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Abstract
Based on a novel type of Sobolev-Poincaré inequality (for generalised

weakly differentiable functions on varifolds), we establish a finite upper
bound of the geodesic diameter of generalised compact connected surfaces-
with-boundary of arbitrary dimension in Euclidean space in terms of the
mean curvatures of the surface and its boundary. Our varifold setting
includes smooth immersions, surfaces with finite Willmore energy, two-
convex hypersurfaces in level-set mean curvature flow, integral currents
with prescribed mean curvature vector, area minimising integral chains with
coefficients in a complete normed commutative group, varifold solutions to
Plateau’s problem furnished by min-max methods or by Brakke flow, and
compact sets solving Plateau problems based on Čech homology. Due to
the generally inevitable presence of singularities, path-connectedness was
previously known neither for the class of varifolds (even in the absence of
boundary) nor for the solutions to the Plateau problems considered.
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1 Introduction
Throughout this introduction, we suppose m and n are integers, 2 ≤ m ≤ n,
and B is a nonempty compact m− 1 dimensional submanifold of class 2 of Rn.

Definition (see 7.1). For closed subsets A of Rn, their geodesic diameter is the
supremum of all numbers σ(a, x) corresponding to a, x ∈ A, where σ(a, x) is the
infimum of the set of lengths of continuous paths in A connecting a and x.

We derive upper bounds for the geodesic diameter of sets A associated with
solutions to a variety of geometric variational problems. They imply finiteness
and are given solely in terms of the boundary data and the dimensions involved.

1.1 Plateau problems
We illustrate our varifold-theoretic results by their implication on the two most
prominent formulations of Plateau’s problem in geometric measure theory.

Theorem A (see 8.4 and 8.5). Suppose S ∈ Im(Rn), ∂ S is indecomposable,
∥ ∂ S∥ = H m−1 ⌞B,

∥S∥(Rn) ≤ ∥T∥(Rn) whenever T ∈ Im(Rn) and ∂ T = ∂ S,

and d denotes the geodesic diameter of spt ∥S∥.
Then, for some positive finite number Γ determined by m, there holds

d ≤ Γ
∫

B
|h(B, b)|m−2 dH m−1 b;

here, by convention, we stipulate
∫

B
|h(B, b)|0 dH 1 b = H 1(B) regarding m = 2.

By the fundamental results of H. Federer and W. Fleming, there exists
an absolutely area minimising integral current S satisfying the hypotheses of
Theorem A whenever B is connected and orientable. Even in case A = spt ∥S∥ is
an m dimensional submanifold-with-boundary of class 2 and ∂A = B no a priori
estimate for the geodesic diameter was known prior to this work. If m < n− 1,
even finiteness of d is new; in fact, it was only known that A∼B is connected
by [DLDPHM23, Corollary 1.10 (b)] by C. De Lellis, G. De Philippis, J. Hirsch,
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and A. Massaccesi provided B is class 4 and that in this case the geodesic
distance on A∼B (in the sense of [Men16b, Definition 6.6]) is real valued and
continuous with respect to the Euclidean metric by [Men16b, Theorem 6.8 (1)]
by the first author. If m = n − 1, the properties of the geodesic distance on
A∼B may be combined with the studies of R. Hardt and L. Simon in [HS79]
to yield finiteness of d without providing any a priori estimate on d, see 8.7.
Theorem A transfers unchanged to the context of integral flat chains modulo ν;
in fact, in 8.4, we provide a formulation of Theorem A in terms of the integral
chains with coefficients in a complete normed commutative group constructed in
the first paper of our series [MS22], see 8.6.

The role of the indecomposability hypothesis on ∂ S is merely to guarantee
the indecomposability of S, see 8.4 and 8.5. Thus, we obtain a nonexistence
criterion for indecomposable solutions to Plateau’s problem, see 8.8.

Next, we describe the theorem which results from combining our result on area-
stationary sets in 8.21 with the studies of the Reifenberg-type Plateau problem
by Y. Fang, S. Kolasiński, H. Pugh, and C. Labourie in [FK18, Pug19, Lab22].

