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†Université d’Orléans, Fédération Denis Poisson, Laboratoire MAPMO, route de Chartres, 45067 Orléans Cedex
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Abstract

This is the first paper of a series in which we plan to study spectral asymptotics for
sub-Riemannian Laplacians and to extend results that are classical in the Riemannian case
concerning Weyl measures, quantum limits, quantum ergodicity, quasi-modes, trace formulae.
Even if hypoelliptic operators have been well studied from the point of view of PDEs, global
geometrical and dynamical aspects have not been the subject of much attention. As we will
see, already in the simplest case, the statements of the results in the sub-Riemannian setting
are quite different from those in the Riemannian one.

Let us consider a sub-Riemannian (sR) metric on a closed three-dimensional manifold
with an oriented contact distribution. There exists a privileged choice of the contact form,
with an associated Reeb vector field and a canonical volume form that coincides with the
Popp measure. We establish a Quantum Ergodicity (QE) theorem for the eigenfunctions of
any associated sR Laplacian under the assumption that the Reeb flow is ergodic. The limit
measure is given by the normalized Popp measure.

This is the first time that such a result is established for a hypoelliptic operator, whereas the
usual Shnirelman theorem yields QE for the Laplace-Beltrami operator on a closed Riemannian
manifold with ergodic geodesic flow.

To prove our theorem, we first establish a microlocal Weyl law, which allows us to identify
the limit measure and to prove the microlocal concentration of the eigenfunctions on the
characteristic manifold of the sR Laplacian. Then, we derive a Birkhoff normal form along
this characteristic manifold, thus showing that, in some sense, all 3D contact structures are
microlocally equivalent. The quantum version of this normal form provides a useful microlocal
factorization of the sR Laplacian. Using the normal form, the factorization and the ergodicity
assumption, we finally establish a variance estimate, from which QE follows.

We also obtain a second result, which is valid without any ergodicity assumption: every
Quantum Limit (QL) can be decomposed in a sum of two mutually singular measures: the
first measure is supported on the unit cotangent bundle and is invariant under the sR geodesic
flow, and the second measure is supported on the characteristic manifold of the sR Laplacian
and is invariant under the lift of the Reeb flow. Moreover, we prove that the first measure is
zero for most QLs.
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1 Introduction and main results

Quantum ergodicity (QE) theorems started with the seminal note [42] by A. Shnirelman (see also
[43]). His arguments were made precise in [7, 48], and then extended to the case of manifolds with
boundary in [21, 50], to the semi-classical regime in [23] and to the case of discontinuous metrics
in [29]. A weak version of QE is the following: let M be a compact metric space, endowed with a
measure µ, and let T be a self-adjoint operator on L2(M,µ), bounded below and having a compact
resolvent (and hence a discrete spectrum). Let (φn)n∈N∗ be a (complex-valued) Hilbert basis of
L2(M,µ), consisting of eigenfunctions of T , associated with the ordered sequence of eigenvalues
λ1 6 · · · 6 λn 6 · · · . We say that QE holds for the eigenbasis (φn)n∈N∗ of T if there exist a
probability measure ν on M and a density-one sequence (nj)j∈N∗ of positive integers such that the
sequence of probability measures |φnj |2dµ converges weakly to ν. The measure ν may be different
from some scalar multiple of µ, and may even be singular with respect to µ (see [10]). In some
cases, microlocal versions of QE hold true and are stated in terms of pseudo-differential operators.

Such a property provides some insight on the asymptotic behavior of eigenfunctions of the
operator T in the limit of large eigenvalues. When M is a compact Riemannian manifold and T
is the usual Laplace-Beltrami operator, QE is established under the assumption that the geodesic
flow is ergodic, and the limit measure ν is then the projection on M of the normalized Liouville
measure on the unit cotangent bundle of M .

To our knowledge, similar results are known in different contexts, but always for elliptic opera-
tors. In the present paper, we establish a QE theorem for sub-Riemannian Laplacians on a closed
three-dimensional contact sub-Riemannian manifold without boundary. Let us describe our main
results.

Let M be a smooth connected compact three-dimensional manifold, equipped with an arbitrary
non-vanishing smooth density µ (the associated measure is denoted by µ as well). Let D ⊂ TM
be a smooth oriented subbundle of codimension one. Let g be a smooth Riemannian metric on D.
We assume that D is a contact structure, so that there exists a unique contact form αg defining
D (i.e., D = kerαg) such that (dαg)|D coincides with the oriented volume form induced by g on

D. Let Z be the associated Reeb vector field, defined by αg(Z) = 1 and dαg(Z, ·) = 0. The vector
field Z is transversal to the distribution D. The flow generated by Z on M is called the Reeb flow.
It follows from Cartan’s formula that the Reeb flow preserves the measure given by the density
|αg ∧ dαg|, also called the Popp measure in sub-Riemannian geometry, and denoted by dP . Note
that there is no relation between µ and the Popp measure. We also define the Popp probability
measure ν by dν = 1

P (M)dP .

Let 4sR be the sub-Riemannian (sR) Laplacian associated with the contact sub-Riemannian
structure (M,D, g) and with the measure µ (see Section 2 for some reminders and for the precise
definition). The operator −4sR is self-adjoint on L2(M,µ), is hypoelliptic, has a compact resolvent
and thus has a discrete spectrum 0 = λ1 < λ2 6 · · · 6 λn 6 · · · , with λn → +∞ as n→ +∞. The
operator 4sR commutes with complex conjugation (i.e., is “real”) and hence admits an eigenbasis
of real-valued eigenfunctions.

Here, and throughout the paper, the notation 〈 , 〉 stands for the (Hermitian) inner product in
L2(M,µ).
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Our first main result is the following.

Theorem A. We assume that the Reeb flow is ergodic on (M,ν).1

Then, for any orthonormal Hilbert basis (φn)n∈N∗ of L2(M,µ), consisting of eigenfunctions of
4sR associated with the eigenvalues (λn)n∈N∗ labelled in increasing order, there exists a density-one
sequence (nj)j∈N∗ of positive integers such that

lim
j→+∞

∣∣φnj ∣∣2 µ = ν,

where the limit is taken in the (weak) sense of duality with continuous functions.
For any real-valued orthonormal Hilbert basis (φn)n∈N∗ of L2(M,µ), consisting of eigenfunctions

of 4sR associated with the eigenvalues (λn)n∈N∗ labelled in increasing order, there exists a density-
one sequence (nj)j∈N∗ of positive integers such that

lim
j→+∞

〈
Aφnj , φnj

〉
=

1

2

∫
M

(
a(q, αg(q)) + a(q,−αg(q))

)
dν(q),

where the scalar product is in L2(M,µ), for every classical pseudo-differential operator A of order 0
with homogeneous principal symbol a. If a is even then the assumption on the basis to be real-valued
can be dropped.

Remark 1.1. In the second assertion, we take a real-valued eigenbasis to deal with the fact that
the unit subbundle of Σ has two connected components. An example where the same problem
occurs is the Fourier basis on the circle R/2πZ. In that case, the unit cotangent bundle also has
two connected components and it is known that the Shnirelman theorem is valid for the basis
consisting of sines and cosines, but not for the exponential basis.

In Section 8, we also show how to extend the above result to the case where D is not orientable
(see Theorem 8.1).

Our result is valid for any choice of a smooth (non-vanishing) density µ on M . This is due
to the fact that, up to an explicit unitary gauge transform, changing the density modifies the sR
Laplacian with an additional bounded operator (see Remark 2.2 for a precise statement) and this
addition plays no role in the proofs.

Notations. We adopt the following notations.
Let E be an arbitrary vector bundle over M . The sphere bundle SE is the quotient of E \ {0}

by the positive homotheties, i.e., SE = (E \ {0})/(0,+∞). Homegeneous functions of order 0 on
E \ {0} are identified with functions on SE. The bundle ST ?M , called the co-sphere bundle, is
denoted by S?M .

Let h be an arbitrary smooth, possibly degenerate, metric on E that is associated to a nonneg-
ative quadratic form. The unit bundle UhE is the subset of vectors of E of h-semi-norm equal to
one. If h is non degenerate, then UhE is canonically identified with SE; otherwise, the cylinder
bundle UhE is identified with an open subset of SE. The bundle UhT

?M is more shortly denoted
by UhM or even by U?M .

1The Reeb flow (Rt)t∈R generated on M by the vector field Z leaves the measure ν invariant. We say that this
flow is ergodic on (M,ν) if any measurable invariant subset of M is of measure 0 or 1. This implies, by the von
Neumann ergodic theorem, that, for every continuous function f on M , we have

1

T

∫ T

0
f ◦ Rt(x) dt→

∫
M
f dν,

in L2(M,ν), as T → +∞.
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The classical Shnirelman theorem is established in the Riemannian setting on a Riemannian
manifold (X,h) under the assumption that the Riemannian geodesic flow is ergodic on (S?X,λL),
where the limit measure is the normalized Liouville measure λL on S?X ' Uh?X = {h? = 1}
(where h? is the co-metric on T ?X associated with the Riemannian metric h).

In contrast, the Liouville measure on the unit bundle Ug?M = {g? = 1} has infinite total mass,
and hence the QE property cannot be formulated in terms of the sR geodesic flow: ergodicity has
no sense in this case. We recall that the co-metric g? : T ?M → R is defined as follows: g?(q, ·) is
the semi-positive quadratic form on T ?qM defined by g?(q, p) = ‖p|Dq‖2q where the norm ‖.‖q is the
norm on D? dual of the norm gq.

Another interesting difference is that, in the Riemannian setting, QE says that most eigenfunc-
tions equidistribute in the phase space, whereas here, in the 3D contact case, they concentrate
on Σ = D⊥ (where ⊥ is in the sense of duality), the contact cone that is also the characteristic
manifold (g?)−1(0) of 4sR (see the microlocal Weyl formula established in Theorem 4.1).

Remark 1.2. To our knowledge, Theorem A is the first QE result established for a hypoelliptic
operator. Our proof is specific to the 3D contact case, but the result can probably be extended
to other sub-Riemannian Laplacians. It is likely that the microlocal Weyl formula (Theorem 4.1)
can be generalized to equiregular sub-Riemannian structures. The simplest nonregular case, the
Martinet case, is already more sophisticated (see [10, 37]), and it is difficult to identify the adequate
dynamics and the appropriate invariant measure being given by the microlocal Weyl formula. The
relationship with abnormal geodesics is, in particular, an interesting issue.

Remark 1.3. We call spectral invariant (of the sub-Riemannian structure) any quantity that can
be computed knowing only the associated spectral sequence (λn)n∈N∗ . It is interesting to note
that, as a consequence of the Weyl asymptotic formula (Section 4), the Popp volume P (M) of M
is such a spectral invariant of the sub-Riemannian structure (and this, for any choice of dµ).

When M = S3, then 1/P (M) is the asymptotic Hopf invariant of the Reeb vector field Z (with
respect to the Popp probability measure ν) introduced in [1]. It follows that the asymptotic Hopf
invariant also is a spectral invariant.

Let (ψj)j∈N∗ be an arbitrary orthonormal family of L2(M,µ). Let a : S?M → C be a smooth
function. In Appendix A.1, we recall how to quantize a, i.e., how to associate to a a bounded
pseudo-differential operator Op(a). We set µj(a) = 〈Op(a)ψj , ψj〉, for every j ∈ N∗. The measure
µj is asymptotically positive, and any closure point (weak limit) of (µj)j∈N∗ is a probability measure
on S?M , called a quantum limit (QL), or a semi-classical measure, associated with the family
(ψj)j∈N∗ .

Theorem A says that, under the ergodicity assumption of the Reeb flow, the Popp probability
measure ν, which is invariant under the Reeb flow, is the “main” QL associated with any eigenbasis.

Our second main result hereafter provides an insight on QLs in the 3D contact case in greater
generality, without any ergodicity assumption. In order to state it, we identify S?M with the union
of U?M = {g? = 1} (which is a cylinder bundle) and of SΣ (which is a two-fold covering of M):
each fiber is obtained by compactifying a cylinder with two points at infinity.

Theorem B. Let (φn)n∈N∗ be an orthonormal Hilbert basis of L2(M,µ), consisting of eigenfunc-
tions of 4sR associated with the eigenvalues (λn)n∈N∗ labelled in increasing order.

1. Let β be a QL associated with the subsequence family (φnj )j∈N∗ . Using the above identification
S?M = U?M ∪SΣ, the probability measure β can be written as the sum β = β0 + β∞ of two
mutually singular measures such that:

• β0(SΣ) = 0 and β0 is invariant under the sR geodesic flow associated with the sR metric
g,

7



• β∞ is supported on SΣ and is invariant under the lift to SΣ of the Reeb flow.

2. There exists a density-one sequence (nk)k∈N∗ of positive integers such that, if β is a QL
associated with a subsequence of (nk)k∈N∗ , then the support of β is contained in SΣ, i.e.,
β0 = 0 in the previous decomposition.

Remark 1.4. The decomposition and the statement on β0 are actually valid for any sR Laplacian,
not only in the 3D contact case. A stimulating open question is to establish invariance properties
of β∞ for more general sR geometries.

In Theorem B, we do not assume that the eigenbasis is real-valued.
In the classical Riemannian case, it is well known that any QL associated with a family of

eigenfunctions is invariant under the geodesic flow. Indeed, denoting by exp(it
√
−4) the half-

wave propagator, we have〈
exp(−it

√
−4)Op(a) exp(it

√
−4)φn, φn

〉
= µn(a),

for every t ∈ R, for every n ∈ N∗, and for every classical symbol of order 0. By the Egorov theorem,
exp(−it

√
−4)Op(a) exp(it

√
−4) is a pseudo-differential operator of order 0, with principal symbol

a ◦ exp(t ~H), where exp(t ~H) is the Hamiltonian geodesic flow. The invariance property follows.
In the sub-Riemannian 3D contact case, the proof is not so simple and follows from arguments

used to prove Theorem A. In particular, Lemma 6.2 in that proof serves as a substitute for the
Egorov theorem (see Section 6.2). It is crucial in the proof to first decompose the QL into the sum
of a part that is supported away of SΣ and of a part that is supported on SΣ, before proving that
the latter is invariant under the Reeb flow.

A general path towards QE. Let us indicate some ideas behind the proof of Theorem A. We
follow the general path towards establishing the QE property, as clarified, e.g., in [49]. We set
N(λ) = #{n | λn 6 λ}.

The first step consists in establishing a local Weyl law and a microlocal Weyl law : both are
independent of the eigenbasis. The local Weyl law provides some information on the average local-
ization of eigenfunctions in M , while the microlocal Weyl law provides some similar information
in the Fourier-momentum space S?M . More precisely, the microlocal Weyl law states that

lim
λ→∞

1

N(λ)

∑
λn6λ

〈Aφn, φn〉 = ā =

∫
S?M

a dW4, (1)

for every pseudo-differential operator A of order 0 with a positively homogeneous principal symbol
a, where S?M is the unit sphere bundle of T ?M , and dW4 is a probability measure that we call
the microlocal Weyl measure (see Definition 4.2 in Section 4). This Cesáro convergence property
can often be established under weak assumptions, and without any ergodicity property.

The second step consists in proving the variance estimate

lim
λ→∞

1

N(λ)

∑
λn6λ

|〈(A− ā id)φn, φn〉|2 = 0. (2)

The variance estimate usually follows by combining the microlocal Weyl law (1) with ergodicity
properties of some associated classical dynamics and with an Egorov theorem. Actually, the
following infinitesimal version of the Egorov theorem suffices:〈

[A,
√
4]φn, φn

〉
= 0,

8



or even the weaker property

lim
λ→∞

1

N(λ)

∑
λn6λ

∣∣∣〈〈[A,√4]φn, φn

〉∣∣∣2 = 0.

Then QE follows from the two properties above. Indeed, for a fixed pseudo-differential operator A
of order 0, it follows from (2) and from a well known lemma2 due to Koopman and Von Neumann
(see, e.g., [40, Chapter 2.6, Lemma 6.2]) that there exists a density-one sequence (nj)j∈N∗ of
positive integers such that

lim
j→+∞

〈
Aφnj , φnj

〉
= ā.

Using the fact that the space of symbols of order 0 admits a countable dense subset, QE is then
established with a diagonal argument.

Organization of the paper. In Section 2, we provide the precise and complete framework
that is relevant both to the sub-Riemannian geometric setting and to the spectral analysis of the
associated sR Laplacian.

In Section 3, we recall the spectral theory of compact quotients of the Heisenberg group with
an invariant metric. The study made in [6] serves as a guiding model for our general result. This
example is used in Section 5 in order to get a quantized version of the Birkhoff normal form. We
also compute some QLs in this Heisenberg flat case. Finally, we give some examples of 3D contact
manifolds on which the Reeb flow is ergodic.

In Section 4, we establish the microlocal Weyl law. No ergodicity assumption is required here.
The local Weyl law is established in [35]. The limit measure that appears in the local Weyl law
is the Popp probability measure. Therefore, this measure is the good candidate for a QE result,
and the fact that the Popp measure is invariant under the Reeb flow makes it natural to expect
that the Reeb vector field is relevant for that purpose. For the same reason, it also indicates that
the sub-Riemannian geodesic flow is not a good candidate, because it does not preserve any lift
of the Popp measure in general. The microlocal Weyl law is derived thanks to a general argument
proving the average concentration of the eigenfunctions on Σ.

