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Abstract. We obtain an essential spectral gap for n-dimensional convex co-compact

hyperbolic manifolds with the dimension δ of the limit set close to n−1
2 . The size

of the gap is expressed using the additive energy of stereographic projections of the

limit set. This additive energy can in turn be estimated in terms of the constants in

Ahlfors-David regularity of the limit set. Our proofs use new microlocal methods, in

particular a notion of a fractal uncertainty principle.

In this paper we study essential spectral gaps for convex co-compact hyperbolic

quotients M = Γ\Hn. To formulate our result in the simplest setting, consider n = 2

and take the Selberg zeta function [Bo07, (10.1)]

ZM(λ) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
, s =

1

2
− iλ,

where LM consists of all lengths of primitive closed geodesics on M (with multiplicity).

The spectral representation of ZM implies that it has only finitely many singularities

(that is, zeros and poles) in {Imλ > 0}. The work of Patterson [Pa76b] and Sulli-

van [Su] shows that ZM(λ) has no singularities in {Imλ > δ − 1
2
} and a simple zero

at i(δ − 1
2
), where δ ∈ [0, 1] is the dimension of the limit set of the group (see (5.2)).

Therefore ZM has finitely many singularities in {Imλ > −max(0, 1
2
− δ)}.

For δ ∈
(
0, 1

2

]
, Naud [Na] obtained the stronger statement that ZM has finitely

many singularities in {Imλ > −β} for some β strictly greater than 1
2
− δ. Naud’s

result, generalized to higher dimensional quotients by Stoyanov [St11], is based on the

method of Dolgopyat [Do] and does not specify the size of the improvement. Our first

result in particular gives explicit estimates on the value of β when δ = 1
2
:

Theorem 1. Let M = Γ\H2 be a convex co-compact hyperbolic surface. Then for each

ε > 0, the function ZM has finitely many singularities in {Imλ > −β + ε}, where

β =
3

8

(1

2
− δ
)

+
βE
16
, βE := δ exp

[
−K(1− δ)−28(1 + log14 C)

]
. (1.1)

Here K > 0 is a global constant and C ≥ 1 is the constant in the Ahlfors-David

regularity for the limit set ΛΓ, see (1.24).
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Figure 1. (a) Resonance free regions (in white) in dimension 2 for

δ < 1
2

given by the Patterson–Sullivan gap (1.2) and an essential spec-

tral gap of Theorem 2 (outlined in blue). (b) Essential spectral gaps β

in dimension 2 depending on δ: the standard gap (in bold) and the

Jakobson–Naud conjecture (dashed). The circles correspond to numer-

ically computed spectral gaps for symmetric 3-funneled surfaces (blue)

and 4-funneled surfaces (green) from [BoWe, Figure 14] (specifically, GI1
100

in the notation of [BoWe]). The red line is the gap given by Theorem 1

for a sample choice of βE := 1
2
.

See Figure 1. We say that M has an essential spectral gap of size β. Theorem 2

improves over the standard gap βstd = max(0, 1
2
− δ) for all surfaces with δ = 1

2
. In

fact, we show on the example of three-funnel surfaces that the regularity constant C

is bounded when the surface M varies in a compact set in the moduli space, and

thus (1.1) improves over βstd for surfaces close to those with δ = 1
2

– see Theorem 7

in §7.3. This includes some surfaces with δ > 1
2
, which to our knowledge provide the

first examples of fractal chaotic systems where the pressure P (1
2
) is positive but there

is an essential spectral gap below the real line. On the other hand our methods cannot

improve over βstd even in the most favorable situation unless δ ∈ ( 5
11
, 3

5
) – see the

remark following Theorem 4.

A numerical investigation of the gap was done by Borthwick [Bo14, §7] and Borthwick–

Weich [BoWe] (see Figure 1(b)). Both [BoWe, Figure 14] and the experimental results

of [BWPSKZ, Figure 4] suggest that the improvement β−βstd should indeed be larger

when δ ≈ 1
2

than for other values of δ.

In fact, our results apply to convex co-compact quotients M of any dimension n and

give bounds on the scattering resolvent

R(λ) =
(
−∆− (n− 1)2

4
− λ2

)−1

: L2
comp(M)→ H2

loc(M), λ ∈ C,
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which is the meromorphic continuation of the L2 resolvent from the upper half-plane –

see §4.2. The standard Patterson–Sullivan gap in this setting is [Bo07, §14.4]

R(λ) has only finitely many poles in
{

Imλ ≥ −max
(

0,
n− 1

2
− δ
)}
. (1.2)

The poles of R(λ), called resonances, are related to the scattering poles and to the

zeroes of ZM as proved by Bunke–Olbrich [BuOl99] and Patterson–Perry [PaPe]; see

Borthwick [Bo07, Chapter 10] for an expository proof and the history of the subject.

Therefore Theorem 1 is a direct corollary of the following stronger statement:

Theorem 2. Under the assumptions of Theorem 1, we have the resolvent estimate

‖χR(λ)χ‖L2→L2 ≤ C|λ|−1−2 min(0,Imλ)+ε, |λ| > C0, Imλ ∈ [−β + ε, 1], (1.3)

where β is given by (1.1), ε > 0 and χ ∈ C∞0 (M) are arbitrary, the constant C0 depends

on ε, and the constant C depends on ε, χ.

Spectral gaps for the special case of arithmetic quotients have recently found im-

portant applications to diophantine problems, see Bourgain–Gamburd–Sarnak [BGS]

and Magee–Oh–Winter [MOW]. For these applications one needs a uniform resonance

free region for congruence subgroups of Γ; a uniform logarithmic region was obtained

in [BGS] and a uniform gap by Oh–Winter [OhWi].

Our results have the following features compared to previous works on spectral gaps:

• The size of the gap is more explicit, expressed in terms of additive energy of

the limit set (Theorem 4) or the constants in Ahlfors-David regularity of this

set. Compared to Dolgopyat’s method, we decouple analytical aspects of the

problem from combinatorial ones. This makes it more feasible to compute the

size of the gap for specific hyperbolic manifolds.

• We obtain a polynomial resolvent bound (1.3), rather than just a resonance

free strip. This can be used to obtain polynomial bounds on other objects such

as Eisenstein functions.

• We rely on C∞ microlocal analysis (for instance, nowhere using explicitly that

M is analytic); this gives hope that our strategy may apply to more general

classes of manifolds.

Regarding the last item on the above list, we make the following conjecture which

would improve over the pressure gap studied in more general cases by Ikawa [Ik],

Gaspard–Rice [GaRi], and Nonnenmacher–Zworski [NoZw09].

Conjecture. Let (M, g) be a convex co-compact hyperbolic surface with δ = 1
2
. Then

all sufficiently small smooth compactly supported metric perturbations of (M, g) sat-

isfy (1.3) for some β > 0.
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This conjecture is related to the improved gaps obtained for scattering by several

convex obstacles by Petkov–Stoyanov [PeSt] and Stoyanov [St12] using the methods

of [Do].

We now describe the scheme of proof of Theorem 2:

1.1. Spectral gaps via a fractal uncertainty principle. We first reduce the esti-

mate (1.3) to a fractal uncertainty principle. To state it, let ΛΓ ⊂ Sn−1 be the limit

set of the group Γ, M = Γ\Hn (see (4.11)) and denote by 1lΛΓ(α) the indicator function

of the set

ΛΓ(α) = {y ∈ Sn−1 | d(y,ΛΓ) ≤ α} (1.4)

where d(y, y′) = |y − y′| denotes the Euclidean distance function on Sn−1 ⊂ Rn. Note

that the Minkowski dimension of ΛΓ is equal to δ, therefore (see (5.3))

αn−1−δ/C ≤ µL(ΛΓ(α)) ≤ Cαn−1−δ, α ∈ (0, 1) (1.5)

where µL denotes the Lebesgue measure on Sn−1.

Define the operator Bχ = Bχ(h) : L2(Sn−1)→ L2(Sn−1) by

Bχv(y) = (2πh)
1−n

2

∫
Sn−1

|y − y′|2i/hχ(y, y′)v(y′) dy′ (1.6)

where dy′ is the standard volume form on Sn−1 and χ ∈ C∞0 (Sn−1
∆ ), where

Sn−1
∆ = {(y, y′) ∈ Sn−1 × Sn−1 | y 6= y′}. (1.7)

Definition 1.1. We say that ΛΓ satisfies the fractal uncertainty principle with

exponent β > 0, if for each ε > 0 there exists ρ ∈ (0, 1) such that

‖ 1lΛΓ(C1hρ) Bχ(h) 1lΛΓ(C1hρ) ‖L2(Sn−1)→L2(Sn−1) ≤ Chβ−ε, h ∈ (0, 1) (1.8)

for every h-independent constant C1 and function χ ∈ C∞0 (Sn−1
∆ ), and some C depend-

ing on C1, χ.

Remark. The fractal uncertainty principle always holds with β = max(0, n−1
2
− δ),

see (5.1) and (5.4). On the other hand, by (5.5) the maximal β for which (1.8) can

be true is β = n−1
2
− δ

2
, which (in dimension 2) is exactly the value of the essential

spectral gap conjectured by Jakobson–Naud [JaNa].

To explain how the estimate (1.8) represents an uncertainty principle associated to

the set ΛΓ, we consider the extremal case ρ = 1, put C1 = 1, and cover ΛΓ(h) by a

collection of balls of radius h centered at some points y1, . . . , yN ∈ ΛΓ, where N ∼ h−δ

by (1.5). Then for each v ∈ L2(Sn−1), the function Bχ(h) 1lΛΓ(h) v microlocally concen-

trates (see (1.12) below) in an h-neighborhood of the union of ‘horizontal’ Lagrangian

leaves
N⋃
j=1

{(
y, ∂y log(|y − yj|2)

) ∣∣ (y, yj) ∈ suppχ
}
⊂ T ∗Sn−1, (1.9)
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Figure 2. The horizontal leaves (1.9), in red, and the vertical

leaves (1.10), in blue, for n = 2. The horizontal variable is y ∈ S1

and the vertical variable is η. For the fractal uncertainty principle, the

width of the distorted rectangles is slightly larger than h.

while the operator 1lΛΓ(h) microlocalizes to an h-neighborhood of the union of ‘vertical’

Lagrangian leaves
N⋃
j=1

{(yj, η) | η ∈ T ∗yjS
n−1} ⊂ T ∗Sn−1. (1.10)

The estimate (1.8) with β > 0 then says that no function can be perfectly localized

to h-neighorhoods of both (1.9) and (1.10) – see Figure 2. Note that h-neighborhoods

here cannot be replaced by, say, h1/2 neighborhoods since Gaussians provide examples

of functions that concentrate h1/2 close to any fixed leaf of (1.9) and to any fixed leaf

of (1.10). A related statement in the context of normally hyperbolic trapping was

proved by Nonnenmacher–Zworski [NoZw15, Lemma 5.12].

If ΛΓ satisfies the fractal uncertainty principle, then an essential spectral gap is given

by the following

Theorem 3. Assume that ΛΓ satisfies the fractal uncertainty principle with exponent

β > 0. Then (1.3) holds, in particular R(λ) has finitely many poles in {Imλ > −β+ε}
for each ε > 0.

We outline the proof of the resonance free region of Theorem 3 (the resolvent bound

follows directly from the argument). It suffices to show that for Reλ� 1 and Imλ ≥
−β + ε, there are no nontrivial resonant states, that is solutions to the equation(

−∆− (n− 1)2

4
− λ2

)
u = 0 (1.11)
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which satisfy certain outgoing conditions asymptotically at the infinite ends of M .

Put h := (Reλ)−1 and assume that u is L2-normalized on a sufficiently large fixed

compact subset of M . We study concentration of u in the phase space T ∗M using

semiclassical quantization

a ∈ C∞(T ∗M) 7→ Oph(a) : C∞(M)→ C∞(M) (1.12)

where a satisfies certain growth conditions – see §2.

Let Γ+ ⊂ T ∗M \ 0 be the outgoing tail, consisting of geodesics which are trapped

backwards in time; define also the incoming tail Γ− ⊂ T ∗M\0 (see (4.10)). The work of

Vasy [Va13a, Va13b] near the infinite ends together with propagation of semiclassical

singularities shows that u is microlocalized on Γ+ (see [BoMi, NoZw09] for related

results in Euclidean scattering). More precisely, for an h-independent symbol a+,

supp(1− a+) ∩ Γ+ = ∅ =⇒ (1−Oph(a+))u = O(h∞)C∞(M). (1.13)

Moreover, u has positive mass near Γ−; more precisely, for h-independent a−

supp(1− a−) ∩ Γ− = ∅ =⇒ ‖Oph(a−)u‖L2 ≥ C−1 > 0. (1.14)

(The statement (1.14) is not quite correct since Γ− extends to the infinite ends of

M and thus a− cannot be compactly supported; however, we may argue in a fixed

neighborhood of the trapped set K = Γ+∩Γ−. See Lemma 4.4 for precise statements.)

The main idea of the proof is to replace h-independent symbols in (1.13) and (1.14)

with symbols that concentrate hρ close to Γ±:

d(supp(1− a+),Γ+) > hρ =⇒ (1−Oph(a+))u = O(h∞)C∞(M), (1.15)

d(supp(1− a−),Γ−) > hρ =⇒ ‖Oph(a−)u‖L2 ≥ C−1h(− Imλ)ρ. (1.16)

The constant ρ ∈ (0, 1) is taken very close to 1. See Lemma 4.6 for precise statements.

The proofs of (1.13) and (1.14) use propagation estimates for some h-independent

time. The proofs of (1.15) and (1.16) use similar estimates for time t = ρ log(1/h), and

the factor h(− Imλ)ρ = e(Imλ)t results from the imaginary part of the operator in (1.11).

However, the analysis for (1.15) and (1.16) is considerably more complicated since

the symbols a± have very rough behavior in the directions transversal to Γ±, oscillating

on the scale hρ – this corresponds to the fact that t is almost twice the Ehrenfest time

(since the maximal expansion rate for the geodesic flow is equal to 1, the Ehrenfest

time is just below 1
2

log(1/h) – see for instance [DyGu14a, Proposition 3.9]). To solve

this problem, we use the fact that Γ+ is foliated by the leaves of the weak unstable

Lagrangian foliation Lu, while Γ− is foliated by the leaves of the weak stable Lagrangian

foliation Ls; therefore, we can make a+ vary on scale 1 along Lu and a− vary on the

scale 1 along Ls. Then a+ and a− can both be quantized to some operators OpLuh (a+)

and OpLsh (a−); however, these operators will not be part of the same calculus – see §3
for details.
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Next, the fractal uncertainty principle gives the following estimate for some a±
satisfying the conditions of (1.15), (1.16):

‖Oph(a−) Oph(a+)‖L2→L2 ≤ Chβ−ε/2. (1.17)

To see this, we conjugate by a Fourier integral operator whose underlying canonical

transformation maps an hρ neighborhood of Γ+,Γ− to an hρ neighborhood of (1.9),

(1.10) respectively (strictly speaking, to the products of (1.9), (1.10) with (T ∗R+)w,θ
where w corresponds to |ξ|g and ∂θ corresponds to the generator of the geodesic flow).

Under this conjugation, Oph(a−) corresponds to 1lΛΓ(hρ) and Oph(a+) corresponds to

Bχ 1lΛΓ(hρ) B∗χ, therefore (1.17) follows from (1.8). See §4.4 for details.

Gathering together (1.15), (1.16), and (1.17), and recalling that − Imλ < β − ε, we

obtain a contradiction for ρ close enough to 1 and h� 1 (thus finishing the proof):

C−1h(β−ε)ρ ≤ C−1h(− Imλ)ρ ≤ ‖Oph(a−)u‖L2

≤ ‖Oph(a−) Oph(a+)u‖L2 +O(h∞) ≤ Chβ−ε/2.

It would be interesting to see if Theorem 3 could be proved using transfer operator

techniques such as the ones in [Na]. We however note that the microlocal argument

presented above may be easier to adapt to a variable curvature situation (see the Con-

jecture above) and it also provides an explicit polynomial bound on the resolvent (1.3).

1.2. Fractal uncertainty principle via additive energy. As remarked before (fol-

lowing Definition 1.1), the fractal uncertainty principle holds with β = n−1
2
− δ. This

corresponds to counting the total area of the intersections of h-neighborhoods of (1.9)

and (1.10) (which in turn depend on δ by (1.5)) and can be seen via an L1 → L∞ norm

bound on Bχ. On the other hand, an L2 → L2 norm bound on Bχ gives the fractal

uncertainty principle with β = 0.

If we only use the volume bound (1.5), then no better value of β can be obtained –

for a non-rigorous explanation, one may replace ΛΓ(C1h
ρ) in (1.8) by a ball of volume

hn−1−δ in Rn−1, replace Bχ by the semiclassical Fourier transform, and calculate the

corresponding L2 → L2 norm.

To get a better exponent β, we thus have to use the fractal structure of ΛΓ. More

precisely, we will rely on the following combinatorial quantity:

Definition 1.2. For X ⊂ Rn−1 and α > 0, define the α-additive energy of X by

EA(X , α) = α4(1−n)µL({(η1, η2, η3, η4) ∈ X (α)4 | |η1 − η2 + η3 − η4| ≤ α})

where X (α) is the α-neighborhood of X and µL is the Lebesgue measure. This definition

trivially extends from Rn−1 to any n−1 dimensional vector space with an inner product.
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y −y

y′
2G(y, y′)

Figure 3. The stereographic projection map G.

Additive energy is intimately connected with the additive structure of finite sets, and

it is one of the central concepts in the field of additive combinatorics. See [TaVu06]

for further information on additive energy and related topics.

To explain the normalization of EA, assume that X (α) is the union of N(α) disjoint

balls of radius α, where the volume of X (α) is proportional to N(α)αn−1. Then

EA(X , α) is proportional to the number of combinations of four such balls such that

the sum of the centers of the first two balls is approximately equal to the sum of the

centers of the other two.

Motivated by (1.5), we assume that N(α) ∼ α−δ. Then

α−2δ . EA(X , α) . α−3δ. (1.18)

Indeed, the upper bound follows from the fact that the first three balls determine the

fourth one uniquely, and the lower bound follows from considering combinations of the

form (η1, η1, η3, η3).

We will use the additive energy of the images of the limit set ΛΓ by the map

G(y, y′) =
y′ − (y · y′)y

1− y · y′
∈ Rn, y, y′ ∈ Sn−1 ⊂ Rn, y 6= y′, (1.19)

which is half the stereographic projection of y′ with the base point y – see Figure 3.

We have G(y, y′) ⊥ y, therefore we may think of it as a vector in TySn−1, or (pairing

with the round metric on the sphere) as a vector in T ∗y Sn−1. Note that G is related to

the leaves of (1.9) since

∂y log(|y − y′|2) = −G(y, y′). (1.20)

Definition 1.3. We say that ΛΓ satisfies the additive energy bound with exponent

βE > 0, if for each C1 > 0 there exists C > 0 such that for all α ∈ (0, 1),

sup
y0∈ΛΓ

EA(G(y0,ΛΓ) ∩B(0, C1), α) ≤ Cα−3δ+βE . (1.21)

One can also interpret the sets G(y0,ΛΓ) in terms of the dynamics of the geodesic

flow on M using horocyclic flows – see (7.4) and (7.5).
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Given an additive energy bound, we obtain a fractal uncertainty principle and thus

(by Theorem 3) an essential spectral gap:

Theorem 4. Assume that ΛΓ satisfies the additive energy bound with exponent βE > 0.

Then ΛΓ satisfies the fractal uncertainty principle with exponent

β =
3

8

(n− 1

2
− δ
)

+
βE
16
. (1.22)

Remark. Note that by (1.18), the maximal βE for which Definition 1.3 may hold is

βE = δ. Plugged into (1.22), this gives an essential spectral gap of size 3(n−1)−5δ
16

, which

improves over (1.2) only when δ ∈ ( 5
11

(n− 1), 3
5
(n− 1)).

Theorem 4 is proved using an L4 estimate on the Fourier transforms of 1lG(y0,ΛΓ(hρ/2))

for y0 ∈ ΛΓ obtained from the additive energy bound. Here we have to replace the orig-

inal hρ neighborhood of ΛΓ by a bigger hρ/2 neighborhood to approximate correlations

between different leaves of (1.9) restricted to ΛΓ(hρ/2) using the Fourier transform.

Roughly speaking, the leaves which are farther than h1/2 apart have an O(h∞) corre-

lation and for the leaves which are closer than h1/2 to each other, the difference of the

phase functions in the resulting integral can be well approximated by its linear part –

see the paragraph following (5.16). The enlargement of the neighborhood to ΛΓ(hρ/2)

causes the loss of a factor of 1
2

in the size of the gap; together with a factor of 3
4

coming

from the use of the L4 bound (rather than L∞) this explains the factor of 3
8

in (1.22).

1.3. Additive energy via Ahlfors-David regularity. We now restrict to dimension

n = 2 and show that the limit set ΛΓ ⊂ S1 of a convex co-compact Fuchsian group Γ

with δ ∈ (0, 1) satisfies the additive energy bound with some positive exponent. For

that we use the following regularity property:

Definition 1.4. Let (M, d) be a complete metric space with more than one element.

We say a closed set X ⊂M is δ–regular with constant CX if for all x ∈ X we have

C−1
X rδ ≤ µδ(X ∩B(x, r)) ≤ CX r

δ, 0 < r < diam(M) (1.23)

where B(x, r) is the metric ball of radius r centered at x and µδ is the δ–dimensional

Hausdorff measure.

Sets with this property are also known as Ahlfors-David regular. See [DaSe] for

an introduction to δ–regular sets. While Definition 1.4 is phrased using δ–dimensional

Hausdorff measure, any other Borel outer measure could be used instead (in particular,

for limit sets of convex co-compact Fuchsian groups the Patterson–Sullivan measure

could be used). This is discussed further in Lemma 7.5 below.

The limit set ΛΓ ⊂ Sn−1 of a convex co-compact Fuchsian group Γ is δ–regular with

δ defined in (5.2) – see [Su, Theorem 7] and [Bo07, Lemma 14.13 and Theorem 14.14].
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We denote the associated regularity constant by

C := CΛΓ
. (1.24)

Using δ–regularity of ΛΓ, we obtain the following additive energy bound. Combined

with Theorems 3 and 4, it implies Theorem 2 and thus Theorem 1.

Theorem 5. Let M = Γ\H2 be a convex co-compact hyperbolic surface with limit set

ΛΓ ⊂ S1 of dimension δ ∈ (0, 1). Then ΛΓ satisfies the additive energy bound in the

sense of Definition 1.3 with exponent

βE := δ exp
[
−K(1− δ)−28(1 + log14 C)

]
, (1.25)

where C is defined in (1.24) and K is a global constant.

Remarks. (i) The specifics of the bound (1.25) are not particularly important. The

key point is that the exponent βE in (1.21) is independent of α, and it can be computed

explicitly. We did not compute the value of K, but in principle it can be done without

much difficulty.

(ii) In dimensions n > 2, Theorem 5 no longer holds in general as shown by the example

of the hyperbolic cylinder in three dimensions (see for instance [DaDy, Appendix A]). In

this example, the limit set ΛΓ is a great circle on S2, and the stereographic projections

G(y0,ΛΓ) are straight lines, which saturate the upper bound in (1.18). See §6.8.2 for

possible generalizations to higher dimensions.

Theorem 5 follows from a general result bounding additive energy of Ahlfors-David

regular sets, stated as Theorem 6 in §6; the proof of Theorem 6 can schematically be

explained as follows (see §6.1 for more details):

(1) Ahlfors-David regular sets cannot contain large subsets of arithmetic progres-

sions. This follows by a direct argument using (1.23) and the fact that δ < 1.

(2) A variant of Frĕıman’s theorem from additive combinatorics asserts that any set

with large additive energy must contain large subsets of generalized arithmetic

progressions. Together with (1) this implies that Ahlfors-David regular sets

cannot have extremely large (i.e. near maximal) additive energy.

(3) Ahlfors-David regular sets also have a certain type of coarse self-similarity. This

allows us to analyze them at many scales and at many different locations. Since

Ahlfors-David regular sets cannot have extremely large additive energy at any

scale or at any location, we can perform a multi-scale analysis to conclude that

such sets must actually have small additive energy.

1.4. Structure of the paper.

• In §2, we review certain notions in semiclassical analysis, in particular pseudo-

differential and Fourier integral operators.
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• In §3, we study an anisotropic pseudodifferential calculus associated to a La-

grangian foliation.

• In §4, we study geometric and dynamical properties of hyperbolic manifolds

and, using the calculus of §3, prove Theorem 3.

• In §5, we discuss the fractal uncertainty principle and prove Theorem 4.

• In §6, we prove that Ahlfors-David regular sets have small additive energy.

• In §7, we establish Ahlfors-David regularity of the stereographic projections of

the limit set and prove Theorem 5. We also obtain locally uniform bounds on

the regularity constant for 3-funneled surfaces.

• In Appendix A, we prove several technical lemmas used in §4 and §7.

2. Semiclassical preliminaries

In this section, we give a brief review of semiclassical analysis. For a comprehensive

introduction to the subject, the reader is referred to [Zw]. We partially follow the

presentation of [DyZw, Appendix E] and [DyGu14a, DaDy, Dy].

2.1. Pseudodifferential operators. Let M be a manifold. For k ∈ R, we say that

a(x, ξ) ∈ C∞(T ∗M) lies in the symbol class Sk1,0(T ∗M) if it satisfies the derivative

bounds

|∂αx∂
β
ξ a(x, ξ)| ≤ CαβK〈ξ〉k−|β|, x ∈ K, (2.1)

for each compact set K ⊂ M . We restrict ourselves to the subset of polyhomoge-

neous, or classical, symbols Sk(T ∗M) ⊂ Sk1,0(T ∗M) which have asymptotic expansions

a(x, ξ) ∼
∑∞

j=0 aj(x, ξ) as |ξ| → ∞ where each aj is positively homogeneous in ξ of

degree k − j.
A family of symbols b(x, ξ;h) ∈ Sk1,0(T ∗M) depending on a small parameter h > 0

is said to lie in the class Skh(T ∗M) if it has the following expansion as h→ 0:

b(x, ξ;h) ∼
∞∑
`=0

h`a`(x, ξ), a` ∈ Sk−`(T ∗M). (2.2)

See for instance [DyZw, §E.1.2] and [Va13b, §2] for details.

If a ∈ Sk1,0(T ∗Rn) satisfies (2.1) uniformly in x ∈ Rn, then we can quantize it by the

following formula (see [Zw, §4.1.1] and [DyZw, §E.1.4])

Oph(a)f(x) = (2πh)−n
∫
R2n

e
i
h

(x−y)·ξa(x, ξ)f(y) dydξ, (2.3)

which gives an operator Oph(a) acting on the space S (Rn) of Schwartz functions, as

well as on the dual space S ′(Rn) of tempered distributions.