Theorem B (see 8.22). Suppose B is connected, G is a commutative group, L
is a subgroup of the (m− 1)-th Čech homology group of B, Č (B,L,G) denotes
the family of closed subsets of Rn spanning L, E ∈ Č (B,L,G),

H m(E) = inf
{
H m(F ) :F ∈ Č (B,L,G)

}
, A = spt(H m ⌞E),

and d is the geodesic diameter of A.
Then, for some positive finite number Γ determined by n, there holds

d ≤ Γ reach(B)−mH m−1(B)m/(m−1) ∫
B

|h(B, b)|m−2 dH m−1 b;

here, by convention, we stipulate
∫

B
|h(B, b)|0 dH 1 b = H 1(B) regarding m = 2.

This yields an a priori bound on d determined by the boundary B and the
dimension n. As before, no bound was known even in the smooth case and, due
to inevitable singularities, only points in A∼B in the same connected component
of A were known to admit a connecting path in A of finite length.

1.2 The applications to geometric variational problems
The scope of our present results is much wider than the relatively regular setting
of minimisers of Plateau problems: It encompasses the Willmore energy with
clamped boundary condition studied by M. Novaga and M. Pozzetta, see 7.6, level-
set mean curvature flow of two-convex hypersurfaces as studied by P. Gianniotis
and R. Haslhofer in [GH20], see 7.8, λ-minimising currents (which in turn include
integral currents with prescribed mean curvature vector and codimension-one area
minimising integral currents with prescribed volume, as studied by F. Duzaar,
K. Steffen, and M. Fuchs in [DS93a, DF90, DF92, Duz93, DS92, DS93b], see
7.21), integral varifolds stationary in Rn ∼B as furnished either by Brakke flow
with fixed boundary studied by S. Stuvard and Y. Tonegawa in [ST21], see 8.16
and 8.20, or by min-max methods studied by C. De Lellis, J. Ramic, and R.
Montezuma in [DLR18, Mon20], see 8.18.
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1.3 The general results in the varifold-setting
Here, we discuss our key results—Theorems C, D, and E—in the varifold-setting.
The following subsection will then include corresponding statements—Corollaries
1, 3, and 2—formulated in a purely differential-geometric setting as well as two
further theorems in the varifold setting—Theorems F and G. The latter are
tailored for applications to geometric variational problems.

Hypotheses 1 (First variation). Suppose V is an m dimensional varifold in an
open subset U of Rn and the first variation,

δV ∈ D ′(U,Rn),

of V is representable by integration (equivalently, the variation measure, ∥δV ∥,
of δV is a Radon measure).

We recall that an m dimensional varifold V in U is a Radon measure over
the Cartesian product of U with the Grassmann manifold G(n,m) consisting of
all (unoriented) m dimensional vector subspaces of Rn, that the projection of V
onto the first factor is termed the weight of V and is denoted by ∥V ∥, and that
T(V ) is the class consisting of all real valued generalised V weakly differentiable
functions, see [MS18, Definition 4.2] by the authors, which includes all locally
Lipschitzian functions f : U → R, see [MS18, Lemma 4.6 (1)].

Definition (see [Men16a, Definition 5.1] by the first author). Suppose V satisfies
the Hypotheses 1 and E is measurable with respect to ∥V ∥ and ∥δV ∥.

Then, the distributional V boundary of E is defined by

V ∂ E = (δV ) ⌞E − δ(V ⌞E × G(n,m)) ∈ D ′(U,Rn).

If V and E are suitably regular (see H. Federer’s characterisation of sets of
locally finite perimeter in [Fed69, 4.5.11]), then V ∂ E may be expressed in terms
of the exterior normal of E (with respect to V ), see [Men16a, Theorem 5.9]. The
notion of boundary allows us to formulate indecomposability of a varifold by
considering, for a given class of functions, how many of its superlevel sets split
the varifold in a nontrivial way and yet have no distributional boundary.

Definition (see [MS23, 7.1]). Suppose that V satisfies the Hypotheses 1 and
that Ψ ⊂ T(V ).