In Section 5, we establish a classical Birkhoff normal form and then a quantum normal form
microlocally near Σ. Such normal forms have proved to be relevant in the semi-classical literature
to obtain fine spectral results. Our normal form is essentially due to [34] and is closely related to the
one of [41] for large magnetic fields in dimension two (see also [3]). This normal form implies that,
microlocally near Σ, all contact 3D sub-Riemannian structures are equivalent, and in particular
can be (almost) conjugated to the local model of the Heisenberg flat case. In the quantum version,
this conjugation is performed with a Fourier Integral Operator, and we infer from that result an
almost factorization of 4sR microlocally near Σ (quantum Birkhoff normal form). Here, “almost”
means that the factorization is exact only along Σ, with remainder terms that are flat along Σ.

In Section 6, we use the quantum Birkhoff normal form to prove the variance estimate, and,
using pseudo-differential calculus techniques (in particular, averaging and brackets) and the ergod-
icity assumption on the Reeb flow, we infer the QE property for 4sR, proving Theorem A. Note
that we state and prove in Section 6.2 a crucial lemma playing the role of an infinitesimal version
of the Egorov theorem.

Theorem B is proved in Section 7.
Section 8 is devoted to showing how to extend Theorem A to the case of a non-orientable

subbundle D.

2This lemma states that, given a bounded sequence (un)n∈N of nonnegative real numbers, the Cesáro mean
1
n

∑n−1
k=0 uk converges to 0 if and only if there exists a subset S ⊂ N of density one such that (uk)k∈S converges to

0. We recall that S is of density one if 1
n

#{k ∈ S | k 6 n− 1} converges to 1 as n tends to +∞.

9



Several appendices gather some useful technical statements.

Some of the results of this paper have been announced in [9], and proved in a simpler framework.
This paper is the first of a series. In [10], we will establish general properties of Weyl measures
for general equiregular sR cases (microlocal concentration, heat asymptotics) and also in some
singular cases, such as the Grushin and the Martinet cases. In [11], we will describe properties of
the geodesics in the 3D contact case, the main observation being that geodesics with large initial
moments are spiraling around Reeb orbits. A precise version of this behavior uses a more refined
normal form due to Melrose (see [34]), of which we give a full proof using Nelson’s trick (see [39]),
which is a scattering argument. We are also preparing a short note on the relationship between
magnetic and sR dynamics (see [8]).

2 Geometric and spectral preliminaries

Let us start with several notations. We denote by ω the canonical symplectic form on the cotangent
bundle T ?M of M . In local coordinates (q, p) of T ?M , we have ω = dq ∧ dp = −dΛ with Λ = p dq
(Liouville one-form). We denote by { , }ω the Poisson bracket associated with ω, dropping the
index ω when the context is clear. Given a smooth Hamiltonian function h : T ?M → R, we denote
by ~h the corresponding Hamiltonian vector field on T ?M , defined by ι~hω = dh, and we denote

by exp(t~h) the flow at time t generated by ~h on T ?M . Given any smooth vector field X on M ,
we denote by hX the Hamiltonian function (momentum map) on T ?M associated with X defined
by hX = Λ(X), that is, in local coordinates, by hX(q, p) = p(X(q)). The hamiltonian flow of
~hX projects onto the integral curves of X. Note also that, given two vector fields X and Y on
M , we have {hX , hY }ω = −h[X,Y ], where the Lie bracket [X,Y ] is defined in terms of derivation
by [X,Y ] = XY − Y X. Throughout the paper, the notation orthω stands for the symplectic
ω-orthogonal.

2.1 Sub-Riemannian Laplacians

Let (M,D, g) be a sub-Riemannian (sR) structure where M is a smooth connected compact three-
dimensional manifold, D is a smooth subbundle of TM of rank two (called horizontal distribution),
and g is a smooth Riemannian metric on D. We assume that D is a contact distribution, that
is, we can write D = kerα locally around any point, for some one-form α such that α ∧ dα 6= 0
(locally). At this step, we do not need to normalize the contact form.

In order to define a sub-Riemannian Laplacian 4sR, let us choose a smooth density µ on M .
The choice of µ is independent of that of g.3 Let L2(M,µ) be the set of complex-valued functions
u such that |u|2 is µ-integrable over M . Then −4sR is the nonnegative self-adjoint operator on
L2(M,µ) defined as the Friedrichs extension of the Dirichlet integral

Q(φ) =

∫
M

‖dφ‖2g∗ dµ,

where the norm of dφ is calculated with respect to the (degenerate) dual metric g? (also called
co-metric) on T ?M associated with g. The sR Laplacian 4sR depends on the choice of g and of
dµ. Note that g? = h2

X + h2
Y if (X,Y ) is a local g-orthonormal frame of D.

We consider the divergence operator divµ associated with the measure µ, defined by LXdµ =
divµ(X) dµ for any vector field X on M . Besides, the horizontal gradient ∇sRφ of a smooth

3As we will see, the choice of µ plays no role in what follows. Beyond this paper, we expect that this fact is
important in the non-equiregular cases where there is no canonical choice of µ.
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function φ is the unique section of D such that gq(∇sRφ(q), v) = dφ(q).v, for every v ∈ Dq. The
operator −divµ is the formal adjoint of ∇sR on L2(M,µ). Hence, we have

4sRφ = divµ(∇sRφ),

for every smooth function φ on M .
Since ‖dφ‖2g∗ = ‖∇sRφ‖2g, if (X,Y ) is a local g-orthonormal frame of D, then ∇sRφ = (Xφ)X+

(Y φ)Y , and Q(φ) =
∫
M

(
(Xφ)2 + (Y φ)2

)
dµ. It follows that

4sR = −X?X − Y ?Y = X2 + Y 2 + divµ(X)X + divµ(Y )Y,

where the adjoints are taken in L2(M,µ).

Remark 2.1. The co-metric g? induces on T ?M an Hamiltonian vector field ~g?. The projections
onto M of the integral curves of ~g? are the (normal) geodesics of the sub-Riemannian metric g (see
[38]). This defines the sR geodesic flow.

Remark 2.2. Let us express the difference between two sub-Riemannian Laplacians 4µ1
and 4µ2

associated with two different densities (but with the same metric g). Assume that µ2 = h2µ1 with

h a positive smooth function on M . It is easy to see that divµ2
(X) = divµ1

(X) + X(h2)
h2 , for every

vector field X. By simple computations, we then establish that h4µ2
(φ) = 4µ1

(hφ)− φ4µ1
(h) =

4µ1
(hφ) + h2φ4µ2

(h−1). To settle this identity in a more abstract way, we define the isometric
bijection J : L2(M,µ2)→ L2(M,µ1) by Jφ = hφ. Then, we have

J4µ2
J−1 = 4µ1

− 1

h
4µ1

(h) id = 4µ1
+ h4µ2

(h−1) id.

It follows that 4µ1
is unitarily equivalent to 4µ2

+W , where W is a bounded operator.
This remark is important because, for a given metric, it allows us to work with the sub-

Riemannian Laplacian associated with any density. Usually, this kind of fact is abstracted by
using half-densities (see [16]) which give a canonical Hilbert space on M . A way of rephrasing
the previous remark is then to say that 4sR is any self-adjoint second-order differential operator
whose principal symbol is g?, whose sub-principal symbol vanishes, and such that λ1 = 0 (first
eigenvalue).

Remark 2.3. Note that the definitions and statements of this section hold for any sR Laplacian.

2.2 Microlocal aspects

We are going to use some microlocal analysis and the symbolic calculus of pseudo-differential
operators in order to study the operator 4sR. The facts that we will use are recalled in Appendix
A.1, such as, in particular, the notion of principal symbol of a pseudo-differential operator that is
defined in an intrinsic way; the principal symbols of pseudo-differential operators of order 0 are
identified with functions on S?M . The principal symbol of −4sR is given on T ?M by

σP (−4sR) = g?,

i.e., it coincides with the co-metric g?, and thus, if D is locally spanned by a g-orthonormal
frame (X,Y ), then σP (−4sR) = h2

X + h2
Y . The sub-principal symbol of −4sR is zero because

−4sR = X?X + Y ?Y locally (see Appendix A.1).
This will be important to derive the quantum normal form in Section 5.2 and in particular to

establish Lemma 6.2 (which is the main lemma playing the role of an infinitesimal Egorov theorem).
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For any other volume form dµ′ on M , the corresponding sub-Riemannian Laplacian is unitarily
equivalent to 4sR + V idM , where V is a smooth function (see also Remark 2.2).

Given any local g-orthonormal frame (X,Y ) of D, the vector fields (X,Y, [X,Y ]) generate TM ,
and it follows from [25] that the operator −4sR is hypoelliptic and has a compact resolvent (see
also [44]). It thus has a discrete real spectrum (λn)n∈N∗ , with 0 = λ1 < λ2 6 · · · 6 λn 6 · · · , with
λn → +∞ as n→ +∞.

Throughout the paper, we consider an orthonormal Hilbert basis (φn)n∈N of L2(M,µ), con-
sisting of eigenfunctions of 4sR, associated with the eigenvalues (λn)n∈N∗ , labelled in increasing
order. Using that 4sR commutes with complex conjugation, there exist eigenbases consisting of
real-valued eigenfunctions.

2.3 Popp measure and Reeb vector field

In order to define the Popp measure and the Reeb vector field, we first choose a global contact form
defining D. Since D is assumed to be orientable, and since every contact manifold of dimension 3
is orientable, D is co-orientable as well and hence there are global contact forms. We define αg as
the unique contact form defining D, such that, for each q ∈M , (dαg)|Dq coincides with the volume

form induced by g and the orientation on Dq.
We define the density dP = |αg∧dαg| on M . In general, dP differs from dµ. The corresponding

measure P is called the Popp measure in the existing literature (see [38], where it is defined in the
general equiregular case). Of course, here, this measure is the canonical contact measure associated
with the normalized contact form αg. In what follows, we consider the Popp probability measure

ν =
P

P (M)
.

The Reeb vector field Z of the contact form αg is defined as the unique vector field such that
αg(Z) = 1 and dαg(Z, ·) = 0. Equivalently, using the identity dα(Z, Y ) = Z.α(Y ) − Y.α(Z) −
α([Z, Y ]), one gets that Z is the unique vector field such that

[X,Z] ∈ D, [Y,Z] ∈ D, [X,Y ] = −Z mod D, (3)

for any positive orthonormal local frame (X,Y ) of D. In particular, Z is transverse to D.
Using the Cartan formula, we have LZα = 0, hence LZν = 0. This computation shows that

the Popp measure ν is invariant under the vector field Z, and equivalently, under the Reeb flow
generated by Z. As already said, it is crucial to identify such an invariance property in view of
deriving a QE result.

Remark 2.4. The Reeb vector field Z has the following dynamical interpretation. If (q0, v0) ∈ D,
then there exists a one-parameter family of geodesics associated with these Cauchy data: they are
the projections of the integral curves of the Hamiltonian vector field ~g? (defined in Remark 2.1)
whose Cauchy data are (q0, p0) with (p0)|Dq0 = g(v0, ·). For every u ∈ R, the projections on M

of the integral curves of ~g? with Cauchy data (q0, p0 + uαg) in the cotangent space have the same
Cauchy data (q0, v0) in the tangent space. As u→ ±∞, they spiral around the integral curves of
∓Z. From the point of view of spectral asymptotics, this part of the dynamics is expected to be
the dominant one. This is explained in more details in [11].

2.4 The characteristic cone and the Hamiltonian interpretation of the
Reeb flow

Let Σ ⊂ T ?M be the characteristic manifold of −4sR, given by

Σ = (g?)−1(0) = D⊥,
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that is the annihilator of D. If D is locally spanned by a g-orthonormal frame (X,Y ), then
Σ = h−1

X (0) ∩ h−1
Y (0). Note that Σ coincides with the cone (also globally defined)

Σ = {(q, s αg(q)) ∈ T ?M | q ∈M, s ∈ R}. (4)

We define the function ρ : Σ → R by ρ(s αg) = s. The function ρ is also the restriction of hZ to
Σ. We set Σs = ρ−1(s), for every s ∈ R.

An important feature of the contact situation is that the characteristic cone is symplectic: the
restriction ω|Σ is symplectic. We have the following result.

Lemma 2.1. The vector ~hZ is tangent to Σ and the Hamiltonian vector field ~ρ on Σ coincides
with the restriction of ~hZ to Σ.

Proof. Given any point (q, p) = (q, s αg(q)) ∈ Σ ⊂ T ?M , by definition of Z we have s = hZ(q, p),
and thus Σ = {(q, hZ(q, p)αg(q)) | (q, p) ∈ T ?M}, that is, Σ is the graph of hZ αg in T ?M . Hence
ρ = (hZ)|Σ.

To prove that ~hZ is tangent to Σ, it suffices to prove that dhX .~hZ = dhY .~hZ = 0 along Σ, where
(X,Y ) is a local g-orthonormal frame of D. We have dhX .~hZ = ω(~hX ,~hZ) = {hX , hZ} = −h[X,Z],

and by (3) we have [X,Z] ∈ D and thus h[X,Z] = 0 on Σ = D⊥. The conclusion follows.

Now, since we have by definition ι~hZω = dhZ , and, since ~hZ is tangent to Σ, we have

ι(~hZ)|Σ
ω|Σ = d(hZ)|Σ = dρ, and therefore ~ρ = (~hZ)|Σ, because (Σ, ω|Σ) is symplectic.

This lemma implies that
exp(t~ρ) = exp(t~hZ)|Σ,

and that the Hamiltonian flow exp(t~ρ) on Σs projects onto the Reeb flow on M . The Reeb
dynamics play a crucial role in what follows, and Lemma 2.1 will be used to infer information from
the dynamics of the Hamiltonian flow generated by ρ on the symplectic manifold Σ to the Reeb
dynamics on M .

We define Σ± = ρ−1({s | ±s > 0}). Note that Σ+ and Σ− are permuted when one changes
the orientation of D, while the definition of the sR Laplacian remains unchanged. Each of the
submanifolds Σ1 and Σ−1 is connected and is a graph over M . Denoting by ν̂s the lift of the
measure ν to Σs, the ergodicity assumption of Theorem A can be rephrased by saying that the
Hamiltonian flow exp(t~ρ) is ergodic on (Σ±1, ν̂±1).

In the Riemannian setting, the unit tangent bundle is connected for d > 2. The fact that we
have here two connected components explains why the second statement of Theorem A applies
only to a real-valued eigenbasis or to observables a having a principal symbol that is symmetric
with respect to Σ.

3 Examples

3.1 The Heisenberg flat case

The simplest example is given by an invariant metric on a compact quotient of the Heisenberg
group. The spectral decomposition of the Heisenberg Laplacian is then explicit (see [6, 22]) and we
present it here in order to get a better understanding, because, as we will show in Section 5, this
example serves as a microlocal normal form model for all sub-Riemannian Laplacians of contact
type in dimension three.

Let G be the three-dimensional Heisenberg group defined as G = R3 with the product rule

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − xy′).
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The contact form αH = dz+x dy and the vector fields XH = ∂x and YH = ∂y−x∂z are left-invariant
on G. Let Γ be the discrete co-compact subgroup of G defined by

Γ = {(x, y, z) ∈ G | x, y ∈
√

2π Z, z ∈ 2πZ}.

We define the 3D compact manifold manifold MH = Γ\G, and we consider the horizontal distri-
bution DH = kerαH , endowed with the metric gH such that (XH , YH) is a gH -orthonormal frame
of DH . With this choice, we have (αH)g = αH .

The Reeb vector field is given by ZH = −[XH , YH ] = ∂z. The Lebesgue volume dµ = |dx dy dz|
coincides with the Popp volume dP , and we consider the corresponding sub-Riemannian Laplacian

4H = X2
H + Y 2

H .

Note that the vector fields XH and YH have divergence zero.
We refer to this sub-Riemannian case as the Heisenberg flat case. Accordingly, we set

g?H = σP (−4H) = h2
XH + h2

YH ,

and
ΣH = (g?H)−1(0) = h−1

XH
(0) ∩ h−1

YH
(0).

Note that, denoting by (x, y, z, px, py, pz) the coordinates in the cotangent space, we have hXH = px,
hYH = py − xpz and hZH = pz.

Spectrum of 4H . The main observation to derive the next result is that the sub-Riemannian
Laplacian 4H commutes with the vector field −iZH whose spectrum is the set of integers m ∈ Z.

Proposition 3.1. The spectrum of −4H is given by

{λ`,m = (2`+ 1)|m| | m ∈ Z \ {0}, ` ∈ N} ∪ {µj,k = 2π(j2 + k2) | (j, k) ∈ Z2},

where λ`,m is of multiplicity |m|. The spectral counting function is N(λ) =
∑
`∈NN`(λ) +NT (λ),

with NT (λ) ∼ λ/2 and

N`(λ) =
∑
m 6=0

|m|6λ/(2`+1)

|m|.

The Weyl asymptotics is

N(λ) ∼ π2

8
λ2 =

P (M)

32
λ2,

as λ→ +∞.

It is interesting to compare this result with the corresponding result for a Riemannian Laplacian
on a 3D closed Riemannian manifold, for which we have N(λ) ∼ Cλ3/2 as λ→ +∞.

Proof of Proposition 3.1. The proof relies on the following classical lemma.

Lemma 3.1. Let A be a closed operator on a Hilbert space. We assume that the self-adjoint
operator B = A?A has a compact resolvent and that [A,A?] = c id with c 6= 0. Then the spectrum
of B consists of the eigenvalues `|c|, with ` ∈ N, all of them having the same multiplicity.

Remark 3.1. This lemma can also be used to compute the spectrum of the harmonic oscillator.
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Considering a Fourier expansion with respect to the z variable, and using the fact that ZH
commute with 4H , we have L2(MH) = ⊕m∈ZHm, and accordingly, −4H = ⊕m∈ZBm. The
operator B0 is the Laplacian on the flat torus R2/

√
2πZ2, and thus its eigenvalues are µj,k =

2π(j2 + k2), with (j, k) ∈ Z2.
Let us now consider the operators Bm with m 6= 0. Let A = XH + iYH and A? = −XH + iYH .