Following [DyZw, §E.1.5] and [Zw, §14.2.2], for a general manifold M we consider the

class Ψk
h(M) of semiclassical pseudodifferential operators with symbols in Skh(T ∗M).
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We denote by

σh : Ψk
h(M)→ Sk(T ∗M)

the principal symbol map. Operators in Ψk
h act on semiclassical Sobolev spaces

Hs
h,comp → Hs−k

h,loc, see [DyZw, §E.1.6] and [Zw, §14.2.4]. We will often use the class

Ψcomp
h (M) of operators whose full symbols are essentially compactly supported in T ∗M

and whose Schwartz kernels are compactly supported in M ×M .

For A ∈ Ψk
h(M), denote by WFh(A) its semiclassical wavefront set, which is the

essential support of its full symbol – see for instance [DyZw, §E.2.1] and [DyZw16,

Appendix C.1]. Then WFh(A) is a closed subset of the fiber-radially compactified

cotangent bundle T
∗
M ⊃ T ∗M , see for instance [DyZw, §E.1.2] or [Va13b, §2]. For

A,B ∈ Ψk
h(M) and an open set U ⊂ T

∗
M , we say that

A = B +O(h∞) microlocally in U,

if WFh(A − B) ∩ U = ∅. We also use the notion of wavefront sets of h-tempered

distributions and operators, see for instance [DyZw, §E.2.3] or [DyZw16, §2.3].

Let B = B(h) : D′(M)→ C∞0 (M) be an h-tempered family of smoothing operators

and assume that the wavefront set WF′h(B) ⊂ T
∗
(M × M) is a compact subset of

T ∗(M ×M). We say that B is pseudolocal if WF′h(B) is contained in the diagonal

∆(T ∗M) ⊂ T ∗(M×M). For a pseudolocal operator B, we consider the set WFh(B) ⊂
T ∗M defined by

WF′h(B) = {(x, ξ, x, ξ) | (x, ξ) ∈WFh(B)}. (2.4)

Note that operators in Ψcomp
h (M) are pseudolocal and their definition of wavefront set

given in [DyZw, §E.2.1] agrees with the one given by (2.4).

2.2. Fourier integral operators. We next introduce semiclassical Fourier integral

operators. Let κ : U2 → U1 be a canonical transformation (that is, a symplectomor-

phism), where Uj ⊂ T ∗Mj are open sets and Mj are manifolds of the same dimension.

Define the graph of κ by

Gr(κ) := {(x, ξ, y, η) | (y, η) ∈ U2, (x, ξ) = κ(y, η)} ⊂ T ∗(M1 ×M2). (2.5)

Let ξ dx and η dy be the canonical 1-forms on T ∗U1 and T ∗U2 respectively. Since κ is

a canonical transformation, the restriction (ξ dx − η dy)|Gr(κ) is a closed 1-form. We

require that κ is exact in the sense that this restriction is an exact form, and fix an

antiderivative

F ∈ C∞(Gr(κ)), (ξ dx− η dy)|Gr(κ) = dF. (2.6)

For a canonical transformation κ with a fixed antiderivative F , we consider the

class Icomp
h (κ) of compactly supported and microlocalized Fourier integral operators

associated to κ – see for instance [GuSt77, Chapter 5], [GuSt13, Chapter 8], [DyGu14a,
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§3.2], [DaDy, §3.2],† [Dy, §3.2], and the references there. We adopt a convention that

operators in Icomp
h (κ) act D′(M2)→ C∞0 (M1).

We list some basic properties of the class Icomp
h (κ):

• each B ∈ Icomp
h (κ) is bounded uniformly in h on the spaces Hs

h,loc(M2) →
Hs′

h,comp(M1) for all s, s′ ∈ R, and WF′h(B) ⊂ Gr(κ);

• if κ : U2 → U1, U ′ ⊂ U2, and κ′ := κ|U ′ , then B ∈ Icomp
h (κ′) if and only if

B ∈ Icomp
h (κ) and WF′h(B) ⊂ Gr(κ′);

• if κ : T ∗M → T ∗M is the identity map with the zero antiderivative, then

B ∈ Icomp
h (κ) if and only if B ∈ Ψcomp

h (M);

• if B ∈ Icomp
h (κ), then B∗ ∈ Icomp

h (κ−1), with the antiderivatives on Gr(κ) and

Gr(κ−1) summing up to zero;

• if κ : U2 → U1, κ′ : U3 → U2, and B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ′), then

BB′ ∈ Icomp
h (κ ◦ κ′), with the antiderivative on Gr(κ ◦ κ′) chosen as the sum

of the antiderivatives on Gr(κ) and Gr(κ′).

To give a concrete expression for elements of Icomp
h (κ), assume that κ is parametrized

by a nondegenerate phase function Φ(x, y, ζ) ∈ C∞(UΦ;R), UΦ ⊂ M1 ×M2 × Rm, in

the sense that the differentials d(∂ζ1Φ), . . . , d(∂ζmΦ) are independent on the critical set

CΦ = {(x, y, ζ) ∈ UΦ | ∂ζΦ(x, y, ζ) = 0}

and the graph Gr(κ) is given by

Gr(κ) = jΦ(CΦ), jΦ : (x, y, ζ) 7→ (x, ∂xΦ(x, y, ζ), y,−∂yΦ(x, y, ζ)). (2.7)

The corresponding antiderivative is just the pullback of Φ from CΦ to Gr(κ) by the

map jΦ. Then any operator B ∈ Icomp
h (κ) has the following form modulo O(h∞)Ψ−∞ :

Bf(x) = (2πh)−
m+n

2

∫
M1×Rm

e
i
h

Φ(x,y,ζ)b(x, y, ζ;h) dydζ (2.8)

where n = dimM1 = dimM2 and b is a compactly supported symbol on UΦ, that is an

h-dependent family of smooth functions with support contained in some h-independent

compact set which has an asymptotic expansion in nonnegative integer powers of h.

Moreover, local principal symbol calculus shows that

b(x, y, ζ; 0) = 0 for all (x, y, ζ) ∈ CΦ =⇒ B ∈ hIcomp
h (κ). (2.9)

See for example [DyGu14a, §3.2] for details.

A special case is when M2 is an open subset of Rn and Gr(κ) projects diffeomor-

phically onto the (x, η) variables. Let F ∈ C∞(Gr(κ)) be the fixed antiderivative, and

†The presentation in [DaDy, §3.2] contained an error because the Fourier integral operators asso-

ciated to the identity map were not necessarily pseudodifferential operators with classical symbols

due to a possible constant phase factor eic/h. We correct it here by fixing the antiderivative, which is

always possible locally.
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define the generating function S(x, η) ∈ C∞(US;R) by the formula S(x, η) = F + y · η,

where Gr(κ) is parametrized by (x, η) ∈ US ⊂M1 × Rn. Then

Gr(κ) = {ξ = ∂xS(x, η), y = ∂ηS(x, η), (x, η) ∈ US} (2.10)

implying that κ is parametrized in the sense of (2.7) by the function (x, y, ζ) 7→
S(x, ζ)−y ·ζ. Each B ∈ Icomp

h (κ) has the following form modulo O(h∞)D′(M2)→C∞0 (M1):

Bf(x) = (2πh)−n
∫
R2n

e
i
h

(S(x,η)−y·η)b(x, η;h)χ(y)f(y) dydη, f ∈ D′(M2), (2.11)

where n = dimMj, b(x, η;h) is a compactly supported symbol on US, and χ ∈ C∞0 (M2)

is any function such that χ = 1 near ∂ηS(supp b). (The resulting operator is indepen-

dent of the choice of χ modulo O(h∞)D′(M2)→C∞0 (M1).)

As remarked in [DaDy, §3.2], κ can locally be written in the form (2.10) for some

choice of local coordinates on M2 as long as its domain does not intersect the zero

section of T ∗M2. The latter condition can be arranged locally by composing κ with

a transformation of the form (y, η) 7→ (y, η − dψ(y)) for some ψ ∈ C∞(M2), which

amounts to multiplying the resulting operators by eiψ(y)/h – see Lemma 2.1 below.

We next discuss microlocal inverses of Fourier integral operators. Assume that B ∈
Icomp
h (κ), B′ ∈ Icomp

h (κ−1). Then BB′ ∈ Ψcomp
h (M1), B′B ∈ Ψcomp

h (M2), WFh(BB
′) ⊂

U1, WFh(B
′B) ⊂ U2, and (as shown in the case of (2.11) by an explicit application of

the method of stationary phase and in general is a form of Egorov’s Theorem)

σh(B
′B) = σh(BB

′) ◦ κ. (2.12)

We call B ∈ Icomp
h (κ) elliptic at a point (x, ξ, y, η) ∈ Gr(κ), if there exists B′ ∈

Icomp
h (κ−1) such that σh(BB

′)(x, ξ) 6= 0 (in fact, this is equivalent to requiring that

σh(BB
∗)(x, ξ) 6= 0). For B given by (2.8), this simply means that b(x, y, ζ; 0) 6= 0

where (x, y, ζ) = j−1
Φ (x, ξ, y, η) ∈ CΦ. For each point in Gr(κ), there exist operators in

Icomp
h (κ) elliptic at this point.

If Vj ⊂ Uj are compact subsets such that κ(V2) = V1, then we say that B,B′

quantize κ near V1 × V2 if

BB′ = 1 +O(h∞) microlocally near V1,

B′B = 1 +O(h∞) microlocally near V2.
(2.13)

Such operators B,B′ exist if V2 = {(y, η)} for any given point (y, η) ∈ U2 (and thus if V2

is a sufficiently small neighborhood of (y, η)). To show this, take B ∈ Icomp
h (κ) elliptic

at (κ(y, η), y, η) and B′0 ∈ Icomp
h (κ−1) such that σh(BB

′
0) 6= 0 on V1. Multiplying

B′0 on the right by an elliptic parametrix of BB′0 (see for instance [DyZw, §E.2.2]

and [DyZw16, Proposition 2.4]), we obtain B′ ∈ Icomp
h (κ) such that BB′ = 1 +O(h∞)

microlocally near V1. By (2.12), we have σh(B
′
0B) 6= 0 on V2, so we can construct
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B′′ ∈ Icomp
h (κ) such that B′′B = 1 +O(h∞) microlocally near V2. Then

WF′h(B
′ −B′′) ∩ (V1 × V2) ⊂ WF′h((B

′′B)B′ −B′′(BB′)) = ∅,

therefore (2.13) holds. One could also define B,B′ as solutions of an evolution equation,

see [Zw, Theorem 11.5] and [DaDy, §3.2].

One useful family of Fourier integral operators is given by the following

Lemma 2.1. Let ϕ : M1 → M2 be a diffeomorphism and ψ ∈ C∞(M1). Consider the

operator

B = B(h) : D′(M2)→ D′(M1), Bf(x) = eiψ(x)/hf(ϕ(x)).

Then for each Aj ∈ Ψcomp
h (Mj), we have A1B,BA2 ∈ Icomp

h (κ−1), where

κ : T ∗M1 → T ∗M2, κ(x, ξ) =
(
ϕ(x), (dϕ(x))−T · (ξ − dψ(x))

)
,

and the antiderivative is given by ψ(x).

Proof. It suffices to consider the case when M1,M2 are open subsets of Rn. Let A2 =

Oph(a)χ, where a(y, η;h) is compactly supported in M2×Rn and χ ∈ C∞0 (M2) is equal

to 1 near the projection of supp a. Then

BA2f(x) = (2πh)−n
∫
R2n

e
i
h

((ϕ(x)−y)·η+ψ(x))a(ϕ(x), η;h)χ(y)f(y) dydη.

This has the form (2.11) with

S(x, η) = ϕ(x) · η + ψ(x), b(x, η;h) = a(ϕ(x), η;h),

and it is straightforward to see that κ−1 is given by (2.10). The case of A1B is reduced

to the case of BA2 by considering adjoint operators. �

3. Calculus associated to a Lagrangian foliation

In this section, we define a class of exotic pseudodifferential operators associated

to a Lagrangian foliation. The symbols of these operators are allowed to vary on the

constant scale along the foliation and on the scale hρ, 0 ≤ ρ < 1, in the directions

transversal to the foliation. For ρ > 1
2
, the resulting operators will not generally lie in

the exotic calculus Ψ1/2 (see for instance [DaDy, §5.1]), yet they form an algebra with

properties similar to those of standard pseudodifferential operators.

A similar (in fact, sharper in certain ways as it allowed for ρ = 1 and Ψ1/2 be-

havior in some directions) second microlocal calculus associated to a hypersurface has

previously been developed by Sjöstrand–Zworski [SjZw, §5]; for a calculus associated

to a Lagrangian submanifold in the analytic category, see [De, Chapter 2] and the

references given there.
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3.1. Foliations and symbols. We start with the definition of a Lagrangian foliation:

Definition 3.1. Let M be a manifold, U ⊂ T ∗M be an open set, and

L(x,ξ) ⊂ T(x,ξ)(T
∗M), (x, ξ) ∈ U

a family of subspaces depending smoothly on (x, ξ). We say that L is a Lagrangian

foliation on U if

• L(x,ξ) is integrable in the sense that if X, Y are two vector fields on U lying

in L at each point (we denote this by X, Y ∈ C∞(U ;L)), then the Lie bracket

[X, Y ] lies in C∞(U ;L) as well;

• L(x,ξ) is a Lagrangian subspace of T(x,ξ)(T
∗M) for each (x, ξ) ∈ U .

Another way to think about a Lagrangian foliation is in terms of its leaves, which

are Lagrangian submanifolds whose tangent spaces are given by L. The existence of

these leaves follows from Frobenius’s Theorem, see Lemma 3.6 below.

We consider the following class of symbols:

Definition 3.2. Let L be a Lagrangian foliation on U ⊂ T ∗M , and fix ρ ∈ [0, 1). We

say that a function a(x, ξ;h) is a (compactly supported) symbol of class Sρ with respect

to L, and write

a ∈ Scomp
L,ρ (U),

if for each h ∈ (0, h0), (x, ξ) 7→ a(x, ξ;h) is a smooth function on U supported inside

some h-independent compact set and it satisfies the derivative bounds (with the constant

C depending on Yj, Zj, but not on h)

sup
x,ξ
|Y1 . . . YmZ1 . . . Zka(x, ξ;h)| ≤ Ch−ρk, (3.1)

for each vector fields Y1, . . . , Ym, Z1, . . . , Zk on U such that Y1, . . . , Ym ∈ C∞(U ;L).

The following statement is useful for constructing symbols in the class Scomp
L,ρ :

Lemma 3.3. Let M1 be a compact manifold and V0(h) ⊂ V1(h) ⊂M1 be h-dependent

sets satisfying

d
(
V0(h),M1 \ V1(h)

)
> εhρ

for some fixed ε > 0, ρ ∈ [0, 1) and all h ∈ (0, 1). Then there exists χ(h) ∈ C∞0 (M1; [0, 1])

such that for all h ∈ (0, 1),

supp(1− χ(h)) ∩ V0(h) = ∅, suppχ(h) ⊂ V1(h); (3.2)

sup
M1

|∂αχ| ≤ Cαh
−ρ|α|. (3.3)
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Proof. By a partition of unity we reduce to the case when V1(h) is contained in a small

coordinate neighborhood on M1; therefore, it suffices to consider the case M1 = Rn.

Let d(·, ·) be the Euclidean distance function. Put

V2(h) := {x ∈ Rn | d(x, V0(h)) ≤ εhρ/2},

then (here B(x, r) denotes the ball of radius r centered at x)

x ∈ V0(h) =⇒ B(x, εhρ/2) ⊂ V2(h),

x ∈ V2(h) =⇒ B(x, εhρ/2) ⊂ V1(h).
(3.4)

Take nonnegative ψ ∈ C∞0 (B(0, ε/2)) such that
∫
ψ = 1, and put (here m = dimM1)

χ(x;h) := h−mρ
∫
V2(h)

ψ
(x− y

hρ

)
dy.

It follows immediately from (3.4) that χ satisfies (3.2). Moreover, by putting deriva-

tives on ψ we obtain the derivative bounds (3.3), finishing the proof. �

To keep track of the essential supports of symbols in Scomp
L,ρ (U) in an h-dependent

way, we use the following

Definition 3.4. Assume that a(x, ξ;h) is an h-dependent family of smooth functions

in (x, ξ) ∈ U , and hj → 0, (xj, ξj) ∈ U are some sequences. We say that a is O(h∞)

along the sequence (xj, ξj, hj), if for each N and each vector fields Z1, . . . , ZL on U ,

there exists a constant C such that

|Z1 . . . ZLa(xj, ξj;hj)| ≤ ChNj .

We next introduce local canonical coordinates bringing an arbitrary Lagrangian

foliation to a normal form. Let L0 be the Lagrangian foliation on T ∗Rn given by the

fibers of the cotangent bundle; that is, in the standard coordinates (y, η) on T ∗Rn,

L0 = span(∂η1 , . . . , ∂ηn)

is the annihilator of dy.

Definition 3.5. Let L be a Lagrangian foliation on U ⊂ T ∗M . A Lagrangian chart

is a symplectomorphism

κ : U0 → V, U0 ⊂ U, V ⊂ T ∗Rn,

such that dκ(x, ξ) · L(x,ξ) = (L0)κ(x,ξ) for each (x, ξ) ∈ U0.

The basic properties of Lagrangian charts are given by

Lemma 3.6. 1. Let L be a Lagrangian foliation on U ⊂ T ∗M and (x0, ξ0) ∈ U . Then

there exists a Lagrangian chart κ : U0 → T ∗Rn on some neighborhood U0 ⊂ U of

(x0, ξ0).
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2. Assume that κ : V → V ′, where V, V ′ ⊂ T ∗Rn are open, is a symplectomorphism

which preserves the foliation L0, and (y0, η0) ∈ V . Then there exists ε > 0 such that

κ(y, η) =
(
ϕ(y), (dϕ(y))−T · (η − dψ(y))

)
, (y, η) ∈ B(y0, ε)×B(η0, ε), (3.5)

for some diffeomorphism ϕ : B(y0, ε) → Rn onto its image and some function ψ ∈
C∞(B(y0, ε);R).

Proof. 1. Since L is integrable, by Frobenius’s Theorem [HöIII, Theorem C.1.1] there

exist local coordinates (y, η̃) in a neighborhood of (x0, ξ0) such that L is the annihilator

of dy. Moreover, since L is Lagrangian, we have {yj, yk} = 0. Now, by Darboux

Theorem [HöIII, Theorem 21.1.6] there exists a set of functions η1, . . . , ηn defined near

(x0, ξ0) such that

{yj, yk} = {ηj, ηk} = 0, {ηj, yk} = δjk.

The map (x, ξ) 7→ (y, η) is a Lagrangian chart in a neighborhood of (x0, ξ0).

2. Define the functions y′, η′ on V by setting κ : (y, η) 7→ (y′, η′). Since the

annihilators of dy′ and dy are the same (and both equal to L0), we have y′ = ϕ(y)

for (y, η) ∈ B(y0, ε) × B(η0, ε), some ε > 0, and some diffeomorphism onto its image

ϕ : B(y0, ε)→ Rn.

Since {y′j, η′k} = δjk, we have

η′ = (dϕ(y))−T · (η − F (y)), (y, η) ∈ B(y0, ε)×B(η0, ε),

for some smooth map F : B(y0, ε) → Rn. Since {η′j, η′k} = 0, we have F (y) = dψ(y)

for some ψ : B(y0, ε)→ R. �

3.2. Calculus on Rn. We next develop the calculus for the case L = L0. We have

a(y, η;h) ∈ Scomp
L0,ρ

(T ∗Rn) if and only if a is supported inside some h-independent com-

pact set and satisfies the derivative bounds

sup
y,η
|∂αy ∂βη a(y, η;h)| ≤ Cαβh

−ρ|α|. (3.6)

We derive several basic properties of quantizations of symbols in Scomp
L0,ρ

(T ∗Rn) by the

map Oph defined in (2.3):

Lemma 3.7. For a ∈ Scomp
L0,ρ

(T ∗Rn), the operator Oph(a) is bounded on L2(Rn) uni-

formly in h.

Proof. We introduce the unitary rescaling operator

Tρ : L2(Rn)→ L2(Rn), Tρu(y) = hρ/4u(hρ/2y).

It suffices to estimate the L2 → L2 norm of

Tρ Oph(a)T−1
ρ = Oph(aρ), aρ(ỹ, η̃;h) := a(hρ/2ỹ, h−ρ/2η̃;h).
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It follows from (3.6) that aρ ∈ Sρ/2, where the classes Sδ, 0 ≤ δ ≤ 1/2, are defined

in [Zw, (4.4.5)]. It remains to apply [Zw, Theorem 4.23(ii)]. �

Lemma 3.8. Let a, b ∈ Scomp
L0,ρ

(T ∗Rn). Then:

1. We have

Oph(a) Oph(b) = Oph(a#b) +O(h∞)L2→L2 ,

where a#b ∈ Scomp
L0,ρ

(T ∗Rn) and for each N ,

a#b(y, η;h) =
N−1∑
j=0

(−ih)j

j!
(∂η · ∂y′)j

(
a(y, η;h)b(y′, η′;h)

)
| y′=y
η′=η

+O(h(1−ρ)N)Scomp
L0,ρ

(T ∗Rn).

2. We have

Oph(a)∗ = Oph(a
∗) +O(h∞)L2→L2 ,

where a∗ ∈ Scomp
L0,ρ

(T ∗Rn) and for each N ,

a∗(y, η;h) =
N−1∑
j=0

(−ih)j

j!
(∂η · ∂y)ja(y, η;h) +O(h(1−ρ)N)Scomp

L0,ρ
(T ∗Rn).

Proof. It suffices to apply [Zw, Theorems 4.14 and 4.17] to the rescaled symbols aρ, bρ ∈
Sρ/2 introduced in the proof of Lemma 3.7. The resulting symbols are O(h∞) outside

of a compact set and thus can be cut off to compactly supported symbols. �

Lemma 3.8 (or rather its trivial extension to symbols which are not compactly

supported) implies that

Oph(b1) Oph(a) Oph(b2) = O(h∞)L2→L2 , supp b1 ∩ supp b2 = ∅, (3.7)

for each a ∈ Scomp
L0,ρ

(T ∗Rn) and h-independent b1, b2 ∈ C∞(R2n) with all derivatives

uniformly bounded. This in turn implies that the operator Oph(a) is pseudolocal and

WF′h(Oph(a)) is compactly contained in T ∗(Rn × Rn).

The next two lemmas establish invariance of the class of operators of the form

Oph(a), a ∈ Scomp
L0,ρ

(T ∗Rn), under conjugation by Fourier integral operators whose

canonical transformations preserve the foliation L0:

Lemma 3.9. Assume that ϕ : V1 → V2 is a diffeomorphism, where Vj ⊂ Rn are open

sets, ψ ∈ C∞(V1), and χ ∈ C∞0 (V1). Define the operators B : C∞(V1) → C∞0 (V2),

B′ : C∞(V2)→ C∞0 (V1) by

Bg(y′) = e−iψ(ϕ−1(y′))/hχ(ϕ−1(y′))f(ϕ−1(y′)), B′f(y) = eiψ(y)/hχ(y)f(ϕ(y)).

Then for each a ∈ Scomp
L0,ρ

(T ∗Rn),

B′Oph(a)B = Oph(ã) +O(h∞)L2→L2 ,
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for some ã ∈ Scomp
L0,ρ

(T ∗Rn) such that for each N ,

ã(y, η;h) =
N−1∑
j=0

hjLj
(
χ(y)χ(y′)a(ϕ(y), θ;h)

)∣∣
y′=y, θ=dϕ(y)−T (η−dψ(y))

+O(hN)Scomp
L0,ρ

(Rn).

where Lj are differential operators of order 2j in y′, θ depending on ϕ, ψ and L0 = 1.

Proof. We write

B′Oph(a)Bf(y)

= (2πh)−n
∫
R2n

e
i
h

((ϕ(y)−ϕ(y′))·θ+ψ(y)−ψ(y′))χ(y)χ(y′)Jϕ(y′)a(ϕ(y), θ;h)f(y′) dy′dθ

where Jϕ(y′) = | det dϕ(y′)|. By oscillatory testing [Zw, Theorem 4.19], we have

B′Oph(a)B = Oph(b), where

b(y, η;h) = e−
i
h
y·ηB′Oph(a)B(e

i
h
y′·η)

= (2πh)−n
∫
R2n

e
i
h

((ϕ(y)−ϕ(y′))·θ+ψ(y)−ψ(y′)−(y−y′)·η)χ(y)χ(y′)Jϕ(y′)a(ϕ(y), θ;h) dy′dθ,

as long as all derivatives of b are bounded uniformly on R2n for each fixed h. It then

remains to establish the asymptotic expansion for b, which follows immediately by the

method of stationary phase [Zw, Theorem 3.16]. The symbol b is O(h∞)S (R2n) outside

of a fixed compact set, therefore it can be cut off to a compactly supported symbol. �

Lemma 3.10. Assume that κ : V → V ′, where V, V ′ ⊂ T ∗Rn are open, is a canonical

transformation which preserves the foliation L0. Let

B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1).

Take a ∈ Scomp
L0,ρ

(T ∗Rn). Then there exists b ∈ Scomp
L0,ρ

(T ∗Rn) such that

B′Oph(a)B = Oph(b) +O(h∞)L2→L2 ,

b = (a ◦ κ)σh(B
′B) +O(h1−ρ)Scomp

L0,ρ
(T ∗Rn).

Moreover, if hj → 0, (yj, ηj) ∈ T ∗Rn are some sequences such that a is O(h∞) along

the sequence (κ(yj, ηj), hj) (in the sense of Definition 3.4), then b is O(h∞) along the

sequence (yj, ηj, hj).

Proof. By applying a partition of unity to B,B′ and using pseudolocality of Oph(a)

(see (3.7)) and part 2 of Lemma 3.6, we reduce to the case when κ has the form (3.5)

for some ϕ : B(y0, ε) → Rn, ψ ∈ C∞(B(y0, ε);R); we add a constant to ψ to make

sure that the fixed antiderivative on Gr(κ) is equal to ψ(x). By Lemma 2.1 and the

composition property of Fourier integral operators, the products

A := e
i
h
ψϕ∗B, A′ := B′(ϕ−1)∗e−

i
h
ψ,
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lie in Ψcomp
h (Rn). (Lemma 2.1 applies since we can insert an element of Ψcomp

h in

between B,B′ and other factors.) Since WF′h(B) ⊂ Gr(κ) and WF′h(B
′) ⊂ Gr(κ′) are

compact, there exists χ ∈ C∞0 (B(y0, ε)) such that

B = (χ ◦ ϕ−1)B +O(h∞)L2→L2 , B′ = B′(χ ◦ ϕ−1) +O(h∞)L2→L2 .

Then we write

B′Oph(a)B = A′
(
χe

i
h
ψϕ∗Oph(a)(ϕ−1)∗e−

i
h
ψχ
)
A+O(h∞)L2→L2 .

