
N0,L0

(
uγ,ω1

1 uγ,ω2

2

)∥∥∥∥

.
1

N
1/2
0 L0

(
L0

N0

)p [
max

(
L2,

N0L0

N1

)]1/2

×min
(
N

3/2
0 L

1/2
0 L1, N0N

1/2
1 L1L

1/2
2

)1/2 ∥∥χ〈ξ0〉∼N0
f(ξ0)

∥∥
L2

ξ0

‖u1‖ ‖u2‖

.

(
L0

N0

)p−1/4
L
1/2
1 L

1/4
2

L
1/4
0

∥∥χ〈ξ0〉∼N0
f(ξ0)

∥∥
L2

ξ0

‖u1‖ ‖u2‖ ,

where we used Theorem 7.1 and summed ω1, ω2 as in (4.18). If N0 < L0 we take
p = 0, otherwise p = 1/2, and this allows us to sum N0, leaving us with the sum

∑

L0 : L0≥L2

L
1/2
1 L

1/4
2

L
1/4
0

∼ L
1/2
1 ≤ L

1/4
1 L

1/4
2 ,

as desired.

11.3. Estimates for I2,1 and I2,2 with |ξ0| ≥ 1. These follow from the arguments
used for I1,1 and I1,2 in the two previous subsections. Indeed, the only difference
is that we apply (4.11) and (4.12) with φ(ξ) = ±〈ξ〉 instead of φ(ξ) = ± |ξ|, but
the same estimates apply, since 〈τ ± |ξ|〉 ∼ 〈τ ± 〈ξ〉〉. Thus the proof of (11.10) is
complete.

11.4. Estimates for Ij,k, j, k = 1, 2, with |ξ0| < 1. Since we only consider j, k =
1, 2, we have |σκλ(X1, X2)| . |ξ0|, hence (4.12) gives

∑

0<N0<1

∥∥P|ξ0|∼N0
Ij,k(t)

∥∥

.
∑

0<N0<1

∥∥∥∥
∫

χ|ξ0|∼N0

〈τ0 ±0 |ξ0|〉

∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
dτ0

∥∥∥∥
L2

ξ0

.
∑

0<N0<1

∑

L0

1

L0
L
1/2
0

∥∥∥∥χ|ξ0|∼N0

∫ ∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0

∥∥∥∥
L2

X0

.
∑

0<N0<1

∑

L

1

L
1/2
0

N0(L
012
min)

1/2
∥∥P

K
±1
L1

ψ1

∥∥∥∥P
K

±2
L2

ψ2

∥∥

. ‖ψ1‖X0,1/4;1
±1

‖ψ2‖X0,1/4;1
±2

,
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where we used (7.4) and estimated (L012
min)

1/2 ≤ L
1/4
1 L

1/4
2 . Recalling (11.14) we

then get (11.11), as desired.

11.5. Estimate for I2,3. Note that

‖I2,3(t)‖(T ) ≤
∑

0<N0<1/T

T 1/2
∥∥P|ξ0|∼N0

I2,3(t)
∥∥+

∑

N0≥1/T

N
−1/2
0

∥∥P|ξ0|∼N0
I2,3(t)

∥∥ .

But now |σk0(X1, X2)| . |τ0 ±0 |ξ0||, so (4.12) gives

∥∥P|ξ0|∼N0
I2,3(t)

∥∥ .
1

〈N0〉

∥∥∥∥χ|ξ0|∼N0

∫ ∣∣∣ψ̃1(X1)
∣∣∣
∣∣∣ψ̃2(X2)

∣∣∣ dµ12
X0
dτ0

∥∥∥∥
L2

ξ0

=
1

〈N0〉

∥∥∥∥χ|ξ0|∼N0

∫
f1(ξ1)f2(ξ1 − ξ0) dξ1

∥∥∥∥
L2

ξ0

≤
1

〈N0〉

∥∥χ|ξ0|∼N0

∥∥
L2

ξ0

‖f1‖ ‖f2‖ ∼
N0

〈N0〉
‖f1‖ ‖f2‖ ,

where

fj(ξj) =

∫ ∣∣∣ψ̃j(τj , ξj)
∣∣∣ dτj

hence

(11.18) ‖fj‖ . ‖ψj‖X0,1/2;1
±j

=
∥∥ρTψ±j

∥∥
X

0,1/2;1
±j

≤ C

with C depending only on the charge constant, by (4.7) and (11.5).
Thus

‖I2,3(t)‖(T ) ≤ C


T 1/2

∑

0<N0<1

N0 + T 1/2
∑

1≤N0<1/T

1 +
∑

N0≥1/T

N
−1/2
0




∼ C
(
T 1/2 + T 1/2 log(1/T ) + T 1/2

)

with C depending only on the charge constant, proving (11.3) for I2,3.
This concludes the proof of (11.3) for I1 and I2, and only I3 remains.