We have [A,A?] = −2iZH and −4H = A?A + iZH . Restricting these identities to Hm yields
Bm = A?mAm −m and [Am, A

?
m] = 2m. It follows from Lemma 3.1 that the spectrum of Bm is

given by the eigenvalues (2` + 1)|m|, ` ∈ N, all of them having the same multiplicity. Now we
use the fact that Bm is an elliptic operator on a complex line bundle over the torus, of principal
symbol p2

x + p2
y, and we use the Weyl asymptotics in order to show that all these multiplicities are

equal to |m|. We get the Weyl asymptotics as follows:

2

+∞∑
`=0

λ/2`+1∑
m=1

m ∼ λ2
+∞∑
`=0

1

(2`+ 1)2
,

as λ→ +∞. The proposition is proved.

Normal form. We next provide a reformulation of the previous computations, which is useful
in the sequel. The sub-Riemannian Laplacian can be written as a product −4H = RHΩH with
two commuting operators RH and ΩH . The operator

RH =
√
Z?HZH

acts by multiplication by |m| on the functions of Hm. We define the two operators UH and VH on
⊕m 6=0Hm by

UH =
1

i
R
− 1

2

H XH and VH =
1

i
R
− 1

2

H YH ,

and we set
ΩH = U2

H + V 2
H .

Then we have
−4H = RHΩH = ΩHRH ,

and [UH , VH ] = ±id (according to the sign of hZH ), and moreover exp(2iπΩH) = id. The operators
RH , UH , VH , ΩH are pseudo-differential operators on the cones {p2

z > c(p2
x + p2

y)} with c > 0.
Actually, this corresponds to quantizing the factorization of the principal symbol given by

g?H = σ(−4H) = h2
XH + h2

YH = |hZH |

( hXH√
|hZH |

)2

+

(
hYH√
|hZH |

)2
 .

Note also the the heat kernel on the Heisenberg group has been computed in [19].

Periodic geodesics. It is interesting to observe that the length spectrum, i.e., the set of lengths
of periodic geodesics, can be deduced from the previous computations. The function hZH = pz is
a first integral of the geodesic flow. For hZH = 0, the Hamiltonian p2

x + p2
y generates the closed

geodesics of the flat torus R2/
√

2πZ2. For hZH 6= 0, we have g?H = |hZH |IH where {IH , hZH} = 0.

The Hamiltonian flow of ~IH (resp., of ~hZH ) is π-periodic (resp., 2π-periodic) and we have

→
g?H = |hZH |~IH + IH

−→
|hZH |.
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Considering the geodesic flow on the unit cotangent bundle g?H = 1 and a periodic orbit of length
L, we have |hZH |IH = 1, and thus

πp

|hZH |
=

2πq

IH
=
L

2
,

and therefore L = 2π
√

2pq with (p, q) ∈ N2.

Quantum limits. We use the specific properties of the Heisenberg flat case to compute some
quantum limits, thus giving some intuition for the general case. In the result hereafter, we use
the notations of Theorem B, according to which any quantum limit β for 4H can be written as
β = β0 + β∞, where β∞ is supported on Σ and invariant under the Reeb flow and β0 is invariant
under the sR flow.

Proposition 3.2. 1. If γ is a QL for the flat torus R2/
√

2πZ2, then β = γ ⊗ |dz| ⊗ δpz=0 is a
QL for 4H , satisfying β∞ = 0 in the above decomposition.

2. Any probability measure β on Σ1 that is invariant under the Reeb flow is a QL for 4H . For
any such measure, we have β0 = 0.

3. There exist quantum limits β0 and β∞ for 4H , with β0 invariant under the sR flow and
β∞ supported on Σ and invariant under the Reeb flow, such that, for every a ∈ [0, 1], βa =
aβ0 + (1− a)β∞ is also a QL for 4H .

Remark 3.2. The quantum limits for flat square tori have been completely characterized by
Jakobson in [28], and all of them are absolutely continuous.

Proof. Let us prove the first point. According to Proposition 3.1, the pullback of any eigenfunction
φ of the flat torus R2/

√
2πZ2 to MH is an eigenfunction of 4H that is independent of z. It follows

that, for any QL γ for the usual Laplacian on the torus, the measure 1
2πdγx,y,px,py ⊗ |dz| ⊗ δpz=0

is a QL for 4H .
Let us prove the second point. We now consider the QLs that are associated with the second

kind of eigenvalues given by Proposition 3.1. To any eigenvalue λ`,m = |m|(2` + 1), we associate
the eigenfunction Φ`,m(x, y, z) = φ`,m(x, y)eimz, where φ`,m is a section of a complex line bundle
on the torus. Recall that the Reeb flow is generated by ∂z, and thus all its orbits are periodic.
Considering eigenfunctions Φ0,m(x, y, z) = φ0,m(x, y)eimz as m → +∞, it follows from the proof
of Lemma 3.1 that their eigenspaces are (kerAm)eimz with Am = ∂

∂x + i ∂∂y + mx locally. The

functions exp(−mx2

2 + m
4 (x+ iy)2) belong locally to kerAm, and are localized at (0, 0) as well as

their Fourier transform. This implies that the associated QL is the lift to Σ1 of δ0,0⊗|dz|. Using the
fact that the spectrum of Bm has uniform gaps, the same is true for the projection of this function
onto kerAm. Note that the point (0, 0) plays no particular role. Now, we use an argument due
to Jakobson and Zelditch (see [30]): any convex combination of the uniform measures along Reeb
orbits is a QL, because the sequences of eigenfunctions that are associated to two different circles
are orthogonal at the limit. Since the latter combinations are dense in the set of invariant mesures,
the second point follows.

Let us prove the third point. The same orthogonality assumption allows one to construct more
complicated examples. For instance, for n→ +∞, we consider the eigenvalues λn = (2p0n+ 1)q0n
for some fixed nonzero integers p0 and q0. Setting m = (2p0n + 1)q0n and ` = 0, we obtain a
sequence Φ0,m whose QL is supported by Σ1. We denote by β∞ the corresponding measure. If
instead, we take m = q0n and ` = p0n, we get another sequence of eigenfunctions ψn. Taking a
subsequence if necessary, we obtain a QL β0, supported in C = {h2

XH
+ h2

YH
= 2p0

q0
h2
ZH
}. Indeed,

setting D = −i∂z, ψn satisfies Pψn = 0 with P = −4H+( 2p0

q0
D+1)D which is elliptic outside of C.
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It follows that φn and ψn are asymptotically orthogonal (and associated with the same eigenvalue).
The convex combinations cosαφn+sinαψn with α fixed thus give the QL cos2 αβ∞+sin2 αβ0.

3.2 2D magnetic fields

Following [37], we consider a two-dimensional closed Riemannian manifold (X, g) endowed with
a real two-form B (the magnetic field) whose integral is an integer multiple of 2π. We associate
to these data a complex Hermitian line bundle L (the choice is not unique if the manifold is not
simply connected) with a connection whose curvature is B, and a magnetic Schrödinger operator
HB acting on the sections of L, defined as the Friedrichs extension of q(s) =

∫
X
‖∇s‖2dxg on

the Hilbert space of square integrable sections of L. The associated principal S1-bundle on X is
denoted by M , and is equipped with the measure µ = dxg ⊗ |dθ|. We take as a distribution on
M the horizontal space of the connection and as a metric on it the pullback of the metric on X.
If B does not vanish, the distribution D is of contact type. Let us consider the sR Laplacian 4
associated to these data on M . Using a Fourier decomposition with respect to the S1-action on
L2(M,µ), we write L2(M,µ) = ⊕n∈ZL2(X,L⊗n) and we have 4 = ⊕nHnB . The associated Reeb
vector field is given by

Z = b∂θ − ~B,

where B = b dxg and ~B is the horizontal lift of the Hamiltonian vector field of B on X associated
with the symplectic form B. Note that these Reeb dynamics are not ergodic: they are integrable
and b is an integral of the motion. This example is a generalization of the Heisenberg case considered
in Section 3.1: in this case, X is the flat torus R2

x,y/
√

2πZ2, the magnetic field is B = dx ∧ dy
and the Heisenberg manifold M is the principal bundle over X. For an expanded version of this
section, we refer the reader to [8].

3.3 Examples of ergodic Reeb flows on 3D manifolds

In this section, we give examples of 3D contact structures for which the Reeb flow is ergodic. We
use the well known fact that a Reeb flow can be realized, in some appropriate context, as a geodesic
flow or as an Hamiltonian flow. We provide two constructions.

Geodesic flows. Let (X,h) be a 2D compact Riemannian surface, and let M = S?X be the unit
cotangent bundle of X. The 3D compact manifold M is then naturally endowed with the contact
form α defined as the restriction to M of the Liouville 1-form Λ = p dq. Let Z be the associated
Reeb vector field. Identifying the tangent and cotangent bundles of X thanks to the Riemannian
metric h, the set M is viewed as the unit tangent bundle of X. Using a metric g, for example
the canonical metric, also called Sasaki metric, such that the restriction of the symplectic form
to D is the volume form of g, Z is identified with the vector field on the unit tangent bundle of
X generating the geodesic flow on S?X. Therefore, with this identification, the Reeb flow is the
geodesic flow on M .

Now, the geodesic flow is ergodic (and hence, the Reeb flow is ergodic with respect to the Popp
measure) in the following cases:

• If the curvature of X is negative, then the geodesic flow is ergodic. In that case, the Reeb
flow is Anosov and the contact distribution is generated by the stable and unstable lines of
the geodesic flow. In the case where X = Γ \ H, with H the hyperbolic Poincaré disk, a
rather precise study of this operator can be done using the decomposition into irreducible
representations of the natural action of SL2(R) onto L2(Γ)\SL2(R) (this example is studied
in [12]).
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• It is known that any compact orientable surface can be endowed with a Riemannian metric
having an ergodic geodesic flow (see [13]).

There are explicit examples with M = P3(R) seen as the unit tangent bundle of (S2, g) where the
geodesic flow of g is ergodic (see [13]).

We refer to [17] for other examples of Anosov contact flows (which can be realized as Reeb
flows) on 3D manifolds, obtained by surgery from unit cotangent bundles of hyperbolic surfaces.

Hamiltonian flows. We use the relationship with symplectic geometry (see, e.g., [20]).
Let (W,ω) be a symplectic manifold of dimension 4, and let M be a submanifold of W of

dimension 3, such that there exists a vector field v on a neighborhood of M in W , satisfying
Lvω = ω (Liouville vector field), and transverse to M . Then the one-form α = ιvω is a global
contact form on M , and we have dα = ω. Note that, if ω = −dΛ is exact, then the vector field
v defined by ιvω = Λ is Liouville (in local symplectic coordinates (q, p) on W , we have v = p ∂p).
If the manifold M is moreover a level set of an Hamiltonian function h on W , then the Reeb
flow on M (associated with α) is a reparametrization, possibly with a nonconstant factor, of the
Hamiltonian flow restricted to M .

If D = kerα is moreover endowed with a Riemannian metric g, then the contact form αg
constructed in Section 2.3 is collinear to α, that is, αg = hα for some smooth function h (never
vanishing). Let us then choose the metric g such that h = 1 (it suffices to take g such that (dα)|D
coincides with the Riemannian volume induced by g on D).

Then, the Reeb flow is ergodic on (M,ν) (where the Popp measure ν is defined as in Section 2.3)
if and only if the Hamiltonian flow is ergodic on (M, |α ∧ ω|). This gives many possible examples
of an ergodic Reeb flow.

4 The local and microlocal Weyl laws

4.1 Definitions

The definitions and results given in this subsection are general. Let (φn)n∈N∗ be an orthonormal
basis of eigenfunctions of 4sR. Let N(λ) = #{n ∈ N∗ | λn 6 λ} be the spectral counting function.

Definition 4.1. For every bounded linear operator A on L2(M,µ), we define the Cesàro mean
E(A) ∈ C by

E(A) = lim
λ→+∞

1

N(λ)

∑
λn6λ

〈Aφn, φn〉 ,

whenever this limit exists. We define the variance V (A) = V (A, (φn)n∈N∗) ∈ [0,+∞] by

V (A) = lim sup
λ→+∞

1

N(λ)

∑
λn6λ

|〈Aφn, φn〉|2 .

Note that E(A) does not depend on the choice of the eigenbasis, because it is defined as the limit
of suitable traces. In contrast, V (A) = V (A, (φn)n∈N∗) depends on the choice of the eigenbasis.
Actually, since V (A) is thought as a variance, it would be more natural to replace A with A−E(A)
in the scalar product at the right-hand side, but this definition is actually more convenient in what
follows, and anyway we will mainly deal with operators of zero Cesàro mean.

The following definitions are obtained by restricting either to operators A that are given by
the multiplication by a function f or to operators that are obtained by quantizing a symbol
a : S?M → R of order 0 into a pseudo-differential operator Op(a) ∈ Ψ0(M) of order 0.
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Definition 4.2. Given any continuous function f : M → R, we consider the operator Af of
multiplication by f , and we assume that the limit defining E(Af ) exists. Then, the local Weyl
measure w4 is the probability measure on M defined by∫

M

f dw4 = lim
λ→+∞

1

N(λ)

∑
λn6λ

∫
M

f |φn|2 dµ = E(Af ).

In other words, w4 is the weak limit (in the sense of measures), as λ → +∞, of the probability
measures on M given by 1

N(λ)

∑
λn6λ

|φn|2µ.

The microlocal Weyl measure W4 is the probability measure on S?M defined by4∫
S?M

a dW4 = lim
λ→+∞

1

N(λ)

∑
λn6λ

〈Op(a)φn, φn〉 = E(Op(a)),

for every symbol a : S?M → R of order zero, whenever the limit exists for all symbols a of order 0.

When they exist, the local and microlocal Weyl measures do neither depend on the choice of
the orthonormal basis, nor on the choice of the quantization a 7→ Op(a). Moreover, we have

π∗W4 = w4,

i.e., the local Weyl measure w4 is the pushforward of the microlocal Weyl measure W4 under
the canonical projection π : T ∗M → M . The fact that the limits defining the microlocal Weyl
measures are indeed probabilities measures follows from the Garding inequality (which implies
that, if a > 0, then lim infn→+∞〈Op(a)φn, φn〉 > 0) and from a theorem of L. Schwartz according
to which positive distributions are Radon measures.

We state hereafter several general lemmas that will be useful in the sequel.

Lemma 4.1. 1. The set of A ∈ Ψ0(M) such that V (A) = 0 is a linear subspace.

2. Denoting by A? the adjoint of A ∈ Ψ0(M) in L2(M,µ), we have

V (A) 6 E(A?A), (5)

when the right-hand side is well defined.

3. Let A and B be bounded linear operators on L2(M,µ). If V (B) = 0 then V (A+B) = V (A).

Proof. Using the Cauchy-Schwarz inequality and the Young inequality we have V (A + B) 6
2 (V (A) + V (B)), for all bounded linear operators A and B on L2(M,µ). The first claim follows.
The second also follows from the Cauchy-Schwarz inequality, since | 〈Aφn, φn〉 |2 6 〈A?Aφn, φn〉,
for every integer n. Let us prove the third point. Using the generalized Young inequality, we have

〈(A+B)φn, φn〉2 6 (1 + ε)〈Aφn, φn〉2 + (1 +
1

ε
)〈Bφn, φn〉2,

for every ε > 0, from which we infer that V (A+ B)− V (A) 6 εV (A) + (1 + 1
ε )V (B). Using that

V (B) = 0 and letting ε go to 0, we get that V (A+B) 6 V (A). The converse inequality is obtained
by writing A = A+B −B and by following the same argument.

Lemma 4.2. If A is a compact operator on L2(M,µ), then E(A) = 0 and V (A) = 0.

4Recall that positively homogeneous functions of order 0 on T ?M are identified with functions on S?M .
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Proof. If A is compact, then ‖Aφn‖ → 0 as n → +∞. The lemma follows, using the Cauchy-
Schwarz inequality.

This lemma can in particular be applied to pseudo-differential operators of negative order. This
gives the following result.

Proposition 4.1. Given any pseudo-differential operator A of order 0, E(A) and V (A) depend
only on the principal symbol of A (and on the choice of a Hilbert basis of eigenfunctions in the
case of V (A)).

Lemma 4.3. The microlocal Weyl measure W4 is even with respect to the canonical involution
of S?M .

Proof. A Weyl quantization is constructed by covering M with a finite number of coordinate
charts. Once this covering is fixed, by using a smooth partition of unity, it suffices to define the
quantization of symbols that are supported in one of the chosen coordinate charts and there we
choose the Weyl quantization. We denote it by OpW (see Appendix A.1).

For any orthonormal basis (φn)n>1, for any integer n we have (for a symbol a supported in a
coordinate chart)

〈OpW(a)φn, φn〉 = (2π)−3

∫
ei〈x−y,ξ〉a

(
x+ y

2
, ξ

)
φn(x)φn(y) dx dy dξ

= (2π)−3

∫
ei〈x−y,ξ〉a

(
x+ y

2
,−ξ

)
φn(x)φn(y) dx dy dξ

= 〈OpW(ã)φn, φn〉,

(6)

where we have set ã(q, p) = a(q,−p). Since 4sR commutes with complex conjugation, (φn)n>1 is
a Hilbert basis of eigenfunctions as well. Taking the limit n → +∞, it follows that

∫
ã dW4 =∫

a dW4, since the limit defining W4 does not depend on the Hilbert basis of eigenfunctions.

The above definitions and results make sense in a general setting. We next identify the mi-
crolocal Weyl measure in the 3D contact case.