By Lemma 3.9, we can write the operator in parentheses on the right-hand side as

Oph(ã)+O(h∞)L2→L2 for some ã ∈ Scomp
L0,ρ

(T ∗Rn); by Lemma 3.8, we have A′Oph(ã)A =

Oph(b)+O(h∞)L2→L2 for some b ∈ Scomp
L0,ρ

(T ∗Rn). The expression for the principal part

of b and the microlocal vanishing statement follow directly from Lemmas 3.8 and 3.9

and the fact that σh(A
′)σh(A) = σh(A

′A) = σh(B
′B). �

3.3. General calculus. We now introduce pseudodifferential operators associated to

general Lagrangian foliations, starting with the following

Definition 3.11. Let M be a manifold, U ⊂ T ∗M an open set, L a Lagrangian

foliation on U , and ρ ∈ [0, 1). A family of operators

A = A(h) : D′(M)→ C∞0 (M)

is called a semiclassical pseudodifferential operator with symbol of class Scomp
L,ρ (U) (de-

noted A ∈ Ψcomp
h,L,ρ(U)) if it can be written in the form

A =
N∑
`=1

B′` Oph(a`)B` +O(h∞)D′(M)→C∞0 (M) (3.8)

for some Lagrangian charts κ`, Fourier integral operators B` ∈ Icomp
h (κ`), B′` ∈ I

comp
h (κ−1

` ),

and symbols a` ∈ Scomp
L0,ρ

(T ∗Rn).

Lemma 3.12. Let A ∈ Ψcomp
h,L,ρ(U). Then:

1. A is bounded on L2 uniformly in h, pseudolocal, and WFh(A) ⊂ U is compact.

2. If κ : Ũ → T ∗Rn is a Lagrangian chart and B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1), then

BAB′ = Oph(a) +O(h∞)L2→L2

for some a ∈ Scomp
L0,ρ

(T ∗Rn), supp a ⊂ κ(Ũ), and for each representation (3.8) of A,

a ◦ κ = σh(B
′B)

N∑
`=1

σh(B
′
`B`)(a` ◦ κ`) +O(h1−ρ)Scomp

L,ρ (U). (3.9)

Moreover, if hj → 0 and (xj, ξj) ∈ U are sequences such that for each `, either (xj, ξj) /∈
π1(WF′h(B`))∩ π2(WF′h(B

′
`)) for all j or a` ◦κ` is O(h∞) along (xj, ξj, hj) for all ` in

the sense of Definition 3.4, then a ◦ κ is O(h∞) along (xj, ξj, hj) as well.
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Proof. 1. This follows immediately from Lemma 3.7 and the properties of Oph(a),

a ∈ Scomp
L0,ρ

(T ∗Rn) established in the paragraph following (3.7).

2. We write A in the form (3.8), then

BAB′ =
N∑
j=1

(BB′`) Oph(a`)(B`B
′) +O(h∞)D′→C∞0 .

Now, we have B`B
′ ∈ Icomp

h (κ′j), where κ′` = κ` ◦ κ−1 : κ(Ũ ∩ U`) → T∗Rn is a

symplectomorphism onto its image preserving the foliation L0 and U` is the domain of

κ`. Similarly BB′` ∈ I
comp
h ((κ′j)−1). It remains to apply Lemma 3.10. To see (3.9), we

use the following corollary of (2.12): σh(BB
′
`B`B

′) = (σh(B
′
`B`)σh(B

′B)) ◦ κ−1. �

We now define the principal symbol and (h-dependent) microsupport of an operator

in Ψcomp
h,L,ρ(U):

Definition 3.13. Let A ∈ Ψcomp
h,L,ρ(U). We define the principal symbol

σLh (A) ∈ Scomp
L,ρ (U)/h1−ρScomp

L,ρ (U)

by the following formula valid for any representation (3.8):

σLh (A) =
N∑
`=1

σh(B
′
`B`)(a` ◦ κ`). (3.10)

Moreover, if hj → 0 and (xj, ξj) ∈ U are some sequences, then we say that A = O(h∞)

microlocally along (xj, ξj, hj), if for each choice of κ, B,B′ in part 2 of Lemma 3.12

and the corresponding symbol a ∈ Scomp
L0,ρ

(T ∗Rn), the symbol a ◦ κ is O(h∞) along

(xj, ξj, hj).

It follows from Lemma 3.12 that σLh (A) does not depend on the choice of the repre-

sentation (3.8) of A.

To construct an operator with given principal symbol and microsupport, we use the

quantization map

a ∈ Scomp
L,ρ (U) 7→ OpLh (a) :=

∑
`

B′` Oph(a`)B`, (3.11)

where the sum above has finitely many nonzero terms for each a and

• κ` : U` → T ∗Rn are Lagrangian charts and U`, ` ∈ N, form a locally finite

covering of U ;

• B` ∈ Icomp
h (κ`), B′` ∈ Icomp

h (κ−1
` ) are Fourier integral operators such that

σh(B
′
`B`) ∈ C∞0 (U`) form a partition of unity:∑

`

σh(B
′
`B`) = 1 on U ;
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• a` = (χ`a) ◦ κ−1
` ∈ S

comp
L0,ρ

(T ∗Rn), where χ` ∈ C∞0 (U`) are some functions equal

to 1 near suppσh(B
′
`B`).

One can choose κ` with the required properties by Lemma 3.6; for existence of B`, B
′
`

see the discussion following (2.13). The quantization map is not canonical as it depends

on the choice of κ`, B`, B
′
`, χ`.

Note that if A ∈ Ψcomp
h (M) is a pseudodifferential operator in the standard calculus

and WFh(A) ⊂ U , then A ∈ Ψcomp
h,L,ρ(U) and σLh (A) = σh(A). Also, if a ∈ S0

h(T
∗M) is a

symbol in the standard class supported inside U , then OpLh (a) ∈ Ψcomp
h (M). This fol-

lows from the composition property of Fourier integral operators together with (2.12).

The basic properties of the symbol map and a quantization map are given by

Lemma 3.14. 1. For each a ∈ Scomp
L,ρ (U),

σLh (OpLh (a)) = a+O(h1−ρ)Scomp
L,ρ (U).

2. For each A ∈ Ψcomp
h,L,ρ(U), we have σLh (A) = O(h1−ρ)Scomp

L,ρ (U) if and only if A ∈
h1−ρΨcomp

h,L,ρ(U).

3. For each A ∈ Ψcomp
h,L,ρ(U), there exists a ∈ Scomp

L,ρ (U) such that A = OpLh (a) +

O(h∞)D′→C∞0 .

4. For each a ∈ Scomp
L,ρ (U), if hj → 0 and (xj, ξj) ∈ U are sequences such that

a is O(h∞) along (xj, ξj, hj) (in the sense of Definition 3.4), then OpLh (a) is O(h∞)

microlocally along (xj, ξj, hj) (in the sense of Definition 3.13).

5. Let A,B ∈ Ψcomp
h,L,ρ(U). Then AB,A∗ ∈ Ψcomp

h,L,ρ(U) and

σLh (AB) = σLh (A)σLh (B) +O(h1−ρ)Scomp
L,ρ (U),

σLh (A∗) = σLh (A) +O(h1−ρ)Scomp
L,ρ (U).

Proof. 1. This follows immediately from (3.10).

2. Assume that σLh (A) = O(h1−ρ)Scomp
L,ρ (U); we need to show that A ∈ h1−ρΨcomp

h,L,ρ(U)

(the reverse implication follows directly from (3.10)). Using a pseudodifferential parti-

tion of unity, we may assume that WFh(A) is contained in a some open subset Ũ ⊂ U

such that there exists a Lagrangian chart κ : Ũ → T ∗Rn and Fourier integral operators

B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1); B′B = 1 +O(h∞) microlocally near WFh(A).

Then

A = B′(BAB′)B +O(h∞)D′→C∞0 .

However, by part 2 of Lemma 3.12 we have

BAB′ = Oph(a) +O(h∞)L2→L2 , a ∈ Scomp
L0,ρ

(T ∗Rn),
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and since σLh (A) = O(h1−ρ)Scomp
L,ρ (U), we have a = O(h1−ρ)Scomp

L0,ρ
(T ∗Rn). Therefore, a =

h1−ρb for some b ∈ Scomp
L0,ρ

(T ∗Rn) and

A = h1−ρ(B′Oph(b)B +O(h∞)D′→C∞0 ) ∈ h1−ρΨcomp
h,L,ρ(U).

3. Put a0 = σLh (A). Then A = OpLh (a0) +O(h1−ρ)Ψcomp
h,L,ρ(U), therefore A = OpLh (a0) +

h1−ρA1 for some A1 ∈ Ψcomp
h,L,ρ(U). By induction we construct a family of operators

Aj ∈ Ψcomp
h,L,ρ(U), j ∈ N0, such that A0 = A and Aj = OpLh (σLh (Aj)) + h1−ρAj+1. Then

we have A = OpLh (a) +O(h∞)D′→C∞0 where a ∈ Scomp
h,L,ρ(U) is the following asymptotic

sum:

a ∼
∞∑
j=0

h(1−ρ)jσh(Aj).

4,5. These follow from Lemma 3.8 and part 2 of Lemma 3.12. �

3.4. Further properties. We start with an improved bound on the L2 operator norm:

Lemma 3.15. Let A ∈ Ψcomp
h,L,ρ(U). Then as h→ 0,

‖A‖L2(M)→L2(M) ≤ sup
U
|σLh (A)|+ o(1).

Proof. Take ε > 0 and let a := σLh (A). It suffices to prove that

lim sup
h→0

‖A‖L2(M)→L2(M) ≤ Cε := sup
U
|a|+ ε. (3.12)

Define the function b by

b =
√
C2
ε − |a|2.

Note that b = Cε outside of supp a and Cε − b ∈ Scomp
L,ρ (U). Take the following

quantization of b:

B := Cε −OpLh (Cε − b)

and note that B is bounded on L2. Since |a|2 + |b|2 = C2
ε , we have

A∗A+B∗B = C2
ε +O(h1−ρ)L2→L2 .

By applying this to u ∈ L2 and taking the scalar product with u itself, we get

‖Au‖2
L2 ≤ C2

ε‖u‖2
L2 +O(h1−ρ)‖u‖2

L2 ,

which implies (3.12). �

We next give a version of the elliptic parametrix construction:
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Lemma 3.16. Assume that A,B ∈ Ψcomp
h,L,ρ(U) and B is elliptic on the microsupport of

A in the following sense: there exists ε > 0 such that for each sequences hj → 0 and

(xj, ξj) ∈ U , if |σLh (B)(xj, ξj;hj)| ≤ ε, then A is O(h∞) microlocally along (xj, ξj;hj).

Then there exists

Q ∈ Ψcomp
h,L,ρ(U), A = QB +O(h∞)D′→C∞0 .

Proof. Let a0 = σLh (A), b0 = σLh (B). We first show that there exists q0 ∈ Scomp
L,ρ (U)

such that a0 = q0b0 +O(h1−ρ)Scomp
L,ρ (U). For that, let χ ∈ C∞0 (−ε, ε) be equal to 1 near

the origin. Then from the ellipticity assumption we have

a0χ(|b0|) = O(h1−ρ)Scomp
L,ρ (U)

and it remains to put q0 := a0

(
1− χ(|b0|)

)
/b0.

Put Q0 = OpLh (q0), then

A = Q0B +O(h1−ρ)Ψcomp
h,L,ρ(U).

We write A = Q0B + h1−ρR1 for some R1 ∈ Ψcomp
h,L,ρ(U). By part 4 of Lemma 3.14, B is

elliptic on the microsupport of Q0; therefore, it is elliptic on the microsupport of R1.

Repeating the above process, we find a sequence Qj = OpLh (qj), Rj ∈ Ψcomp
h,L,ρ(U) such

that A = R0 and

Rj = QjB + h1−ρRj+1, j = 0, 1, . . .

It remains to take Q = OpLh (q), where q ∈ Scomp
L,ρ (U) is the asymptotic sum

q ∼
∞∑
j=0

h(1−ρ)jqj. �

Finally, we give a version of Egorov’s theorem for the Ψcomp
h,L,ρ calculus:

Lemma 3.17. Let L be a Lagrangian foliation on U ⊂ T ∗M , P ∈ Ψcomp
h (M), the

principal symbol p = σh(P ) be real-valued (and h-independent), and

L(x,ξ) ⊂ ker dp(x, ξ) for each (x, ξ) ∈ U. (3.13)

Let A ∈ Ψcomp
h,L,ρ(U) and take T > 0 such that e−tHp(WFh(A)) ⊂ U for all t ∈ [0, T ].

Then there exists a family of operators depending smoothly on t

At ∈ Ψcomp
h,L,ρ(U), t ∈ [0, T ], A0 = A+O(h∞)D′→C∞0 ,

such that σLh (At) = σLh (A) ◦ etHp +O(h1−ρ)Scomp
L,ρ (U) and

ih∂tAt + [P,At] = O(h∞)D′→C∞0 . (3.14)

Moreover, if t is fixed and hj → 0, (xj, ξj) ∈ U are sequences such that A is O(h∞)

microlocally along (xj, ξj, hj), then At is O(h∞) microlocally along (e−tHp(xj, ξj), hj).
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Proof. First of all, by (3.13) the Hamiltonian vector field Hp lies in L. Therefore,

the Hamiltonian flow etHp preserves L, and for each a ∈ Scomp
L,ρ (U), both Hpa and

a ◦ etHp (as long as e−tHp(supp a) ⊂ U) lie in Scomp
L,ρ (U) as well. Next, we have for each

Ã ∈ Ψcomp
h,L,ρ(U)

[P, Ã] =
h

i
OpLh (Hpσ

L
h (Ã)) +O(h2−ρ)Ψcomp

h,L,ρ(U). (3.15)

Indeed, by a pseudodifferential partition of unity and part 2 of Lemma 3.12, it suffices

to prove∗ that for each function f ∈ C∞0 (Rn),

f(y)#ã− ã#f(y) =
h

i
{f(y), ã}+O(h2)Scomp

h,L,ρ(T ∗Rn)

which follows immediately from Lemma 3.8.

Take a ∈ Scomp
L,ρ (U) such that A = OpLh (a) + O(h∞)D′→C∞0 . Consider the family of

operators

A
(0)
t := OpLh (a

(0)
t ), a

(0)
t = a ◦ etHp , t ∈ [0, T ].

Then (3.15) implies

ih∂tA
(0)
t + [P,A

(0)
t ] = h2−ρR

(1)
t , R

(1)
t ∈ Ψcomp

h,L,ρ(U).

Next, put for t ∈ [−T, T ],

A
(1)
t := OpLh (a

(1)
t ), a

(1)
t :=

∫ t

0

iσLh (R(1)
s ) ◦ e(t−s)Hp ds.

Then

a
(1)
0 = 0, ∂ta

(1)
t = Hpa

(1)
t + iσLh (R

(1)
t )

and thus (3.15) implies

ih∂tA
(1)
t + [P,A

(1)
t ] + hR

(1)
t = h2−ρR

(2)
t , R

(2)
t ∈ Ψcomp

h,L,ρ(U).

Arguing by induction, we construct operators A
(j)
t = OpLh (a

(j)
t ), R

(j)
t ∈ Ψcomp

h,L,ρ(U), j ∈
N0, such that R

(0)
t = 0, A

(0)
0 = A+O(h∞)D′→C∞0 , A

(j)
0 = 0 for j > 0, and

ih∂tA
(j)
t + [P,A

(j)
t ] + hR

(j)
t = h2−ρR

(j+1)
t .

It remains to put

At := OpLh (at), at ∼
∞∑
j=0

h(1−ρ)ja
(j)
t . �

∗We do not obtain the error O(h2) in (3.15) because right-hand side is in hΨcomp
h,L,ρ(U) and thus

Lemma 3.12 produces an O(h · h1−ρ) error.
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4. Hyperbolic manifolds

In this section, we assume that (M, g) is an n-dimensional convex co-compact hy-

perbolic manifold, that is, a quotient M = Γ\Hn of the hyperbolic space Hn by a

convex co-compact (geometrically finite) subgroup Γ of the isometry group PSO(1, n)

of Hn. We refer the reader to [Bo07] for the formal definition and properties of these

manifolds in the important special case of dimension n = 2 and to [Pe87] for the case

of general dimension.

We will use the calculus of §3 to obtain fine microlocal bounds on the scattering

resolvent on M , and prove Theorem 3 using these bounds.

4.1. Dynamical properties. Define the function p ∈ C∞(T ∗M \ 0) by

p(x, ξ) = |ξ|g, (x, ξ) ∈ T ∗M \ 0, (4.1)

and let X be the Hamiltonian vector field of p. Then

etX : T ∗M \ 0→ T ∗M \ 0 (4.2)

is the homogeneous rescaling of the geodesic flow. Here homogeneity means that

[X, ξ · ∂ξ] = 0 where ξ · ∂ξ is the generator of dilations.

In what follows, we will identify the cotangent bundle T ∗M with the tangent bundle

TM using the metric g.

4.1.1. Stable/unstable decomposition. For (x, ξ) ∈ T ∗M \0, we decompose the tangent

space at (x, ξ) as follows:

T(x,ξ)(T
∗M) = RX ⊕ R(ξ · ∂ξ)⊕ Es(x, ξ)⊕ Eu(x, ξ) (4.3)

where Es, Eu are the n−1 dimensional stable and unstable bundles, defined in the case

|ξ|g = 1 for instance in [DFG, (3.14)] (recalling the identification T ∗M ' TM), and in

general by requiring that they are homogeneous. Note that Es, Eu are the images of

the stable/unstable bundles of Hn (which are also denoted Es, Eu) under the covering

map

πΓ : T ∗Hn → T ∗M, (4.4)

and they are tangent to the level sets of p.

The subbundles Es, Eu are invariant under the flow etX . Moreover, the projection

map T(x,ξ)T
∗M → TxM is an isomorphism from Es(x, ξ) onto the space {η ∈ TxM |

〈ξ, η〉 = 0}. Therefore, we can canonically pull back the metric gx to Es(x, ξ). Same

is true for Eu(x, ξ), and we have (see for instance [DFG, §3.3])

|detX(x)v|g =

{
et|v|g, v ∈ Eu(x, ξ);
e−t|v|g, v ∈ Es(x, ξ).

(4.5)
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For each (x, ξ) ∈ T ∗M \ 0, consider the weak stable/unstable subspaces

Ls(x, ξ) := RX(x, ξ)⊕ Es(x, ξ), Lu(x, ξ) := RX(x, ξ)⊕ Eu(x, ξ). (4.6)

Define the maps

B± : T ∗Hn \ 0→ Sn−1 (4.7)

as follows: for (x, ξ) ∈ T ∗Hn, B±(x, ξ) is the limit of the projection to the ball model

of Hn of the geodesic etX(x, ξ) as t → ±∞ – see for instance [DFG, §3.4]. Then the

lifts of Ls, Lu to T ∗Hn \ 0 are given by [DFG, (3.25)]

π∗ΓLs(x, ξ) = ker dB+(x, ξ) ∩ ker dp(x, ξ),

π∗ΓLu(x, ξ) = ker dB−(x, ξ) ∩ ker dp(x, ξ).
(4.8)

Lemma 4.1. Ls and Lu are Lagrangian foliations on T ∗M \ 0 in the sense of Defini-

tion 3.1.

Proof. We consider the case of Ls; the case of Lu is handled similarly. Using the

covering map πΓ, we reduce to the case M = Hn. The fact that Ls is integrable follows

immediately from (4.8). Since dimLs = n, it remains to show that ω(Y1, Y2) = 0 for

each Y1, Y2 ∈ Ls(x, ξ), where ω is the symplectic form on T ∗Hn. When Y1 = X(x, ξ),

this is immediate since Ls(x, ξ) ⊂ ker dp(x, ξ). Therefore, we may assume that Y1, Y2 ∈
Es(x, ξ). Since etX is a Hamiltonian flow, it is a symplectomorphism, and we find

ω(Y1, Y2) = ω(detX(x, ξ)Y1, de
tX(x, ξ)Y2) ≤ C|detX(x, ξ)Y1|g · |detX(x, ξ)Y2|g

where the constant C in the last inequality is independent of t since the isometry group

PSO(1, n) acts transitively on Hn and the lifted action on T ∗Hn \ 0 preserves ω, Es,

and the induced metric on Es. Letting t→ +∞ and using (4.5), we get ω(Y1, Y2) = 0

as required. �

The next lemma states that the result of propagating a compactly supported symbol

up to almost twice the Ehrenfest time lies in the anisotropic class Scomp
L,ρ from Defi-

nition 3.2, where L = Ls or L = Lu depending on the direction of propagation. See

Appendix A for the proof.

Lemma 4.2. Let χ1, χ2 ∈ C∞0 (T ∗M \ 0) be independent of h and fix ρ ∈ [0, 1). Then

we have uniformly in t ∈ [0, ρ log(1/h)],

χ2(χ1 ◦ etX) ∈ Scomp
Ls,ρ

(T ∗M \ 0), χ2(χ1 ◦ e−tX) ∈ Scomp
Lu,ρ

(T ∗M \ 0).

4.1.2. Infinity and trapping. Since M is a convex co-compact hyperbolic manifold, it

is even asymptotically hyperbolic in the sense of [Gu, Definition 1.2]; more precisely, it

is the interior of a compact manifold with boundary M such that near ∂M ,

g =
dx̃2 + g1(x̃2, ỹ)

x̃2
,
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where x̃ ≥ 0 is a boundary defining function and (x̃, ỹ) ∈ (0, ε)×∂M are some product

coordinates on a collar neighborhood of ∂M .

It is shown for example in [DyGu14a, Lemma 7.1] that there exists a function r :

M → R such that {r ≤ R} is compact for all R and the sets {r ≤ R} are strictly

convex for all R ≥ 0; that is, if we restrict r to any geodesic on M and denote by dots

derivatives with respect to the geodesic parameter, then at each point of the geodesic

we have

r ≥ 0, ṙ = 0 =⇒ r̈ > 0. (4.9)

In fact, it suffices to take r := x̃−1 − r1 for a boundary defining function x̃ of M and

large enough constant r1 > 0.

We now define the incoming/outgoing tails Γ± by

Γ± = {(x, ξ) ∈ T ∗M \ 0 | r(etX(x, ξ)) is bounded as t→ ∓∞}. (4.10)

Define also the trapped set K = Γ+ ∩ Γ−. It follows from (4.9) that Γ± are closed

subsets of T ∗M \ 0 and K ⊂ {r < 0}, see for instance [DyGu14a, §4.1]. We assume

that K 6= ∅ (in the case when K = ∅, M is known to have an arbitrarily large essential

spectral gap, see for instance [Va13b, (1.1)]).

Recall that M = Γ\Hn, where Γ is a convex co-compact group of hyperbolic isome-

tries. Define the limit set ΛΓ ⊂ Sn−1 as follows: for each x ∈ Hn,

ΛΓ = {γ.x | γ ∈ Γ} ∩ Sn−1 (4.11)

where we use the ball model of the hyperbolic space and the closure is taken in the

closed ball in Rn. The resulting set is closed and independent of the choice of x; see

for instance [Pa76b] and [Bo07, Lemma 2.8] for the case of n = 2 and [Su] for general

n.

For each (x, ξ) ∈ T ∗Hn \ 0, we have (see Appendix A for the proof)

πΓ(x, ξ) ∈ Γ+ ⇐⇒ B−(x, ξ) ∈ ΛΓ,

πΓ(x, ξ) ∈ Γ− ⇐⇒ B+(x, ξ) ∈ ΛΓ,
(4.12)

where the maps B± are defined in (4.7) and πΓ is defined in (4.4).

The following statement, when combined with (4.12), implies that for a trajectory

(x(t), ξ(t)) of etX on T ∗M \ 0 which stays in a fixed compact set for all t ∈ [0, T ], the

point (x(0), ξ(0)) is O(e−T ) close to Γ− and the point (x(T ), ξ(T )) is O(e−T ) close to

Γ+. See Appendix A for the proof.

Lemma 4.3. Let V ⊂ T ∗Hn \0 be a compact set. Then there exists a constant C such

that for each t ≥ 0,

(x, ξ) ∈ V, πΓ(e±tX(x, ξ)) ∈ πΓ(V ) =⇒ d(B±(x, ξ),ΛΓ) ≤ Ce−t.

Here d(·, ·) is the Euclidean distance function on Sn−1.
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4.2. Scattering resolvent. Consider the Laplace–Beltrami operator ∆ on (M, g) and

its L2 resolvent

R(λ) =
(
−∆− (n− 1)2

4
− λ2

)−1

: L2(M)→ H2(M), Imλ > 0,

which may have finitely many poles corresponding to eigenvalues of −∆ on the interval[
0, (n−1)2

4

)
. Then R(λ) continues meromorphically with poles of finite rank as a family

of operators

R(λ) : L2
comp(M)→ H2

loc(M), λ ∈ C. (4.13)

A related question of continuation of Eisenstein series was studied by Patterson [Pa75,

Pa76a] in dimension 2 and Perry [Pe87, Pe89] in higher dimensions. The continuation

of R(λ) was established by Mazzeo–Melrose [MaMe] and Guillarmou [Gu] for general

(even) asymptotically hyperbolic manifolds, and by Guillopé–Zworski [GuZw] for man-

ifolds of constant curvature near infinity. We refer the reader to [Bo07, Chapter 6] for

the proof in dimension 2 and an overview of the history of the subject.

To study essential spectral gaps, we write

λ = h−1 − iν, ν ∈ [−1, β − ε], (4.14)

where the semiclassical parameter h > 0 needs to be small enough for the argument to

work. (Resolvent bounds for negative Reλ follow from bounds for positive Reλ since

R(λ)∗ = R(−λ̄).) We introduce the semiclassical resolvent

Rh(ω) := h−2R(λ), ω := hλ = 1− ihν.

To derive high frequency estimates near infinity, we use the construction of the mero-

morphic continuation of the resolvent due to Vasy [Va13a, Va13b]. See in particu-

lar [Va13b, §5.1] and also [DaDy, Lemma 2.1], [Dy, §4.4]. The book [DyZw, Chap-

ter 5] provides a detailed account of a slightly modified version of Vasy’s method, which

could be used in the present paper, and [Zw15] gives a short self-contained introduc-

tion in the nonsemiclassical case. (For the constant curvature case considered here,

one could alternatively apply complex scaling, see Zworski [Zw99] and Datchev [Da].)

Specifically, we write

Rh(ω)f = ψ1(Ph(ω)−1ψ2f)|M , f ∈ C∞0 (M).