Then, V is called indecomposable of type Ψ if and only if, whenever f ∈ Ψ,
the set of y ∈ R, such that E(y) = {x : f(x) > y} satisfies

∥V ∥(E(y)) > 0, ∥V ∥(U ∼E(y)) > 0, V ∂ E(y) = 0

has L 1 measure zero.

It is crucial for the present final paper of our series, that indecomposability
of type D(U,R) is strictly weaker than indecomposability as defined in [Men16a,
Definition 6.2]. An in-depth comparison of notions of indecomposability has
been carried out in the second paper [MS23]; for instance, two touching spheres
yield a varifold which is decomposable but indecomposable of type D(U,R), see
Example 2 and Corollary 2 therein. The formulation of our main results involves
two further sets of hypotheses whose meaning and significance we shall discuss
next.
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Hypotheses 2 (Density and mean curvature). Suppose V is an m dimensional
varifold in an open subset U of Rn, ∥δV ∥ is a Radon measure absolutely con-
tinuous with respect to ∥V ∥, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, 1 ≤ p ≤ ∞,
and the generalised mean curvature vector h(V, ·) of V belongs to Lloc

p (∥V ∥,Rn).

Unlike in the differential-geometric case, h(V, ·) may have a nontrivial tangen-
tial component related to variations of Θm(∥V ∥, ·). In this regard, considering
the example of a weighted properly embedded smooth submanifold (see [Men16a,
Remark 7.6, Lemma 15.2]), the following question seems natural; if V is integral,
an affirmative answer follows from [Men13, Theorem 4.8] of the first author.

Question 1. Suppose V satisfies the Hypotheses 1, τ = Tanm(∥V ∥, ·)♮ is the tan-
gent plane1 function, and Θ(x) ≥ 1 for ∥V ∥ almost all x, where Θ = Θm(∥V ∥, ·).
Does it follow that both functions τ and Θ are (∥V ∥,m) approximately differ-
entiable at ∥V ∥ almost all x, and, if so, does there hold—denoting (∥V ∥,m)
approximate derivatives by the prefix “ap”—the equation

h(V, x) • u = T (ap D τ(x) ◦ τ(x)) • u+ (ap D(log ◦ Θ)(x) ◦ τ(x))(u) for u ∈ Rn

for ∥V ∥ almost all x, where the trace operator T is as in [Men16a, 15.1]?

Concerning the significance of the Hypotheses 2, we recall that, if p ≥ m,
then spt ∥V ∥ is in many ways well-behaved: For instance, there holds

Θm
∗ (∥V ∥, x) ≥ 1 for x ∈ spt ∥V ∥

by [Men09, Remark 2.7] of the first author—in particular, spt ∥V ∥ has locally fi-
nite H m measure—, the set spt ∥V ∥ is locally connected (see [Men16a, Corollary
6.14 (3)]), decompositions of V are locally finite (see [Men16a, Remark 6.11]) and
non-uniquely refine the decomposition of spt ∥V ∥ into connected components (see
[Men16a, Remark 6.13, Corollary 6.14 (1)]), connected components of spt ∥V ∥
are locally connected by paths of finite length (see [Men16a, Theorem 14.2]),
and the resulting geodesic distance thereon is a continuous Sobolev function
with bounded generalised weak derivative, see [Men16b, Theorem 6.8 (1)]. A
substantial challenge for the present development arises from the fact that, if
p < m, then spt ∥V ∥ has substantially less geometric significance: Whenever X
is an open subset of U , there exists a varifold V such that spt ∥V ∥ equals the
closure of X relative to U , see [Men16a, Example 14.1]. However, one is at least
assured that H m−p almost all x ∈ spt ∥V ∥ satisfy the dichotomy

either Θm
∗ (∥V ∥, x) ≥ 1 or Θm(∥V ∥, x) = 0

by [Men09, Remark 2.11].
The next set of hypotheses concerns the formulation of a boundary condition

for varifolds. This is complicated by the absence of a boundary operator as is
available for currents. In this regard, the distribution B ∈ D ′(U,Rn) defined by