4.2 The microlocal Weyl law in the 3D contact case

Theorem 4.1. Let A ∈ Ψ0(M) be a pseudo-differential operator of order 0 with principal symbol
a ∈ S0(M). In the 3D contact case, we have∑

λn6λ

〈Aφn, φn〉 =
P (M)

64
λ2

∫
M

(
a(q, αg(q)) + a(q,−αg(q))

)
dν + o(λ2),

as λ→ +∞.
In particular, it follows that N(λ) ∼ P (M)

32 λ2, that the local and microlocal Weyl measures exist,
and that

E(A) =

∫
S?M

a dW4 =
1

2

∫
M

(
a(q, αg(q)) + a(q,−αg(q))

)
dν. (7)

Remark 4.1. Theorem 4.1 (proved in Section 4.3) says that the eigenfunctions “concentrate” on
Σ. In our proof, we are able to infer the microlocal Weyl measure from the local one, because the
distribution D is of codimension one.
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Remark 4.2. Equation (7) can be rewritten as

dW4 =
1

2
(dν̂1 + dν̂−1),

where ν̂±1 is the lift of the Popp probability measure measure ν to Σ±1. It also follows that

w4 = ν,

i.e., the local Weyl measure coincides with the Popp probability measure in the 3D contact case.

Note that, due to (7), E(A) only depends on a|Σ. For V (A), we have the following.

Corollary 4.1. 1. For every A ∈ Ψ0(M) whose principal symbol vanishes on Σ, we have
V (A) = 0.

2. Let A,B ∈ Ψ0(M), with principal symbols a, b ∈ S0(M) such that a|Σ = b|Σ. Then V (A) =
V (B).

Proof of Corollary 4.1. The principal symbol of A?A is |a|2. If a|Σ = 0, then it follows from the
microlocal Weyl formula (7) that E(A?A) = 0, and hence V (A) = 0. For the second point, writing
A = B + A − B, we have V (A − B) = 0 by the first point, and the conclusion follows by using
Lemma 4.1.

4.3 Proof of the microlocal Weyl law

In this section, we provide a general argument showing how one can derive the microlocal Weyl
measure from the local one. We first recall the local Weyl law.

Theorem 4.2. For any 3D contact sR Laplacian, we have

N(λ) ∼ P (M)

32
λ2,

as λ→ +∞, and w4 = ν (Popp probability measure).

The existence of a local Weyl measure in the 3D contact case has been implicitly established
by many authors, without giving a name to it, or without giving an explicit expression of it (see
for example [36]). In the forthcoming work [10], we give a very general proof (in a much more
general context) inspired by the paper [2], based on the use of the so-called privileged coordinates
in sub-Riemannian geometry. In the 3D contact case, Theorem 4.2 follows from results of [35],
where the authors establish the heat kernel asymptotics∫

M

e(t, q, q)f(q) dµ(q) ∼ 1

4π2t2

(
+∞∑
`=0

1

(2`+ 1)2

)∫
Σ∩{ρ61}

f(q) dσ(p, q),

as t → 0+, where dσ is the symplectic measure on Σ, and where the heat kernel e(t, q, q′) is the
Schwartz kernel of et4sR . We then use the fact that dσ = dν ⊗ dρ and the theorem follows by
applying the Karamata tauberian theorem (see [31]).

Let us now establish the microlocal Weyl law. Since our argument actually works in a more
general setting than in the 3D contact case, we provide hereafter some results that are valid in a
general sR context.

Let (M,D, g) be a sR structure, where M is a compact manifold of dimension d, D is a
subbundle of TM and g is a Riemannian metric on D. Let µ be a smooth density on M , and
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let 4sR be a sub-Riemannian Laplacian on M (see Section 2.1). In this general context, the
characteristic manifold of 4sR is still defined by Σ = D⊥. We assume that Lie(D) = TM (this is
Hörmander’s assumption, which implies hypoellipticity), so that 4sR has a discrete real spectrum.

We have the following result on its spectral counting function N(λ) = #{n | λn 6 λ}.

Proposition 4.2. If the codimension of D in TM is positive, then

lim
λ→+∞

N(λ)

λd/2
= +∞.

Proof. Let N be a subbundle of TM such that TM = D ⊕ N . Let h be an arbitrary metric on
N . For every ε > 0, we consider the Riemannian metric gε = g ⊕ ε−1h, and we consider the
corresponding Riemannian Laplacian 4gε,µ. We have the two following facts.

First, denoting by c the codimension of D in TM , the spectral counting function of 4gε,µ
satisfies Nε(λ) ∼ Cε−c/2λd/2, for some constant C > 0. Indeed, this follows from the Weyl law for
the Riemannian Laplacian 4gε,µ, which is valid even though the measure µ is not the Riemannian
volume, combined with the fact that Vol(M, |dq|gε) = ε−c/2Vol(M, |dq|g1

).
Second, with obvious notations, we infer from a minimax argument that λn(4g,µ) 6 λn(4gε,µ),

for every n ∈ N and every ε > 0, because g? 6 g?ε = g? + εh?, while the L2 norms are the same.
These facts imply that N(λ) > Nε(λ), and hence

lim inf
λ→+∞

N(λ)

λd/2
> lim
λ→+∞

Nε(λ)

λd/2
=

C

εc/2
,

for every ε > 0. The result follows.

Remark 4.3. Note that, using similar arguments, we have limε→0+ λn(4gε,µ) = λn(4sR). This
fact implies that many Riemannian statements concerning λn for n fixed are as well valid for sR
Laplacians.

We have the following consequence.

Proposition 4.3. If the microlocal Weyl measure W4 exists, then supp(W4) ⊂ SΣ.

A more precise result will be given in [10] using an appropriate approximation of the heat kernel
near the diagonal.

Proof. We start with the following lemma.

Lemma 4.4. Let A ∈ Ψ0(M) be a pseudo-differential operator whose principal symbol is equal to
zero in a neighborhood of Σ = D⊥. Then∑

λn6λ

|〈Aφn, φn〉| = O
(
λd/2

)
,

as λ→ +∞.

Remark 4.4. The exponent d
2 is the one that we would obtain in the classical elliptic case. Outside

of Σ, the operator 4sR is elliptic, and it follows that the operator
√
−4sR (which is defined using

functional calculus) is, away of Σ, a pseudo-differential operator with principal symbol
√
σp(−4sR)

(see [24, Corollary 9]).
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Proof of Lemma 4.4. We define P =
√
−4sR, sn =

√
λn and p =

√
g?. Let A ∈ Ψ0(M) be a

pseudo-differential operator whose principal symbol is equal to zero in a neighborhood of Σ = D⊥.
Without loss of generality, we assume that A is positive. We define an = 〈Aφn, φn〉, for every
n ∈ N∗. The proof follows closely the arguments of [26] (see, in particular, the end of Section 3 in
this paper) and [15, Section 2]. Let C1 ⊂ T ?M be a closed cone whose interior contains WF ′(A)
(see the definition in Appendix A.1), disjoint from Σ, and let ε > 0 be such that the sR geodesic
flow (which coincides with the flow of ~p) satisfies φt(WF ′(A)) ⊂ C1 if |t| 6 ε. Let ρ ∈ S(R)
(Schwartz space) be a nonnegative function such that ρ > c > 0 on [−1, 0] and whose Fourier
transform ρ̂(t) =

∫
R ρ(s)e−its ds is supported in the interval (−ε,+ε). We consider the distribution

ZA on R defined by

ZA(t) = Tr
(
e−itPA

)
=

+∞∑
n=1

ane
−itsn .

Multiplying by ρ̂(t)eits and integrating over R, we infer that

Tr

(
1

2π

∫
R
ρ̂(t)eitse−itPAdt

)
=

+∞∑
n=1

anρ(s− sn) =
1

2π

∫
R
eitsZA(t)ρ̂(t)dt, (8)

for every s ∈ R.
Let us prove that the right-hand side of (8) is O

(
sd−1

)
, as s → +∞. Let E be an elliptic

pseudo-differential operator of order 1 such that E − P is smoothing near C1. We claim that the
mapping t 7→ R(t) = e−itPA − e−itEA is smooth with values in trace-class operators for |t| 6 ε.
This will be enough to infer the estimate O

(
sd−1

)
, since this estimate is known for the elliptic

operator E (see [15, Section 2]). It follows from the Duhamel formula that

e−itPA− e−itEA = i

∫ t

0

ei(s−t)P (P − E)e−isEAds.

The right-hand side is smoothing for |t| 6 ε, because WF
(
e−isEAu

)
⊂ C1 for any distribution u

on M , and P −E is smoothing on C1. Hence it is trace-class. Besides, it clearly depends smoothly
on t. We get then that Tr(e−itPA− e−itEA)ρ̂(t) = ZA(t)ρ̂(t)−ZE(t)ρ̂(t) is smooth with compact
support and thus has a fast decaying Fourier transform. We have thus proved that the right-hand
side of (8) is O

(
sd−1

)
, as s→ +∞.

As a consequence, we have

∑
{n | s−16sn6s}

an 6
1

c

+∞∑
n=1

anρ(s− sn) = O
(
sd−1

)
,

and hence
∑
sn6s

an = O
(
sd
)
, as s→ +∞. The lemma is proved.

Now, it follows from Proposition 4.2 and Lemma 4.4 that, if A ∈ Ψ0(M) is microlocally sup-
ported in T ?M \ Σ, then

1

N(λ)

∑
λn6λ

|〈Aφn, φn〉| −→ 0,

as λ→ +∞. This proves Proposition 4.3.

Corollary 4.2. If the horizontal distribution D is of codimension 1 in TM , and if the local Weyl
measure w4 exists, then the microlocal Weyl measure W4 exists and is equal to half of the pullback
of w4 by the double covering SΣ→M which is the restriction of the canonical projection of T ?M
onto M .
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Proof. It suffices to consider symbols that are even with respect to the involution (q, p)→ (q,−p),
because we already know that dW4 is even. Using Proposition 4.3 and a density argument, we
obtain that, if a : S?M → R is continuous and vanishes on Σ, then W4(a) is well defined and
vanishes. Now, let a be a general continuous function. Using the fact that D is of codimension
one, we write a = a− ã+ ã, where ã is the microlocal lift to Σ of the function a on the base. By
the above reasoning, W4(a− ã) is well defined and vanishes. Now, by construction, W4(ã) is well
defined and is expressed with the local Weyl measure w4.

Let us now conclude the proof of Theorem 4.1, in the 3D contact case. It follows from Theorem
4.2 that the local Weyl measure exists and coincides with the Popp probability measure. Then
Theorem 4.1 follows from Corollary 4.2.

5 Birkhoff normal form

In this section, we derive a normal form for the principal symbol of a 3D contact sub-Riemannian
Laplacian, in the spirit of a result by Melrose in [34, Section 2]. This normal form implies in par-
ticular that, microlocally near the characteristic cone, all 3D contact sub-Riemannian Laplacians
(associated with different metrics and/or measures) are equivalent.

Recall that the characteristic cone Σ = (g?)−1(0), given by (4), is a symplectic conic subman-
ifold of T ?M \ {0} (the restriction ω|Σ is symplectic), parametrized by (q, s) 7→ (q, s αg(q)) from
M×(R\{0}) to T ?M \{0}. The function ρ : Σ→ R defined by ρ(s αg) = s is the Reeb Hamiltonian
on Σ. According to Lemma 2.1 we also have ρ = (hZ)|Σ. We also recall that

Σ+ = ρ−1((0,+∞)) = {(q, s αg(q)) ∈ T ?M | s > 0},
Σ− = ρ−1((−∞, 0)) = {(q, s αg(q)) ∈ T ?M | s < 0},

are positive conic submanifolds of T ?M . For every q ∈M , we denote by Σ±q the fibers in Σ± above
q, that is, the half-lines generated in Σ± by αg(q).

Given k ∈ N ∪ {+∞} and given a smooth function f on T ?M , the notation f = OΣ(k) means
that f vanishes along Σ at order k (at least). The word flat is used when k = +∞.

Given any open subset U ⊂ M , the notations ΣU , T ?UM , . . . , stand for the intersections of Σ,
T ?M , . . . , with T ?U .

We establish in Section 5.1 a classical Birkhoff normal form for g?, in three steps:

• In Sections 5.1.1 and 5.1.2, we give a normal form for the Hessian of g? along Σ, thus obtaining
a symplectic normal form modulo OΣ(3).

• In Section 5.1.4, we derive a symplectic Birkhoff normal form

g? ∼
+∞∑
j=1

ρjI
j + OΣ(∞),

where I is a classical harmonic oscillator, Poisson commuting with all functions ρj , and where
ρ1 = ρ is the Reeb Hamiltonian.

These two first normal forms are valid globally near ΣU , where U ⊂ M is any open set on
which the distribution D is trivial, that is, spanned by two vector fields X and Y globally
defined on U .
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• In Section 5.1.5, we establish a symplectic normal form

g? ∼ ρI + OΣ(∞),

which was initially found by Melrose. This normal form is global near ΣU , where U ⊂M is
any open set that is Reeb trivial according to the following definition.

Definition 5.1. An open set U is said to be Reeb trivial if:

1. the distribution D is trivial in U,

2. for any smooth function g defined in U , there exists a smooth solution f defined in U to the
equation Zf = g.

In Section 5.2, we quantize the above normal form, thus obtaining a quantum normal form that
will be used to prove our main results.

5.1 Classical normal form

The objective of this section is to design a homogeneous Birkhoff normal form of g? along Σ.

Symplectic normal bundle of Σ. In what follows, we focus on Σ+ = ρ−1((0,+∞)) (the results
for Σ− being similar, changing signs adequately). We denote by T ?M+ the open sub-cone of T ?M
on which hZ > 0.

Since Σ+ is symplectic, for every σ ∈ Σ+, we have the symplectic orthogonal decomposition

Tσ(T ?M+) = TσΣ+ ⊕ orthω(TσΣ+), (9)

where the notation orthω stands for the symplectic ω-orthogonal complement. We define the
symplectic normal bundle NΣ+ of Σ+ by

NΣ+ = {(σ,w) | σ ∈ Σ+, w ∈ NσΣ+} ⊂ T (T ?M+),

where NσΣ+ = orthω(TσΣ+). The set NΣ+ is a vector bundle over Σ+, with fibers NσΣ+ ∼
Tσ(T ?M+)/TσΣ+ that are two-dimensional, and the manifold Σ+ is canonically embedded in
NΣ+, by the zero section. We denote by P the projection of NΣ+ onto Σ+.

According to the tubular neighborhood theorem, T ?M+ is diffeomorphic to NΣ+ in a neighbor-
hood of Σ+. More precisely, there exist a convex5 neighborhood C0 of Σ+ in NΣ+, a neighborhood
C of Σ+ in T ?M+, and a diffeomorphism ϕ : C0 → C such that ϕ(σ) = σ for every σ ∈ Σ+. We
will not use this diffeomorphism in what follows, but we can keep in mind that NΣ+ ' T ?M+.

From now on, we assume that D is trivial in an open subset U ⊂M , and we will work only in
U . Considering a local g-orthonormal frame (X,Y ) of D in U , we have, along Σ+

U ,

TΣ+ = ker dhX ∩ ker dhY = {ξ ∈ T (T ?M+) | dhX .ξ = dhY .ξ = 0}

= {ξ ∈ T (T ?M+) | ω(~hX , ξ) = ω(~hY , ξ) = 0} = orthω(~hX ,~hY ),

and thus
NσΣ+ = Span{~hX(σ),~hY (σ)},

along Σ+. This means that, with this local frame, the fibers are spanned by ~hX and ~hY .

5A neighborhood C0 of Σ+ in NΣ+ is said to be convex if the intersection C0 ∩NqΣ+ with any fiber is convex.
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Denoting by π : T ?M →M the canonical projection, we have, along Σ+, dπ(~hX) = X ◦ π and

dπ(~hY ) = Y ◦ π, and thus dπσ(NσΣ+) = Dπ(σ). In other words, for every σ ∈ Σ+ the mapping

Θ(σ) = (dπσ)
|Dπ(σ)

|NσΣ+ : NσΣ+ → Dπ(σ)

is an isomorphism, thus defining a bundle morphism Θ : NΣ+ → D ◦ π over Σ. Recalling that
D = kerαg and that (dαg)|D coincides with the oriented volume form induced by g, we transport

this volume on fibers NσΣ+ by pullback under Θ. We have Θ?dαg(~hX ,~hY ) = dαg(X,Y ) = 1.
We define ωNΣ+ on the bundle NΣ+ as follows: given any point σ ∈ Σ+, we set

(ωNΣ+)σ = (ωσ)|NσΣ+ .

Since (ωNΣ+)σ(~hX(σ),~hY (σ)) = ωσ(~hX(σ),~hY (σ)) = {hX , hY }(σ) = hZ(σ) = ρ(σ), it follows that

ωNΣ+ = ρΘ?(dαg)|D.

The symplectic normal bundle NΣ+ inherits a linear symplectic structure on its fibers NσΣ+

endowed with the symplectic form (ωNΣ+)σ. We define coordinates (u, v) in NσΣ+
U with respect

to the basis (~hX(σ),~hY (σ))/ρ(σ)1/2, so that ωNΣ+ = du ∧ dv.
In what follows, we denote by ω̃ the symplectic form on NΣ+

U defined as follows: taking
symplectic coordinates (u, v) ∈ R2 in the fibers NΣ+

σ (that are symplectically orthogonal to Σ),
we have NΣ+

U ' (Σ+
U × R2

u,v), and we set

ω̃ = ω|Σ+ + du ∧ dv. (10)

Finally, we endow the symplectic conic manifold (NΣ+
U , ω̃) with the conic structure defined by

τ · (q, s αg(q), u, v) = (q, τs αg(q),
√
τu,
√
τv), (11)

for τ > 0, and the symplectic form ω̃ is clearly homogeneous for this conic structure, in the sense
that we have τ?(ω|Σ+ + du ∧ dv) = τ(ω|Σ+ + du ∧ dv).