Here ψj ∈ C∞(M), j = 1, 2, are certain nonvanishing functions depending on ω, h and

Ph(ω) ∈ Ψ2
h(Mext) is a certain family of semiclassical pseudodifferential operators on a

compact manifold Mext containing M as an open subset; we have

(Ph(ω)u)|M = ψ2

(
− h2∆− h2(n− 1)2

4
− ω2

)
ψ1(u|M), u ∈ C∞(Mext). (4.15)

Moreover, Ph(ω) is a Fredholm operator between the spaces

{u ∈ Hs
h(Mext) | Ph(ω)u ∈ Hs−1

h (Mext)} → Hs−1
h (Mext)
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provided that s > 0 is large enough depending on β; the inverse Ph(ω)−1 : Hs−1
h (Mext)→

Hs
h(Mext) is meromorphic in ω with poles of finite rank (if we treat ω and h as inde-

pendent parameters).

For each fixed r0 > 0 we may arrange so that ψ1 = ψ2 = 1 on {r ≤ r0}, see for

instance the paragraph preceding [Va13b, (3.14)]. Therefore, to show the resolvent

bound (1.3) it suffices to prove the estimate

‖u‖Hs
h(Mext) ≤ Ch−1−2 max(0,ν)−ε‖f‖Hs−1

h (Mext)
(4.16)

when h is small enough depending on ε and

Ph(ω)u = f, u ∈ Hs
h(Mext), f ∈ Hs−1

h (Mext). (4.17)

(The resulting Hs−1
h → Hs

h estimate on χRh(ω)χ can be converted to an L2 → L2

estimate using the elliptic parametrix of −h2∆− h2(n−1)2

4
− ω2 near the fiber infinity,

see for instance [Dy, Proposition 3.3].)

We use the following outgoing estimates on the operator Ph(ω). Their meaning is

as follows: since Rh(ω) is the outgoing resolvent (in the sense that it maps compactly

supported functions on M to functions with outgoing behavior at the infinity of M),

it should be semiclassically outgoing, that is propagate singularities in the forward

direction along the geodesic flow. In particular if ũ = Rh(ω)f̃ and f̃ = O(h∞), then

WFh(ũ) is contained in the outgoing tail Γ+ (as follows from (4.19) below). Moreover,

if we control u near the trapped set then we can bound its norm everywhere (as follows

from (4.20) below).

Lemma 4.4. For each u, f satisfying (4.17), we have the following estimates:

1. Assume that A1 ∈ Ψ0
h(Mext), WFh(A1) ⊂ {r ≤ r0} ⊂ T

∗
M , and

WFh(A1) ∩ Γ+ ∩ {|ξ|g = 1} = ∅. (4.18)

Then

‖A1u‖Hs
h(Mext) ≤ Ch−1‖f‖Hs−1

h (Mext)
+O(h∞)‖u‖Hs

h(Mext). (4.19)

2. Assume that A2 ∈ Ψcomp
h (Mext) is elliptic on K ∩ {|ξ|g = 1}. Then

‖u‖Hs
h(Mext) ≤ C‖A2u‖L2 + Ch−1‖f‖Hs−1

h (Mext)
. (4.20)

Remark. The estimates (4.19), (4.20) make it possible to treat the infinite ends of our

manifold as a black box; see [Dy, §4] for a more formal treatment. In particular, our

results would apply to any manifold with the same trapping structure as a convex co-

compact hyperbolic quotient and infinite ends which satisfy (4.19), (4.20); this includes

Euclidean ends [Dy, §4.3] and general even asymptotically hyperbolic ends [Dy, §4.4].
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Sketch of proof. Both of these statements follow from the elliptic estimate [Dy, Propo-

sition 3.2], propagation of singularities [Dy, Proposition 3.4], and radial points esti-

mates [Va13a, Propositions 2.10 and 2.11] applied to the dynamical picture of the

Hamiltonian flow of the principal symbol of Ph(ω) as studied in [Va13a, Va13b]. More

precisely, condition (4.18) guarantees that each point in WFh(A1) either lies in the

elliptic set of Ph(ω) or the corresponding backwards Hamiltonian flow line converges

to the radial sets, near which u is controlled when s is large enough depending on β;

this yields (4.19). Next, each backwards Hamiltonian flow line of Ph(ω) either passes

through its elliptic set, or converges to the radial sets, or passes through the elliptic

set of A2; this yields (4.20).

The proof (in a modified setting using domains with boundary, which however works

equally well for our purposes) is described in detail in [DyZw, §6.2.3]. We also refer the

reader to [DaDy, Lemma 4.4] and [Dy, Lemma 4.1] for more details on the dynamics

of the flow and to [Dy, Lemmas 4.4 and 4.6] for slightly different proofs involving a

semiclassically outgoing parametrix for the resolvent. �

Finally, we write a pseudodifferential equation (see (4.23) below) which is a direct

consequence of (4.17) but more convenient for Lemma 4.5 below because the principal

symbol of the associated operator is the function p given by (4.1). Consider the set

W0 := {r ≤ r0, |ξ|g ∈ [1/2, 2]} ⊂ T ∗M. (4.21)

Take P ∈ Ψcomp
h (M) such that P ∗ = P and

P 2 = −h2∆ +
h2(n− 1)2

4
+O(h∞) microlocally near W0,

σh(P )(x, ξ) = p(x, ξ) = |ξ|g near W0.
(4.22)

We can construct such an operator following [GrSj, Lemma 4.6]: first take P0 ∈
Ψcomp
h (M) such that P ∗0 = P0 and σh(P0) = p near W0. Denote P := −h2∆ + h2(n−1)2

4
,

then σh(P
2
0 ) = σh(P) near W0 and thus

P = P 2
0 + hR0 +O(h∞) microlocally near W0

for some R0 ∈ Ψcomp
h (M) and R∗0 = R0. We next construct P1 ∈ Ψcomp

h (M) such that

P ∗1 = P1 and

P = (P0 + hP1)2 + h2R1 +O(h∞) microlocally near W0

for some R1 ∈ Ψcomp
h (M) and R∗1 = R1; to do that, it suffices to put σh(P1) = σh(R0)/2p

near W0. Arguing by induction, we construct a family of operators Pj ∈ Ψcomp
h (M)

such that P ∗j = Pj and

P = (P0 + hP1 + · · ·+ hmPm)2 +O(hm+1) microlocally near W0;

it remains to take as P the asymptotic sum P ∼
∑∞

j=0 h
jPj.
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By (4.15), and since ψ1 = ψ2 = 1 near {r ≤ r0}, we have

‖B(P 2 − ω2)u‖L2 ≤ C‖f‖Hs−1
h (Mext)

+O(h∞)‖u‖Hs
h(Mext)

for u, f satisfying (4.17) and each B ∈ Ψcomp
h (M) such that WFh(B) is contained in

some small neighborhood of W0. We write (P 2− ω2) = (P + ω)(P − ω) and note that

P + ω is elliptic on W0; therefore, the elliptic estimate [Dy, Proposition 3.2] gives

‖A(P − ω)u‖L2 ≤ C‖f‖Hs−1
h (Mext)

+O(h∞)‖u‖Hs
h(Mext) (4.23)

for each A ∈ Ψcomp
h (M) such that WFh(A) ⊂ W0.

4.3. Second microlocalization of the resolvent. We now take the first step to-

wards proving a spectral gap, which is to use the calculus of §3 and the Lagrangian

foliations Lu, Ls of (4.6) to obtain fine microlocal estimates on solutions to (4.17). We

start with a general propagation estimate:

Lemma 4.5. Let a, b ∈ Scomp
L,ρ (T ∗M \ 0) where L ∈ {Lu, Ls}, ρ ∈ [0, 1), and fix T > 0.

Assume that |a| ≤ 1 everywhere and

e−TX(supp a) ⊂ {b = 1}; e−tX(supp a) ⊂ W0, t ∈ [0, T ],

where W0 ⊂ T ∗M \ 0 is defined in (4.21). Then for each ε0 > 0 and each u, f

satisfying (4.17) we have

‖OpLh (a)u‖L2 ≤ (eνT + ε0)‖OpLh (b)u‖L2 + Ch−1‖f‖Hs
h(Mext) +O(h∞)‖u‖Hs

h(Mext).

where ν is defined in (4.14) and OpLh is a quantization procedure described in (3.11).

Proof. Let P ∈ Ψcomp
h (M) be the operator defined in (4.22). Consider the family of

operators At ∈ Ψcomp
h,L,ρ(T

∗M \ 0), t ∈ [0, T ], constructed in Lemma 3.17, with A0 =

OpLh (a) +O(h∞); here (3.13) holds since σh(P ) = p near W0 and Lu, Ls ⊂ ker dp.

Using (3.14), (4.23), and the fact that P ∗ = P , we write

∂t‖Atu‖2
L2 = 2 Re〈∂tAtu,Atu〉

= −2

h
Im〈[P,At]u,Atu〉+O(h∞)‖u‖Hs

h(Mext) · ‖Atu‖L2

=
2

h
Im〈AtPu,Atu〉+O(h∞)‖u‖Hs

h(Mext) · ‖Atu‖L2

= −2ν‖Atu‖2
L2 + (Ch−1‖f‖Hs−1

h (Mext)
+O(h∞)‖u‖Hs

h(Mext))‖Atu‖L2 .

Integrating this, we get

‖OpLh (a)u‖L2 ≤ eνT‖ATu‖L2 + Ch−1‖f‖Hs−1
h (Mext)

+O(h∞)‖u‖Hs
h(Mext). (4.24)

Now, it follows from part 4 of Lemma 3.14 and Lemma 3.17 that for each sequences

hj → 0 and (xj, ξj) ∈ T ∗M \ 0 such that eTX(xj, ξj) /∈ supp a(•;hj), the operator AT
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is O(h∞) microlocally along (xj, ξj, hj) in the sense of Definition 3.13. We then apply

Lemma 3.16 to write

AT = QOpLh (b) +O(h∞)D′→C∞0 , Q ∈ Ψcomp
h,L,ρ(T

∗M \ 0).

Moreover, Lemma 3.17 and the proof of Lemma 3.16 give

σLh (Q) = (a ◦ eTX)/b+O(h1−ρ)Scomp
L,ρ (T ∗M\0) = a ◦ eTX +O(h1−ρ)Scomp

L,ρ (T ∗M\0).

By Lemma 3.15, we have ‖Q‖L2→L2 ≤ 1 + ε1 for each ε1 > 0 and h small enough

depending on ε1. Therefore,

eνT‖ATu‖L2 ≤ (eνT + ε0)‖OpLh (b)u‖L2 +O(h∞)‖u‖Hs
h(Mext)

which together with (4.24) finishes the proof. �

We can now prove second microlocal estimates on solutions to (4.17). Roughly

speaking, in the case f = 0 and t = ρ log(1/h) the estimate (4.25) below states that u

is concentrated hρ close to Γ+ (for each ρ < 1) and the estimate (4.26) states that the

u has to be of size at least hνρ+ in an hρ neighborhood of Γ− – see (1.15) and (1.16).

In §4.4, we will see that the combination of these two facts with the fractal uncertainty

principle implies that ν cannot be too small, giving an essential spectral gap.

Lemma 4.6. Let χ ∈ C∞0 (T ∗M \ 0; [0, 1]) be equal to 1 near K ∩ {|ξ|g = 1}. Fix

ρ ∈ [0, 1). Then there exists T > 0 such that we have for each ε0 > 0, uniformly in

t ∈ [T, ρ log(1/h)], and u, f satisfying (4.17)∥∥OpLuh
(
χ(1− χ ◦ e−tX)

)
u
∥∥
L2 ≤ Ch−1e(max(0,ν)+ε0)t‖f‖Hs−1

h
+O(h∞)‖u‖Hs

h
, (4.25)

‖u‖Hs
h
≤ Ce(ν+ε0)t

∥∥OpLsh
(
χ(χ ◦ etX)

)
u
∥∥
L2 + Ch−1e(max(0,ν)+ε0)t‖f‖Hs−1

h
. (4.26)

Here χ(1− χ ◦ e−tX) ∈ Scomp
Lu,ρ

(T ∗M \ 0), χ(χ ◦ etX) ∈ Scomp
Ls,ρ

(T ∗M \ 0) by Lemma 4.2.

Proof. Denote

F+(t) :=
∥∥OpLuh

(
χ(1− χ ◦ e−tX)

)
u
∥∥
L2 ,

F−(t) :=
∥∥OpLsh

(
χ(χ ◦ etX)

)
u
∥∥
L2 ,

then it suffices to show that for each ε0 > 0 there exists T > 0 such that for all

t0 ∈ [T/2, T ] and t ∈ [0, ρ log(1/h)], we have (with constants uniform in t0, t)

F+(t+ t0) ≤ e(ν+ε0)t0F+(t) + Ch−1‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
, (4.27)

F−(t) ≤ e(ν+ε0)t0F−(t+ t0) + Ch−1‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
. (4.28)

Indeed, iterating these estimates we get for all t ∈ [T, ρ log(1/h)]

F+(t) ≤ e(ν+ε0)tF+(T/2) + Ch−1e(max(0,ν)+ε0)t‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
, (4.29)

F−(0) ≤ e(ν+ε0)tF−(t) + Ch−1e(max(0,ν)+ε0)t‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
. (4.30)
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Γ+

Γ−

K

χ(1−χ◦e−(t+t0)X)

χ2(1−χ◦e−(t+t0)X)

χ1(1−χ◦e−(t+t0)X)

χ(1−χ◦e−tX)

Γ+

Γ−

K

Figure 4. An illustration of the proof of (4.27). The function χ(1 −
χ ◦ e−(t+t0)X) is split into two parts. The part corresponding to χ2 is

estimated by (4.19) and the darker shaded part corresponding to χ1 is

transported backwards by the flow to the right half of the figure, where

it is covered by χ(1− χ ◦ e−tX).

By (4.31) below, the wavefront set of OpLuh
(
χ(1− χ ◦ e−TX/2)

)
∈ Ψcomp

h (M) does not

intersect Γ+ ∩ {|ξ|g = 1}. By (4.19) (where r0 is chosen large enough depending on χ)

we see that

F+(T/2) ≤ Ch−1‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h

and (4.25) follows from here and (4.29).

Next, OpLsh (χ2) ∈ Ψcomp
h (M) is elliptic on K ∩ {|ξ|g = 1}. By (4.20) we get

‖u‖Hs
h
≤ CF−(0) + Ch−1‖f‖Hs−1

h

and (4.26) follows from here and (4.30).

We now prove (4.27). We put T := NT0, where N is a large constant to be chosen

later and for each (x, ξ) ∈ {|ξ|g = 1} and each t, t1, t2 ≥ T0 > 0 we have

(x, ξ) ∈ Γ+ ∩ suppχ =⇒ e−tX(x, ξ) /∈ supp(1− χ), (4.31)

(x, ξ) ∈ et1X(suppχ) ∩ e−t2X(suppχ) =⇒ (x, ξ) /∈ supp(1− χ). (4.32)

The existence of such T0 follows from [DyGu14b, Lemmas 2.3 and 2.4] and the fact

that χ = 1 near K ∩ {|ξ|g = 1}.
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We write χ = χ1 +χ2 where χj ∈ C∞0 (T ∗M \0; [0, 1]), suppχ2∩Γ+∩{|ξ|g = 1} = ∅,
and for each t ∈ [T0, T + 3T0], t1, t2 ≥ T0, and (x, ξ) ∈ T ∗M \ 0

(x, ξ) ∈ suppχ1 =⇒ e−tX(x, ξ) /∈ supp(1− χ), (4.33)

(x, ξ) ∈ et1X(suppχ) ∩ e−t2X(suppχ1) =⇒ (x, ξ) /∈ supp(1− χ), (4.34)

(x, ξ) ∈ et1X(suppχ1) ∩ e−t2X(suppχ) =⇒ (x, ξ) /∈ supp(1− χ). (4.35)

Note that (4.34) and (4.35) follow immediately from (4.32) as long as suppχ1 ⊂ suppχ.

Take χ′2 ∈ C∞0 (T ∗M) such that χ′2 = 1 near suppχ2 and suppχ′2∩Γ+∩{|ξ|g = 1} =

∅. By Lemma 3.16 and (4.19) we have∥∥OpLuh
(
χ2(1− χ ◦ e−(t+t0)X)

)
u‖L2 ≤ C‖OpLuh (χ′2)u‖L2 +O(h∞)‖u‖Hs

h

≤ Ch−1‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
.

(4.36)

Next, we have (see Figure 4)

e−(t0+T0)X
(

supp(χ1(1− χ ◦ e−(t+t0)X))
)
⊂ {χ(1− χ ◦ e−tX) = 1}. (4.37)

Indeed, let (x, ξ) ∈ supp(χ1(1−χ◦e−(t+t0)X)). Since t0 +T0 ∈ [T0, T +T0], by (4.33) we

have χ(e−(t0+T0)X(x, ξ)) = 1. It remains to show that χ(e−(t+t0+T0)X(x, ξ)) = 0. This

follows from (4.34) applied to e−(t+t0)X(x, ξ) ∈ supp(1− χ), t1 = T0, t2 = t+ t0.

We now apply Lemma 4.5 to (4.37) (where we choose r0 large enough depending on

χ and T and make suppχ1 ⊂ {|ξg| ∈ [1/2, 2]}) and get for each fixed ε1 > 0,∥∥OpLuh
(
χ1(1−χ◦e−(t+t0)X)

)
u
∥∥
L2 ≤ (eν(t0+T0)+ε1)F+(t)+Ch−1‖f‖Hs−1

h
+O(h∞)‖u‖Hs

h
.

Together with (4.36) this implies (4.27) as long as we have

eν(t0+T0) + ε1 ≤ e(ν+ε0)t0 . (4.38)

By choosing ε1 small enough, this reduces to νT0 < ε0t0, which follows from the fact

that t0 ≥ T/2 = NT0/2 if we choose N large enough depending on ε0, β.

To show (4.28), we first note that similarly to (4.36),∥∥OpLsh
(
χ2(χ ◦ etX)

)
u
∥∥
L2 ≤ Ch−1‖f‖Hs−1

h
+O(h∞)‖u‖Hs

h
. (4.39)

Next, there exists T1 ∈ [T0, 3T0] such that (see Figure 5)

e−(t0+T1)X
(

supp(χ1(χ ◦ etX))
)
⊂ {χ(χ ◦ e(t+t0)X) = 1}. (4.40)

Indeed, let (x, ξ) ∈ supp(χ1(χ ◦ etX)). By (4.33), we have χ(e−(t0+T1)X(x, ξ)) = 1. It

remains to show that χ(e(t−T1)X(x, ξ)) = 1. If t ≤ 2T0, then we put T1 := t + T0

and use (4.33). If t ≥ 2T0, then we put T1 := T0 and apply (4.35) to e(t−T0)X(x, ξ),

t1 = t− T0, t2 = T0.

Applying Lemma 4.5 to (4.40) we get for each fixed ε1 > 0,∥∥OpLsh
(
χ1(χ ◦ etX)

)
‖L2 ≤ (eν(t0+T1) + ε1)F−(t+ t0) + Ch−1‖f‖Hs−1

h
+O(h∞)‖u‖Hs

h
.
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χ2(χ◦etX)

χ1(χ◦etX)

χ(χ◦etX)

Γ+

Γ−

K

χ(χ◦e(t+t0)X)

Γ+

Γ−

K

Figure 5. An illustration of the proof of (4.28). The function χ(χ ◦
etX) is split into two parts. The part corresponding to χ2 is estimated

by (4.19) and the darker shaded part corresponding to χ1 is transported

backwards by the flow to the right half of the figure, where it is covered

by χ(χ ◦ e(t+t0)X).

Together with (4.39) this implies (4.28) as long as we have

eν(t0+T1) + ε1 ≤ e(ν+ε0)t0

which is achieved by taking N large enough similarly to (4.38). �

4.4. Reduction to a fractal uncertainty principle. In this section, we prove The-

orem 3. We start by constructing symplectomorphisms

κ± : T ∗Hn \ 0→ T ∗(R+
w × Sn−1

y ) (4.41)

which map the weak stable/unstable Lagrangian foliations Ls, Lu defined in (4.6) to

the vertical foliation on T ∗(R+ × Sn−1):

(κ+)∗Lu = (κ−)∗Ls = LV := ker(dw) ∩ ker(dy). (4.42)

Recall the symbol p : T ∗Hn \ 0→ (0,∞) and the maps B± : T ∗Hn \ 0→ Sn−1 defined

in (4.1) and (4.7). For (x, ξ) ∈ T ∗Hn \ 0, put

G±(x, ξ) = p(x, ξ)G(B±(x, ξ), B∓(x, ξ)) ∈ T ∗B±(x,ξ)Sn−1

where G is defined in (1.19). See Figure 6.
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B−(x,ξ) B+(x,ξ)

−B+(x,ξ)

x ξ

2G+(x,ξ)
p(x,ξ)

Figure 6. The pointsB±(x, ξ) and the vectorG+(x, ξ) in the ball model

of the hyperbolic space.

Denote by P(x, y) the (two-dimensional version of) Poisson kernel, defined on the

ball model of Hn by

P(x, y) =
1− |x|2

|x− y|2
, x ∈ Hn, y ∈ Sn−1. (4.43)

The symplectomorphisms κ± are constructed in the following lemma; see Appendix A

for the proof. Note that (4.42) follows immediately from (4.44) and (4.8).

Lemma 4.7. The maps

κ± : (x, ξ) 7→
(
p(x, ξ), B∓(x, ξ),± logP(x,B∓(x, ξ)),±G∓(x, ξ)

)
(4.44)

are exact symplectomorphisms from T ∗Hn \ 0 onto T ∗(R+ × Sn−1).

Remark. The coordinates κ±(x, ξ) = (w, y, θ, η) can be interpreted as follows:

• y, η determine the geodesic γ(t) = etX(x, ξ) up to shifting t and rescaling ξ, in

particular y gives the limit of the geodesic γ(t) as t→ ±∞;

• w is the length of ξ, corresponding to the energy of the geodesic γ(t);

• θ satisfies θ(γ(t)) = θ(γ(0)) − t and thus determines the position of (x, ξ) on

the geodesic γ(t).

We next consider the symplectomorphism

κ̂ := κ+ ◦ (κ−)−1 : T ∗(R+ × Sn−1)→ T ∗(R+ × Sn−1). (4.45)

The next lemma, proved in Appendix A, constructs a generating function for κ̂:

Lemma 4.8. Consider the following function on R+
w × Sn−1

∆ :

Θ(w, y, y′) = w log
|y − y′|2

4
(4.46)
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where |y− y′| denotes Euclidean distance on Sn−1 ⊂ Rn. Then for each (w, y, θ, η) and

(w, y′, θ′, η′) in T ∗(R+ × Sn−1), the following two statements are equivalent:

(w, y′, θ′, η′) = κ̂(w, y, θ, η); (4.47)

θ − θ′ = ∂wΘ(w, y, y′), η = ∂yΘ(w, y, y′), η′ = −∂y′Θ(w, y, y′). (4.48)

Moreover, the antiderivative for κ̂ defined as the sum of antiderivatives for κ+ and

(κ−)−1 (see §2.2) is equal to the pullback of Θ to the graph Gr(κ̂).

Using Lemma 4.8 and the theory presented in §2.2, we characterize Fourier integral

operators associated to κ̂−1:

Lemma 4.9. Assume that B ∈ Icomp
h (κ̂−1). Then we have

B = AB̃χ +O(h∞)Ψ−∞

for some A ∈ Ψcomp
h (R+ × Sn−1), χ ∈ C∞0 (Sn−1

∆ ), and

B̃χv(w, y) = (2πh)
1−n

2

∫
Sn−1

∣∣∣y − y′
2

∣∣∣2iw/hχ(y, y′)v(w, y′) dy′

where Sn−1
∆ is defined in (1.7), |y − y′| denotes the Euclidean distance, and dy′ is the

standard volume form on the sphere.

Proof. For the function Θ defined in (4.46), we have

B̃χv(w, y) = (2πh)
1−n

2

∫
Sn−1

e
i
h

Θ(w,y,y′)χ(y, y′)v(w, y′) dy′.

For A ∈ Ψcomp
h (R+×Sn−1), the operator AB̃χ is given by the following formula modulo

an O(h∞)Ψ−∞ remainder:

AB̃χv(w, y) = (2πh)−
n+1

2

∫
Sn−1×T ∗R+

e
i
h

((w−w′)θ+Θ(w′,y,y′))b(w, θ, y, y′;h)v(w′, y′) dy′dw′dθ

where b is a compactly supported symbol on R+
w × Rθ × Sn−1

∆ such that

b(w, θ, y, y′; 0) = σh(A)(w, y, θ, ∂yΘ(w, y, y′))χ(y, y′).

To see this, it suffices to choose some local coordinates on Sn−1, take A = Oph(a) for

some compactly supported symbol a(w, y, θ, η;h), write

AB̃χv(w, y) = (2πh)
1−3n

2

∫
e
i
h

((w−w′)θ+(y−y′′)·η+Θ(w′,y′′,y′))

a(w, y, θ, η;h)χ(y′′, y′)v(w′, y′) dw′dy′′dθdηdy′

where the integral is taken over R+
w′ × Sn−1

y′′ × Rn
θ,η × Sn−1

y′ , and apply the method of

stationary phase in the (y′′, η) variables.
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Now, let B ∈ Icomp
h (κ̂−1). Fix χ ∈ C∞0 (Sn−1

∆ ) such that

WFh(B) ⊂ Uχ := ϕΘ({(w, θ, y, y′) | χ(y, y′) 6= 0}) (4.49)

where ϕΘ : R+
w×Rθ×Sn−1

∆ → Gr(κ̂−1) is the diffeomorphism constructed using (4.48).

By Lemma 4.8, the function

Φ : (w, y, w′, y′, θ) ∈ R+
w × R+

w′ × Sn−1
∆ × Rθ 7→ (w − w′)θ + Θ(w′, y, y′)

parametrizes κ̂−1 in the sense of (2.7). Therefore, by (2.8) we may write for some

compactly supported symbol b̃ on the domain of Φ, modulo O(h∞)Ψ−∞ ,

Bv(w, y) = (2πh)−
n+1

2

∫
Sn−1×T ∗R+

e
i
h

((w−w′)θ+Θ(w′,y,y′))b̃(w, y, w′, y′, θ;h)v(w′, y′) dy′dw′dθ.

Moreover, by (4.49) (which implies that B is a Fourier integral operator associated to

a restriction of κ̂−1) we can take b̃ supported inside {χ(y, y′) 6= 0}.
Take A0 ∈ Ψcomp

h (R+ × Sn−1) such that for all (w, y, θ, η, w, y′, θ′, η′) ∈ Gr(κ̂−1),

σh(A0)(w, y, θ, η) =
b̃(w, y, w, y′, θ; 0)

χ(y, y′)
.

Comparing the oscillatory integral expressions for A0B̃χ and B and using (2.9), we get

B − A0B̃χ ∈ hIcomp
h (κ̂−1).

Moreover, we may choose A0 so that WFh(B − A0B̃χ) ⊂ Uχ. Replacing B with

h−1(B − A0B̃χ) and arguing by induction, we construct Aj ∈ Ψcomp
h (R+ × Sn−1) such

that

B −
N∑
j=0

hjAjB̃χ ∈ hN+1Icomp
h (κ̂−1).