11.6. Estimate for I3. By (4.5) with p = ∞ and (4.11) with b = 0,

sup
|t|≤T

∥∥P|ξ0|∼N0
I3(t)

∥∥ .
∥∥P|ξ0|∼N0

I3(t)
∥∥
X

0,1/2;1
±0

(ST )

. T 1/2
∥∥ρTP|ξ0|∼N0

〈D〉−1Edf
∥∥
X0,0;∞

±0

. T 1/2
∥∥ρTP|ξ0|∼N0

〈D〉−1Edf
∥∥

. T 1/2 ‖ρT ‖ sup
|t|≤1

∥∥P|ξ0|∼N0
〈D〉−1Edf(t)

∥∥ .

Thus

sup
|t|≤T

∥∥P|ξ0|∼N0
I3(t)

∥∥ . T sup
|t|≤1

∥∥P|ξ0|∼N0
Edf(t)

∥∥
H−1

and similarly

sup
|t|≤T

∥∥P|ξ0|≥1/T I3(t)
∥∥
H−1/2 . T sup

|t|≤1

∥∥P|ξ0|≥1/TE
df(t)

∥∥
H−3/2
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hence

sup
|t|≤T

‖I3(t)‖(T ) . TT 1/2
∑

0<N0<1/T

sup
|t|≤1

∥∥P|ξ0|∼N0
Edf(t)

∥∥
H−1

+ T sup
|t|≤1

∥∥P|ξ0|≥1/TE
df(t)

∥∥
H−3/2 ,

and to estimate the right hand side we now apply the following lemma, proved in
the next section.

Lemma 11.2. Let s ∈ R. The solution of �u = F with initial data u(0) = f ,
∂tu(0) = g satisfies

sup
|t|≤1

‖u(t)‖Hs . ‖f‖Hs + ‖g‖Hs−1 +

∥∥∥∥∥〈ξ〉
s−1

∫ ∣∣F̃ (τ, ξ)
∣∣

〈|τ | − |ξ|〉
dτ

∥∥∥∥∥
L2

ξ

,

where the implicit constant is absolute.

Applying this to (2.7), where Jµ is now defined for all t by (11.4), we find

sup
|t|≤1

∥∥P|ξ0|∼N0
Edf(t)

∥∥
H−1

.
∥∥P|ξ0|∼N0

Edf
0

∥∥
H−1 +

∥∥P|ξ0|∼N0

(
∇× (0, 0, B3

0)− PdfJ(0)
)∥∥

H−2

+

∥∥∥∥
∫

χ|ξ0|∼N0

〈ξ0〉2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

.
∥∥P|ξ0|∼N0

Edf
0

∥∥+
∥∥P|ξ0|∼N0

B3
0

∥∥+ N0

〈N0〉2
‖ψ0‖

2

+

∥∥∥∥
∫

χ|ξ0|∼N0

〈ξ0〉2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

,

where we applied (4.13) to get
∥∥P|ξ0|∼N0

PdfJ(0)
∥∥
H−2 . N0〈N0〉−2 ‖ψ0‖

2.
Similarly

sup
|t|≤1

∥∥P|ξ0|≥1/TE
df(t)

∥∥
H−3/2

.
∥∥P|ξ0|≥1/TE

df
0

∥∥
H−3/2 +

∥∥P|ξ0|≥1/T

(
∇× (0, 0, B3

0)− PdfJ(0)
)∥∥

H−5/2

+

∥∥∥∥
∫

χ|ξ0|≥1/T

〈ξ0〉5/2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

.
∥∥P|ξ0|≥1/TE

df
0

∥∥
H−1/2 +

∥∥P|ξ0|≥1/TB
3
0

∥∥
H−1/2 + ‖ψ0‖

2

+

∥∥∥∥
∫

χ|ξ0|≥1/T

〈ξ0〉5/2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

,

where we used (4.15).
Thus

(11.19) sup
|t|≤T

‖I3(t)‖(T ) . T
(
DT (0) + ‖ψ0‖

2
)
+ T


T 1/2

∑

0<N0<1/T

aN0 + b


 ,
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where

aN0 =

∥∥∥∥
∫

χ|ξ0|∼N0

〈ξ0〉2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

,

b =

∥∥∥∥
∫

χ|ξ0|≥1/T

〈ξ0〉5/2〈|τ0| − |ξ0|〉
|F [Pdf(−∇J0 + ∂tJ)] (X0)| dτ0

∥∥∥∥
L2

ξ0

.