Birkhoff normal form. We take local coordinates (σ, u, v) as above so that T ?M+
U ' NΣ+

U '
(Σ+

U × R2
u,v). On Σ+

U × R2
u,v we consider the function (σ, u, v) 7→ ρ(σ). With a slight abuse of

notation, we continue to denote by ρ this function.
For every fixed σ ∈ Σ+

U , the function (u, v) 7→ g?(σ, u, v) vanishes as well as its differential at
(0, 0). We consider its Hessian Hess(g?) and we define the smooth function I on NUΣ+ by

I =
1

ρ
Hess(g?).

In the local symplectic coordinates (σ, u, v) ∈ NΣ+
U ' Σ+

U × R2
u,v, we have

I(σ, u, v) = u2 + v2.

Hereafter, Σ+
U × R2

u,v is endowed with the symplectic form ω̃ defined by (10) and with the conic
structure defined by (11).

Theorem 5.1. There exist a conic neighborhood C0 of Σ+
U in (T ?U \ {0}, ω) and a homogeneous

symplectomorphism χ : C0 → Σ+
U × R2

u,v satisfying χ(σ) = (σ, 0) for σ ∈ Σ+ ∩ C0, such that

g? ◦ χ−1 = ρI + OΣ(∞).
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In other words, this theorem says that, up to a canonical transform, g? coincides with Hess(g?)+
OΣ(∞). This can be seen as a kind of symplectic Morse lemma along Σ.

This normal form has been obtained by Melrose in [34, Section 2], who even found a local
normal form (with sketchy arguments however). Here, we establish only the formal part of the
normal form, which is sufficient for our work. A proof of the full result (convergence of the normal
form) is given in our work [11] using a scattering method due to E. Nelson (see [39]).

The proof of Theorem 5.1 is quite long and is done in Sections 5.1.1, 5.1.2, 5.1.4 and 5.1.5, with
some parts written in Appendix C.1. The main steps are the following:

• First of all, in Section 5.1.1, we construct a homogeneous diffeomorphism χ1 from a conic
neighborhood C0 of Σ+

U to Σ+
U × R2 such that

χ∗1ω̃ = ω + OΣ(1),

g? ◦ χ−1
1 = ρI + OΣ(3).

• Second, in Section 5.1.2, using a conic version of the Darboux-Weinstein lemma (stated and
proved in Appendix B), we modify χ1 into a homogeneous diffeomorphism χ2 such that

χ∗2ω̃ = ω,

g? ◦ χ−1
2 = ρI + OΣ(3).

In other words, we kill the remainder term OΣ(1) in the pullback of ω̃, and thus we obtain
a symplectomorphism χ2.

• Finally, we improve the latter remainder to a flat remainder OΣ(∞), by solving cohomological
equations in the symplectic conic manifold ((Σ+×R2

u,v) \ {0}, ω̃) (see Section 5.1.3). This is
the most technical and lengthy part of the proof. This is done in two steps:

1. In Section 5.1.4, we first reduce g? to the normal form ρI+
∑+∞
k=2 ρkI

k + OΣ(∞), which
is valid in any open subset of M on which D is trivial.

2. In Section 5.1.5, we then reduce g? to the normal form ρI + OΣ(∞), but this is valid
only in any open Reeb trivial subset U of M (i.e., on which D is trivial and on which
one can solve equations Zf = a globally on U , see Definition 5.1).

5.1.1 Construction of χ1

The homogeneous diffeomorphism χ1 is constructed in an explicit way in the following result.

Proposition 5.1. Let (X,Y ) be a smooth oriented g-orthonormal frame generating D in the open
subset U ⊂M . The mapping

χ1 : T ?U+ −→ Σ+
U × R2

u,v

(q, p) 7−→
((
q, hZ(q, p)αg(q)

)
,

(
hX(q,p)√
hZ(q,p)

, hY (q,p)√
hZ(q,p)

))
satisfies:

(i) χ1(σ) = (σ, 0) for every σ ∈ Σ+
U ;

(ii) χ1 is a homogeneous diffeomorphism of a conic neighborhood of Σ+
U in T ?M+ \ {0} onto a

conic neighborhood of Σ+
U × {0} in Σ+

U × R2;

(iii) χ?1ω̃ = ω + OΣ(1);
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(iv) g? ◦ χ−1
1 = ρI + OΣ(3).

Proof. The property (i) is obvious. Note also that, by construction, χ1 is homogeneous for the
conic structure defined by (11). The property (iv) is satisfied because (hZ)|Σ+ = ρ and

g? = h2
X + h2

Y = hZ

((
hX√
hZ

)2

+

(
hY√
hZ

)2
)
.

Since (iii) implies that the differential of χ1 is invertible along Σ+
U , (ii) will follow from (iii) and

from the implicit function theorem. Now, (iii) follows from the symplectic orthogonal splitting (9)
of Tσ(T ?M), the definition (10) of ω̃ and the choice of the coordinates (u, v): indeed, noting that,
since (X,Y, Z) is a local frame of TM , we have hZ(q, p) > 0 for every (q, p) ∈ Σ+

U with p 6= 0,

and defining on {hZ > 0} the functions u(q, p) = hX(q,p)√
|hZ(q,p)|

and v(q, p) = hY (q,p)√
|hZ(q,p)|

, which are

positively homogeneous of order 1/2 with respect to p, we immediately get that (ωψ)|orthω(TΣ) =

du(q, p) ∧ dv(q, p), and hence, for any ψ = (q, p) ∈ Σ+
U with p 6= 0, we have

ωψ = αg(q) ∧ dhZ(q, p)− hZ(q, p) dαg(q) + du(q, p) ∧ dv(q, p).

The proposition is proved.

Remark 5.1. In the Heisenberg flat case, we recover the factorization of g? = σP (−4sR) done in
Section 3.1, and in that case we have exactly χ?1ω̃ = ω, without any remainder term.

5.1.2 Construction of χ2, using the Darboux-Weinstein lemma

In order to remove the remainder term OΣ(1) in χ?1ω̃, we use a conic version of the Darboux-
Weinstein lemma. This version is stated in a general version in Appendix B, Lemma B.1.

It follows from that lemma, applied with N = T ?U+, P = Σ+
U and k = 1, that there exists a

homogeneous diffeomorphism f defined in a conic neighborhood of Σ+
U , such that f?(χ?1ω̃) = ω,

and such that f is tangent to the identity along Σ+
U , that is, such that f = id + OΣ(2).

We define χ2 = χ1 ◦ f . Then χ2 is a local homogeneous diffeomorphism in some conic neigh-
borhood of Σ+

U , satisfying χ2(σ) = (σ, 0) for σ ∈ Σ+
U , and such that χ?2ω̃ = ω (and thus χ2 is a

symplectomorphism).
Since f = id + OΣ(2), using the fact that uOΣ(2) = OΣ(3) and vOΣ(2) = OΣ(3), we get that

g? ◦ χ−1
2 = ρI + OΣ(3).

At this step, we have thus obtained (up to a homogeneous canonical transform) the normal
form with a remainder term OΣ(3). In order to improve this normal form at the infinite order, we
are next going to solve a series of cohomological equations.

5.1.3 Cohomological equations

We consider the function H = g? ◦ χ−1
2 defined on some open sub-cone of Σ+

U × R2. According to
Section 5.1.2, we have

H = ρI + OΣ(3),

and H is homogeneous of order two with respect to the cone structure of Σ+
U ×R2 defined by (11).

Our objective is to construct, near the half-line Σ+
U × {0}, a local symplectomorphism χ from

(Σ+
U × R2, ω̃) into itself such that

H ◦ χ = ρI + OΣ(∞).
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The usual procedure, due to Birkhoff, and recalled, for pedagogical reasons, in Appendix C.1,
consists in constructing χ iteratively, by composing (symplectic) flows at time 1 associated with
appropriate Hamiltonian functions (also called Lie transforms), chosen by identifying the Taylor
expansions at increasing orders, and by solving a series of (so-called) cohomological equations in
the symplectic manifold (Σ+

U × R2, ω̃). This is done at the formal level, and then the canonical
transform χ is constructed by using the Borel theorem.

In the present setting, we have to adapt this general method and to define appropriate spaces
of homogeneous functions and polynomials, sharing nice properties in terms of Poisson brackets.
The procedure goes as follows, using what is written in Appendix C.1.

Let C be a conic neighborhood of Σ+
U×{0} (which will be taken sufficiently small in the sequel).

For every integer j, we denote by Fj the set of functions g that are smooth in C and homogeneous

of degree j for the conic structure of Σ+
U ×R2 defined by (11), meaning that g(q, λs,

√
λu,
√
λv) =

λj · g(q, s, u, v), for all λ > 0 and (q, s, u, v) ∈ C, in local coordinates with σ = (q, s). For
every integer k, let Fj,k be the subspace of functions of Fj that are homogeneous (in the classical
sense) polynomials of degree k in (u, v) with coefficients which are homogeneous functions of
degree j − k/2 in Σ+

U . In the proof, we will occasionally use polar coordinates in R2
u,v by setting

(u, v) = (r cos θ, r sin θ).
For every integer k, we define the following subspaces of Fj,k:

F0
j,k =

{
a ∈ Fj,k |

∫ 2π

0

a(σ, r cos θ, r sin θ) dθ = 0, ∀σ ∈ Σ+
U , ∀r > 0

}
,

F inv
j,k =

{
(σ, u, v) 7→ b(σ)(u2 + v2)

k
2

}
.

The space F0
j,k is the subset of functions of Fj,k of zero mean along circles. We have clearly

Fj,k = F0
j,k ⊕F inv

j,k , and F inv
j,k = {0} if k is odd. (12)

In the sequel, we denote by Fj,>k (and accordingly, F0
j,>k and F inv

j,>k) the set of functions of Fj
whose Taylor expansion along Σ+

U × {0} starts with terms of degree greater than k.
Note that ρI ∈ F inv

2,2 and that H ∈ F2,>2.
In what follows, we organize the procedure in two steps:

• In the first step, we get a normal form H ∼ ρI +
∑+∞
j=2 ρjI

j with ρj homogeneous of degree

2− j on Σ+. This normal form is valid in any open subset U of M on which D is trivial.

• In the second step, we remove all terms ρjI
j (the “invariant part”) in an open set that may

be smaller.

This choice is due to the specific Poisson bracket properties that are satisfied in those spaces, and
which are stated in the following lemma.

All Poisson brackets are now taken with respect to the symplectic form ω̃ (or its restriction to
one of the factors of Σ+

U ×R2), and in order to keep readability we drop the index ω̃ in the Poisson
brackets.

Lemma 5.1. For all integers j and k, we have

{ρI,F inv
j,k } ⊂ F inv

j+1,k+2, (13)

{ρI,F0
j,k} = F0

j+1,k mod F0
j+1,k+2, (14)

{Fj,k,Fj′,k′} ⊂ Fj+j′−1,k+k′−2 mod Fj+j′−1,k+k′ , (15)

{F inv
j,k ,F inv

j′,k′} ⊂ F inv
j+j′−1,k+k′ . (16)
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Moreover, under the additional assumption that U is Reeb trivial (according to Definition 5.1),
(13) becomes an equality, i.e.,

{ρI,F inv
j,k } = F inv

j+1,k+2. (17)

Proof. Recall that ω̃ = ω|Σ+ + du∧ dv, that the coordinates u and v are symplectically conjugate,
and that the coordinates σ and (u, v) are symplectically orthogonal. It follows that

{a(σ)P (u, v), b(σ)Q(u, v)} = {a, b}PQ+ ab(∂uP∂vQ− ∂vP∂uQ), (18)

for all smooth functions a, b, P, Q. The inclusions (13), (15) and (16), easily follow. To obtain
(14), we observe that {ρI, aP} = ρa∂θP mod F0

j+1,k+2 and that any homogeneous polynomial P
of degree k and of zero mean along circles is of the form ∂θQ with Q of degree k and of zero mean
along circles.

To obtain (17), we observe that {ρI, aIk} = ~ρaIk+1, so that we have to solve the differential
equation ~ρa = b. This is possible because U is Reeb trivial, meaning that the equation Zf = g
admits a smooth solution f for any smooth function g.

5.1.4 Invariant normal form

As explained previously, the objective of the first step is to construct a symplectomorphism χ
reducing H to

H̃ = H ◦ χ = ρI +

+∞∑
j=2

ρjI
j + OΣ(∞).

This uses the identity (14), which is valid globally. More precisely, we have the following result.

Proposition 5.2. Under the assumptions of Proposition 5.1, there exist a conic neighborhood C
of Σ+

U and a homogeneous symplectic diffeomorphism χ : C → Σ+
U × R2 such that

g? ◦ χ−1 = ρI +

+∞∑
j=2

ρjI
j + OΣ(∞),

with ρj homogeneous of degree 2− j on Σ+
U .

Proof. For readers acquainted enough with the derivation of Birkhoff normal forms, this result
follows from Lemma 5.1 and from the results of Appendix C.1 with Gk = F2,k, Sk = F0

1,k, Ḡk =

F inv
2,k , k0 = 3, p = 2.

For pedagogical reasons, and for readers who wish to follow the complete argument of proof,
we have written a fully detailed proof in Appendix C.2.

5.1.5 Melrose’s local normal form

The objective of the second step is to construct a symplectomorphism allowing us to remove all
terms ρjI

j .

Proposition 5.3. Let U be a Reeb trivial open subset of M (according to Definition 5.1). There
exist a conic neighborhood C ′ of (Σ+

U × R2, ω̃) and a homogeneous symplectomorphism ψ : C →
Σ+
U × R2 such that σ(C ′) ⊂ C, and such that, in C ′, ψ is the identity on Σ+

U × {0} and

H ◦ ϕ ◦ ψ = H̃ ◦ ψ = ρI + OΣ(∞).

Proof. We use Lemma 5.1 and the results of Appendix C.1 with Gk = F inv
2,k , Sk = F inv

1,k , Ḡk = 0,
k0 = 4, p = 0. For the convenience of the reader, a complete proof is given in Appendix C.3.
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5.2 Quantum normal form

We are now going to quantize the Birkhoff normal form obtained in Theorem 5.1. One possibility
could be to use Toeplitz operators associated with the symplectic cones of the classical normal
form (see [4]). But actually, it is simpler to avoid the use of Toeplitz operators by using the flat
Heisenberg manifold for which we have an explicit quantization described in Section 3.1.

We obtain the following quantum normal form, where we use the notion of a pseudo-differential
operator that is flat along Σ (see Definition A.1 in Appendix A.1.3).

Theorem 5.2. For every q0 ∈ M , there exists a (conic) microlocal neighborhood Ũ of Σq0 in
T ?M such that, considering all the following pseudo-differential operators as acting on functions
microlocally supported 6 in Ũ , we have

−4sR = RΩ + V0 + OΣ(∞), (19)

where

• V0 ∈ Ψ0(M) is a self-adjoint pseudo-differential operator of order 0,

• R ∈ Ψ1(M) is a self-adjoint pseudo-differential operator of order 1, with principal symbol

σP (R) = |hZ |+ OΣ(2), (20)

• Ω ∈ Ψ1(M) is a self-adjoint pseudo-differential operator of order 1, with principal symbol

σP (Ω) = I + OΣ(4), (21)

• [R,Ω] = 0 mod Ψ−∞(M) ,

• exp(2iπΩ) = id mod Ψ−∞(M).

Remark 5.2. In the flat Heisenberg case, there are no remainder terms in (19), (20) and (21),
and we recover the operators RH and ΩH defined in Section 3.1. The pseudo-differential operators
R and Ω can be seen as appropriate perturbations of RH and ΩH , designed such that the last two
items of Theorem 5.2 are satisfied.

Remark 5.3. We stress that the last two items are valid only if we consider both sides as acting
on functions that are microlocally supported in Ũ . If one wants to drop this assumption then all
the above operators have to be extended (almost arbitrarily) outside Ũ , and then the equalities
hold only modulo remainder terms in OΣ(∞).

Note that the operators R and Ω depend on the microlocal neighborhood Ũ under consideration.
This neighborhood can then be understood as a chart in the manifold T ?M , in which the quantum
normal form is valid.

In the sequel we will call normal any (conic) microlocal neighborhood U in which the conclusions
of Theorem 5.2 hold true. We also speak of a normal chart in T ?M .

Proof of Theorem 5.2. Applying the Darboux theorem near q0 to the contact form αg on M , and
near 0 to the contact form αH on MH , we identify symplectically Σ+

g × R2 (locally near q0) to

Σ+
H ×R2 (locally near 0). Then, applying Theorem 5.1 two times gives an homogeneous canonical

transformation χ from a conical neighborhood of Σ+
g onto a conical neighborhood of Σ+

H so that

g? ◦ χ−1 = g?H + OΣ(∞).

6This means that their wave-front set is contained in Ũ .
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Let Uχ be an unitary Fourier Integral Operator associated with the canonical transformation χ (see

[16, 27] and Appendix A.1). Setting −4̃sR = −U?χ4HUχ, we have (generalized Egorov theorem)

σP (−4̃sR) = g?H ◦ χ = g? + h.

where h is a symbol of order 2 which is OΣ(∞). Actually, since the sub-principal symbol of −4H
vanishes, it follows from an argument due to Weinstein (see Proposition A.1 in Appendix A.2) that
we can choose Uχ so that the sub-principal symbol of −4̃sR vanishes as well. It follows that we

have −4sR = −4̃sR + V0 −Op(h), with V0 ∈ Ψ0(M) and V0 self-adjoint. Setting

R = U?χRHUχ, Ω = U?χΩHUχ,

we have σP (R) = σP (RH) ◦ χ and σP (Ω) = σP (ΩH) ◦ χ. The relations (20) and (21) follow from
the properties of the classical normal forms and the fact that ρ = |hZ | + OΣ(2) (both functions
coincide on Σ as well as their Hamiltonian flows). The rest follows from the corresponding relations
in the Heisenberg flat case.