B(θ) = (δV )(θ) +
∫

h(V, x) • θ(x) d∥V ∥x for θ ∈ D(U,Rn)

may act as a replacement whenever V satisfies the Hypotheses 1. According to
W. Allard in [All72, 4.3], ∥B∥ = ∥δV ∥sing in some sense is the boundary of V ;

1For ∥V ∥ almost all x, the closed cone Tanm(∥V ∥, x) is an m dimensional plane and τ(x)
is the orthogonal projection retracting Rn onto Tanm(∥V ∥, x).
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here we have employed ∥δV ∥sing to denote the unique Radon measure over U
such that

∥δV ∥ = ∥δV ∥∥V ∥ + ∥δV ∥sing.

Yet, it appears more accurate to consider ∥B∥ as stemming from two ingredients:
firstly indeed, the geometric boundary of V but, on top of that, the singular part
of the distributional derivative of the tangent plane function of V ; in [Men17,
Example 15] by the first author, this is illustrated by a varifold V associated
with a properly embedded submanifold-with-boundary M of class 1 of Rn such
that the support of ∥B|| is not contained in ∂M .

(
A more basic example with M

of class 0 but not of class 1 is given by the varifold associated with the boundary
of an m+ 1 dimensional cube, see Footnote 2 on page 6.

)
Hypotheses 3 (Density and boundary). Suppose V and W are m and m− 1
dimensional varifolds in an open subset U of Rn, respectively, ∥δV ∥ and ∥δW∥
are Radon measures, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, Θm−1(∥W∥, x) ≥ 1
for ∥W∥ almost all x,

W = 0 if m = 2, ∥δV ∥ ≤ ∥V ∥ ⌞ |h(V, ·)| + ∥W∥ if m > 2,
∥δW∥ is absolutely continuous with respect to ∥W∥ if m > 3.

The displayed inequality is equivalent to requiring ∥B∥ ≤ ∥W∥. It implies
that the geometric boundary of V is contained in W but not necessarily equal
to W . There are good geometric reasons to consider the stronger condition

|B(θ)| ≤
∫

|S⊥
♮ (θ(x))| dW (x, S) for θ ∈ D(U,Rn)

which may be seen as the boundary part of F. Almgren’s concept of regular
pair (V,W ) described in [Alm66, Subsection 4-3]. This stronger condition is also
employed by T. Ekholm, B. White, and D. Wienholtz in [EWW02, Section 7].
For our present purposes, the weaker condition will be sufficient. Finally, the
last condition in the Hypotheses 3 excludes the presence of boundary for W .2

To formulate the next theorem, we recall that V D f denotes the generalised
V weak derivative of f whenever f ∈ T(V ), see [MS18, Definition 4.2], and
that TBdry U (V ) denotes the subclass of those members of T(V ) which are
nonnegative and have zero boundary values on BdryU , see [MS18, Definition
4.16]. It constitutes the varifold formulation of the novel type of Sobolev-Poincaré
inequality formulated in the context of submanifolds-with-boundary of class 2 in
Corollary 1 below.

Theorem C (see 4.5). Suppose V and W satisfy the Hypotheses 3,

h(V, ·) ∈ Lloc
m−1(∥V ∥,Rn), if m > 3 then h(W, ·) ∈ Lloc

m−2(∥W∥,Rn),
f ∈ TBdry U (V ) ∩ TBdry U (W ),

|V D f(x)| ≤ 1 for ∥V ∥ almost all x, |W D f(x)| ≤ 1 for ∥W∥ almost all x,

and E = {x : f(x) > 0}.
2This condition is natural from the differential-geometric point of view. However, following

F. Almgren’s original approach to compactness (see [Alm65, Theorem 10.8]), one might also
study tuples (V0, . . . , Vm) consisting of i dimensional varifolds Vi such that Vi−1 controls the
boundary behaviour of Vi for i > 0. This would include m dimensional cubes, for instance.
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Then, there exists a Borel subset Y of R such that

f(x) ∈ Y for ∥V ∥ almost all x

and such that, for some positive finite number Γ determined by m,

(1) if m = 2, then L 1(Y ) ≤ Γ
(
∥V ∥(E)1/2 + ∥δV ∥(E)