But by (11.7) and (11.9),

|F [Pdf(−∇J0 + ∂tJ)] (X0)| .

∫
(|ξ0|+ ||τ0| − |ξ0||)

∣∣∣ψ̃(X1)
∣∣∣
∣∣∣ψ̃(X2)

∣∣∣ dµ12
X0
,

hence

aN0 .

∥∥∥∥
χ|ξ0|∼N0

〈ξ0〉

∫ ∣∣∣ψ̃(X1)
∣∣∣
∣∣∣ψ̃(X2)

∣∣∣ dµ12
X0
dτ0

∥∥∥∥
L2

ξ0

=

∥∥∥∥
χ|ξ0|∼N0

〈ξ0〉

∫
f1(ξ1)f2(ξ1 − ξ0) dξ1

∥∥∥∥
L2

ξ0

.

∥∥∥∥
χ|ξ0|∼N0

〈ξ0〉

∥∥∥∥
L2

ξ0

‖f1‖ ‖f2‖ ∼
N0

〈N0〉
‖f1‖ ‖f2‖ ,

where fj(ξj) =
∫ ∣∣ψ̃j(τj , ξj)

∣∣ dτj satisfies (11.18) with C depending only the charge
constant. Similarly,

b .

∥∥∥∥
χ|ξ0|≥1/T

〈ξ0〉3/2

∥∥∥∥
L2

ξ0

‖f1‖ ‖f2‖ ∼ T 1/2 ‖f1‖ ‖f2‖ ,

hence

T 1/2
∑

0<N0<1/T

aN0 + b . T 1/2
∑

0<N0<1

N0 + T 1/2
∑

1≤N0<1/T

1 + T 1/2

. T 1/2 + T 1/2 log(1/T ) + T 1/2,

with implicit constants depending only on the charge constant, so we finally con-
clude that

sup
|t|≤T

‖I3(t)‖(T ) . (1 + ‖ψ0‖
2
)T [1 +DT (0)] + CT 3/2 log(1/T )

≤ (1 + ‖ψ0‖
2
)T 1/2ε+ CT 3/2 log(1/T ),

where C depends only on the charge constant and we used (2.17) in the last step,

recalling that DT (0) ≤ D̃T (0). Thus ε depends only on the charge constant and
|M |, so we have proved (11.3) for I3.

Finally, we remark that the estimates proved in this section also give that Edf
±

and B3
± describe continuous curves in the data space (2.2) for |t| ≤ T .

12. Proof of Lemma 11.2

For the homogeneous part of u this follows from the standard energy inequality,
so we assume f = g = 0, i.e. u = �−1F . Now split F = F1+F2+F3 corresponding
to the following three regions in Fourier space: (i) |ξ| ≥ 1, (ii) |ξ| < 1 and |τ | ≥ 2,
and (iii) |ξ| < 1 and |τ | < 2. Set uj = �−1Fj for j = 1, 2, 3.
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From Lemma 6.1 we get

‖u1(t)‖Hs .

∥∥∥∥∥χ|ξ|≥1
〈ξ〉s

|ξ|

∫ ∣∣F̃ (τ, ξ)
∣∣

〈|τ | − |ξ|〉
dτ

∥∥∥∥∥
L2

ξ

.

∥∥∥∥∥〈ξ〉
s−1

∫ ∣∣F̃ (τ, ξ)
∣∣

〈|τ | − |ξ|〉
dτ

∥∥∥∥∥
L2

ξ

for all t ∈ R.
Lemma 6.1 also gives

û(t, ξ) = û+(t, ξ) + û−(t, ξ)

≃
1

|ξ|

∫ ∞

−∞

[
eitτ − e−it|ξ|

τ + |ξ|
−
eitτ − eit|ξ|

τ − |ξ|

]
F̃ (τ, ξ) dτ

≃
1

|ξ|

∫ ∞

−∞

−2 |ξ| eitτ + 2 |ξ| cos(t |ξ|) + 2iτ sin(t |ξ|)

τ2 − |ξ|2
F̃ (τ, ξ) dτ,

so if F̃ is supported in |τ | ≫ |ξ| we get

|û(t, ξ)| .

∫ (
1

|τ |2
+

min(|t| , |ξ|−1)

|τ |

) ∣∣∣F̃ (τ, ξ)
∣∣∣ dτ,

and applying this to u2 yields

sup
|t|≤1

‖u2(t)‖Hs .