Remark 5.4. It also follows from the proof that

g? = σP (−4sR) = σP (Ω)σP (R)− h, (22)

where h ∈ S2(M) with h = OΣ(∞).

6 Variance estimate and proof of Theorem A

In this section, we are going to establish the following result (from which Theorem A follows). Let
us choose some homogeneous symbols π+ and π− of order 0 such that π+ (resp., π−) vanishes near
Σ− (resp., near Σ+) and such that π− = π+ ◦ σ, where σ is the canonical involution on T ?M .

Proposition 6.1. We assume that the Reeb flow is ergodic on (M,ν). Let Π± be pseudo-
differential operators of order 0 whose principal symbols are π±. For every pseudo-differential
operator A ∈ Ψ0(M) whose principal symbol vanishes on Σ−, we have V (A− Â+) = 0, where

Â+ = â+Π+, â+ =

∫
M

a(q, αg(q)) dν. (23)

Similarly, for every A ∈ Ψ0(M) whose principal symbol vanishes on Σ+, we have V (A− Â−) = 0,
with Â− = â−Π−.

Admitting temporarily Proposition 6.1, let us prove Theorem A. As explained in the introduc-
tion, in order to establish the QE property, it suffices to prove that, for every pseudo-differential
operator A ∈ Ψ0(M), if either the eigenfunctions φn, n ∈ N, are real-valued or a is even, then

V (A− ā id) = 0,

where we have set

ā =
1

2

∫
M

(
a(q, αg(q)) + a(q,−αg(q))

)
dν.

In order to prove that fact, we write A = A+ + A−, with the principal symbol of A+ (resp., of
A−) vanishing on Σ− (resp., on Σ+). Using the above results, we have V (A+ − â+Π+) = 0 and
V (A− − â−Π−) = 0. Since

V (A− Â+ − Â−) 6 2
(
V (A+ − Â+) + V (A− − Â−)

)
,
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we infer that V (A − â+Π+ − â−Π−) = 0. Besides, noting that π+ + π− = 1 + OΣ(1) and that
ā = 1

2 (â+ + â−), we have

â+π+ + â−π− =
â+ + â−

2
(π+ + π−) +

â+ − â−
2

(π+ − π−) = ā+
â+ − â−

2
(π+ − π−) +OΣ(1),

Indeed:

• If the eigenfunctions are real-valued, using (6) and the fact that π+ − π− is odd, it follows
that 〈(Π+ − Π−)φn, φn〉 → 0 as n → +∞, and hence V (Π+ − Π−) = 0. Using Lemma 4.1,
we conclude that V (A− ā id) = 0.

• If a is even, then â+ − â− = 0.

Theorem A is proved.

The proof of Proposition 6.1 is done in Section 6.3. We first establish in Sections 6.1 and 6.2
two useful preliminary lemmas.

6.1 Averaging in a normal chart

Given A ∈ Ψ0(M), according to Corollary 4.1, V (A) depends only on the restriction a|Σ (where
a = σp(A) ∈ S0(M)), in the sense that, if the principal symbols of two pseudo-differential operators
A1 and A2 of order 0 agree on Σ, then V (A1 − A2) = 0. This property gives us the possibility to
modify A without changing a|Σ, and we can use this latitude to impose the additional condition
[A,Ω] = 0 mod Ψ−∞(M).

Lemma 6.1. Let A ∈ Ψ0(M) be microlocally supported in a normal chart U and let Ω be given by
Theorem 5.2 (in the microlocal neighborhood U). Assuming U small enough, the operator defined
by

B =
1

2π

∫ 2π

0

exp(isΩ)A exp(−isΩ) ds,

is in Ψ0(M), is microlocally supported in U , and satisfies

σP (B) = σp(A) + OΣ(1),

[B,Ω] = 0 mod Ψ−∞(M).

Proof. The proof follows an argument introduced by Weinstein in [47] (see also [5]). For every
s ∈ [0, 2π], we set Bs = exp(isΩ)A exp(−isΩ). By the Egorov theorem, we have Bs ∈ Ψ0(M) and
σP (Bs) = a ◦ exp(s~w), where w = σP (Ω) and exp(s~w) is the flow generated by the Hamiltonian
vector field ~w associated with the Hamiltonian function w. Here, the microlocal neighborhood U
in which this construction is performed must be chosen small enough, so that it is invariant under
the flow exp(s~w), for s ∈ [0, 2π]. This is possible because, using (21), we have w = OΣ(2), and
therefore exp(s~w)|Σ = id. Moreover, we infer that σP (Bs)|Σ = a|Σ.

Setting B = 1
2π

∫ 2π

0
Bs ds ∈ Ψ0(M), we have σP (B)|Σ = a|Σ. By Theorem 5.2, we have

exp(2iπΩ) = id mod Ψ−∞(M), and thus B2π = B0 mod Ψ−∞(M). Now, since d
dsBs = i[Ω, Bs],

integrating over [0, 2π] yields [B,Ω] = 0 mod Ψ−∞(M).
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6.2 The main lemma playing the role of an infinitesimal Egorov theorem

Recall that (Σ, ω|Σ) is a symplectic manifold. We denote by { , }ω|Σ the corresponding Poisson
bracket on that manifold. Hereafter, we use the Hamiltonian function ρ = hZ |Σ on Σ, as defined
in Section 2.4.

The following lemma may be seen as a substitute for the invariance properties (infinitesimal
Egorov theorem) with respect to the geodesic flow, that are used in the proof of the classical
Shnirelman theorem.

Lemma 6.2. Let Q ∈ Ψ0(M) be such that σP (Q)|Σ = {a|Σ, ρ}ω|Σ for some a ∈ S0(M). Then
V (Q) = 0.

Proof. By using a partition of unity, without loss of generality, we assume that the support of a is
contained in a normal chart U near Σ+. Setting A = Op(a), using (20) and Lemma 2.1, we have

σP ([A,R])|Σ =
1

i
({a, hZ + OΣ(2)}ω)|Σ =

1

i
({a, hZ}ω)|Σ =

1

i

(
da.~hZ

)
|Σ

=
1

i
da|Σ.~ρ =

1

i
{a|Σ, ρ}ω|Σ =

1

i
σP (Q)|Σ,

and therefore Q = i[A,R] + C0 mod Ψ−1 with σp(C0) = 0 on Σ.
By Lemma 6.1 that there exists B ∈ Ψ0(M), microlocally supported in U , such that σP (B)|Σ =

σP (A)|Σ and [B,Ω] = 0 mod Ψ−∞(M). Therefore Q = i[B,R] + C1 mod Ψ−1 with σp(C1) = 0
on Σ.

By Corollary 4.1, V (Q) depends only of σP (Q)|Σ, and moreover, since any pseudo-differential
operator of negative order is compact, we get, by Lemmas 4.1 and 4.2, that V (Q) = V ([B,R]). As
a consequence, in order to prove the lemma, it suffices to prove that V ([B,R]) = 0.

To this aim, let us estimate each term 〈[B,R]φn, φn〉, for every n ∈ N∗. We have

〈[B,R]φn, φn〉 = 〈BRφn, φn〉 − 〈RBφn, φn〉

=
1

λn
〈BRφn,−4sRφn〉 −

1

λn
〈RB(−4sR)φn, φn〉 ,

because −4sRφn = λnφn. Now, using (19), we have −4sR = RΩ +V0 +C, with V0 ∈ Ψ0(M) and
C = OΣ(∞). Note that C ∈ Ψ2(M) and that C is self-adjoint (but we cannot say that C ∈ Ψ1(M)
because of the remainder term h in (22)). It follows that

〈[B,R]φn, φn〉 = In + Jn +Kn,

with

In =
1

λn
〈BRφn, RΩφn〉 −

1

λn
〈RBRΩφn, φn〉 ,

Jn =
1

λn
〈BRφn, V0φn〉 −

1

λn
〈RBV0φn, φn〉 ,

Kn =
1

λn
〈BRφn, Cφn〉 −

1

λn
〈RBCφn, φn〉 .

Since R and Ω are self-adjoint, we have

In =
1

λn
〈ΩRBRφn, φn〉 −

1

λn
〈RBRΩφn, φn〉 =

1

λn
〈[Ω, RBR]φn, φn〉 .
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Since [R,Ω] = 0 mod Ψ−∞(M) and [B,Ω] = 0 mod Ψ−∞(M), we infer that [Ω, RBR] = 0
mod Ψ−∞(M), and hence In = o(1) as n→ +∞.

Let us now focus on the second term. Since V0 is self-adjoint, this term can be written as

Jn =
1

λn
〈V0[B,R]φn, φn〉+

1

λn
〈[V0, RB]φn, φn〉 .

The two pseudo-differential operators V0[B,R] and [V0, RB] are of order 0 and therefore are
bounded. Since λn → +∞ as n→ +∞, it follows that Jn = o(1) as n→ +∞.

Finally, the third term can be written as

Kn =
1

λn
〈(C[B,R] + [C,RB])φn, φn〉 =

1

λn
〈Dφn, φn〉 ,

with D = C[B,R]+[C,RB]. Clearly, we have D ∈ Ψ2(M) and D = OΣ(∞). Therefore, by Lemma
A.2 (see Appendix A.1.3), there exists D1 ∈ Ψ0(M), with D1 = OΣ(∞), such that D = −D14sR
modulo a smoothing operator. It follows from this factorization that

Kn = 〈D1φn, φn〉+ o(1),

as n→ +∞, with σP (D1)|Σ = 0.
We conclude from the study of these three terms that

〈[B,R]φn, φn〉 = 〈D1φn, φn〉+ o(1),

as n→ +∞, and hence V ([B,R]) = V (D1). Since D1 ∈ Ψ0(M) has a principal symbol vanishing
along Σ, it follows from Corollary 4.1 that V (D1) = 0. The conclusion follows.

6.3 Proof of Proposition 6.1

Let A ∈ Ψ0(M) whose principal symbol a vanishes on Σ−. The objective is to prove that V (A−
Â+) = 0.

Let (at)t∈R be a family of elements of S0(M), depending smoothly on t, such that

at|Σ = a|Σ ◦ exp(t~ρ).

We set At = Op(at), for every t ∈ R, and we set ĀT = 1
T

∫ T
0
At dt, for every T > 0. The principal

symbol āT ∈ S0(M) of ĀT is āT = 1
T

∫ T
0
at dt.

In order prove that V (A− Â+) = 0, we proceed in two steps:

1. Prove that V (A − At) = 0 for every time t, and hence that V (A − ĀT ) = 0 (this step does
not require any ergodicity assumption);

2. Using the ergodicity of the Reeb flow and the Von Neumann mean ergodic theorem, prove
that lim

T→+∞
V (ĀT − Â+) = 0.

First step: V (A− ĀT ) = 0.

Lemma 6.3. For every t ∈ R, we have V
(
d
dtAt

)
= 0.

Proof. By definition of At, we have σP
(
d
dtAt

)
|Σ = {a|Σ ◦exp(t~ρ), ρ}ω|Σ , and then the result follows

from Lemma 6.2.
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As a corollary, we have the following proposition.

Proposition 6.2. We have V (A−At) = 0 for every time t, and V (A− ĀT ) = 0, for every T > 0.

Proof. We start from

〈(A−At)φn, φn〉 = −
∫ t

0

〈
dAs
ds

φn, φn

〉
ds,

for every time t, and hence, by the Cauchy-Schwarz inequality,

〈(A−At)φn, φn〉2 6 t

∫ t

0

∣∣∣∣〈dAsds φn, φn
〉∣∣∣∣2 ds.

Summing with respect to n, we get that V (A − At) 6 t
∫ t

0
V
(
d
dsAs

)
ds. By Lemma 6.3, we infer

that V (A−At) = 0, for every t ∈ R.

Let us now prove that V (A−ĀT ) = 0, with ĀT = 1
T

∫ T
0
At dt. We have, by the Fubini theorem,

〈
(A− ĀT )φn, φn

〉
=

1

T

∫ T

0

〈(A−At)φn, φn〉 dt,

for every integer n. Using again the Jensen inequality, and summing with respect to n, we get that

V (A− ĀT ) 6 1
T

∫ T
0
V (A−At) dt. It follows that V (A− ĀT ) = 0 .

Second step: V (ĀT−Â+)→ 0 as T → +∞. Here, we are going to use the ergodicity assumption
on the Reeb flow.

Using (5), we have V (ĀT − Â+) 6 E((ĀT − Â+)?(ĀT − Â+)), and it follows from Theorem 4.1
(microlocal Weyl law) that

E((ĀT − Â+)?(ĀT − Â+)) =
1

2

∫
Σ1

|āT − â+|2 dν̂1,

with (āT )|Σ = 1
T

∫ T
0
a|Σ ◦ exp(t~ρ) dt and â+ defined by (23). Since the flow exp(t~ρ) (which is the

lift to Σ1 of the flow of Z, by Lemma 2.1) is ergodic on (Σ1, ν̂1), it follows from the Von Neumann
mean ergodic theorem (see, e.g., [40]) that āT converges to â+ in L2(Σ1, ν̂1) as T → +∞. Therefore
V (ĀT − Â+) converges to 0 as T → +∞.

Using the inequality V (A − Â+) 6 2(V (A − ĀT ) + V (ĀT − Â+)), and the results of the two
steps above, we conclude the proof of Proposition 6.1.

7 Proof of Theorem B

Let us prove the first part of Theorem B. We set µn(a) = 〈Op(a)φn, φn〉, for every n ∈ N∗ and
every a ∈ S0(M).

The cosphere bundle S?M is identified, by taking intersections with half lines, with the compact-

ification Û?M of the unit cotangent bundle U?M = {g? = 1}, as follows: we add to each cylinder
U?qM , homeomorphic to S2 × R, its two extremities that we identify with SΣq ∼ (Σ1 ∪ Σ−1)q,
obtaining

Û?M = U?M ∪ Σ1 ∪ Σ−1.

Let β be a QL. By definition, β is a probability measure on Û?M , and there exists a sequence
of integers (nj)j∈N∗ such that µnj converges weakly to β. The measure β is then decomposed
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in a unique way as the sum β = β0 + β∞, with β0 supported on U?M and β∞ supported on
SΣ ∼ Σ1 ∪ Σ−1: β0 is the restriction of β to compactly supported functions on U?M .

Let us first prove that β0 is invariant under the sR geodesic flow. Let A ∈ Ψ0(M), with principal
symbol a, be microlocally supported away of Σ. Since φnj is an eigenfunction of −4sR associated
with the real eigenvalue λnj , we have〈[√

−4sR, A
]
φnj , φnj

〉
= 0. (24)

On the microlocal support of A,
√
−4sR is a pseudo-differential operator of order 1 with principal

symbol
√
g? (see Remark 4.4 and [24]). It follows that

[√
−4sR, A

]
is a pseudo-differential operator

of order 0 with principal symbol i{
√
g?, a}ω. Passing to the limit in (24), using the definition of β0

and the fact that a is supported away of Σ, we get
∫
U?M
{
√
g?, a}ω dβ0 = 0. Since {

√
g?, a}ω = ~G.a

where ~G is the geodesic flow (which coincides with the geodesic flow generated by g?, on {g? = 1}),
the invariance of β0 under the sR geodesic flow is inferred from the following general lemma.

Lemma 7.1. Let N be a manifold, equipped with a measure δ, and let X be a complete vector field
on N . If

∫
N

(X.φ) dδ = 0 for every φ ∈ C∞0 (N,R), then the measure δ is invariant under the flow
of X.

Let us now prove that β∞ is invariant under the lift exp(t~ρ) to SΣ of the Reeb flow (defined
in Section 2.4). Using a partition of unity, we can work in U ⊂ Σσ × R2

u,v. Let b0 be an arbitrary
smooth function on the manifold Σ1 with support in U ∩ Σ1. By homogeneity, using Lemma 6.1,
there exists a pseudo-differential operator B ∈ Ψ0(M), microlocally supported in U , of principal
symbol b, such that b|Σ = b0 and [B,Ω] = 0 mod Ψ−∞(M). Using the estimates obtained in
Section 6.2, and in particular in the proof of Lemma 6.2, we have

〈[B,R]φnj , φnj 〉 − 〈D1φnj , φnj 〉 −→
j→+∞

0,

for some D1 ∈ Ψ0(M) that is flat along Σ, satisfying

iσP (D1)σP (−4sR) = σP (C){b, σP (R)}ω + {σP (C), bσP (R)}ω, (25)

with C ∈ Ψ2(M) such that σP (C) = OΣ(∞). Passing to the limit, we obtain

β ({b, σP (R)}ω + iσP (D1)) = 0. (26)

By (20), we have σP (R) = hZ + OΣ(2) along Σ+, and hence, reasoning similarly as at the
beginning of the proof of Lemma 6.2, we have

({b, σP (R)}ω)|Σ+ = {b|Σ, ρ}ω|Σ = {b0, ρ}ω|Σ . (27)

Since σP (D1)|Σ = 0, we have β∞(σP (D1)) = 0, and since β = β0 + β∞, we infer from (26), (25)
and (27) that

β∞
(
{b0, ρ}ω|Σ

)
+ β0 (L(b)) = 0,

where the operator

L(b) =

(
1 +

σP (C)

σP (−4sR)

)
{b, σP (R)}ω +

1

σP (−4sR)
{σP (C), bσP (R)}ω

is defined on U?M . We have thus proved that∫
Σ1

{b|Σ, ρ}ω|Σ dβ∞ +

∫
U?M

L(b) dβ0 = 0, (28)

for any symbol b ∈ S0(M) which is microlocally supported in Ũ and such that {b, σP (Ω)}ω = 0.
Let us now prove the following lemma.
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Lemma 7.2. We have
∫
U?M

L(b) dβ0 = 0, for every symbol b ∈ S0(M) which is microlocally

supported in Ũ and such that {b, σP (Ω)}ω = 0.