)
;

(2) if m = 3, then

L 1(Y ) ≤ Γ
(
∥V ∥(E)1/3 +

∫
E

|h(V, ·)|2 d∥V ∥ + ∥W∥(E)1/2 + ∥δW∥(E)
)
;

(3) if m > 3, then

L 1(Y ) ≤ Γ
(
∥V ∥(E)1/m +

∫
E

|h(V, ·)|m−1 d∥V ∥
+ ∥W∥(E)1/(m−1) +

∫
E

|h(W, ·)|m−2 d∥W∥
)
.

The utility of these estimates stems from [MS23, Theorem B]: namely, if V
is indecomposable of type {f}, then spt f#∥V ∥ is an interval and satisfies the
bound

diam spt f#∥V ∥ ≤ L 1(Y ).

Moreover, if f is continuous, then f [spt ∥V ∥] ⊂ spt f#∥V ∥, see [MS23, 7.13 (2)].
The resulting oscillation estimate, is the key to establish the next two theorems.

Theorem D (see 6.7 (1)). Suppose V and W satisfy the Hypotheses 3, if m = 2
then ∥δV ∥ is absolutely continuous with respect to ∥V ∥,3 ∥δW∥ is absolutely
continuous with respect to ∥W∥, m − 1 ≤ p < m, h(V, ·) ∈ Lloc

p (∥V ∥,Rn), if
m > 2 then h(W, ·) ∈ Lloc

p−1(∥W∥,Rn), and V is indecomposable of type D(U,R).
Then, there holds

either Θm
∗ (∥V ∥, x) ≥ 1 or Θm−1

∗ (∥W∥, x) ≥ 1

for H m−p almost all x ∈ spt ∥V ∥; in particular, H m ⌞ spt ∥V ∥ ≤ ∥V ∥.

The result is already significant in case W = 0 because it implies that inde-
composability of type D(U,R) allows to discard the alternative Θm(∥V ∥, x) = 0
from the afore-mentioned dichotomy. In general, this alternative may not be
omitted as is shown by suitable decomposable varifolds, see [Men09, 2.11].

Theorem E (see 7.4). Suppose V and W satisfy the Hypotheses 3 with U = Rn,
V is indecomposable of type D(Rn,R), we have (∥V ∥ + ∥W∥)(Rn) < ∞, and d
denotes the geodesic diameter of spt ∥V ∥.

Then, for some positive finite number Γ determined by m, there holds

(1) if m = 2, then d ≤ Γ∥δV ∥(Rn);

(2) if m = 3, then d ≤ Γ
(∫

|h(V, ·)|2 d∥V ∥ + ∥δW∥(Rn)
)
; and,

(3) if m > 3, then d ≤ Γ
(∫

|h(V, ·)|m−1 d∥V ∥ +
∫

|h(W, ·)|m−2 d∥W∥
)
.

3More generally, absolute continuity may be relaxed to ∥δV ∥ ≤ ∥V ∥ ⌞ |h(V, ·)| + ∥W∥ and
“W = 0 if m = 2” may be omitted from the Hypotheses 3 for the present theorem.
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In particular, if the sum on the right hand side of the inequality is finite,
then spt ∥V ∥ is a compact subset of Rn and any two points of spt ∥V ∥ may be
connected by a path of finite length in spt ∥V ∥. In analogy with the properties
described for the case p = m of the Hypotheses 2, an array of further questions
arises. In the absence of boundary, the most immediate ones read as follows.

Question 2. Suppose V satisfies the Hypotheses 3 with W = 0, V is indecom-
posable of type D(U,R), and h(V, ·) ∈ Lloc

m−1(∥V ∥,Rn).4

(1) Is spt ∥V ∥ locally connected?

(2) If so, is spt ∥V ∥ locally connected by paths of finite length?

(3) If so, is the geodesic distance induced on connected components of spt ∥V ∥
a Sobolev function with bounded generalised weak derivative and what are
the continuity properties of this particular (or, any such) function?