∥∥∥∥∥χ|ξ|<1

∫

|τ |≥2

∣∣F̃ (τ, ξ)
∣∣

|τ |
dτ

∥∥∥∥∥
L2

ξ

.

∥∥∥∥∥〈ξ〉
s−1

∫ ∣∣F̃ (τ, ξ)
∣∣

〈|τ | − |ξ|〉
dτ

∥∥∥∥∥
L2

ξ

.

Finally, by the standard energy inequality we have

sup
|t|≤1

‖u3(t)‖Hs .

∫ 1

0

‖F3(t)‖Hs−1 dt . sup
|t|≤1

‖F3(t)‖Hs−1

.

∥∥∥∥〈ξ〉s−1

∫ ∣∣F̃3(τ, ξ)
∣∣ dτ
∥∥∥∥
L2

ξ

.

∥∥∥∥∥〈ξ〉
s−1

∫ ∣∣F̃ (τ, ξ)
∣∣

〈|τ | − |ξ|〉
dτ

∥∥∥∥∥
L2

ξ

,

completing the proof of the lemma.

13. Proof of the linear estimates in Xs,b;p
φ(ξ)

Here we prove (4.10) and (4.11) by an argument similar to the one used in
[KPV94] for the standard Xs,b spaces. Moreover, we prove (4.12).

13.1. Proof of (4.10). Letting G ∈ X
s,−1/2;1
φ(ξ) denote an arbitrary representative

of F ∈ X
s,−1/2;1
φ(ξ) (ST ), we reduce to proving

‖u‖
X

s,1/2;1

φ(ξ)
(ST )

. ‖f‖Hs + ‖G‖
X

s,−1/2;1

φ(ξ)

.

By density we may assume G ∈ S(R1+2). Denote by S(t) = e−itφ(D) the free
propagator of −i∂t + φ(D). Split the solution of [−i∂t + φ(D)]u = G, u(0) = f
into homogeneous and inhomogeneous parts, u = v + w, where v(t) = S(t)f and

w(t) =
∫ t

0 S(t− t′)G(t′) dt′.
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Since ṽ(τ, ξ) = δ (τ + φ(ξ)) f̂(ξ),

‖v‖
X

s,1/2;1

φ(ξ)
(ST )

≤ ‖ρv‖
X

s,1/2;1

φ(ξ)

=
∑

L

L1/2
∥∥∥〈ξ〉sχ〈τ+φ(ξ)〉∼Lρ̂ (τ + φ(ξ)) f̂(ξ)

∥∥∥
L2

τ,ξ

=
∑

L

L1/2
∥∥P〈τ〉∼Lρ

∥∥
L2

t
‖f‖Hs = ‖ρ‖

B
1/2
2,1

‖f‖Hs .

Next, taking Fourier transform in space,

(13.1) ŵ(t, ξ) =

∫ t

0

e−i(t−t′)φ(ξ)Ĝ(t′, ξ) dt′ ≃

∫
eitλ − e−itφ(ξ)

i(λ+ φ(ξ))
G̃(λ, ξ) dλ

and then also in time,

w̃(τ, ξ) =

∫
δ(τ − λ)− δ(τ + φ(ξ))

i(λ+ φ(ξ))
G̃(λ, ξ) dλ =

G̃(τ, ξ)

i(τ + φ(ξ))
− δ(τ + φ(ξ))ĝ(ξ),

where

ĝ(ξ) =

∫
G̃(λ, ξ)

i(λ+ φ(ξ))
dλ.

Now split G = G1 + G2 corresponding to the Fourier domains |τ + φ(ξ)| . 1 and
|τ + φ(ξ)| ≫ 1 respectively. Write w = w1 + w2 accordingly. Expand

ŵ1(t, ξ) = e−itφ(ξ)
∞∑

n=1

∫
[it(λ+ φ(ξ))]

n

n!i(λ+ φ(ξ))
χ|λ+φ(ξ)|.1G̃(λ, ξ) dλ

hence

(13.2) w1(t) =

∞∑

n=1

tn

n!
S(t)fn

where

(13.3) f̂n(ξ) =

∫
[i(λ+ φ(ξ))]

n−1
χ|λ+φ(ξ)|.1G̃(λ, ξ) dλ

and clearly

‖fn‖Hs . ‖G‖
X

s,−1/2;1

φ(ξ)

.

Thus

‖w1‖Xs,1/2;1

φ(ξ)
(ST )

≤ ‖ρw1‖Xs,1/2;1

φ(ξ)

≤
∞∑

n=1

1

n!
‖tnρ(t)S(t)fn‖Xs,1/2;1

φ(ξ)

≤
∞∑

n=1

1

n!
‖tnρ(t)‖

B
1/2
2,1

‖fn‖Hs .