Proof of Lemma 7.2. Recall that σP (R) = ρ and that σP (Ω) = I.
The condition {b, σP (Ω)} = 0 gives {b, I} = 0. Now, we choose an arbitrary smooth function

f satisfying f(0) = 0 and f(t) = 1 for t > 1, and for every integer k we define bk by

bk = bf(kI).

We obtain a sequence (bk)k∈N∗ of symbols such that {bk, I} = 0, for every k ∈ N∗ (because
{f(kI), I} = 0). By definition of f , we have bk|Σ = 0 and thus

∫
Σ1
{bk|Σ, ρ}ω|Σ dβ∞ = 0. Then, we

infer from (28) that ∫
U?M

L(bk) dβ0 = 0, (29)

for every k ∈ N∗.
Let us now prove that L(bk) converges pointwise to L(b) in U?M and is uniformly bounded.

Since the coordinates σ = (q, s) and (u, v) are symplectically orthogonal, we have

{bk, ρ}ω = {bf(kI), ρ} = f(kI){b, ρ},

and hence {bk, ρ}ω converges pointwise to {b, ρ}, and is uniformly bounded. Besides, we have

{σP (C), bkρ} = {σP (C), f(kI)ρ b}ω̃
= f(kI){σP (C), ρ b}+ {σP (C), f(kI)} ρ b
= f(kI){σP (C), ρ b}+ kf ′(kI){σP (C), I} ρ b.

In the latter line, the first term raises no problem and converges pointwise with dominated con-
vergence. The second term needs more care. Since C is flat on Σ, we have in particular that
{σP (C), I} 6 cI3 for some constant c > 0. By definition of f , if I > 1/k then f ′(kI) = 0, and if
I 6 1/k then

kf ′(kI){σP (C), I} 6 c‖f ′‖∞kI3 6
c‖f ′‖∞I

k
,

and therefore, the second term converges pointwise to 0 with a dominated convergence. We con-
clude that L(bk) converges pointwise to L(b) with a dominated (L1) convergence.

Using (29), the lemma follows by applying the Lebesgue dominated convergence theorem.

Using (28), it follows from Lemma 7.2 that β∞
(
{b0, ρ}ω|Σ

)
= 0 for every classical symbol b0

of order 0 on Σ1. Reasoning similarly on Σ−1, we have thus proved that
∫
SΣ
{b0, ρ}ω|Σ dβ∞ = 0

for any classical symbol b0 of order 0 on the manifold SΣ. The invariance property follows from
Lemma 7.1 as before.

Let us now prove the second part of Theorem B.
Let D0

Σ be a countable dense subset of the set of a ∈ S0(M) such that a|Σ = 0. By Corollary
4.1, we have V (Op(a)) = 0, for every a ∈ D0

Σ. Using the lemma of Koopman and Von Neumann
(already mentioned in Section 1), and using a diagonal argument, we infer that there exists a
sequence (nj)j∈N∗ of integers of density one such that µnj (a) → 0 as j → +∞, for every a ∈ D0

Σ.
It follows that, for every quantum limit β associated with the family (φnj )j∈N∗ , we have β(a) = 0,
for every a ∈ D0

Σ. By density, we infer that β(a) = 0, for every a ∈ S0(M) such that a|Σ = 0. We
have thus proved that the support of β is contained in SΣ.
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8 Complex-valued eigenbasis, and the non-orientable case

Complex-valued eigenbasis, with D oriented. We can extend Theorem A to the case of a
complex-valued eigenbasis, to the price of requiring that the principal symbol a of A satisfies the
evenness condition

a(q, αg(q)) = a(q,−αg(q)), (30)

for every q ∈M . The proof is the same.

D not orientable. Let us assume that the subbundle D is not orientable. Then there exists
a double covering M̃ of M with an involution J , so that we can lift all data to M̃ , and then
the subbundle D̃ of TM̃ is orientable. The Reeb vector field Z̃ on M̃ is odd with respect to the
involution.

Definition 8.1. The Reeb dynamics are ergodic if every measurable subset of M̃ which is invariant
under Z̃ and invariant under J is of measure 0 or 1.

Theorem 8.1. We assume that the Reeb dynamics are ergodic. Then we have QE for any eigen-
basis of 4sR.

The proof is an adaptation of the orientable case. Note that Σ \ {0} is connected. We can
remove the assumption that the eigenfunctions are real-valued: indeed, any eigenfunction on M ,
real-valued or complex-valued, is lifted to M̃ to an even function. Moreover, denoting by VM (resp.,
by VM̃ ) the variance on M (resp., on M̃), we have VM (A) = VM̃ (Ã), with Ã even with respect to

the involution J . In particular, the principal symbol of Ã satisfies (30) along Σ.

A Appendix: some tools of microlocal analysis

A.1 Pseudo-differential operators and Fourier integral operators

In this section, we recall some definitions and facts used in the paper concerning pseudo-differential
operators (PDOs) and Fourier integral operators (FIOs). Proofs can be found in the original papers
[27] and [14], and in the more geometrical book [16] (see also [51]).

A.1.1 PDOs

In what follows, M is a smooth compact manifold of dimension d equipped with a smooth non-
vanishing density µ. The algebra Ψ(M) of classical pseudo-differential operators on M is graded
according to the chain of inclusions Ψ−∞(M) · · · ⊂ Ψm(M) ⊂ Ψm+1(M) ⊂ · · · , where m is called
the order. What is important and useful is the notion of principal symbol σp and of sub-principal
symbol σsub of a PDO A ∈ Ψm(M). There is a bijective map

(σp, σsub) : Ψm(M)/Ψm−2(M) −→ Sm(M)⊕ Sm−1(M),

where Sm(M) is the space of smooth homogeneous functions of order m defined on the cone
T ?M \ {0}. A quantization is a continuous linear mapping

Op : S0(M)→ Ψ0(M)

satisfying σp(Op(a)) = a. An example of quantization is obtained by using partitions of unity and
the so-called Weyl quantization given in local coordinates by:

OpW(a)f(q) = (2π)−d
∫
Rd
q′×R

d
p

ei〈q−q
′,p〉a

(
q + q′

2
, p

)
f(q′) dq′ dp.
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Note that σsub is usually defined for operators acting on half-densities: here we make the identifi-
cation f ↔ fdµ1/2 between functions and half-densities, taking into account that the manifolds are
equipped with densities. This was a nice original discovery of Leray (see [18]). The sub-principal
symbol is characterized by the action of pseudo-differential operators on oscillatory functions as
follows: if u(q) = b(q) exp(iτS(q)) with b, S smooth and real-valued and, if A ∈ Ψm(M), then∫

M

A(u)ū dµ = τm
∫
M

(
σp(A)(q, S′(q)) + τ−1σsub(q, S′(q))

)
|u(q)|2 dµ(q) + O(τm−2).

Moreover, we have the following properties:

• σp(AB) = σp(A)σp(B), for any A ∈ Ψm(M) and B ∈ Ψl(M).

• IfA ∈ Ψm(M) andB ∈ Ψl(M), then [A,B] ∈ Ψm+l−1(M) and σp([A,B]) = {σp(A), σp(B)}/i,
where the Poisson bracket is taken with respect to the canonical symplectic structure of T ?M .

• If X is a vector field on M and X? is its formal adjoint in L2(M,µ), then X?X is a PDO of
order 2 such that σp(X

?X) = h2
X and σsub(X?X) = 0.

• PDOs act on Sobolev spaces: if A ∈ Ψm(M), then A maps continuously the space Hs(M) to
the space Hs−m(M). It follows that two quantizations of a given symbol a of order 0 differ
by a compact operator.

• To each distribution T on M is associated its wave-front set WF (T ), which is a closed sub-
cone of T ?M \ {0}, whose projection onto M is the singular support of T . More precisely, in
local coordinates, we have (q, p) /∈WF (T ) if and only if there exists χ ∈ C∞0 (M) with χ(q) 6=
0 such that the Fourier transform of χT is rapidly decaying in some conical neighborhood of
p. For every operator A : C∞(M)→ D′(N), of Schwartz kernel kA ∈ D′(M ×N), we define

WF ′(A) = {(q, p; q′,−p′) ∈ T ?M × T ?N | (q, q′, p, p′) ∈WF (kA)}.

The maps WF and WF ′ have nice set theoretical properties such as WF (Au) ⊂ WF ′(A) ◦
WF (u), for every u ∈ C∞(M).

A.1.2 FIOs

Let χ : V → W be a symplectic diffeomorphism from an open cone V ⊂ T ?M to an open cone
W ⊂ T ?N , where M and N are manifolds having the same dimension, respectively endowed with
smooth non-vanishing measures µ and ν. To this diffeomorphism is associated a family of linear
operators U : L2(M,µ) → L2(N, ν), sometimes called “quantizations of χ”, with the following
properties:

• {(z, χ(z)) | z ∈ V } ∩ WF ′(U?U − id) = ∅. We say that U is microlocally unitary near the
graph of χ.

• If A ∈ Ψm(N), then B = U?AU ∈ Ψm(M) and the principal symbols satisfy on V the
relationship σp(B) ◦ χ = σp(A). This is sometimes called the Egorov theorem.

• If σsub(A) = 0, then the same property holds for B (see also Appendix A.2).
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A.1.3 Pseudo-differential operators flat on Σ

Let us define the notion of flatness used in Section 6.2.

Definition A.1. Let Σ be a closed sub-cone of T ?M \ {0}. Given any k ∈ N ∩ {∞} and any
smooth function f on T ?M , the notation f = OΣ(k) means that f vanishes on Σ at least at the
order k. The word flat is used when k = +∞.

A pseudo-differential operator A (on any order) on M is said to be flat on Σ if, for any
(q0, p0) ∈ Σ and, for any local canonical coordinate system around q0, the full Weyl symbol of A is
flat at (q0, p0). In this case, we write A ∈ OΣ(∞).

Lemma A.1. The set of pseudo-differential operators that are flat on Σ is a bilateral ideal in the
algebra of classical pseudo-differential operators on M .

Proof. This follows from the fact that the full Weyl symbol of a product of pseudo-differential
operators at the point (q0, p0) is given modulo flat terms by sums of products of partial derivatives
of the symbols of both operators at the same point (q0, p0).

The following lemma is required in Section 6.2.

Lemma A.2. If C ∈ Ψm(M) is flat on Σ, then there exists C1 ∈ Ψm−2(M), which is flat on Σ,
such that C = C14sR modulo a smoothing operator that is flat on Σ.

Proof. By using a partition of unity, C can be written as a sum of operators compactly supported
in an atlas of M . Hence it suffices to prove the statement in T ?U , where U is a chart of M . Let
c′ be the quotient of the principal symbol c of C by g? = σP (−4sR). Since c is flat on Σ and g?

vanishes along Σ exactly at order 2, c′ is a smooth symbol of order m− 2 that is flat on Σ. Then
the operator C ′ = OpW(c′) is flat on Σ and C = C ′4sR + R1 where R1 ∈ Ψm−1(M) is also flat
on Σ. Then we iterate the construction on R1.

A.2 The Weinstein argument

We provide here an argument of Weinstein given in [46], leading to the following result.

Proposition A.1. Let X be a smooth manifold. Let ∆ be a pseudo-differential operator defined
in some cone C ⊂ T ?X. We denote by p the principal symbol of ∆, and we assume that the sub-
principal symbol of ∆ vanishes. Let χ : C → C ′ ⊂ T ?Y be a canonical transformation, where Y is
another smooth manifold. Then, there exists a microlocally unitary Fourier Integral Operator Uχ,
associated with χ, such that Uχ∆U?χ = B, where B is a pseudo-differential operator in C ′ whose
principal symbol is p ◦ χ−1 (general Egorov theorem) and whose sub-principal symbol vanishes.

Proof. The proof uses in a strong way the symbolic calculus of Fourier Integral Operators, for
which we refer to the book [16] or to the paper [46]. Let us sketch the argument. We choose
the Fourier Integral Operator Uχ associated with the canonical transformation χ such that its
principal symbol is constant of modulus 1 and Uχ is microlocally unitary, i.e., U?χUχ = id in the
cone C. This is possible as follows: we choose a first U0 with only the prescription of the principal
symbol, then U?0U0 = id + A where A is a self-adjoint pseudo-differential operator in Ψ−1(C). If
D = (id +A)−1/2 in C, then we take Uχ = U0D.

Denoting by K(x, y) the Schwartz kernel of Uχ, if B = Uχ∆U?χ, the relation BUχ − Uχ∆ ∼ 0
is written as

(∆x ⊗ idY − idX ⊗By)K ∼ 0.

The distribution K is a Lagrangian distribution associated with a submanifold of C × C ′ which
is the graph of χ. If we assume that the principal symbol of Uχ is a constant of modulus 1, then
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the sub-principal symbol of the right-hand side, which is 0, is the sum of Lie derivatives of the
principal symbol of K, which vanish due to the choice of Uχ and of the product of the sub-principal
symbol of idX ⊗By by the non-vanishing symbol of Uχ. This implies that the latter vanishes. This
is the argument of Weinstein. We have only to take care of the fact that tensor products are
pseudo-differential operators only in some cones of the product of the cotangent spaces where ξ
and η are of comparable sizes.

B Appendix: Darboux-Weinstein lemma

We have the following easy generalization of the well-known Darboux-Weinstein lemma (see [45]).

Lemma B.1. Let N be a manifold endowed with two symplectic forms ω1 and ω2, and let P be
a compact submanifold of N along which ω1 = ω2 + OP (k), for some k ∈ N∗ ∪ {+∞}. Then
there exist open neighborhoods U and V of P in N and a diffeomorphism f : U → V such that
f = idN+OP (k+1) and f?ω2 = ω1. Moreover, if N has a conic structure, then the diffeomorphism
f can be chosen to be homogeneous with respect to that conic structure.

The most usual statement of that lemma is when k = 1, and then the usual conclusion is that
f = idN +OP (1); actually, already in that case we have the better conclusion that f = idN +OP (2)
(as is well known, and as it is proved for instance in [32, Lemma 43.11 p. 462]), i.e., df(q) = id for
every q ∈ N , or in other words, f is tangent to the identity.

Proof. We follow the standard argument (see, e.g., [33]). We define the closed two-form ω(t) =
ω1 + t(ω2 − ω1), for every t ∈ [0, 1]. Let U be a neighborhood of P in which ω(t) is nondegenerate
for every t. By the relative Poincaré lemma, since ω1 and ω2 agree along P , shrinking U if
necessary, there exists a one-form η on U such that ω1 − ω2 = dη, with ηx = 0 for every x ∈ P .
Since ω1 = ω2 + OP (k), we can actually choose η such that η = OP (k + 1). Indeed, as it is well
known in the relative Poincaré lemma, we can choose η = Q(ω1 − ω2), where Q is defined by

Qω =
∫ 1

0
F (t)?ιY (t)ω dt, where Y (t), at the point y = F (t, x), is the vector tangent to the curve

F (s, x) at s = t, and (F (t))06t61 is a smooth homotopy from the local projection onto P (in a
tubular neighborhood of P ) to the identity, fixing P .

The diffeomorphism f is then constructed by the Moser trick. The time-dependent vector
field X(·) defined for every t by ιX(t)ω(t) = η generates the time-dependent flow f(·) (satisfying

ḟ(t) = X(t) ◦ f(t), f(0) = idN ), and we have

d

dt
f(t)?ω(t) = f(t)?LX(t)ω(t) + f(t)?ω̇(t) = f(t)?d(ιX(t)ω(t)− η) = 0,

whence ω1 = f(1)?ω2. We set f = f(1).
Since ιX(t)ω(t) = η = OP (k + 1), it follows that X(t) = OP (k + 1) and hence f(t) = idN +∫ t

0
X(s) ◦ f(s) ds = idN + OP (k + 1) for every t ∈ [0, 1]. The lemma is proved.
Let us now prove that, if N is conic, with a conic structure x 7→ λ · x, for λ > 0 and x ∈ N ,

then f is homogeneous. The two-form ω = ω1−ω2 is then conic, meaning that ωλ·x(λ ·v1, λ ·v2) =
λωx(v1, v2), for all λ > 0, x ∈ N and v1, v2 ∈ TxN . It is easy to see that the homotopy operator Q
considered above can be chosen to be homogeneous. Then η = Qω is homogeneous as well. It easily
follows that the time-dependent vector field X(·) of the Moser trick is homogeneous (meaning that
X(t, λ · x) = λ ·X(t, x)) and hence that its flow is homogeneous. The conclusion follows.
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C Appendix on Birkhoff normal forms

C.1 The general procedure

In this section, we recall how to derive Birkhoff normal forms in a general setting.
We consider the submanifold X = X×{0} of a symplectic manifold Y = X×Rd with a Poisson

bracket {·, ·}.

C.1.1 Taylor expansions along X

We will always consider germs of objects defined in some neighborhood of X in Y . We consider
a (germ of) real-valued smooth function S on Y such that S = OX(2). Then the flow of the

corresponding Hamiltonian vector field ~S on Y is defined on an interval containing [0, 1] in some

neighborhood of X in Y . The (germ of) symplectomorphism exp(~S) (flow of ~S at time 1) satisfies

exp(~S)(x) = x for every x ∈ X. Given any germ of function f , denoting by T (f) the Taylor
expansion of f along X, we have T (f) =

∑+∞
k=0 fk where fk is a polynomial on Rd whose coefficients

are smooth functions on X. Setting adS.f = {S, f}, we have

T (f ◦ exp(~S)) = exp(adS)T (f).