The last item thereof relates to the possible study of intermediate conditions
on the mean curvature, that is, to 1 < p < m in the Hypotheses 2 (see [Men16a,
p. 990]); a special case of that item was already raised as fifth question in the MSc
thesis of the second author supervised by the first author, see [Sch16, Section A].

1.4 The challenges and their resolution
The starting point of our line of research (see [MS18] and the previous two parts
[MS22] and [MS23] of our series) culminating in the present final paper was the
following a priori bound for geodesic diameter by P. Topping.
Theorem (see [Top08, Theorem 1.1]). Suppose that M is a compact connected
m dimensional manifold (without boundary) of class 2, that F : M → Rn is an
immersion of class 2, that g is the Riemannian metric on M induced by F , and
that σ is the Riemannian distance associated with (M, g).

Then, for some positive finite number Γ determined by m, there holds

diamσ M ≤ Γ
∫

M
|h(F, x)|m−1 dH m

σ x,

where the vector h(F, x) in Rn denotes the mean curvature of F at x in M .

1.4.1 Aim 1: the generalisation to a varifold-setting

The varifold-setting is the natural one to model generalised surfaces with mean
curvature. The corresponding generalisation involved two challenges:

(i) how to rephrase the connectedness hypothesis for varifolds; and,

(ii) how to handle the low summability of the mean curvature.

Regarding (i), the first notion of connectedness developed for varifolds—termed
indecomposability—was available from the theory of generalised weakly differen-
tiable functions on varifolds, see [Men16a, Definition 6.2]. Proceeding to (ii), we
recall that the Hypotheses 2 with U = Rn and p = m− 1 do not guarantee the
required geometric significance of spt ∥V ∥.

4If m > 2, the first and last condition are equivalent to the Hypotheses 2 with p = m− 1;
if m = 2, they do not require ∥δV ∥ to be absolutely continuous with respect to ∥V ∥.
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The key to resolve these two challenges is to treat them simultaneously by
means of the insight that indecomposability has a strong regularising effect; in
particular, the known examples exhibiting undesirable behaviour of spt ∥V ∥,
such as [Men16a, Example 14.1] or the earlier one of a similar structure in
[Men09, Example 1.2], are decomposable. The analysis carried out in [Sch16],
not only yields a complete generalisation of the above estimate of the geodesic
diameter to the varifold setting (i.e., Theorem E with W = 0) but it also yields
a lower density bound for the varifolds involved (i.e., Theorem D with W = 0
and p = m− 1) ensuring the geometric significance of spt ∥V ∥ via

Θm
∗ (∥V ∥, x) ≥ 1 for H 1 almost all x ∈ spt ∥V ∥.

We note that both theorems describe a one-dimensional property of spt ∥V ∥: the
length of geodesics therein and a lower density bound H 1 almost everywhere.

1.4.2 Aim 2: the treatment of surfaces with boundary

To allow for boundary is evidently a prerequisite for applications to geometric
variational problems such as the Plateau problem. An initial step had been
made by S.-H. Paeng: If m = 2 and M is a manifold-with-boundary, then the
estimate in the preceding theorem may be replaced by

diamσ M ≤ Γ
(∫

M
|h(F, x)| dH 2

σ x+ H 1
σ (∂M)

)
,

provided (M, g) is convex, see [Pae14, Theorem 2 (a)]. Therefore, to achieve the
second aim, we had to resolve the following three additional challenges:

(iii) for m = 2, how to remove the convexity hypothesis;

(iv) for m > 2, how to take the geometry of the boundary into account; and,

(v) how to phrase the boundary condition in a varifold-setting.

In [Pae14], the convexity hypothesis is mainly used to ensure that interior points
of length-minimising geodesics cannot meet ∂M . Viewing this as regularity
consideration, a method sufficiently robust for the varifold-setting is likely to
accommodate (iii) as well. For (iv), the m− 1 dimensional Hausdorff measure
of ∂M (raised to the appropriate power) does not yield a valid estimate, see
7.14. Instead, the mean curvature of F |∂M turns out to be an adequate choice;
in particular, the boundary is naturally represented by an m− 1 dimensional
varifold. Regarding (v), we recall that the difficulty stems from the lack of a
boundary operator for varifolds and is resolved by employing the conditions
described in the Hypotheses 3 above as a substitute.