Then B = AB̃χ+O(h∞)Ψ−∞ , where A ∈ Ψcomp
h (R+×Sn−1) is defined by the asymptotic

sum A ∼
∑∞

j=0 h
jAj. �

We now reformulate the fractal uncertainty principle of Definition 1.1 as follows:

Lemma 4.10. Assume ΛΓ, β, ε > 0, ρ ∈ (0, 1) are such that (1.8) holds for all C1, χ.

With LV defined in (4.42), let

A± ∈ Ψcomp
h,LV ,ρ

(T ∗(R+ × Sn−1)), B ∈ Icomp
h (κ̂−1)

and assume that for some constant C2, A+ and A− are O(h∞), in the sense of Defi-

nition 3.13, along every sequence (wj, yj, θj, ηj, hj) such that d(yj,ΛΓ) > C2h
ρ
j . Then

‖A−BA+‖L2→L2 ≤ Chβ−ε.
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Proof. We first use Lemma 4.9 to write B = AB̃χ+O(h∞)L2→L2 for some χ ∈ C∞0 (Sn−1
∆ )

and A ∈ Ψcomp
h (R+×Sn−1). The operator A−A ∈ Ψcomp

h,LV ,ρ
satisfies the same microlocal

vanishing assumption as A−, therefore it suffices to show that

‖A−χ′(w)B̃χA+‖L2→L2 ≤ Chβ−ε. (4.50)

Here we may insert some cutoff function χ′ ∈ C∞0 (R+) since A is compactly supported.

Using Lemma 3.3, take a function χ0(y;h) ∈ C∞(Sn−1) such that

suppχ0 ⊂ ΛΓ(2C2h
ρ), supp(1− χ0) ∩ ΛΓ(C2h

ρ) = ∅, |∂αy χ0(y)| ≤ Cαh
−ρ|α|.

Here ΛΓ(·) is defined in (1.4). We claim that

A−(1− χ0(y;h)) = O(h∞)L2→L2 , (1− χ0(y;h))A+ = O(h∞)L2→L2 . (4.51)

Indeed, by a partition of unity we may assume that WFh(A−) is contained in the

cotangent bundle of a coordinate chart on R+×Sn−1. By part 2 of Lemma 3.12 (where

B,B′ are pullback operators), we can write A− = Oph(a−) + O(h∞)L2→L2 for some

a− ∈ Scomp
L0,ρ

. Moreover, by the assumption on A−, we see that a− is O(h∞), in the sense

of Definition 3.4, along every sequence (wj, yj, θj, ηj, hj) such that yj /∈ ΛΓ(C2h
ρ
j ). Then

the first estimate in (4.51) follows from Lemma 3.8 (or rather, its trivial adaptation

to the non-compactly supported symbol 1− χ0(y;h)); the second estimate in (4.51) is

proved similarly.

By (4.51), since ‖A±‖L2→L2 is bounded uniformly in h, in order to prove (4.50) it

suffices to show

‖χ0(y;h)χ′(w)B̃χχ0(y;h)‖L2(R+×Sn−1)→L2(R+×Sn−1) ≤ Chβ−ε. (4.52)

We calculate

χ0(y;h)χ′(w)B̃χχ0(y;h)v(w, y) = χ′(w)4−iw/hB′w(v(w, ·))(y),

where B′w : L2(Sn−1)→ L2(Sn−1) is given by

B′wf(y) = (2πh)
1−n

2

∫
Sn−1

|y − y′|2iw/hχ(y, y′)χ0(y;h)χ0(y′;h)f(y′) dy′.

Replacing h by h/w in (1.8) and using that χ0 is bounded and supported in ΛΓ(2C2h
ρ),

we see that uniformly in w ∈ suppχ′,

‖B′w‖L2(Sn−1)→L2(Sn−1) ≤ Chβ−ε

and (4.52) follows from here by integration. �

We are now ready to give

Proof of Theorem 3. In order to prove (1.3), it suffices to show the estimate (4.16) for

all functions u, f satisfying (4.17), where (see (4.14))

ω = 1− ihν, ν ∈ [−1, β − ε].
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Take χ± ∈ C∞0 (T ∗M \ 0; [0, 1]) such that χ± = 1 near K ∩ {|ξ|g = 1}. We also take

ε0 > 0 small enough depending on ε and fix ρ ∈ (0, 1) so that (1.8) is satisfied with ε

replaced by ε0. Put

t := ρ log(1/h), ν+ := max(0, ν);

A′+ := OpLuh
(
χ+(χ+ ◦ e−tX)

)
, A0 := OpLuh (χ+), A′− := OpLsh

(
χ−(χ− ◦ etX)

)
.

Note that by Lemma 4.2,

A′+ ∈ Ψcomp
h,Lu,ρ

(T ∗M \ 0), A0 ∈ Ψcomp
h (M), A′− ∈ Ψcomp

h,Ls,ρ
(T ∗M \ 0).

By Lemma 4.6 we obtain

‖(A0 − A′+)u‖L2 ≤ Ch−1−ρ(ν++ε0)‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h
, (4.53)

‖u‖Hs
h
≤ Ch−ρ(ν+ε0)‖A′−u‖L2 + Ch−1−ρ(ν++ε0)‖f‖Hs−1

h
. (4.54)

We choose χ± so that χ+ = 1 near suppχ−. Let Q ∈ Ψcomp
h (M) be an elliptic

parametrix of A0 near suppχ− (see for instance [DyZw, §E.2.2] or [DyZw16, Proposi-

tion 2.4]); in particular,

QA0 = 1 +O(h∞) microlocally near suppχ−.

Since A′− is pseudolocal and its wavefront set is contained inside suppχ−, we have

‖A′−(1−QA0)u‖L2 = O(h∞)‖u‖Hs
h
. (4.55)

Take ε0 < ε/2. We claim that it suffices to prove the bound

‖A′−QA′+‖L2(M)→L2(M) ≤ Chβ−ε0 . (4.56)

Indeed, putting together (4.53)–(4.56) and using that ν ≤ β − ε, we have

‖u‖Hs
h
≤ Ch−ρ(ν+ε0)‖A′−u‖L2 + Ch−1−ρ(ν++ε0)‖f‖Hs−1

h

≤ Ch−ρ(ν+ε0)
(
‖A′−QA′+u‖L2 + ‖A′−Q(A0 − A′+)u‖L2

+ ‖A′−(1−QA0)u‖L2

)
+ Ch−1−ρ(ν++ε0)‖f‖Hs−1

h

≤ Chε−2ε0‖u‖Hs
h

+ Ch−1−2(ν++ε0)‖f‖Hs−1
h

+O(h∞)‖u‖Hs
h

giving (4.16) for h small enough.

It remains to deduce (4.56) from the fractal uncertainty principle. We may assume

that WFh(Q) is contained in a small neighborhood of suppχ−; by an appropriate

choice of χ−, we may assume that WFh(Q) is contained in a small neighborhood of

K ∩ {|ξ|g = 1}. By a partition of unity, it suffices to show that for each (x0, ξ0) ∈
K ∩ {|ξ|g = 1}, there exists a neighborhood V of (x0, ξ0) such that (4.56) holds for all

Q ∈ Ψcomp
h (M) with WFh(Q) ⊂ V .
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Fix (x0, ξ0) ∈ K ∩ {|ξ|g = 1}. Composing the maps κ± constructed in Lemma 4.7

with a local inverse of the covering map πΓ defined in (4.4), we obtain exact symplec-

tomorphisms

κ±0 : U → U ′±, U ⊂ T ∗M \ 0, U ′± ⊂ T ∗(R+ × Sn−1), (4.57)

for some small neighborhood U of (x0, ξ0) and some small neighborhoods U ′± of

(1, y±0 , θ
±
0 , η

±
0 ) := κ±0 (x0, ξ0).

Here (w, y) are coordinates on R+×Sn−1 and (θ, η) are the corresponding dual variables.

Take B± ∈ Icomp
h (κ±0 ), B′± ∈ I

comp
h ((κ±0 )−1) quantizing κ±0 near V × κ±0 (V ) in the

sense of (2.13), where V b U is a small neighborhood of (x0, ξ0). Since WFh(Q) ⊂ V

and A′± are pseudolocal, we have

A′−QA
′
+ = (B′−B−)A′−(B′−B−)(B′+B+)QA′+(B′+B+) +O(h∞)L2→L2 ;

therefore, to prove (4.56) it suffices to show that

‖A−BA+‖L2(R+×Sn−1)→L2(R+×Sn−1) ≤ Chβ−ε0 , (4.58)

where, with κ̂ defined in (4.45),

A− = B−A′−B′−, A+ = B+QA
′
+B′+, B = B−B′+ ∈ I

comp
h (κ̂−1).

By the construction of Ψcomp
h,L,ρ calculus in §3.3, together with (4.42), we see that

A± ∈ Ψcomp
h,LV ,ρ

(T ∗(R+ × Sn−1)).

Moreover, A± = O(h∞) in the sense of Definition 3.13 along each sequence (wj, yj, θj, ηj, hj)

such that

(wj, yj, θj, ηj) /∈ κ±0 (U ∩ e±ρ log(1/hj)X(suppχ±)). (4.59)

By Lemma 4.3 and (4.44), we see that (4.59) is satisfied when d(yj,ΛΓ) > C2h
ρ
j for

some fixed constant C2. Now (4.58) follows from Lemma 4.10. �

Remark. As follows from the proof of Lemma 4.7 in Appendix A, the Fourier integral

operators B± used in the proof of Theorem 3 are microlocalized versions of the Poisson

operators

v(w, y) 7→ u(x) =

∫
R+

∫
Sn−1

P(x, y)∓iw/hv(w, y) dydw.

Therefore, conjugation by B± is related to the representation of resonant states as

images under the Poisson operator of distributions supported on the limit set, see for

instance [Bo07, (14.9)] or [BuOl97].
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5. Fractal uncertainty principle

In this section, we prove Theorem 4. We will not use directly the geometry or the

dynamics of the manifold M , instead relying on the additive structure of the limit set

ΛΓ defined in (4.11) and basic harmonic analysis.

5.1. Basic properties. We start with some basic facts regarding the fractal uncer-

tainty principle of Definition 1.1. First of all, since Bχ(h) is a semiclassical Fourier

integral operator associated to a canonical transformation (see (2.8) and Lemma 4.8),

it is bounded on L2 uniformly in h. This gives the bound

‖ 1lΛΓ(C1hρ) Bχ 1lΛΓ(C1hρ) ‖L2→L2 ≤ C. (5.1)

Combined with Theorem 3, this bound translates to the well-known statement that

there are no resonances in the upper half-plane away from the imaginary axis, which

is a direct consequence of self-adjointness of the Laplacian on L2(M).

To formulate the next bound, we introduce the parameter

δ ∈ [0, n− 1] (5.2)

defined as the exponent of convergence of Poincaré series: that is, δ is the smallest

number such that for all x, x′ ∈ Hn and Re s > δ, we have

Σp(s;x, x
′) :=

∑
γ∈Γ

exp
(
− sdHn(x, γ.x′)

)
<∞.

Here dHn(·, ·) stands for the distance function on Hn induced by the hyperbolic metric.

The constant δ is the Hausdorff dimension of the limit set ΛΓ, see [Bo07, Theo-

rem 14.14] for the case n = 2 and [Su] for general dimensions. It is also the Minkowski

dimension of ΛΓ; in fact, we have the following more precise estimate (which is a form

of Ahlfors-David regularity):

C−1αn−1−δ(α′)δ ≤ µL(ΛΓ(α) ∩B(y0, α
′)) ≤ Cαn−1−δ(α′)δ,

0 < α ≤ α′ ≤ 1, y0 ∈ ΛΓ,
(5.3)

where ΛΓ(α) is defined in (1.4), B(y0, α
′) denotes the ball of radius α′ centered at

y0, µL denotes the Lebesgue measure on Sn−1, and the constant C > 0 does not

depend on y0, α, α
′. See §7.2 for the proof. By putting α′ = 1 in (5.3), we obtain in

particular (1.5).

Given (1.5), we may use Schur’s lemma [HöIII, Lemma 18.1.12]: the estimate

sup
y∈ΛΓ(C1hρ)

∫
ΛΓ(C1hρ)

|χ(y, y′)| dy′ ≤ Chρ(n−1−δ)

implies by (1.6) that

‖ 1lΛΓ(C1hρ) Bχ 1lΛΓ(C1hρ) ‖L2→L2 ≤ Ch
1−n

2 hρ(n−1−δ). (5.4)
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Since we may choose ρ arbitrarily close to 1, this gives the fractal uncertainty principle

with exponent n−1
2
− δ. By Theorem 3, the bounds (5.1) and (5.4) together translate

(with a loss of ε) to the standard spectral gap (1.2).

We finally show that the fractal uncertainty principle cannot hold with β > n−1
2
− δ

2
.

This threshold corresponds to the Jakobson–Naud conjecture, see §1.1. More precisely,

we claim that for each ε > 0, there exists χ ∈ C∞0 (Sn−1
∆ ) and a family v(h) ∈ L2(Sn−1)

such that for h small enough,

‖ 1lΛΓ(h) Bχ(h) 1lΛΓ(h) v(h)‖L2 ≥ h
n−1

2
− δ

2
+ε‖v(h)‖L2 . (5.5)

To prove (5.5), take small ε̃ > 0, fix y0, y1 ∈ ΛΓ, y0 6= y1, and let v(h) = 1lB(y0,h1+ε̃).

Then

‖v(h)‖L2 ≤ Ch(1+ε̃)(n−1)/2, 1lΛΓ(h) v(h) = v(h). (5.6)

Using (1.6), we compute

Bχ(h)v(y;h) = (2πh)
1−n

2 |y − y0|2i/h
∫
Sn−1

( |y − y′|
|y − y0|

)2i/h

χ(y, y′)v(y′) dy′.

We take h-independent χ such that χ(y, y′) = 1 for (y, y′) near (y1, y0). For y in a

fixed neighborhood of y1 and y′ ∈ supp v, we have
( |y−y′|
|y−y0|

)2i/h
= 1 + O(hε̃), therefore

for ε̃1 small enough,

|Bχ(h)v(y;h)| ≥ C−1h
1−n

2 h(1+ε̃)(n−1) for |y − y1| < ε̃1.

By (5.3), we then have

‖ 1lΛΓ(h) Bχ(h)v(h)‖L2 ≥ C−1h
1−n

2 h(1+ε̃)(n−1)h
n−1−δ

2 ,

which together with (5.6) implies (5.5) as long as ε̃ < 2
n−1

ε.

5.2. Reduction to additive energy. We now prove Theorem 4. We will take ρ very

close to 1, in particular ρ > 1/2. Using Lemma 3.3, take ψ0(y;h) ∈ C∞(Sn−1; [0, 1])

such that

supp(1− ψ0) ∩ ΛΓ(C1h
ρ) = ∅, suppψ0 ⊂ ΛΓ(hρ/2); (5.7)

sup
Sn−1

|∂αψ0| ≤ Cαh
− ρ

2
|α|. (5.8)

To show (1.8), it suffices to prove that

‖
√
ψ0 Bχ(h) 1lΛΓ(C1hρ) ‖L2→L2 ≤ Chβ−ε,

in fact it is enough to prove the following T ∗T -bound:

‖ 1lΛΓ(C1hρ) Bχ(h)∗ψ0Bχ(h) 1lΛΓ(C1hρ) ‖L2→L2 ≤ Ch2(β−ε).
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By Schur’s lemma [HöIII, Lemma 18.1.12] and (1.6) it is enough to prove the Schwartz

kernel bound

sup
y′′∈ΛΓ(C1hρ)

∫
ΛΓ(C1hρ)

|K(y, y′′;h)| dy ≤ Ch2(β−ε) (5.9)

where the integral kernel K(y, y′′;h) of the operator Bχ(h)∗ψ0Bχ(h) is given by

K(y, y′′;h) = h1−n
∫

Sn−1

(
|y′ − y′′|
|y′ − y|

)2i/h

χ(y′, y′′)χ(y′, y)ψ0(y′;h) dy′. (5.10)

Morally speaking, K(y, y′′;h) is the correlation on ΛΓ(hρ/2) between Lagrangian states

corresponding to two levels in (1.9) given by yj = y and yj = y′′.

To capture cancellations in the expression (5.9), we use the following precise version

of the method of nonstationary phase (see for instance [HöI, Theorem 7.7.1] for the

standard version):

Lemma 5.1. Let U ⊂ Rm be open and bounded, ϕ̃ ∈ C∞(U ;R), and a ∈ C∞0 (U).

Assume that the following inequalities hold:

C−1
1 h̃−1 ≤ |dϕ̃(x)| ≤ C1h̃

−1 for all x ∈ supp a;

|∂αϕ̃(x)| ≤ C|α|h̃
−ρ̃|α| for all x ∈ supp a and |α| ≥ 2;

|∂αa(x)| ≤ C|α|h̃
−ρ̃|α| for all x ∈ U and all α.

(5.11)

Here ρ̃, h̃ ∈ (0, 1) and C0, C1, C2, . . . are positive constants. Then for each N ∈ N0∣∣∣∣ ∫
U

eiϕ̃(x)a(x) dx

∣∣∣∣ ≤ C ′N h̃
N(1−ρ̃), (5.12)

where the constant C ′N depends only on U,C0, C1, . . . , CN+1.

Remark. Using coordinate charts and a partition of unity for a(x), we see that

Lemma 5.1 also applies when U is a manifold; we will typically use it for U = Sn−1.

Proof. Consider the first order differential operator

L = −i
m∑
j=1

∂jϕ̃

|dϕ̃|2
∂j, |dϕ̃|2 :=

m∑
j=1

|∂jϕ̃|2.

Then eiϕ̃ = L(eiϕ̃). Integrating by parts N times, we obtain∣∣∣∣ ∫
U

eiϕ̃(x)a(x) dx

∣∣∣∣ =

∣∣∣∣ ∫
U

eiϕ̃(x)(Lt)Na(x) dx

∣∣∣∣ ≤ µL(U) sup
x
|(Lt)Na(x)|,

where µL is the Lebesgue measure and

Ltf = i

m∑
j=1

∂j

( ∂jϕ̃
|dϕ̃|2

f
)
.
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Now, the first two bounds in (5.11) imply that

sup
x∈supp a

∣∣∣∂α( ∂jϕ̃|dϕ̃|2)∣∣∣ ≤ C ′αh̃
1−ρ̃|α|

where the constants C ′α depend only on C0, C1, . . . , C|α|+1. This together with the last

bound in (5.11) implies the estimate (5.12). �

Armed with Lemma 5.1, we establish decay of the kernel K. We first consider the

case when y and y′′ are sufficiently far away from each other so that the corresponding

Lagrangian leaves almost do not correlate:

Lemma 5.2. We have uniformly in y, y′′ ∈ Sn−1 such that |y − y′′| > 1
2
h1/2,

K(y, y′′;h) = O(h∞).

Proof. We rewrite (5.10) as

K(y, y′′;h) = h1−n
∫
Sn−1

eiϕ(y,y′,y′′)/ha(y, y′, y′′;h) dy′,

ϕ = 2(log |y′ − y′′| − log |y′ − y|), a = χ(y′, y′′)χ(y′, y)ψ0(y′;h).

(5.13)

Due to the cutoff χ, the amplitude a is supported inside some fixed compact set which

does not intersect {y = y′} and {y′ = y′′}; in particular ϕ is smooth near supp a. We

next have for all N ,

‖ϕ‖CN
y′ (supp a) ≤ CN |y − y′′|,

where the constants CN are independent of y, y′′, h. Moreover, for some constant C

independent of y, y′, y′′, h,

|∂y′ϕ(y, y′, y′′)| ≥ C−1|y − y′′| for (y, y′, y′′) ∈ supp a.

This follows immediately from (1.20) and the fact that the map y 7→ G(y′, y) is a

diffeomorphism from Sn−1 \ {y′} to T ∗y′Sn−1.

It remains to apply Lemma 5.1 with

ϕ̃ :=
ϕ

h
, h̃ :=

h

|y − y′′|
< 2h1/2, ρ̃ := ρ,

and use (5.8). �

Given Lemma 5.2, in order to show (5.9) it suffices to prove the following bound:

sup
y0∈ΛΓ

sup
y′′∈B(y0,h1/2)

∫
ΛΓ(C1hρ)∩B(y0,h1/2)

|K(y, y′′;h)| dy ≤ Ch2(β−ε). (5.14)
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We claim that it is enough to prove the following L4 estimate:

sup
y0∈ΛΓ

sup
y′′∈B(y0,h1/2)

∫
B(y0,h1/2)

|K(y, y′′;h)|4 dy ≤ Ch8(β−ε)−3ρ(n−1−δ)− 3δ
2 . (5.15)

Indeed, (5.14) follows by Hölder’s inequality from (5.15) and the following corollary

of (5.3):

‖ 1lΛΓ(C1hρ)∩B(y0,h1/2) ‖L4/3 ≤ Ch
3ρ
4

(n−1−δ)+ 3δ
8 . (5.16)

The proof of (5.15) is based on taking the Taylor expansion of the phase function ϕ

in (5.13) around y = y′′ = y0. The first term in the expansion is linear in y − y′′ and

gives the Fourier transform of a distorted version of ψ0; the next terms are O(|y−y0|2+

|y′′ − y0|2) = O(h) and can be put into the amplitude in the integral. The L4 norm of

the Fourier transform can next be estimated via the additive energy of the distorted

support of ψ0. The proof below relies on this argument, though it does not explicitly

use the Fourier transform. Note that to reduce our integral to Fourier transform we

needed to restrict to y, y′′ = y0 + O(h1/2). To show that the contributions of other

y, y′′ are negligible in Lemma 5.2 we needed the derivative bounds (5.8), explaining

the need to make ψ0 live on an hρ/2 neighborhood of the limit set rather than on an

hρ neighborhood.

Using Lemma 3.3, take ψ1(y;h) ∈ C∞(Sn−1; [0, 1]) such that

supp(1− ψ1) ∩B(y0, h
1/2) = ∅, suppψ1 ⊂ B(y0, 2h

1/2);

sup
Sn−1

|∂αψ1| ≤ Cαh
−|α|/2.

(5.17)

Then to prove (5.15) is enough to show that

sup
y0∈ΛΓ

sup
y′′∈B(y0,h1/2)

∫
Sn−1

ψ1(y;h)|K(y, y′′;h)|4 dy ≤ Ch8(β−ε)−3ρ(n−1−δ)− 3δ
2 . (5.18)

By Fubini’s Theorem and (5.10) we have∫
Sn−1

ψ1(y;h)|K(y, y′′;h)|4 dy =

∫
(Sn−1)4

K1(y1, y2, y3, y4, y
′′;h) dy1dy2dy3dy4,

where

K1 = h4(1−n)ψ0(y1;h)ψ0(y2;h)ψ0(y3;h)ψ0(y4;h)K2,

K2 =
( |y1 − y′′| · |y3 − y′′|
|y2 − y′′| · |y4 − y′′|

)2i/h

χ(y1, y
′′)χ(y2, y′′)χ(y3, y

′′)χ(y4, y′′)K3,

K3 =

∫
Sn−1

( |y2 − y| · |y4 − y|
|y1 − y| · |y3 − y|

)2i/h

χ(y1, y)χ(y2, y)χ(y3, y)χ(y4, y)ψ1(y;h) dy.
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The next statement shows that K1 is very small unless y1, y2, y3, y4 satisfy a certain

additive relation. The measure of the set of quadruples (y1, y2, y3, y4) which do satisfy

this relation will later be estimated using additive energy.

Lemma 5.3. Let ηj = G(y0, yj) ∈ T ∗y0
Sn−1, with G defined in (1.19), and assume that

|η1 − η2 + η3 − η4| ≥ hρ/2. (5.19)

Then K1(y1, y2, y3, y4, y
′′;h) = O(h∞), uniformly in y0, y1, y2, y3, y4, y

′′.

Proof. It is enough to show that K3 = O(h∞). For that, we write

K3 =

∫
Sn−1

eiϕ/ha dy, ϕ(y1, y2, y3, y4, y) = 2
4∑
j=1

(−1)j log |yj − y|,

a(y1, y2, y3, y4, y;h) = χ(y1, y)χ(y2, y)χ(y3, y)χ(y4, y)ψ1(y;h).

Put η := η1 − η2 + η3 − η4 ∈ T ∗y0
Sn−1. By (1.20),

∂yϕ(y1, y2, y3, y4, y0) = η.

Since ψ1 is supported in B(y0, 2h
1/2), we have for some global constant C,

|η| − Ch1/2 ≤ |∂yϕ| ≤ |η|+ Ch1/2 on supp a.

By (5.19), we get for h small enough,

|η|/2 ≤ |∂yϕ| ≤ 2|η| on supp a.

It remains to apply Lemma 5.1 with

ϕ̃ :=
ϕ

h
, h̃ :=

h

|η|
≤ h1−ρ/2, ρ̃ :=

1

2− ρ
,

and use (5.17). �

Since χ is supported away from the diagonal, there exists a constant C1 such that

on suppK1, we have |G(y0, yj)| ≤ C1 for j = 1, 2, 3, 4. By (5.7), the additive energy

bound (1.21) with α = Chρ/2 implies that uniformly in y′′,

µL
(
{(y1, y2, y3, y4) ∈ suppK1 | |η1−η2 +η3−η4| ≤ hρ/2}

)
≤ Ch2ρ(n−1)− 3ρ

2
δ+ ρ

2
βE (5.20)

where ηj := G(y0, yj) ∈ T ∗y0
Sn−1. We also have by (5.17)

sup |K1| ≤ Ch
7
2

(1−n).

Together with (5.20) and Lemma 5.3, this gives

sup
y0∈ΛΓ

sup
y′′∈B(y0,h1/2)

∫
Sn−1

ψ1(y;h)|K(y, y′′;h)|4 dy ≤ Ch(2ρ− 7
2

)(n−1)− 3ρ
2
δ+ ρ

2
βE .
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This implies (5.18) as long as(
2ρ− 7

2

)
(n− 1)− 3ρ

2
δ +

ρ

2
βE ≥ 8(β − ε)− 3ρ(n− 1− δ)− 3δ

2
.

Recalling (1.22), this inequality becomes(
5(n− 1)− 9

2
δ +

1

2
βE

)
(1− ρ) ≤ 8ε.

The last inequality holds when ρ is close to 1 depending on ε, finishing the proof of

Theorem 4.

6. General bounds on additive energy

In this section, we prove a new bound (Theorem 6) on the additive energy of general

Ahlfors-David regular sets (not just those arising from hyperbolic quotients).

There is substantial conflict of notation between the current section and the rest

of the paper. However, this should not cause a problem since the two are completely

decoupled from each other. This makes it possible to use simpler notation in the

current section.