This is a well defined power series because adnS.f = OX(n). Another important property is that,
if Sk = OX(k) for every k > 2, then exp(adSk) = id + OX(k − 1) and the composition

exp(adSn) ◦ exp(adSn−1) ◦ · · · ◦ exp(adS2)

converges formally, as n → +∞, to the Taylor expansion of a symplectic diffeomorphism χ∞
satisfying χ∞ = id + OX(1).

Indeed, this follows from the well-known Borel theorem: given any nonzero integer n, given
a Fréchet space E and a (multi-index) sequence (aα)α∈Nn in E, there exists a smooth function
f : Rn → E whose infinite Taylor expansion at 0 is

∑
α∈Nn aαx

α. Moreover, if E has a conic
structure, then f can be chosen to be homogeneous for that conic structure.

The map χ∞ is a local homogeneous diffeomorphism because it is tangent to the identity.
Note that this diffeomorphism, constructed by the Borel theorem, is not a priori symplectic, but it
satisfies χ?∞ω = ω+OX(∞), and it is then possible to modify it by composing it with a homogeneous
diffeomorphism tangent to the identity, in order to finally get a homogeneous symplectomorphism:
this is done thanks to the Darboux-Weinstein lemma (Lemma B.1 in Appendix B, applied with
k =∞).

C.1.2 Cohomological equations and normal forms.

Let Gk (resp., let Sl) be a subspace of the space of homogeneous polynomials of degree k (resp., of
degree l) on Rd with smooth coefficients on X, for which there exists p > 0 such that

{Sl,Gk} ⊂ Gl+k−p.

We assume that k0 + p − 2 > 2 and we consider the action of exp(adSk+p−2) on a formal series

H = H2 +
∑+∞
k=k0

Hk with Hk ∈ Gk. We have

exp(adSm+p−2)H = H2 +

m−1∑
k=k0

Hk + {Sm+p−2, H2}+Hm +R,
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where the terms in the remainder R are of degree k+n(m−2) (action of n brackets on a term in Gk),
which is greater than m provided that either (k > 3 and n > 1) or (k = 2 and n > 2). Moreover,
there is only a finite number of terms of each degree. This implies that, for k0 > max(4 − p, 3),
the series is formally convergent and we can change the series starting from the term of degree k
by adding a bracket of the form {Sk+p−2, H2}. The cohomological equation is then written as

{Sk+p−2, H2}+Hk = H̄k,

where H̄k is chosen in some suitable subspace Nk of Gk. Finally, by considering the formal (infinite)
composition of symplectic diffeomorphisms associated with the sequence (Sk+p−2)k>k0

, we get the
normal form

H ∼ H2 +

+∞∑
k=k0

H̄k + OX(∞).

C.1.3 Homogeneous canonical transformation.

Let us assume that X is an homogeneous symplectic cone with τ?ω = τ · ω, that d = 2r with the
canonical symplectic structure, and that τ · (x, n) = (τx,

√
τn). If S is homogeneous of degree 1,

then the associated canonical transformation is homogeneous of degree 0, and commutes with τ .
We can then apply the previous reductions on some homogeneous functions H of fixed degree.

C.2 Proof of Proposition 5.2

Using that H = g? ◦ χ−1
2 = ρI + OΣ(3), and since F inv

2,3 = {0} (see (12)), we start with the fact
that

H = H2 + OΣ(∞) mod F2,>3

= H2 + OΣ(∞) mod
(
F0

2,>3 ⊕F inv
2,>4

)
,

(31)

where we have set H2 = ρI.
Our objective is to construct a homogeneous symplectomorphism ϕ allowing us to remove from

(31) all terms in F0
2 , in order to obtain the normal form

H ◦ ϕ = H2 + OΣ(∞) mod F inv
2,>4,

by using Lie transforms generated by appropriate elements of F0
1 .

We proceed by (strong) recurrence on k, starting at k = 3, by constructing, at each step, a
local homogeneous symplectomorphism ϕk satisfying ϕk = id + OΣ(2) and such that

H ◦ ϕ3 ◦ · · · ◦ ϕk = H2 + OΣ(∞) mod
(
F0

2,>k+1 ⊕F inv
2,>4

)
,

and we search each ϕk in the form ϕk = ϕk(1) = exp(~F 0
k ), where ϕk(t) = exp(t ~F 0

k ) is the flow at
time t generated by an adequate Hamiltonian function F 0

k ∈ F0
1,k (note that ϕk is then symplectic,

as desired).
Before going to the recurrence, let us note that, for every k > 3, there exists a (small enough)

conic neighborhood Ck of Σ+
U such that the flow ϕk is well defined on [0, 1]× Ck; moreover, since

we are going to compose these symplectomorphisms, we choose Ck such that ϕk+1 maps Ck+1 to
Ck, for every k > 3. Indeed, since F 0

k = OΣ(k), we have

ϕk(t) = id +

∫ t

0

~F 0
k ◦ ϕk(s) ds = id + OΣ(k − 1)
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uniformly with respect to t on compact intervals, and the claim follows, as well as the expansion
ϕk = id + OΣ(2).

Let us now make the construction by recurrence.
For k = 3, we want to prove that there exists F 0

3 ∈ F0
1,3 such that, setting ϕ3 = exp(~F 0

3 ), we

have H ◦ ϕ3 = H2 mod
(
F0

2,>4 ⊕F inv
2,>4

)
. Using that d

dt (H ◦ ϕ3(t)) = {F 0
3 , H}ω̃ ◦ ϕ3(t), and since

the flow is well defined on [0, 1]× C3, we have

H ◦ ϕ3(t) = H + {F 0
3 , H}ω̃ + O

(
t2

2
{F 0

3 , {F 0
3 , H}ω̃}ω̃ ◦ ϕ3(t)

)
, (32)

on [0, 1]× C3. Using (31), we have H = H2 +H0
3 mod

(
F0

2,>4 ⊕F inv
2,>4

)
, with H0

3 ∈ F0
2,4. Hence,

taking t = 1 in (32), using (14) and (15), we infer that

H ◦ ϕ3 = H2 +H0
3 + {F 0

3 , H2}ω̃ + OΣ(∞) mod
(
F0

2,>4 ⊕F inv
2,>4

)
.

Therefore, we have to solve the cohomological equation

{H2, F
0
3 }ω̃ = H0

3 + OΣ(∞) mod
(
F0

2,>4 ⊕F inv
2,>4

)
,

which has a solution F 0
3 ∈ F0

2,3 by using (14).

Let us assume that we have constructed ϕ3, . . . , ϕk−1 such that

H ◦ ϕ3 ◦ · · · ◦ ϕk−1 = H2 + OΣ(∞) mod
(
F0

2,>k ⊕F inv
2,>4

)
.

We want to prove that there exists F 0
k ∈ F0

2,k such that, setting ϕk = exp(~F 0
k ), we have

H ◦ ϕ3 ◦ · · · ◦ ϕk = H2 + OΣ(∞) mod
(
F0

2,>k+1 ⊕F inv
2,>4

)
.

Using that
d

dt
(H ◦ ϕ3 ◦ · · · ◦ ϕk(t)) = {F 0

k , H ◦ ϕ3 ◦ · · · ◦ ϕk−1}ω̃ ◦ ϕk(t),

and since the flow ϕk is well defined on [0, 1]× Ck, we have

H ◦ ϕ3 ◦ · · · ◦ ϕk(t) = H ◦ ϕ3 ◦ · · · ◦ ϕk−1 + {F 0
k , H ◦ ϕ3 ◦ · · · ◦ ϕk−1}ω̃

+ O

(
t2

2
{F 0

k , {F 0
k , H ◦ ϕ3 ◦ · · · ◦ ϕk−1}ω̃}ω̃

)
, (33)

on [0, 1]× Ck. Using the recurrence assumption, we have

H ◦ ϕ3 ◦ · · · ◦ ϕk−1 = H2 + H̃0
k + OΣ(∞) mod

(
F0

2,>k+1 ⊕F inv
2,>4

)
,

for some H̃0
k ∈ F0

2,k. Hence, taking t = 1 in (33), using (14) and (15), we infer that

H ◦ ϕ3 ◦ · · · ◦ ϕk = H2 + H̃0
k + {F 0

k , H2}ω̃ + OΣ(∞) mod
(
F0

2,>k+1 ⊕F inv
2,>4

)
.

Therefore, we have to solve the cohomological equation

{H2, F
0
k }ω̃ = H̃0

k + OΣ(∞) mod
(
F0

2,>k+1 ⊕F inv
2,>4

)
,

which has a solution F 0
k ∈ F0

2,k by using (14).
The recurrence is established.

By definition, ϕk is the flow at time 1 generated by the Hamiltonian function F 0
k ∈ F1. By

definition of F1, we have F 0
k (λ · (σ, u, v)) = λF 0

k (σ, u, v), that is, F 0
k is homogeneous for the conic

structure defined by (11). Then ϕk is indeed homogeneous, as a consequence of the following
general lemma, that we recall for completeness.
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Lemma C.1. Let (N,ω) be a conic symplectic manifold, with a conic structure x 7→ λ · x, for
λ > 0 and x ∈ N . Let H be a smooth Hamiltonian function on N , which is homogeneous, meaning
that H(λ · x) = λH(x) for every λ > 0 and every x ∈ N . Then the associated Hamiltonian vector

field ~H is homogeneous, in the sense that ~H(λ ·x) = λ · ~H(x), and as a consequence, the generated

flow exp(t ~H) is homogeneous as well.

Proof of Lemma C.1. By definition, the symplectic form ω is conic, in the sense that ωλ·x(λ ·v1, λ ·
v2) = λωx(v1, v2), for all λ > 0, x ∈ N and v1, v2 ∈ TxN . The Hamiltonian vector field ~H is defined

at any point x ∈ N by ωx( ~H(x), v) = dH(x).v, for every v ∈ TxN . Since H is homogeneous, by
differentiation we get that dH(λ · x).(λ · v) = λdH(x).v, for every v ∈ TxN , and therefore,

ωλ·x( ~H(λ · x), λ · v) = dH(λ · x).(λ · v) = λdH(x).v = λωx( ~H(x), v) = ωλ·x(λ · ~H(x), λ · v),

from which it follows that ~H(λ · x) = λ · ~H(x).

Let us now finish the proof.
We consider the infinite composition ϕ3 ◦ · · · ◦ ϕk · · · which is convergent in the sense of for-

mal series along Σ+
U . By the Borel theorem recalled in Appendix C.1.1, there exists a smooth

homogeneous mapping ϕ that is the Borel summation of that formal composition, i.e., such that
ϕ = ϕ3 ◦ · · · ◦ ϕk · · · + OΣ(∞). Clearly, ϕ is a local homogeneous diffeomorphism (because it is
tangent to the identity), and we have ϕ = id + OΣ(2) and H ◦ϕ = H2 + OΣ(∞) mod F inv

2,>4. Note
that ϕ may not be a symplectomorphism, however, by construction we have ϕ?ω̃ = ω̃+ OΣ(∞). It
is however possible to modify the homogeneous diffeomorphism ϕ, by composing it with a homo-
geneous diffeomorphism tangent to identity at infinite order, so as to obtain exactly ϕ?ω̃ = ω̃ (and
thus, ϕ is a homogeneous symplectomorphism). This is done thanks to the Darboux-Weinstein
lemma, given in Appendix B, applied with k = +∞.

C.3 Proof of Proposition 5.3

Following the previous section, our objective is now to construct a symplectomorphism allowing us
to remove all terms in F inv

2 . Although the proof is similar to the one done in the previous section,
there are several differences and subtleties which make it preferable to write the whole proof in
details.

We proceed by (strong) recurrence on k, starting at k = 1, by constructing, at each step, a
local homogeneous symplectomorphism ψ2k satisfying ψ2k = id + OΣ(2) and such that

H̃ ◦ ψ2 ◦ · · ·ψ2k = H2 + OΣ(∞) mod F inv
2,>2k+2,

and we search each ψ2k in the form ψ2k = ψ2k(1) = exp(~F inv
2k ), where ψ2k(t) = exp(t ~F inv

2k ) is the
flow at time t generated by an adequate Hamiltonian function F inv

2k ∈ F inv
1,2k (note that ψ2k will

indeed be homogeneous by Lemma C.1).
Before going to the recurrence, let us note that, as in the previous section, for every k > 1,

there exists a (small enough) conic neighborhood C ′2k of Σ+
U such that the flow ψ2k is well defined

on [0, 1]×C ′2k; moreover, since we are going to compose these symplectomorphisms, we choose C ′2k
such that ψ2k+2 maps C ′2k+2 to C ′2k, for every k > 1. Indeed, since F inv

2k = OΣ(2k), we have

ψ2k(t) = id +

∫ t

0

~F inv
2k ◦ ψ2k(s) ds = id + OΣ(2k − 1) = id + OΣ(1)

uniformly with respect to t on compact intervals, and the claim follows. This argument is however
not sufficient in order to establish that ψ2k = id + OΣ(2), because we start with k = 1. To prove
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this property, we use temporarily the notation x = (σ, u, v) = (x1, . . . , x6), and we consider the six
functions πi(x) = xi in R6, i = 1, . . . , 6. Writing F inv

2k (q, s, u, v) = a2k(q, s)(u2 + v2)k, and using
(18), we infer that

d

dt
πi ◦ ψ2k(t) = {F inv

2k , πi}ω̃ ◦ ψ2k(t) =

{
{a2k, πi}ωW (π2

5 + π2
6)k ◦ ψ2k(t) = OΣ(2) if i 6 4,

0 if i = 5, 6,

and therefore πi ◦ ψ2k = πi + OΣ(2), for i = 1, . . . , 6. We conclude that ψ2k = id + OΣ(2).

Let us now make the construction by recurrence.
For k = 1, we want to prove that there exists F inv

2 ∈ F inv
1,2 such that, setting ψ2 = exp(~F inv

2 ),

we have H̃ ◦ ψ2 = H2 mod F inv
2,>6. Using that d

dt (H̃ ◦ ψ2(t)) = {F inv
2 , H̃}ω̃ ◦ ψ2(t), and since the

flow is well defined on [0, 1]× C ′2, we have

H̃ ◦ ψ2(t) = H̃ + {F inv
2 , H̃}ω̃ + O

(
t2

2
{F inv

2 , {F inv
2 , H̃}ω̃}ω̃ ◦ ψ2(t)

)
, (34)

on [0, 1] × C ′2. We have H̃ = H2 + H̃ inv
4 + OΣ(∞) mod F inv

2,>6, with H̃ inv
4 ∈ F inv

2,4 . Hence, taking
t = 1 in (34), using (17) and (16), we infer that

H̃ ◦ ψ2 = H2 + H̃ inv
4 + {F inv

2 , H2}ω̃ + OΣ(∞) mod F inv
2,>6.

Therefore, we have to solve the cohomological equation

{H2, F
inv
2 }ω̃ = H̃ inv

4 + OΣ(∞) mod F inv
2,>6,

which has a solution F inv
4 ∈ F inv

2,4 by using (17).
It is important to note that, thanks to (16), the whole procedure done in this second step takes

place in F inv
2,>2 (if terms in F0

2,>2 were to appear again then our two-steps procedure would fail).
This kind of triangular stability is crucial.

Let us assume that we have constructed ψ2, . . . , ψ2k−2 such that

H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2 = H2 mod F inv
2,>2k.

We want to prove that there exists F inv
2k ∈ F inv

2,2k such that, setting ϕ2k = exp(~F inv
2k ), we have

H̃ ◦ ψ2 ◦ · · · ◦ ψ2k = H2 + OΣ(∞) mod F inv
2,>2k+2.

Using that
d

dt
(H̃ ◦ ψ2 ◦ · · · ◦ ψ2k(t)) = {F inv

2k , H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2}ω̃ ◦ ψ2k(t),

and since the flow ψ2k is well defined on [0, 1]× C ′2k, we have

H̃ ◦ ψ2 ◦ · · · ◦ ψ2k(t) = H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2 + {F inv
2k , H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2}ω̃

+ O

(
t2

2
{F inv

2k , {F inv
2k , H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2}ω̃}ω̃

)
, (35)

on [0, 1]× C ′2k. Using the recurrence assumption, we have

H̃ ◦ ψ2 ◦ · · · ◦ ψ2k−2 = H2 + ˜̃H inv
2k + OΣ(∞) mod F inv

2,>2k+2,
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for some ˜̃H inv
2k ∈ F inv

2,2k. Hence, taking t = 1 in (35), using (17) and (16), we infer that

H̃ ◦ ψ2 ◦ · · · ◦ ψ2k = H2 + ˜̃H inv
2k + {F inv

2k , H2}ω̃ + OΣ(∞) mod F inv
2,>2k+2.

Therefore, we have to solve the cohomological equation

{H2, F
inv
2k }ω̃ = ˜̃H inv

2k + OΣ(∞) mod F inv
2,>2k+2,

which has a solution F inv
2k ∈ F inv

2,2k by using (17).
The recurrence is established.

Considering, as in the first step, the formal infinite composition ψ2 ◦ · · · ◦ ψ2k · · · , by the Borel
theorem, there exists a smooth homogeneous mapping ψ such that ψ = ψ2 ◦ · · · ◦ψ2k · · ·+ OΣ(∞).
By construction we have ψ?ω̃ = ω̃ + OΣ(∞), and using again Lemma B.1 (Appendix B), we
modify slightly ψ, by composing it with a homogeneous diffeomorphism tangent to identity at
infinite order, so that ψ?ω̃ = ω̃.
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[26] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.
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