(
∞∑

n=1

n2n−1

n!

)
‖G‖

X
s,−1/2;1

φ(ξ)

since ‖tnρ(t)‖
B

1/2
2,1

. ‖tnρ(t)‖H1 . 2n + n2n−1. Finally, split w2 = a− b where

ã(τ, ξ) =
χ|τ+φ(ξ)|≫1G̃(τ, ξ)

i(τ + φ(ξ))
,(13.4)

b̃(τ, ξ) = δ(τ + φ(ξ))ĥ(ξ), ĥ(ξ) =

∫
χ|λ+φ(ξ)|≫1G̃(λ, ξ)

i(λ+ φ(ξ))
dλ.(13.5)
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Thus

‖a‖
X

s,1/2;1

φ(ξ)

∼
∑

L≫1

L1/2 1

L

∥∥〈D〉sP〈τ+φ(ξ)〉∼LG
∥∥ ≤ ‖G‖

X
s,−1/2;1

φ(ξ)

.

Moreover, ‖h‖Hs .
∑

L≫1L
−1L1/2

∥∥〈D〉sP〈τ+φ(ξ)〉∼LG
∥∥ by Cauchy-Schwarz, so

‖b‖
X

s,1/2;1

φ(ξ)
(ST )

≤ ‖ρb‖
X

s,1/2;1

φ(ξ)

. ‖h‖Hs . ‖G‖
X

s,−1/2;1

φ(ξ)

,

and this completes the proof of (4.10).

13.2. Proof of (4.11). The argument here is similar, but we modify the splitting
G = G1 + G2, letting it corresponding to |τ + φ(ξ)| . 1/T and |τ + φ(ξ)| ≫ 1/T
respectively. Then (13.2) holds with fn given by the obvious modification of (13.3),
hence

‖fn‖Hs .
∑

L.1/T

Ln−1L1/2
∥∥〈D〉sP〈τ+φ(ξ)〉∼LG

∥∥ . T−n+1/2+b ‖G‖Xs,b;∞
φ(ξ)

,

where we estimated ∑

L.1/T

Ln−1/2−b ∼ T−n+1/2+b

for b < 1/2, recalling that n ≥ 1, hence n− 1/2− b > 0. Thus

‖w1‖Xs,1/2;1

φ(ξ)
(ST )

≤ ‖ρTw1‖Xs,1/2;1

φ(ξ)

≤
∞∑

n=1

1

n!
T n ‖(t/T )nρ(t/T )S(t)fn‖Xs,1/2;1

φ(ξ)

.

∞∑

n=1

1

n!
T n ‖tnρ(t)‖

B
1/2
2,1

T−n+1/2+b ‖G‖Xs,b;∞
φ(ξ)

. T 1/2+b

(
∞∑

n=1

n2n−1

n!

)
‖G‖Xs,b;∞

φ(ξ)
,

where we used the elementary estimate

‖ρT ‖Bs
2,1

. T 1/2−s ‖ρ‖Bs
2,1

(0 < s ≤ 1/2)

with s = 1/2 and ρ(t) replaced by tnρ(t).
The splitting w2 = a− b is defined as in (13.4) and (13.5) but with the obvious

modifications, and we have

‖a‖
X

s,1/2;1

φ(ξ)

∼
∑

L≫1/T

L1/2 1

L

∥∥〈D〉sP〈τ+φ(ξ)〉∼LG
∥∥

≤
∑

L≫1/T

L−1/2−b ‖G‖Xs,b;∞
φ(ξ)

∼ T 1/2+b ‖G‖Xs,b;∞
φ(ξ)

,

provided that −1/2− b < 0, i.e. b > −1/2. Since, by Cauchy-Schwarz,

‖h‖Hs .
∑

L≫1/T

1

L
L1/2

∥∥〈D〉sP〈τ+φ(ξ)〉∼LG
∥∥ ,

we also have

‖b‖
X

s,1/2;1

φ(ξ)
(ST )

≤ ‖ρb‖
X

s,1/2;1

φ(ξ)

. ‖h‖Hs . T 1/2+b ‖G‖Xs,b;∞
φ(ξ)

,

completing the proof of (4.11).
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13.3. Proof of (4.12). With w(t) =
∫ t

0
S(t− t′)G(t′) dt′, (13.1) gives

ŵ(t, ξ) ≃ e−itφ(ξ)

∫
eit(λ+φ(ξ)) − 1

i(λ+ φ(ξ))
G̃(λ, ξ) dλ,

implying (4.12).
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