We first recall the definition of Ahlfors-David regularity:

Definition 1.4. Let (M, d) be a complete metric space with more than one element.

We say a closed set X ⊂M is δ–regular with constant CX if for all x ∈ X we have

C−1
X rδ ≤ µδ(X ∩B(x, r)) ≤ CX r

δ, 0 < r < diam(M)

where B(x, r) is the metric ball of radius r centered at x and µδ is the δ–dimensional

Hausdorff measure.

Example 1 (Cantor set). Let X ⊂ [0, 1] be the middle third Cantor set. Then X is

(log 2/ log 3)–regular.

Example 2 (The limit set of a hyperbolic group). Let Γ be an n-dimensional convex

co-compact hyperbolic group, let ΛΓ ⊂ Sn−1 be the limit set, and let δ = δ(Γ) be the

critical exponent. Then ΛΓ is δ–regular. See §1.3 and [Su, Theorem 7].

In this section, it is convenient to use the following definition of additive energy,

which is different from Definition 1.2. In §7.2 we will reduce one quantity to the other.

Definition 6.1 (Additive energy). Let X ⊂ [0, 1]n and let µ be an outer measure on X
with 0 < µ(X ) <∞. For α > 0, define the (scale α) additive energy

EA(X , µ, α) = µ4({(x1, x2, x3, x4) ∈ X 4 | |x1 − x2 + x3 − x4| < α}). (6.1)

If the measure µ is apparent from context, we will write EA(X , α) in place of EA(X , µ, α).
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We will now restrict attention to the metric space [0, 1]. The main result of this

section is

Theorem 6 (Regular sets have small additive energy). Let X ⊂ [0, 1] be a δ–regular

set with regularity constant CX and δ < 1. Then

EA(X , α) = EA(X , µδ, α) ≤ C̃αδ+βX (6.2)

for some βX > 0 and some C̃ > 0. In particular, we can choose

βX = δ exp
[
−K(1− δ)−14(1 + log14C)

]
, (6.3)

where K is a large absolute constant; the constant C̃ depends only on δ and CX .

The exact bound (6.3) is not important and can certainly be improved. The key

point is that βX does not depend on α.

Heuristically, Theorem 6 says that if we choose points x1, x2, x3 ∈ X at random

(using normalized δ–dimensional Hausdorff measure on X ), then the probability that

there will exist a point x4 with |x1 − x2 + x3 − x4| < α is at most C̃αβX . For βX > 0

and α << C̃−1/βX , this quantity is much smaller than 1.

Remarks. (i) If I ⊂ R is an interval of finite length and X ⊂ I is a δ–regular set, we

can apply Theorem 6 to X by rescaling I appropriately. More interestingly, if I ⊂ R
is a (possibly infinite) interval and X ⊂ I is a is a δ–regular set, then X ′ = X ∩ [0, 1]

might not be δ–regular (for example, it might be the union of a δ–regular set X0 and

a point far from X0), but in many instances we can still apply Theorem 6. This is

discussed further in §7.2.

(ii) Theorem 6 is a statement about the additive energy of δ–regular sets. In Proposi-

tion 6.23 below, we state an alternate version of the theorem that bounds the additive

energy of sets that are unions of intervals of length α (and which satisfy conditions

analogous to being δ–regular).

The main application of Theorem 6 will be a bound on the additive energy of the

limit set of a Fuchsian group. Informally, the result is as follows. Let ΛΓ ⊂ S1 be the

limit set of a Fuchsian group with critical exponent δ(Γ) and let G(y0, ·) : S1 → R be

the stereographic projection defined by (1.19). Then the image of ΛΓ is a δ(Γ)-regular

set. The set G(y0,ΛΓ) transforms naturally under a certain type of group operation,

and this allows us to restrict attention to the interval [0, 1]. We then apply Theorem 6

to bound the additive energy of G(y0,ΛΓ) ∩ [0, 1]. The exact statement and proof are

in §7.

6.1. Ideas behind the proof of Theorem 6.
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6.1.1. Ahlfors-David regularity and arithmetic progressions. A δ–regular subset of [0, 1]

cannot contain long arithmetic progressions. More precisely, suppose P ⊂ X is an

arithmetic progression of length |P | and spacing t > 0. Let I ⊂ [0, 1] be the interval of

length t|P | centered around P . If we place an interval of radius t/2 around each point

of P , then µδ(X ∩ I) ≥ C−1
X |P |(t/2)δ. On the other hand, µδ(X ∩ I) ≤ CX (|P |t)δ. If

|P | is sufficiently large (depending on CX and δ), we arrive at a contradiction, provided

that δ < 1. In fact more is true. If P is not contained in X but merely meets X in

many points, the argument still applies as well. Finally, the argument is not affected

if we perturb the points of P slightly. We say that X strongly avoids long arithmetic

progressions.

Note that this argument relies on the fact that δ < 1. If instead X is a subset of

[0, 1]n for n > 1 (or a more general metric space) and δ ≥ 1 then the argument fails.

In §6.8.2 we will discuss this phenomenon further.

6.1.2. Small doubling and additive structure. If A ⊂ Z is a finite set and |A + A| <
K|A|, what can we say about A? There is a family of theorems in additive combi-

natorics that say that if K is small then A must have additive structure. The most

famous of these is Frĕıman’s theorem [Fr], which says that A must be contained in a

generalized arithmetic progression. For our purposes however, we will obtain stronger

results by using a variant of Frĕıman’s theorem due to Sanders [Sa], which makes the

weaker claim that A has large intersection with a convex progression.

When combined with the ideas discussed above, we conclude that if X is a regular

set then X cannot have maximally large additive energy. Unfortunately, the sort of

bounds that one obtains from this argument are very weak—far too weak to obtain

the polynomial in α improvement of Theorem 6†.

6.1.3. Multiscale analysis of Ahlfors-David regular sets. If X is a regular set, we can

examine X at many intermediate scales between α and 1; there will be roughly | logα|
scales total. We use the arguments above to get a small gain in the scale-α addi-

tive energy of X at each intermediate scale. These gains will compound with each

intermediate scale, and the total gain will be large enough to obtain Theorem 6.

6.2. Ahlfors-David regular sets and additive structure. We start the proof of

Theorem 6 by exploring the implications of δ-regularity for the additive structure of

the set X .

Definition 6.2. An arithmetic progression is a set of the form

{a− `q, a− (`− 1)q, . . . , a, a+ q, . . . , a+ `q} ⊂ Z,
†However, if the polynomial Frĕıman-Ruzsa conjecture is proved then this theorem may be employed

directly, and the subsequent steps would not be needed.
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where a, q ∈ Z, q 6= 0, and ` ≥ 0.

Definition 6.3. Let A ⊂ Z be a finite set. We say that A strongly avoids long

arithmetic progressions (with parameter S) if for all ε > 0, there is a number

S = S(ε) so that for all arithmetic progressions P ⊂ Z with |P ∩ A| ≥ ε|P |, we have

|P | ≤ S(ε).

If X ⊂ tZ for 0 < t < 1, then we say that X strongly avoids long arithmetic

progressions if t−1X does, i.e. we simply re-scale X so that it lies on the integer lattice.

Definition 6.4. A (d-dimensional) centered convex progression is a triple (B,Λ, ϕ),

where B ⊂ Rd is a centrally symmetric convex set, Λ ⊂ Rd is a lattice, and ϕ : Λ→ Z
is a linear map. We will primarily be interested in the image ϕ(B ∩ Λ). Sets of this

form are generalizations of arithmetic progressions. If ϕ is injective on B ∩Λ, we say

that (B,Λ, ϕ) is proper.

The next lemma shows that a d-dimensional centered convex progression (B,Λ, ϕ)

of cardinality N := |ϕ(B ∩ Λ)| can be embedded into a centered convex progression

(B′,Λ′, ϕ′) whose size |B′ ∩ Λ′| is bounded by N times a d-dependent constant.

Lemma 6.5 (Cardinality vs. size). Let (B,Λ, ϕ) be a d-dimensional centered convex

progression. Then there is some d′ ≤ d and a d′-dimensional centered convex progres-

sion (B′,Λ′, ϕ′) with

|B′ ∩ Λ′| ≤ 2(d+2)2|ϕ(B ∩ Λ)| (6.4)

such that

ϕ(B ∩ Λ) ⊂ ϕ′(B′ ∩ Λ′). (6.5)

Proof. We recall [TaVu08, Corollary 4.2]:

Proposition 6.6. Let (B,Λ, ϕ) be a d–dimensional centered convex progression. Then

there exists a d′-dimensional proper centered convex progression (B′′,Λ′′, ϕ′′) for some

d′ ≤ d such that we have the inclusions

ϕ(B ∩ Λ) ⊂ ϕ′′
(
(2d−d

′+1B′′) ∩ Λ′′
)
, (6.6)

ϕ
(
(2B′′) ∩ Λ′′

)
⊂ ϕ(B ∩ Λ), (6.7)

where tB = {x ∈ Rd | t−1x ∈ B}.

Let B′ := 2d−d
′+1B′′, Λ′ := Λ′′, and ϕ′ := ϕ′′. Then (6.5) is satisfied. Since

(B′′,Λ′′, ϕ′′) is proper, we have∣∣(2−d+d′−1B′) ∩ Λ′
∣∣ =

∣∣ϕ′((2−d+d′−1B′) ∩ Λ′
)∣∣ ≤ |ϕ(B ∩ Λ)|. (6.8)

By [TaVu08, Lemma 3.3], we have

|B′ ∩ Λ′| ≤ 2(d+2)2∣∣(2−d+d′−1B′) ∩ Λ′
∣∣. (6.9)
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Combining (6.8) and (6.9) we obtain (6.4). �

We next recall [TaVu06, Lemma 3.36]:

Proposition 6.7. Let B ⊂ Rd be a centrally symmetric convex set and let Λ ⊂ Rd

be a lattice. Suppose that the R span of B ∩ Λ has dimension r. Then there exists

an r–tuple w = (w1, . . . , wr) with w1, . . . , wr linearly independent vectors in Λ, and an

r–tuple of integers N = (N1, . . . , Nr) so that

[−N,N ] · w ⊂ B ∩ Λ ⊂ [−r2rN, r2rN ] · w. (6.10)

Here

[−N,N ] · w = {`1w1 + . . .+ `rwr | −Nj ≤ `j ≤ Nj, j = 1, . . . , r}.

Corollary 6.8. Let B ⊂ Rd be a centrally symmetric convex set and let Λ ⊂ Rd be

a lattice. Suppose that the R span of B ∩ Λ has dimension r. Then there exists an

r–tuple w = (w1, . . . , wr) with w1, . . . , wr linearly independent vectors in Λ, and an

r–tuple of integers N = (N1, . . . , Nr) so that

B ∩ Λ ⊂ [−N,N ] · w, (6.11)

and
r∏
j=1

(2Nj + 1) ≤ 3rr2r2|B ∩ Λ|. (6.12)

Lemma 6.9 (Arithmetic progressions inside convex progressions). Let (B,Λ, ϕ) be a

d–dimensional centered convex progression and let

A ⊂ ϕ(B ∩ Λ), |A| ≥ ε|ϕ(B ∩ Λ)|.

Then there exists a (one dimensional) arithmetic progression P ⊂ Z with

|P | ≥ |A|1/d (6.13)

and

|P ∩ A| ≥ d−3(d+2)2

ε|P |. (6.14)

Proof. Let (B′,Λ′, ϕ′) be a centered convex progression obeying (6.4) and (6.5). In

particular, we have A ⊂ ϕ′(B′ ∩ Λ′) and

|B′ ∩ Λ′| ≤ 2(d+2)2

ε−1|A|. (6.15)

By Corollary 6.8, there is a number r ≤ d, an r–tuple w = (w1, . . . , wr) of linearly

independent vectors in Λ′, and an r–tuple of integers N = (N1, . . . , Nr) so that

(ϕ′)−1(A) ∩B′ ∩ Λ′ ⊂ B′ ∩ Λ′ ⊂ [−N,N ] · w, (6.16)

and
r∏
j=1

(2Nj + 1) ≤ 3rr2r2 |B′ ∩ Λ′| ≤ 2(d+3)2

d2d2

ε−1|A|. (6.17)
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Now, (6.16) implies that

A ⊂ ϕ′([−N,N ] · w). (6.18)

We can assume that ϕ′(wi) 6= 0 for each index i for which Ni 6= 0, since if ϕ′(wi) = 0

then we could set Ni = 0 and both (6.17) and (6.18) remain satisfied.

By re-indexing if necessary, we can assume that N1 ≥ Nj for all j = 2, . . . , r.

Partition the set [−N,N ] · w into
∏r

j=2(2Nj + 1) disjoint sets of the form{
`w1 +

r∑
j=2

xjwj

∣∣∣ −N1 ≤ ` ≤ N1

}
.

Each of these sets has cardinality

(2N1 + 1) ≥
( r∏
j=1

(2Nj + 1)
)1/r

≥ |A|1/d.

By (6.17), (6.18), and pigeonholing, at least one of these sets Y must satisfy

|Y ∩ (ϕ′)−1(A)| ≥ 2−(d+3)2

d−2d2

ε|Y | ≥ d−3(d+2)2

ε|Y |. (6.19)

For the last inequality we may assume that d ≥ 2, since otherwise we may put P :=

ϕ(B ∩ Λ).

Let P = ϕ′(Y ). By assumption ϕ′ is injective on Y , so P satisfies (6.13) and (6.14).

�

The following Proposition is a direct corollary of [Sa, Theorem 1.4]:

Proposition 6.10 (Additive structure). Let A ⊂ Z and suppose |A + A| ≤ K|A|.
Then there is a d ≤ K0 log4K dimensional centered convex progression (B,Zd, ϕ) and

an offset x ∈ Z so that

|ϕ(B ∩ Zd)| ≤ exp[K0 log4K] · |A| (6.20)

and

|(A− x) ∩ ϕ(B ∩ Zd)| ≥ exp[−K0 log4K] · |A|. (6.21)

Here K0 > 0 is an absolute constant.

Applying Lemma 6.9, we obtain the following corollary.

Corollary 6.11. Let A ⊂ Z and suppose that |A + A| ≤ K|A|. Then there is an

arithmetic progression P so that

|P | ≥ |A|(K1 log4 K)−1

, (6.22)

and

|A ∩ P | ≥ e−K1 log9 K |P |. (6.23)

Here K1 > 0 is an absolute constant. The term log9 in (6.23) could be replaced with

log8+o(1), but we will not worry about these small optimizations.
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Corollary 6.12. Let A ⊂ Z. Suppose that A strongly avoids long arithmetic progres-

sions (with parameter S(ε)), and |A+ A| ≤ K|A|. Then

|A| ≤
(
S(e−K1 log9 K)

)K1 log4K

, (6.24)

where K1 is the absolute constant from Corollary 6.11.

Proposition 6.13 (Ahlfors-David regular sets avoid arithmetic progressions). Let X ⊂
[0, 1] be a δ–regular set with regularity constant C and let 0 < α < 1. Then X (α)∩αZ
strongly avoids long arithmetic progressions (here X (α) is the α-neighborhood of X ).

In particular, we can take S(ε) = (10C2ε−1)
1

1−δ .

Proof. Let P ⊂ [0, 1] ∩ αZ be a proper arithmetic progression. In particular, P has

spacing t ≥ α. Assume that |P ∩X (α)| > ε|P |. For each point y ∈ P ∩X (α), the ball

B(y, 2t) contains the ball of radius t centered at some point of X . By (1.23) we have∑
y∈P∩X (α)

µδ(X ∩B(y, 2t)) ≥ C−1ε|P |tδ. (6.25)

On the other hand, the balls B(y, 2t) are at most five-fold overlapping, and P is

contained in an interval J of length (|P | + 3)t ≤ 2|P |t (unless |P | < 3 in which case

|P | < S(ε) automatically). By (1.23) we have∑
y∈P∩X (α)

µδ(X ∩B(y, 2t)) ≤ 5µδ(X ∩ J) ≤ 10C(t|P |)δ. (6.26)

We conclude that |P | ≤ (10C2ε−1)
1

1−δ . �

Combining Corollary 6.12 and Proposition 6.13, we get

Corollary 6.14. Let X ⊂ [0, 1] be a δ–regular set with regularity constant C. Let

0 < α < 1 and A ⊂ X (α) ∩ αZ, and suppose |A+ A| ≤ K|A|. Then

|A| ≤ exp
[
K3(1− δ)−1(logC) log13K

]
(6.27)

for some absolute constant K3.

6.3. Ahlfors-David regular trees. The key to proving Theorem 6 will be to analyze

X at many scales. Heuristically, if α = M−N for M,N positive integers, then X can

naturally be analyzed at the N scales 1,M−1, . . . ,M−N . On each scale, we will get a

small gain in the scale-α additive energy of X . In order to keep track of X (α) at these

different scales we will construct an object called a tree.

Definition 6.15 (Trees). A (rooted) tree of height ` ∈ Z≥0 is a connected acyclic

graph with a distinguished vertex (called the root). Once we have specified the root of a

tree, each vertex has a well-defined height (i.e. its distance from the root), and we say
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that one vertex v is a parent of another vertex v′ if v and v′ are adjacent and v has

smaller height.

More formally, a (rooted) tree is a quadruple (V,H, p, `), where

• V is a finite set of vertices;

• H : V → {0, . . . , `} is the height function, and H−1(0) consists of a single

vertex called the root;

• p : V \ H−1(0) → V is the parent function, and p(H−1(t)) ⊂ H−1(t − 1) for

t = 1, . . . , `.

We denote by Vt(T ) := H−1(t) the set of vertices of height t.

Let T be a tree of height `. The set of leaves of T is defined as

L(T ) = H−1(`) ⊂ V.

For each vertex v ∈ V , we say that v′ ∈ V is a child of v, if p(v′) = v. More

generally, we say that v′ is below v, and write v′ ≺ v, if there is a sequence of vertices

v1, . . . , vm so that v1 = v, vm = v′, and vi+1 is a child of vi for each i = 1, . . . ,m− 1.

If T is a tree and v ∈ V , we define Tv to be the subtree of T rooted at v. This is a

tree of height `−H(v). Its vertices are the set {v′ ∈ V | v′ ≺ v}. The height function

is v′ 7→ H(v′)−H(v), and the parent function is inherited from the original tree.

Definition 6.16 (Regular trees). Let `, B, C ≥ 0. We say a tree T is an “Ahlfors-

David regular tree of height `, branching B, and regularity constant C” if T is a tree

of height ` and for each v ∈ T ,

C−1B`−H(v) ≤ |L(Tv)| ≤ CB`−H(v), (6.28)

where Tv is the sub-tree of T rooted at v.

Remark. If T is an Ahlfors-David regular tree with height `, branching B, and

regularity constant C, then each vertex of T has between C−2B and C2B children.

However, much more is true–if a vertex of T has (relatively) few children, then its

children must have many children, and vice versa. Thus the tree T might not be

perfectly balanced, but it cannot become extremely unbalanced either.

Lemma 6.17. Let T be an Ahlfors-David regular tree with height `, branching B, and

regularity constant C. Let v ∈ T . Then Tv (the sub-tree rooted at v) is an Ahlfors-

David regular tree of height `−H(v), branching B, and regularity constant C.

If T is a tree of height ` and j ∈ N, then we can define the j-th power of T ,

denoted T j, as the following tree of height `:

• the vertices of T j are ordered pairs (v1, . . . , vj), where v1, . . . , vj are vertices of

the tree T of the same height;
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• the height of a vertex (v1, . . . , vj) is equal to the height of each of vi;

• the parent of a vertex (v1, . . . , vj) is equal to (p(v1), . . . , p(vj)), where p is the

parent function of the original tree.

If T is an Ahlfors-David regular tree with height `, branching B, and regularity

constant C, then T j is an Ahlfors-David regular tree with with height `, branching Bj,

and regularity constant Cj.

6.4. Discretization. The trees discussed in the previous section are useful for de-

scribing the multi-scale structure of δ–regular sets.

Let X ⊂ [0, 1] be a δ–regular set with regularity constant C. Define

C1 := (10C2)
1

1−δ . (6.29)

Let M,N be positive integers; we will fix M and study asymptotic behavior as N →
∞. We will describe a process that divides [0, 1) into sub-intervals of length roughly

M−j, j = 0, . . . N, and assembles these intervals into a tree.

For each j = 0, . . . , N , divide [0, 1) into M j intervals of the form [iM−j, (i+1)M−j).

If I is an interval of this form, we say I is empty if I ∩ X = ∅. Otherwise I is non-

empty. If several non-empty intervals are adjacent, merge them into a single (longer)

interval. By Lemma 6.13 with α := M−j and ε := 1, at most C1 intervals can be

merged into a single interval in this fashion. Let Ij be the set of non-empty intervals

obtained after the merger process is complete. Each interval in Ij has length between

M−j and C1M
−j. Furthermore, if I is an interval in Ij, then there is a gap of size

≥M−j on either side of I that is disjoint from X .

Lemma 6.18. Let I ∈ Ij. Then there is a unique interval Ĩ ∈ Ij−1 that intersects I.

Furthermore, I ⊂ Ĩ.

Proof. First, note that I ⊂
⋃
Ĩ∈Ij−1

Ĩ. Thus it suffices to show that I intersects at most

one interval from Ij−1. Suppose that I intersects two intervals, Ĩ = [̃i0M
1−j, ĩ1M

1−j)

and Ĩ ′ = [̃i′0M
1−j, ĩ′1M

1−j) from Ij−1. If we write I = [i0M
−j, i1M

−j), then i0 ≤
Mĩ1 ≤Mi′0 ≤ i1.

Since no two intervals in Ij−1 can be adjacent, there must be some interval of the form

[i′M1−j, (i′ + 1)M1−j) that is disjoint from X , with ĩ1 < i′ < i′ + 1 < ĩ′0. This implies

that [i′M1−j, (i′+1)M1−j) ⊂ I, and in particular, [(Mi′)M−j, (Mi′+1)M−j) ⊂ I. But

this implies that [(Mi′)M−j, (Mi′+1)M−j)∩I∩X = ∅, which is a contradiction—by the

construction of the intervals in Ij, every sub-interval of I of the form [iM−j, (i+1)M−j)

must intersect X . We conclude that there is at most one interval from Ij−1 that

intersects I. �
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Figure 7. The discretization of the middle third Cantor set (pictured

in red) with M = 4. The intervals of the discretization for j = 1, . . . , 4

are pictured in blue and form a tree.

We now construct the tree TX ;M,N as follows. The root vertex of TX ;M,N corresponds

to the interval [0, 1) ∈ I0. For each j = 1, . . . , N , the vertices of TX ;M,N of height j

correspond to the intervals in Ij. The parent of an interval in Ij is the unique interval

in Ij−1 containing that interval. If v is a vertex of TX ;M,N , let Iv be the corresponding

interval. Note that v′ ≺ v if and only if Iv′ ⊂ Iv. See Figure 7.

Lemma 6.19. Let X be a δ–regular set with regularity constant C. Then TX ;M,N is

an Ahlfors-David regular tree with height N , branching M δ and regularity constant

C2 := C2Cδ
1 = 10

δ
1−δC

2
1−δ . (6.30)

Proof. Let v be a vertex of T = TX ;M,N and let Iv ⊂ [0, 1) be the corresponding interval.

Choose any x0 ∈ Iv ∩ X . Since Iv has length no more than C1M
−H(v), it is contained

in the ball B(x0, C1M
−H(v)). On the other hand,‡ B(x0,M

−H(v)) ∩ X ⊂ Iv. Since X
is δ-regular, we have

C−1M−H(v)δ ≤ µδ(X ∩ Iv) ≤ C(C1M
−H(v))δ. (6.31)

For each leaf v′ ∈ L(T ) with v′ ≺ v, let Iv′ be the corresponding interval. Again, we

have

C−1M−Nδ ≤ µδ(X ∩ Iv′) ≤ C(C1M
−N)δ. (6.32)

On the other hand, by Lemma 6.18 we have

µδ(X ∩ Iv) =
∑

v′∈L(Tv)

µδ(X ∩ Iv′).

‡This is one of the places where we use the the merging of consecutive intervals; otherwise, one of

the intervals may intersect X at an endpoint and the resulting tree may not be regular.
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It follows that

C−1
2 (M δ)N−H(v) ≤ |L(Tv)| ≤ C2(M δ)N−H(v), C2 = C2Cδ

1 . �

We will mainly be interested in the tree T 3
X ;M,N . A vertex of this tree is a triple of

intervals (I1, I2, I3) where each interval Ii meets X and all three intervals lie in Ij for

some j (and thus they have comparable lengths).

6.5. Additive structure and pruning the tree. Let X be a δ–regular set with reg-

ularity constant C and let TX ;M,N be the Ahlfors-David regular tree described in §6.4.

Let v = (I1, I2, I3) be a vertex of T 3
X ;M,N . Consider the interval

I1 − I2 + I3 := {x1 − x2 + x3 | x1 ∈ I1, x2 ∈ I2, x3 ∈ I3}.

We say that v misses X if (I1 − I2 + I3) ∩ X (M−H(v)) = ∅. Otherwise v hits X .

The following result shows that if M is sufficiently large then we have an improve-

ment in additive energy on each level of the tree.

Proposition 6.20. Let X be a δ–regular set with regularity constant C, and let TX ;M,N

be the Ahlfors-David regular tree described above. Assume that M ≥M0, where

M0 := exp
[
K5δ

−1(1− δ)−14(1 + log14C)
]
, (6.33)

and K5 is a large absolute constant. Let v ∈ T 3
X ;M,N be a vertex that is not a leaf.

Then at least one of the children of v misses X .

Proof. Suppose M ≥ M0. Let v ∈ T 3
X ;M,N be a vertex that is not a leaf and suppose

all of the children of v hit X ; we will obtain a contradiction. Write v = (v1, v2, v3) and

let I1, I2, I3 ∈ IH(v) be the corresponding triple of intervals. Let α1 = M−H(v)−1 and

define
Ai := Ii ∩ X (α1) ∩ α1Z, i = 1, 2, 3;

A4 := (I1 − I2 + I3) ∩ X (4C1α1) ∩ α1Z.

Here C1 is defined in (6.29).

Lemma 6.21. If every child of v hits X , then

A1 − A2 + A3 ⊂ A4. (6.34)

Proof. Take ai ∈ Ai, i = 1, 2, 3. Then |ai − bi| ≤ α1 for some bi ∈ X ; since Ii is

surrounded by size Mα1 intervals which do not intersect X , we have bi ∈ Ii ∩ X .

Then bi lies in some child I ′i of Ii, which is an interval of size no more than C1α1.

We have I ′1 − I ′2 + I ′3 ∩ X (α1) 6= ∅ and thus b1 − b2 + b3 ∈ X ((3C1 + 1)α1). Then

a1 − a2 + a3 ∈ X (4C1α1) and (6.34) follows. �
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We next claim that
|Ai| ≥ (2C2)−1M δ, i = 1, 2, 3;

|A4| ≤ 44C2C1M
δ.

(6.35)

These inequalities follow immediately from (1.23) and the following observations:

• The balls B(a, α1) centered at a ∈ Ai cover X ∩ Ii, and X ∩ Ii contains the

intersection of X with a ball of radius Mα1 centered at a point of X .

• For each a ∈ A4, the ball B(a, 5C1α1) contains a ball of radius C1α1 cen-

tered at a point of X , the balls B(a, 5C1α1) for different a have overlapping

at most 11C1, and their union is contained in an interval of length (3M +

10)C1α1 ≤ 4MC1α1.

We now use the Ruzsa sum inequality [Ru, (4.6)] (see also Petridis [Pe]):

|A+ C| ≤ |A+B| · |B + C|
|B|

valid for nonempty finite sets A,B,C ⊂ Z. Putting A := A1, B := A3, C := A1 and

using (6.35) and the fact that |A1 + A3| ≤ |A4| we obtain

|A1 + A1| ≤
|A4|2

|A1| · |A3|
· |A1| ≤ C3|A1|,

where

C3 := 7744C8C2
1 ≤ (10C2)

6
1−δ .

Apply Corollary 6.14 to the set A1 with K := C3. We conclude that

|A1| ≤ exp
[
K4(1− δ)−1(logC)

(
(1− δ)13(1 + logC)13

)]
, (6.36)

where K4 is an absolute constant. If M ≥M0, we obtain a contradiction with the first

bound in (6.35). �

6.6. Analyzing the pruned tree. To take advantage of Proposition 6.20, we prove

the following general fact about pruned subtrees of Ahlfors–David regular trees.

For two trees T = (V,H, p, `), T ′ = (V ′, H ′, p′, `) of same height, we say that T ′ is a

subtree of T if V ′ ⊂ V and H ′, p′ are the restrictions of H, p to V ′. We say that T ′ is

a pruned subtree, if for each v ∈ V ′ which is not a leaf, there exists a child of v in T

which does not lie in V ′. See Figure 8.

Lemma 6.22 (Pruned trees have few leaves). Let T be an Ahlfors-David regular tree

with height `, branching B, and regularity constant C. Let T ′ be a pruned subtree of T .

Then

|L(T ′)| ≤
(
1− C−2B−1

)`|L(T )|. (6.37)
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Figure 8. An Ahlfors-David regular tree and a pruned subtree (in red).

Proof. We will prove the lemma by induction on `, the height of the tree. If ` = 0

the result is trivial. Now assume the result has been proved for all Ahlfors-David

regular trees with height `− 1, branching B, and regularity constant C. Let T be an

Ahlfors-David regular tree with height `, branching B, and regularity constant C, and

let T ′ be a pruned subtree of T . Then at least one of the vertices in V1(T ) is missing

from T ′. We call this vertex v∗.

By Lemma 6.17, each of the trees {Tv | v ∈ V1(T ′)} is a regular tree with height `−1,

branching B, and regularity constant C. Thus we can apply the induction hypothesis

to each such tree to obtain

|L(T ′)| =
∑

v∈V1(T ′)

|L(T ′v)|

≤ (1− C−2B−1)`−1
∑

v∈V1(T ′)

|L(Tv)|

≤ (1− C−2B−1)`−1
(
|L(T )| − |L(Tv∗)|

)
.

By (6.28) we have

|L(Tv∗)| ≥ C−2B−1|L(T )|. (6.38)

Thus

|L(T )| − |L(Tv∗)| ≤ (1− C−2B−1) · |L(T )|,
so

|L(T ′)| ≤ (1− C−2B−1)`|L(T )|. �

6.7. Finishing the proof of Theorem 6. Let X be a δ–regular set with regularity

constant C and let α > 0. Let

M = dM0e, N =

⌊
log(1/α)

logM

⌋
,

where M0 is defined in (6.33), and let TX ;M,N be the associated Ahlfors-David regular

tree constructed in §6.4.
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Let T ′ be the subtree of T 3
X ;M,N which consists of triples of intervals that hit X

(see §6.5). By Proposition 6.20, T ′ is pruned in the sense of §6.6. By Lemmas 6.17

and 6.22 and the inequality (1− t) ≤ e−t, we have

|L(T ′)| ≤
(

1−
(
C6

2M
3δ
)−1
)N
C3

2M
3δN

≤ C3
2M

N(3δ−ρ), ρ = (C6
2M

3δ logM)−1.
(6.39)

Expanding the definition of C2 and M0 from (6.30) and (6.33), we have

ρ ≥ δ exp
[
−K6(1− δ)−14(1 + log14C)

]
,

where K6 is a large absolute constant.

Now, assume that (x1, x2, x3) ∈ X 3 satisfies x1 − x2 + x3 ∈ X (α). Then xi ∈ Ii,

i = 1, 2, 3, where Ii are intervals corresponding to some leaves vi of TX ;M,N . Moreover,

since α ≤ M−N , the vertex (v1, v2, v3) hits X and thus is a leaf of T ′. By (1.23), for

each leaf (v1, v2, v3) of T ′ we have

µ4
δ

({
(x1, x2, x3, x4) ∈ X 4 | |x1 − x2 + x3 − x4| ≤ α, xi ∈ Ivi , i = 1, 2, 3

})
≤ C4α

4δ

for some constant C4 depending on C and δ but not on α. Combining this with (6.39)

and recalling (6.1), we conclude that

EA(X , µδ, α) ≤ C4C
3
2α

δ+ρ ≤ C4C
3
2α

δ+βX

where βX = δ exp
[
−K(1− δ)−14(1 + log14C)

]
for K a large absolute constant. This

finishes the proof of Theorem 6.

6.8. Further remarks.

6.8.1. A discretized additive energy bound. We have chosen to phrase Theorem 6 in

the language of Ahlfors-David regular sets. However, we only examine these sets at

scales between α and 1. Our proof of Theorem 6 also gives the following variant:

Proposition 6.23. Let X ⊂ [0, 1] be a union of intervals of length α. Suppose that

for all α ≤ r ≤ 1 and all x ∈ X we have the bounds

C−1
X rδα1−δ ≤ µL(X ∩B(x, r)) ≤ CX r

δα1−δ, (6.40)

where µL is the one-dimensional Lebesgue measure. Then

µ4
L

(
{(x1, x2, x3, x4) ∈ X | |x1 − x2 + x3 − x4| < α}

)
≤ C̃α4−3δ+βX , (6.41)

where βX is as given in (6.3) and C̃ is some constant.
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6.8.2. Higher dimensions. Most of the arguments in this section extend to higher di-

mensions without difficulty. The real issue is extending Theorem 6 to δ ≥ 1. This

may be challenging because Proposition 6.13 may not be true if δ ≥ 1. For example, a

unit line segment in [0, 1]2 is a 1–regular set, but it contains arbitrarily long arithmetic

progressions. A unit line segment in [0, 1]2 also has maximal additive energy, so no

variant of Theorem 6 can hope to hold for that example. If δ ≥ 1, it is not clear what

the proper hypotheses for the theorem should be.

One possible avenue is the following. In [B LZ], the authors study 1–regular sets that

satisfy an additional property called (ρ, C1)–unrectifiability. If a 1–regular set is (ρ, C1)

unrectifiable, then for all rectangles R of dimensions r1 ≥ r2, we have µ1(X ∩ R) ≤
Cr1−ρ

1 rρ2. If ρ > 0 then sets with this property strongly avoid arithmetic progressions.

It is possible that this property can be generalized to other δ–regular sets for δ > 1.

6.8.3. Improving the bounds on βX . It is likely that the bound on βX from Theorem 6

can be substantially improved. A modest improvement would be to replace the bound

in (6.3) by C
−K/(1−δ)K
X where K is an absolute constant.

However, the following example shows that the constant βX must go to 0 as C →∞.

Let C > 1 be an integer and let

X = {x ∈ [0, 1] | x has a base C expansion of the form x = 0.a10a30a5 . . .}. (6.42)

Then X is a 1/2–regular set with regularity constant C. On the other hand,

EA(X , α) ≥ α1/2+ 1
10 logC .

A similar example can be constructed for other values of δ. This shows that in Theo-

rem 6 we cannot take βX > 0 to be independent of C.

7. Regularity and additive energy of limit sets

In this section, we study regularity of limit sets of convex co-compact groups and

their stereographic projections (§7.1). We next use the results of §6 to prove Theorem 5

(§7.2).

7.1. Regularity of limit sets. In this section, we consider a convex co-compact

hyperbolic quotient M = Γ\Hn and use the Ahlfors-David regularity of the limit

set ΛΓ ⊂ Sn−1 to establish Ahlfors-David regularity of the stereographic projections

G(y0,ΛΓ) ⊂ Ty0Sn−1, y0 ∈ ΛΓ, where G is defined in (1.19):

Lemma 7.1. Let C be the constant in Ahlfors-David regularity of the limit set, as

defined in (1.24). Then for each y0, y1 ∈ ΛΓ, y0 6= y1, we have

K−1
0 C−1rδ ≤ µδ

(
G(y0,ΛΓ) ∩B(G(y0, y1), r)

)
≤ K0Cr

δ, r > 0 (7.1)
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where µδ is the δ–Hausdorff measure on Ty0Sn−1 and K0 is a global constant (depending

only on the dimension).

The case of bounded r in the above lemma is an immediate consequence of the regu-

larity of ΛΓ. To show that the constants in the regularity statement do not deteriorate

when r →∞, we will prove that if we shrink the set G(y0,ΛΓ)−G(y0, y1), we obtain an

isometric image of the set G(y′0,ΛΓ)−G(y′0, y
′
1) for some other y′0, y

′
1 ∈ ΛΓ. For that we

use the group action, or equivalently, argue on the quotient manifold M rather than

on Hn.

We first write the sets G(y0,ΛΓ) ⊂ Ty0Sn−1 as subsets of the unstable spaces on M

via a map U− constructed using horocyclic flows (see Appendix A for the proof):

Lemma 7.2. Let S∗Hn ⊂ T ∗Hn be the unit cotangent bundle and Eu the unstable

foliation, see (4.3). Then there exists a smooth map

U− : {(x, ξ, η) | (x, ξ) ∈ S∗Hn, η ∈ Eu(x, ξ)} → S∗Hn

such that for (x̃, ξ̃) := U−(x, ξ, η) and B± : S∗Hn → Sn−1 defined in (4.7),

B−(x̃, ξ̃) = B−(x, ξ), P(x̃, B−(x, ξ)) = P(x,B−(x, ξ)), (7.2)

G
(
B−(x, ξ), B+(x̃, ξ̃)

)
− G

(
B−(x, ξ), B+(x, ξ)

)
= P(x,B−(x, ξ))T−(x, ξ)η, (7.3)

where T−(x, ξ) : Eu(x, ξ)→ TB−(x,ξ)Sn−1 is some linear isometry and P is the Poisson

kernel defined in (4.43). Moreover, the map U− commutes with the natural action of

the isometry group PSO(1, n) and thus descends to a map

U− : {(x, ξ, η) | (x, ξ) ∈ S∗M, η ∈ Eu(x, ξ)} → S∗M.

Remarks. (i) For each (x, ξ) ∈ S∗M , the set {U−(x, ξ, η) | η ∈ Eu(x, ξ)} is the un-

stable manifold passing through (x, ξ), and the differential of the map η 7→ U−(x, ξ, η)

at η = 0 is the embedding Eu(x, ξ) → T(x,ξ)(S
∗M). See Figure 9. The map T− is re-

lated to the parametrization of Eu(x, ξ) by the orthogonal complement E(x, ξ) ⊂ TxM

of ξ (see the paragraph preceding (4.5)) and to the parallel transport map E(x, ξ) →
TB−(x,ξ)Sn−1 (see [DFG, §3.6]), but we do not need an explicit expression for T− here.

(ii) In dimension 2, U− is given by the flow of the unstable horocyclic vector field U−
(see for instance [DFG, (2.1)]):

U−(x, ξ, η) = esU−(x, ξ), η = sU−(x, ξ) ∈ Eu(x, ξ), s ∈ R.

For each point (x, ξ) ∈ K ∩ S∗M , where K = Γ+ ∩ Γ− is the trapped set, define

F(x,ξ) := {η | U−(x, ξ, η) ∈ K} ⊂ Eu(x, ξ). (7.4)

Note that (x̃, ξ̃) := U−(x, ξ, η) lies in Γ+ for all η, since the geodesics starting at (x, ξ)

and (x̃, ξ̃) converge to each other as t → −∞ by (7.2) (see also (4.12)); therefore, K
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B−(x,ξ)

x̃

ξ̃

x
ξ

B+(x̃,ξ̃)

B+(x,ξ)

2G(B−(x,ξ),B+(x̃,ξ̃))

2G(B−(x,ξ),B+(x,ξ))

Figure 9. The points (x, ξ) ∈ S∗Hn and (x̃, ξ̃) = U−(x, ξ, η). The

dashed circle is a horocycle and the solid arcs are geodesics through

(x, ξ) and (x̃, ξ̃).

can be replaced in (7.4) by Γ−. By (7.3) and (4.12), for each (x, ξ) ∈ S∗Hn we have

G(y−,ΛΓ)− G(y−, y+) = P(x, y−)T−(x, ξ)FπΓ(x,ξ), y± := B±(x, ξ), (7.5)

with πΓ defined in (4.4).

Proof of Lemma 7.1. Let y0, y1 ∈ ΛΓ and y0 6= y1.

We first prove (7.1) for the case 0 < r < 1. Define the diffeomorphism

Φ : Sn−1 \ {y0} → Ty0Sn−1, Φ(y) := G(y0, y).

Then dΦ(y) is conformal with factor 1
2
(1 + |Φ(y)|2). It follows that

sup
Φ(y)∈B(η1,1)

‖dΦ(y)‖ ≤ 3

2
(1 + |η1|2), sup

Φ(y)∈B(η1,1)

‖dΦ(y)−1‖ ≤ 6

1 + |η1|2

where η1 := Φ(y1), and therefore

B
(
y1,

2r

3(1 + |η1|2)

)
⊂ Φ−1(B(η1, r)) ⊂ B

(
y1,

6r

1 + |η1|2
)
.

We now have by (1.23)

µδ
(
Φ(ΛΓ) ∩B(η1, r)

)
≤
(3

2
(1 + |η1|2)

)δ
µδ
(
ΛΓ ∩ Φ−1(B(η1, r))

)
≤
(3

2
(1 + |η1|2)

)δ
µδ

(
ΛΓ ∩B

(
y1,

6r

1 + |η1|2
))

≤ C(9r)δ
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and similarly

µδ
(
Φ(ΛΓ) ∩B(η1, r)

)
≥
(1 + |η1|2

6

)δ
µδ
(
ΛΓ ∩ Φ−1(B(η1, r))

)
≥ C−1(r/9)δ

which gives (7.1) for 0 < r < 1 with K0 := 9n−1 ≥ 9δ.

Now, assume that r ≥ 1. Take some (x, ξ) ∈ S∗Hn on the geodesic connecting y0

and y1, that is

B−(x, ξ) = y0, B+(x, ξ) = y1.

Let γ ∈ Γ and put

(x′, ξ′) := γ.(x, ξ), B−(x′, ξ′) = y′0, B+(x′, ξ′) = y′1;

note that y′0, y
′
1 ∈ ΛΓ. We choose (x, ξ) and γ such that

r′ :=
P(x′, y′0)

P(x, y0)
r < 1. (7.6)

To do that, we first remark that there exists R > 0 depending on the quotient M such

that for each (x̃, ξ̃) ∈ K ∩ S∗M , there exists

(x′, ξ′) ∈ π−1
Γ (x̃, ξ̃), P(x′, B−(x′, ξ′)) ≤ R. (7.7)

This follows immediately from the compactness of K ∩ S∗M . To ensure (7.6), it

remains to take (x, ξ) such that P(x, y0) > rR (which is always possible since the

function P (x, y0) grows exponentially along the backwards geodesic flow) and choose

(x′, ξ′) using (7.7) with (x̃, ξ̃) := πΓ(x, ξ).

From (7.5) and the fact that πΓ(x, ξ) = πΓ(x′, ξ′), we have

G(y0,ΛΓ)− G(y0, y1) =
P(x, y0)

P(x′, y′0)
T̃
(
G(y′0,ΛΓ)− G(y′0, y

′
1)
)

(7.8)

where T̃ : Ty′0S
n−1 → Ty0Sn−1 is an isometry. Since (7.1) is already known for r < 1,

we have using (7.6),

K−1
0 C−1(r′)δ ≤ µδ

(
G(y′0,ΛΓ) ∩B(G(y′0, y

′
1), r′)

)
≤ K0C(r′)δ.

Combining this with (7.8), we obtain (7.1). �

7.2. Regularity, additive energy, and Minkowski dimension. In this section,

we state a few results estimating the Lebesgue measure of neighborhoods of Ahlfors-

David regular sets. This establishes bounds on Minkowski dimensions of these sets.

We rely on the following

Definition 7.3. Assume that (M, d) is a metric space. For X ⊂M and α > 0, define

the maximal number of α-separated points in X :

N (X , α) = max{N | x1, . . . , xN ∈ X , d(xi, xj) > α for i 6= j}.
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For regular sets, the quantity N (X , α) establishes a link between the Hausdorff and

Minkowski dimensions:

Lemma 7.4. Let (M, d) be a metric space and let X ⊂M be compact.

1. If X is δ–regular in the sense of Definition 1.4 with constant CX , then for each

x ∈ X ,

C−2
X

(α′
α

)δ
≤ N (X ∩B(x, α′), α) ≤ C2

X

(
1 +

2α′

α

)δ
, 0 < α, α′ < diam(M).

2. IfM is an m-dimensional Riemannian manifold and X (α) is the α-neighborhood

of X , then

C−1αmN (X , α) ≤ µL(X (α)) ≤ CαmN (X , α), 0 < α < 1,

where µL is the Lebesgue measure induced by the metric and C is some constant inde-

pendent of α.

Proof. We will begin with the first statement. Fix a ball B(x, α′) with x ∈ X . Let

{x1, . . . , xN} ⊂ X ∩B(x, α′) be a maximal collection of α–separated points. Then

X ∩B(x, α′) ⊂
N⋃
i=1

B(xi, α),
N⊔
i=1

B
(
xi,

α

2

)
⊂ B

(
x, α′ +

α

2

)
.

It follows that

N ≥ C−1
X α−δ

N∑
i=1

µδ(X ∩B(xi, α)) ≥ C−1
X α−δµδ(X ∩B(x, α′))

≥ C−2
X

(α′
α

)δ
,

N ≤
( 2

α

)δ
CX

N∑
i=1

µδ

(
X ∩B

(
xi,

α

2

))
≤
( 2

α

)δ
CXµδ

(
X ∩B

(
x, α′ +

α

2

))
≤ C2

X

(
1 +

2α′

α

)δ
;

this finishes the proof of the first statement.

The second statement follows similarly from the inclusions

X (α) ⊂
N⋃
i=1

B(xi, 2α),
N⊔
i=1

B
(
xi,

α

2

)
⊂ X (α),

where {x1, . . . , xN} ⊂ X is a maximal collection of α-separated points, plus the obser-

vation that on any compact subset Ω ⊂M, the Lebesgue measure of a ball of radius α

is between C−1
Ω αm and CΩα

m. �

As an application, we obtain
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Proof of (5.3). Follows directly from δ-regularity of the limit set (see §1.3), Lemma 7.4,

and the fact that ΛΓ(α)∩B(y0, α
′) contains the α-neighborhood of ΛΓ ∩B(y0, α

′− α)

and is contained in the α-neighborhood of ΛΓ ∩B(y0, α
′ + α). �

Remark. In Definition 1.4 of Ahlfors-David regularity we used the Hausdorff measure.

However, any other Borel measure could be used instead:

Lemma 7.5 ([DaSe], Lemma 1.2). Let (M, d) be a complete metric space with more

than one element and let X ⊂ M. Let µ be a Borel measure on M with the property

that for all x ∈ X ,

C−1
X rδ ≤ µ(X ∩B(x, r)) ≤ CX r

δ, 0 < r < diam(M). (7.9)

Then X is δ–regular. The regularity constant depends only on δ and CX .

We now give the proof of Theorem 5. The first step is the following

Lemma 7.6. Let ΛΓ be the limit set of a convex co-compact hyperbolic surface, C be

defined in (1.24), K0 be given in Lemma 7.1, and G be defined in (1.19). Take y0 ∈ ΛΓ

and R > 0. Then there exists an interval [−1, 1] ⊂ I ⊂ [−2, 2] such that

X := I ∩R−1G(y0,ΛΓ) ⊂ Ty0S1 ' R

is δ–regular with regularity constant C2 := (50K0C)
1+δ
1−δ .

Proof. By Lemma 7.1, the set

Y := R−1G(y0,ΛΓ) ⊂ R

is δ-regular with constant K0C. Divide [−2,−1] and [1, 2] into C1 intervals of size

C−1
1 each, where C1 := d(10K2

0C
2)

1
1−δ e. By Proposition 6.13, at least one of the sub-

intervals in [−2,−1] and at least one of the sub-intervals in [1, 2] must be disjoint

from Y . Call these intervals I1 and I2. Let I be the convex hull of the midpoints of I1

and I2.

We will show that X := I ∩ Y is δ–regular. Let x ∈ X and 0 < r ≤ 4. We

immediately have

µδ
(
X ∩B(x, r)

)
≤ µδ

(
Y ∩B(x, r)

)
≤ K0Cr

δ.

It remains to prove a lower bound. If r < C−1
1 then Y ∩B(x, r) ⊂ I and thus

µδ(X ∩B(x, r)) = µδ
(
Y ∩B(x, r)

)
≥ (K0C)−1rδ.

On the other hand, if C−1
1 ≤ r ≤ 4, then

µδ(X ∩B(x, r)) ≥ µδ(X ∩B(x,C−1
1 ))

≥ K−1
0 C−1C−δ1

≥ C−1
2 rδ. �
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We finally combine Theorem 6 from §6, Lemma 7.4, and Lemma 7.6 to obtain

Proof of Theorem 5. Let ΛΓ be the limit set of a convex co-compact hyperbolic group.

Let y0 ∈ ΛΓ. Let α > 0 (small) and C1 ≥ 1 (large), and put α1 := C−1
1 α. First, note

that

EA
(
G(y0,ΛΓ) ∩B(0, C1), α

)
= EA

(
C−1

1 G(y0,ΛΓ) ∩B(0, 1), α1

)
≤ EA(X , α1), (7.10)

where X := I ∩ C−1
1 G(y0,ΛΓ) ⊂ [−2, 2] is defined in Lemma 7.6.

Each point (η1, η2, η3, η4) ∈ X (α1)4 satisfying |η1 − η2 + η3 − η4| ≤ α1 lies in the

4α1-neighborhood of the set

Zα1 = {(η1, η2, η3, η4) ∈ X 4 | |η1 − η2 + η3 − η4| ≤ 5α1}.

By Definition 1.2 and part 2 of Lemma 7.4, we have for some global constant C,

EA(X , α1) ≤ CN (Zα1 , 4α1). (7.11)

We next claim that

N (Zα1 , 4α1) ≤ Cα−4δ
1 EA(X , µδ, 9α1) (7.12)

where EA is given by Definition 6.1 and C is some constant depending on C. Indeed,

let z1, . . . , zN ∈ Zα1 be a 4α1-separated set of points. Then

N⊔
j=1

B(zj, 2α1) ⊂ {|η1 − η2 + η3 − η4| ≤ 9α1}.

Taking the µ4
δ measure of the intersection of both sides with X 4 and arguing similarly

to the proof of part 1 of Lemma 7.4, we obtain (7.12).

Finally, applying Theorem 6 to 1
2
X , which is δ-regular by Lemma 7.6, we obtain

EA(X , µδ, 9α1) ≤ Cαδ+βE1 . (7.13)

Here βE = δ exp
[
−K(1 − δ)−28(1 + log14 C)

]
, where K is an absolute constant, and

C is some constant depending on C.

Combining (7.10)–(7.13), we conclude that ΛΓ satisfies the additive energy bound

with exponent βE in the sense of Definition 1.3. �

7.3. Example: three-funneled surfaces. We now consider a particular family of

convex co-compact hyperbolic surfaces and show that the regularity constants in

Lemma 7.1 for the corresponding limit sets have a uniform upper bound when the

surface varies in a compact set in the moduli space. (Similar reasoning is expected to

work for general convex co-compact hyperbolic surfaces.)

More precisely, we study the family of three-funneled surfaces M`, parametrized

by the Fenchel–Nielsen coordinates ` := (`1, `2, `3) ∈ (0,∞)3. To construct M`, we

start with a right-angled hyperbolic hexagon with sides `1/2, q3, `2/2, q1, `3/2, q2. This
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F`

`3/2

`1/2

`1/2

`3/2

`2/2

`2/2

q3

q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

M`

Figure 10. A three-funneled surface (on the right) and its fundamental

domain in the Poincaré disk model (on the left).

hexagon is unique up to isometry, and q1, q2, q3 > 0 are determined by a formula

involving only `1, `2, and `3 (see for example [Ra, Theorem 3.5.13]). Gluing two such

hexagons along the q3 side, we obtain a right-angled hyperbolic octagon with sides

`1, q2, `3/2, q1, `2, q1, `3/2, q2.

Attaching funnel ends along the `1, `2, `3/2 sides to the above octagon, we obtain

a fundamental domain F` ⊂ H2. The complement of F` is the disjoint union of four

open geodesic half-disks (i.e. regions of H2 bounded by a geodesic) D1, D2, D3, D4,

where D1, D3 are bounded by the geodesics containing the two q2 sides of the octagon

and D2, D4 are bounded by the geodesics containing its q1 sides. See Figure 10.

We next define the group Γ` ⊂ PSL(2,R) using the following Schottky representa-

tion. Let ω1, ω2 be the geodesics on H2 containing the `1 and `2 sides of the octagon.

Then there exist unique γ1, γ2 ∈ PSL(2,R) satisfying

γj(Dj) = H2 \Dj+2, γj(ωj) = ωj, j = 1, 2. (7.14)

Let Γ` be the group generated by γ1, γ2. Then Γ` is a free group, and the quotient

M` := Γ`\H2

is a convex co-compact hyperbolic surface with fundamental domain F`. The numbers

`1, `2, `3 are the lengths of the geodesic necks separating the funnels of M` from the

convex core. See for instance [Bo07, §15.1] for details. The octagon constructed

above, the disks Dj, and the group elements γj depend continuously on the choice of

` = (`1, `2, `3).
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Denote by Λ` = ΛΓ` the limit set of Γ` and by δ` its dimension. The following

proposition states that Λ` is Ahlfors–David regular with regularity constant locally

uniform in `; we use same notation as in Lemma 7.1.

Proposition 7.7. Let K ⊂ (0,∞)3 be a compact set. Then there exists a constant

CK > 0 such that for each ` ∈ K and each y0, y1 ∈ Λ`, y0 6= y1 we have

C−1
K c`r

δ ≤ µδ
(
G(y0,Λ`) ∩B(G(y0, y1), r)

)
≤ CK c`r

δ, r > 0 (7.15)

where c` > 0 depends only on `.

Before proving Proposition 7.7, we use it to show the following

Theorem 7. There exists an open set U ⊂ (0,∞)3 such that:

• if ` ∈ (0,∞)3 and δ` = 1/2, then ` ∈ U ;

• if ` ∈ U , then M` has an essential spectral gap in the sense of (1.3) of size

β = β` > max
(

0,
1

2
− δ`

)
.

Remark. It is well-known that δ` depends continuously on `— see for example [AnRo].

Moreover, there exist `−, `+ ∈ (0,∞)3 such that δ`− < 1/2 < δ`+ . In fact, for the case

`1 = `2 = `3, we have δ` → 1 as `j → 0 and δ` → 0 as `j →∞— see [Mc, Theorem 3.5].

By considering a path connecting `− with `+ and applying Theorem 7, we see that

there exist ` such that δ` > 1/2, yet M` has an essential spectral gap of size β` > 0.

Proof. It suffices to show that for each ˜̀ with δ˜̀ = 1/2, there exists β̃ > 0 and a

neighborhood U˜̀ of ˜̀ such that for each ` ∈ U˜̀, M` has an essential spectral gap of

size β̃. Indeed, it follows from here that there is an open neighborhood U ′˜̀ of ˜̀ such

that for each ` ∈ U ′˜̀, M` has an essential gap of size β` > max(0, 1/2− δ`). It remains

to let U be the union of all U ′˜̀.

To show the existence of the neighborhood U˜̀, by Theorems 3 and 4 it suffices to show

that there exists a constant βE > 0 such that for all ` sufficiently close to ˜̀, the set Λ`

satisfies the additive energy bound with exponent βE in the sense of Definition 1.3. To

show this, we argue as in the proof of Theorem 5 in §7.2. The only difference is that

Lemma 7.1 is replaced by Proposition 7.7. The constant c` in (7.15) can be removed

by Lemma 7.5; alternatively, we may argue using the measure c−1
` µδ instead of µδ since

the proof of Theorem 6 never used that µδ is the Hausdorff measure. �

We now prove Proposition 7.7. Assume that ` varies in a compact subset of (0,∞)3;

the constants below will depend on that subset. We start with the following

Lemma 7.8. Assume that

γ =

(
a b

c d

)
∈ Γ` ⊂ PSL(2,R), |γ| := a2 + b2 + c2 + d2.
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Then for each A ⊂ S1, we have

µδ`(Λ` ∩ γ(A)) ≤ (2|γ|)δ`µδ`(Λ` ∩ A). (7.16)

Proof. We identify the upper half-plane model {Im z > 0} with the disk model {|w| <
1} by the Möbius transformation

w =
z − i
z + i

, z = i
1 + w

1− w
.

With the Möbius transformation γ given in the z variable by γ.z = az+b
cz+d

, its derivative

in the w variable on S1 satisfies

|γ′(w)| = 1 + z2

(az + b)2 + (cz + d)2
, w ∈ S1.

It follows that |γ′(w)|−1 ≤ 2|γ|; substituting γ−1 instead of γ, we get |γ′(w)| ≤ 2|γ|.
The estimate (7.16) follows from here and the fact that Λ` ∩ γ(A) = γ(Λ` ∩ A). �

Using Lemma 7.8, we next prove

Lemma 7.9. There exists a constant c > 0 such that

µδ`(Λ` ∩Dj) ≥ cµδ`(Λ`), j = 1, 2, 3, 4. (7.17)

Proof. We consider the case j = 1, the other cases are treated similarly.

By (7.14), we have D1 ∪D2 ∪D4 ⊂ γ1(D1). Since |γ1| is bounded by some constant

depending on K , by Lemma 7.8 we obtain for some constant C,

µδ`
(
Λ` ∩ (D1 ∪D2 ∪D4)

)
≤ Cµδ`(Λ` ∩D1). (7.18)

Next, D3 ⊂ γ2(D2). Therefore, similarly to (7.18) we get

µδ`(Λ` ∩D3) ≤ Cµδ`(Λ` ∩D2). (7.19)

Combining (7.18) and (7.19) and using that Λ` ⊂ D1 ∪D2 ∪D3 ∪D4, we obtain (7.17).

�

We are now ready to give

Proof of Lemma 7.7. We argue similarly to the proof of Lemma 7.1. Take y0, y1 ∈ Λ`,

y0 6= y1, and r > 0. Fix a large constant C1 > 0 depending only on K , to be chosen

later. Let (x, ξ) ∈ S∗H2 be the unique point satisfying

B−(x, ξ) = y0, B+(x, ξ) = y1, P(x, y0) = r/C1.

By (4.12), the projection πΓ(x, ξ) ∈ S∗M lies in the trapped set. Take γ ∈ Γ` such

that for (x′, ξ′) := γ.(x, ξ), the point x′ lies in the fundamental domain F`, and denote

y′0 := B−(x′, ξ′), y′1 := B+(x′, ξ′).
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Since πΓ(x′, ξ′) is in the trapped set, x′ lies in the convex core, which is the octagon

used in the construction of F`. Thus there exists a constant C2 > 0 depending only

on K such that

C−1
2 ≤ P(x′, y′0) ≤ C2.

Applying (7.8), we see that

(C1C2)−δrδµδ
(
G(y′0,Λ`) ∩B(G(y′0, y

′
1), C1/C2)

)
≤ µδ

(
G(y0,Λ`) ∩B(G(y0, y1), r)

)
≤ (C2/C1)δrδµδ

(
G(y′0,Λ`) ∩B(G(y′0, y

′
1), C1C2)

)
.

Therefore, in order to prove (7.15) it is enough to verify the inequalities

µδ
(
G(y′0,Λ`) ∩B(G(y′0, y

′
1), C1C2)

)
≤ Cc`,

µδ
(
G(y′0,Λ`) ∩B(G(y′0, y

′
1), C1/C2)

)
≥ C−1c`

for some constants C depending only on K and c` depending on `.

We have y′0, y
′
1 ∈ Λ`, thus y′0 ∈ Dj, y

′
1 ∈ Dk for some j, k ∈ {1, 2, 3, 4}. Moreover,

x′ ∈ F` implies that j 6= k. Thus |y′0 − y′1| is bounded away from zero uniformly in

` ∈ K . Since G is a smooth map away from the diagonal, we see that it is enough to

prove the inequalities

µδ
(
{y ∈ Λ` | G(y′0, y) ∈ B(G(y′0, y

′
1), C1C2)}

)
≤ Cc`, (7.20)

µδ
(
{y ∈ Λ` | G(y′0, y) ∈ B(G(y′0, y

′
1), C1/C2)}

)
≥ C−1c`. (7.21)

We put c` := µδ(Λ`), then (7.20) follows automatically. To show (7.21), we note that

for C1 large enough depending on K , the set on the left-hand side contains Λ` ∩Dk.

It remains to use Lemma 7.9. �

Appendix A. Calculations on hyperbolic quotients

In this appendix, we prove several technical lemmas from §4 and §7 regarding the

geometry of convex co-compact hyperbolic quotients M = Γ\Hn. Here

Γ ⊂ G := PSO(1, n)

is a group of hyperbolic isometries.

A useful tool is the coframe bundle F ∗M whose points have the form (x, ξ1, . . . , ξn),

where x ∈M and ξ1, . . . , ξn ∈ T ∗xM form a positively oriented orthonormal basis. We

identify F ∗M with Γ\G by the diffeomorphism

[γ] ∈ Γ\G 7→ πFΓ (γ(0), dγ(0)−T · dx1, . . . , dγ(0)−T · dxn)

where we use the ball model for Hn and

πFΓ : F ∗Hn → F ∗M
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is the covering map. Using this identification, we obtain a right action of G on F ∗M .

Then each element of the Lie algebra of G, viewed as a left invariant vector field,

induces a vector field on F ∗M . We use the induced vector fields

U±1 , . . . , U
±
n−1, X̃, Rab, 2 ≤ a, b ≤ n (A.1)

on F ∗M defined in [DFG, §3.2] (X̃ is denoted by simply X in [DFG]). The following

commutation relations hold [DFG, (3.8)]:

[X̃, U±j ] = ±U±j , [X̃, Rab] = 0, 2 ≤ a, b ≤ n. (A.2)

The vector field X̃ projects down to X by πS; in fact, X̃ is the generator of parallel

transport along geodesics. The vector fields Rab generate rotations of the vectors

(ξ2, . . . , ξn); in fact, the kernel of dπS is spanned by (Rab) where πS is the following

submersion:

πS : F ∗M → S∗M, (x, ξ1, . . . , ξn) 7→ (x, ξ1). (A.3)

Proof of Lemma 4.2. We show the first statement, the second one is proved similarly.

Since Ls is an integrable foliation, induction on m+k shows that the order of applying

vector fields in (3.1) does not matter for establishing the bound. By (4.3), it suffices

to prove the bounds

sup
T ∗M\0

|χ2Y1 . . . YmZ1 . . . Zk(ξ · ∂ξ)iXj(χ1 ◦ etX)| ≤ Ch−ρk,

Y1, . . . , Ym ∈ C∞(T ∗M \ 0;Es), Z1, . . . , Zk ∈ C∞(T ∗M \ 0;Eu).
(A.4)

Since X commutes with itself and with ξ · ∂ξ, we have

(ξ · ∂ξ)iXj(χ1 ◦ etX) = ((ξ · ∂ξ)iXjχ1) ◦ etX

and thus we may assume that i = j = 0. Since etX is a homogeneous flow and Es, Eu
are homogeneous foliations, we may restrict to the cosphere bundle S∗M .

On F ∗M , we have (see [DFG, §3.3])

π∗SEs = span({U+
j } ∪ {Rab}), π∗SEu = span({U−j } ∪ {Rab}),

(The fields U±j do not project down to vector fields on S∗M for n ≥ 3, hence the use

of the coframe bundle.)

Then (A.4) reduces to the following bound on F ∗M :

sup
F ∗M
|(π∗Sχ2)U+

j1
. . . U+

jm
U−r1 . . . U

−
rk

((π∗Sχ1) ◦ etX̃)| ≤ Ch−ρk.

Using (A.2), we see that

U+
j1
. . . U+

jm
U−r1 . . . U

−
rk

((π∗Sχ1) ◦ etX̃) = e(k−m)t(U+
j1
. . . U+

jm
U−r1 . . . U

−
rk

(π∗Sχ1)) ◦ etX̃

and the proof is finished as e(k−m)t ≤ ekt ≤ h−ρk when t ∈ [0, ρ log(1/h)]. �
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Proof of (4.12). We prove the second statement, the first one is proved similarly. As-

sume first that (x, ξ) ∈ T ∗Hn \ 0 and πΓ(x, ξ) ∈ Γ−, where πΓ is defined in (4.4) and

descends to a covering map Hn →M (also called πΓ). Let x(t) ∈ Hn be the projection

of etX(x, ξ) to the base. Since (x, ξ) ∈ Γ−, the curve πΓ(x(t)) stays in a compact subset

of M when t ≥ 0; therefore, there exists a sequence tj →∞ and x∞ ∈ Hn such that

πΓ(x(tj))→ πΓ(x∞) as j →∞.

Take γj ∈ Γ such that dHn(x(tj), γj.x∞) → 0 as j → ∞. Since x(tj) → B+(x, ξ) in

the topology of the closed disk model Hn, we have γj.x∞ → B+(x, ξ) in Hn and thus

B+(x, ξ) ∈ ΛΓ by (4.11).

Assume now that πΓ(x, ξ) /∈ Γ−. Then (see for instance [DyGu14a, §7.1 and Appen-

dix A.1]) the trajectory πΓ(x(t)) converges in the compactified space M to some point

y ∈ ∂M on the conformal boundary. The point B+(x, ξ) projects to y by an extension

of πΓ to the conformal boundary and there exists a neighborhood U of B+(x, ξ) in Hn

such that πΓ is a local diffeomorphism on U . This implies that B+(x, ξ) cannot be in

the limit set ΛΓ, finishing the proof. �

Next, we prove Lemma 4.3. We will use the following

Lemma A.1. Assume that (x, ξ1, . . . , ξn) ∈ F ∗Hn, y ∈ Sn−1, and

y 6= B−(x, ξ1). (A.5)

Then there exists s = (s1, . . . , sn−1) ∈ Rn−1 such that, putting (see (A.1))

esU
−

:= exp(s1U
−
1 + · · ·+ snU

−
n ) : F ∗Hn → F ∗Hn, (A.6)

we have (with πS defined in (A.3))

B+(πS(esU
−

(x, ξ1, . . . , ξn))) = y. (A.7)

Moreover, if (x, ξ1, y) varies in some fixed compact subset of S∗Hn × Sn−1 satisfy-

ing (A.5), then we may choose s1, . . . , sn−1 ∈ [−C,C] where C is independent of

x, ξ1, . . . , ξn, y.

Proof. We use the hyperboloid model of Hn, see [DFG, §3.1]. In particular, we consider

elements of G = PSO(1, n) as linear automorphisms of the Minkowski space R1,n. If

e0, . . . , en is the canonical basis of R1,n and γ ∈ G is defined by

γ.(e0, . . . , en) = (x, ξ1, . . . , ξn),

then a direct calculation using [DFG, (3.7) and (3.16)] shows that for some q > 0,(
q, qB+(πS(esU

−
(x, ξ1, . . . , ξn)))

)
= γ.(1 + |s|2, 1− |s|2,−2s1, . . . ,−2sn−1)
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where both sides of the equation are vectors in the positive half of the light cone in

R1,n. The vector γ−1.(1, y) lies in the positive half of the light cone, therefore we have

for some r > 0 and v ∈ Sn−1,

γ−1.(1, y) = (r, rv).

By [DFG, (3.16)], we see that (A.5) implies that

v 6= (−1, 0, . . . , 0). (A.8)

To obtain (A.7), we have to find s such that

v1 =
1− |s|2

1 + |s|2
; vj+1 = − 2sj

1 + |s|2
, 1 ≤ j ≤ n− 1.

The existence of such s follows directly from (A.8), and the fact that s can be chosen

bounded uniformly in (x, ξ1, . . . , ξn, y) follows immediately because under (A.5), the

distance from v to (−1, 0, . . . , 0) is bounded away from zero. �

Proof of Lemma 4.3. Assume that t ≥ 0 and

(x, ξ) ∈ V, πΓ(etX(x, ξ)) ∈ πΓ(V ). (A.9)

(The case of propagation for negative time is handled similarly.) Since etX is a homo-

geneous flow, we may additionally assume that |ξ|g = 1.

By (A.9), there exists γ′ ∈ Γ such that γ′.etX(x, ξ) ∈ V . Since K = Γ+ ∩ Γ− 6= ∅,
by (4.12) ΛΓ has at least two elements. Then we may choose y ∈ ΛΓ depending on γ′

and (x, ξ) such that for some ε > 0 independent of (x, ξ),

d(B−(γ′.(x, ξ)), y) > ε.

Choose Ξ := (ξ2, . . . , ξn) such that (x, ξ,Ξ) ∈ F ∗Hn. Applying Lemma A.1 to γ′.etX̃(x, ξ,Ξ),

we see that there exists a constant C independent of x, ξ,Ξ such that

B+

(
πS
(
esU

−
(γ′.etX̃(x, ξ,Ξ))

))
= y (A.10)

for some s ∈ [−C,C]n−1. Rewriting (A.10) using (A.2) and since B+ stays constant

along the geodesic flow, we get

B+

(
πS
(

exp(e−tsU−)(γ′.(x, ξ,Ξ))
))

= y.

It follows that

B+

(
πS
(

exp(e−tsU−)(x, ξ,Ξ)
))

= (γ′)−1.y ∈ ΛΓ (A.11)

where (γ′)−1 ∈ Γ acts on the conformal infinity Sn−1 as in [DFG, §3.5] and ΛΓ is invari-

ant by this action (as can be seen from either (4.11) or (4.12)). It follows from (A.11)

that d(B+(x, ξ),ΛΓ) ≤ Ce−t for some constant C, finishing the proof. �
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Proof of Lemma 4.7. Consider the generating function

S ∈ C∞(Hn
x × R+

w × Sn−1
y ;R), S(x,w, y) = w logP(x, y). (A.12)

Let ξ, θ, η be the momenta on T ∗(Hn×R+× Sn−1) corresponding to x,w, y. We claim

that the following two statements are equivalent for each choice of (x,w, y, ξ, θ, η):

ξ = ∓∂xS, θ = ±∂wS, η = ±∂yS; (A.13)

w = p(x, ξ), y = B∓(x, ξ), θ = ± logP(x,B∓(x, ξ)), η = ±G∓(x, ξ). (A.14)

We compute

∂xS(x,w, y) = −2w

(
x

1− |x|2
+

x− y
|x− y|2

)
, ∂wS(x,w, y) = logP(x, y),

and the tangent vector in TySn−1 ⊂ Rn identified with ∂yS(x,w, y) by the round metric

on Sn−1 is

ζ(x,w, y) = 2w
x− (x · y)y

|x− y|2
. (A.15)

For (x, ξ) ∈ T ∗Hn \ 0, put

Φ±(x, ξ) = p(x, ξ)P
(
x,B±(x, ξ)

)
.

We calculate (using for example [DFG, §3.4]; note that in that paper, x denotes a point

in the hyperboloid model and y a point in the ball model; we relate the two models

by [DFG, (3.2)], identify tangent and cotangent vectors by the metric and extend the

formulas from the cosphere bundle to the whole T ∗Hn+1 \ 0 by homogeneity)

p(x, ξ) =
1− |x|2

2
|ξ|,

Φ±(x, ξ) =
1 + |x|2

2
|ξ| ± x · ξ,

Φ±(x, ξ)B±(x, ξ) = (|ξ| ± x · ξ)x± 1− |x|2

2
ξ.

(A.16)

We now show that (A.13) and (A.14) are equivalent. Assume first that (A.13) holds.

Then

|ξ| = 2w

1− |x|2
, x · ξ = ∓w

(1− |x|2

|x− y|2
− 1 + |x|2

1− |x|2
)
.

It follows that p(x, ξ) = w, Φ∓(x, ξ) = wP(x, y), and B∓(x, ξ) = y, which gives the

first three equalities in (A.14). Next,

Φ±(x, ξ) = 2w
1 + |x|2

1− |x|2
− wP(x, y),

Φ±(x, ξ)B±(x, ξ) =
4w

1− |x|2
x− wP(x, y)y,

Φ±(x, ξ)(B+(x, ξ) ·B−(x, ξ)) = Φ∓ −
2w

P (x, y)
.
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From here we see that G∓(x, ξ) = ζ(x,w, y), with ζ defined in (A.15); this finishes the

proof of (A.14).

Assume now that (A.14) holds. We have

Φ∓(x, ξ)(x · y) = ∓1 + |x|2

2
(x · ξ) + |ξ| · |x|2,

Φ∓(x, ξ)|x− y|2 =
(1− |x|2)2

2
|ξ|,

Φ∓(x, ξ)(x− y) = −1− |x|2

2
(|ξ|x∓ ξ),

2Φ∓(x, ξ)2

1− |x|2
(x− (x · y)y) =

(1− |x|2

2
|ξ|2 + (x · ξ)2 ∓ |ξ|(x · ξ)

)
x

−
(1 + |x|2

2
(x · ξ)∓ |ξ| · |x|2

)
ξ.

It follows that wP(x, y) = Φ∓(x, ξ), ∂xS(x,w, y) = ∓ξ, and ζ(x,w, y) = G∓(x, ξ); this

gives (A.13).

The equivalence of (A.13) and (A.14) implies that κ± is a local symplectomorphism,

since it has a generating function ∓S. Moreover, κ± is exact, as ∓S(x,w, y) is an an-

tiderivative, see (2.6). To show that κ± is a global symplectomorphism, it remains to

prove that for each (w, y, θ, η) ∈ T ∗(R+ × Sn−1), there exists unique (x, ξ) ∈ T ∗Hn \ 0

such that κ±(x, ξ) = (w, y, θ, η). This is a direct consequence of (4.44) and the geome-

try of the hyperbolic space: the values of w, θ determine uniquely p(x, ξ),Φ∓(x, ξ) and

then y, η determine uniquely B+(x, ξ), B−(x, ξ); then B+(x, ξ), B−(x, ξ) determine the

normalized geodesic passing through (x, ξ) and Φ∓(x, ξ), p(x, ξ) determine the unique

point (x, ξ) on that geodesic. �

Proof of Lemma 4.8. By (4.45), (4.47) is equivalent to the fact that

(w, y, θ, η) = κ−(x, ξ), (w, y′, θ′, η′) = κ+(x, ξ) (A.17)

for some (x, ξ) ∈ T ∗Hn \ 0, which by (4.44) is equivalent to

θ′ = θ + log(1 + |η|2/w2),

y′ =
(|η|2 − w2)y − 2wη

|η|2 + w2
,

η′ =
2w|η|2y + (|η|2 − w2)η

|η|2 + w2
.

(A.18)
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Here we identified vectors and covectors on Sn−1 by the round metric and used the

following identities true for (x, ξ) ∈ T ∗Hn \ 0 and (y, y′) ∈ Sn−1
∆ :

P(x,B+(x, ξ))P(x,B−(x, ξ))(1−B+(x, ξ) ·B−(x, ξ)) = 2, (A.19)

|G(y, y′)|2 =
1 + y · y′

1− y · y′
. (A.20)

We next see that (4.48) is equivalent to

θ′ = θ + log
4

|y − y′|2
,

η = −2w(y′ − (y · y′)y)

|y − y′|2
,

η′ =
2w(y − (y · y′)y′)
|y − y′|2

.

(A.21)

A direct calculation shows that (A.18) and (A.21) are equivalent; therefore, (4.47)

and (4.48) are equivalent as well. By the proof of Lemma 4.7, the antiderivatives for

κ+ and (κ−)−1 are given by −w logP(x, y′) and −w logP(x, y), where x is defined

by (A.17); their sum is then

−w log
2

1− y · y′
= Θ(w, y, y′).

�

Proof of Lemma 7.2. We use the coframe bundle F ∗Hn introduced at the beginning of

this appendix. Let (x, ξ) ∈ S∗Hn, η ∈ Eu(x, ξ), and choose Ξ = (ξ2, . . . , ξn) such that

(x, ξ,Ξ) ∈ F ∗Hn.

As in the proof of Lemma A.1, we use the hyperboloid model of Hn and take γ ∈ G
which maps the standard frame to (x, ξ,Ξ). Then a direct calculation using [DFG,

(3.7)] shows that for each s ∈ Rn−1, we have

πS(esU−(x, ξ,Ξ)) =

(
γ.
(

1 +
|s|2

2
,−|s|

2

2
,−s

)
, γ.
( |s|2

2
, 1− |s|

2

2
,−s

))
(A.22)

where esU− : F ∗Hn → F ∗Hn is defined in (A.6) and we consider elements of S∗Hn as

pairs of vectors in the Minkowski space.

Take s ∈ Rn−1 such that

∂r|r=0 πS(ersU−(x, ξ,Ξ)) = η. (A.23)

As follows from a direct calculation using (A.22) and [DFG, (3.14)], such s exists, is

unique, and depends linearly on η; moreover

|s| = |η| (A.24)

with |η| defined in the paragraph preceding (4.5).
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With s solving (A.23), we put

U−(x, ξ, η) := πS(esU−(x, ξ,Ξ)). (A.25)

Then U−(x, ξ, η) does not depend on the choice of Ξ. Indeed, take another Ξ′ such

that (x, ξ,Ξ′) ∈ F ∗Hn, and let γ′ ∈ G map the standard basis of the Minkowski space

to (x, ξ,Ξ′). Then γ′ = γγ̃ where γ̃ lies in the subgroup SO(n − 1) ⊂ G = PSO(1, n)

consisting of isometries of the Minkowski space which fix the first two basis vectors.

Viewing γ̃ as an isometry on Rn−1, we get from (A.22)

πS(esU−(x, ξ,Ξ′)) =

(
γ.
(

1 +
|s|2

2
,−|s|

2

2
,−γ̃.s

)
, γ.
( |s|2

2
, 1− |s|

2

2
,−γ̃.s

))
.

Then s′ := (γ̃)−1.s solves (A.23) with Ξ replaced by Ξ′, and the right-hand sides

of (A.25) for Ξ, s and for Ξ′, s′ are equal.

The fact that U− commutes with the action of G follows immediately from its con-

struction and the fact that U−i are G-invariant vector fields on F ∗Hn. The identity (7.2)

follows directly from (A.23) and [DFG, (3.16)].

To see (7.3), note that by (1.19) and (A.19)

G(B−(x, ξ), B+(x, ξ)) =
Φ+(x, ξ)Φ−(x, ξ)

2
B+(x, ξ) +

(
1− Φ+(x, ξ)Φ−(x, ξ)

2

)
B−(x, ξ)

where Φ±(x, ξ) := P(x,B±(x, ξ)). Put (x̃, ξ̃) := U−(x, ξ, η). By (A.23) and [DFG,

(3.16)], we have Φ−(x̃, ξ̃) = Φ−(x, ξ). Then

G(B−(x, ξ), B+(x̃, ξ̃))− G(B−(x, ξ), B+(x, ξ))

=
Φ−(x, ξ)

2
(Φ+(x̃, ξ̃)B+(x̃, ξ̃)− Φ+(x, ξ)B+(x, ξ))

−Φ+(x̃, ξ̃)− Φ+(x, ξ)

2
Φ−(x, ξ)B−(x, ξ).

Now, by [DFG, (3.16)], we have in the hyperboloid model x±ξ = Φ±(x, ξ)(1, B±(x, ξ)),

therefore (
0,G(B−(x, ξ), B+(x̃, ξ̃))− G(B−(x, ξ), B+(x, ξ))

)
=

Φ−(x, ξ)

2
(x̃+ ξ̃ − x− ξ)− x̃0 + ξ̃0 − x0 − ξ0

2
Φ−(x, ξ)(1, B−(x, ξ))

= Φ−(x, ξ)
(
w −w0(1, B−(x, ξ))

)
, w = γ.

( |s|2
2
,−|s|

2

2
,−s

)
∈ R1,n

where the last identity follows from (A.22) and (A.25). Now, since γ.(1,−1, 0) =

Φ−(x, ξ)(1, B−(x, ξ)), we have

w =
|s|2

2
Φ−(x, ξ)(1, B−(x, ξ))− γ.(0, 0, s)
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therefore (7.3) holds with

(0, T−(x, ξ)η) = v − v0(1, B−(x, ξ)), v := −γ.(0, 0, s) ∈ R1,n,

and the fact that T− is an isometry follows from (A.24) and the fact that (1, B−(x, ξ))

is a null vector in R1,n orthogonal to v. �
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