The second aim was then achieved in the first version of the present publication
(see arXiv:1709.05504v1) which contained two additional insights with respect
to [Sch16]: Firstly, it introduced the notion of indecomposability of type D(U,R).
This connectedness property is strictly weaker than indecomposability but yet
strong enough for the deduction of the intended geometric consequences; in
fact, this weakening of our hypotheses has later turned out to be crucial for
the applicability of our theory to geometric variational problems (see Aim 3
below). The second insight was the novel type of Sobolev-Poincaré inequality
formulated in Theorem C which is foundational for both the varifold-results on

9
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density and those on geodesic diameter in Theorems D and E. To discuss the
nature of Theorem C, we shall now describe the corollary resulting from it in
the special case of properly embedded connected submanifolds.

Corollary 1 (Novel type of Sobolev-Poincaré inequality, see 4.8). Suppose U
is an open subset of Rn, M is a properly embedded, connected m dimensional
submanifold-with-boundary of class 2 of U , f : M → R is a function of class 1
relative to M , spt f is compact, and

E = M ∩ {x : f(x) ̸= 0}, κ = sup{| D f(x)| :x ∈ M ∼ ∂M}.

Then, for some positive finite number Γ determined by m, there holds

diam f [M ] ≤ Γ
(
H m(E ∩M)1/m +

∫
E∩M

|h(M,x)|m−1 dH m x

+ H m−1(E ∩ ∂M)1/(m−1) +
∫

E∩∂M
|h(∂M, x)|m−2 dH m−1 x

)
κ;

here, the summand
∫

E∩∂M
|h(∂M, x)|m−2 dH m−1 x shall be omitted if m = 2.

In case M is compact, spt f is automatically compact and, applying the
isoperimetric inequality to M and ∂M yields the following Poincaré inequality
(see 7.15) with a positive finite number ∆ determined by m:

diam f [M ] ≤ ∆
(∫

M
|h(M,x)|m−1 dH m x+

∫
∂M

|h(∂M, x)|m−2 dH m−1 x
)
κ;

regarding m = 2, we stipulate
∫

∂M
|h(∂M, x)|0 dH 1 x = H 1(∂M) by conven-

tion. Earlier estimates of the essential oscillation of f , see [Men16a, Theorems
10.1 (1d), 10.7 (4), and 10.9 (4)], differ in several aspects: Firstly, they are limited
to the case ∂M = ∅ but do not require connectedness of M . Secondly, they
are local in nature rather than global. Thirdly, they involve the m-th power of
the mean curvature (in fact, an integral smallness condition thereon) instead of
the power m − 1. Finally, they allow for q-th power integrals of D f for some
m < q < ∞ which in fact turns out to be impossible in our setting, see 7.17. The
preceding Poincaré inequality is readily seen to be equivalent to an a priori bound
for the geodesic diameter of M . Applying differential-topologic density results
(to remove the embeddedness hypothesis) then yields the following extension of
P. Topping’s result to immersions of manifolds-with-boundary which corresponds
to Theorem E in the varifold-setting.

Corollary 2 (Geodesic diameter bound for immersions, see 7.12). Suppose
M is a compact connected m dimensional manifold-with-boundary of class 2,
F : M → Rn is an immersion of class 2, g is the Riemannian metric on M
induced by F , and σ is the Riemannian distance associated with (M, g).

Then, for some positive finite number Γ determined by m, there holds

diamσ M ≤ Γ
(∫

M
|h(F, x)|m−1 dH m

σ x+
∫

∂M
|h(F |∂M, x)|m−2 dH m−1

σ x
)
;

regarding m = 2, we stipulate
∫

∂M
|h(∂M, x)|0 dH 1

σ x = H 1
σ (∂M).

For m ≥ 3, this leads to the following question which is open even if h(F, ·) = 0
and F is an embedding. If the answer were in the affirmative, then Corollary 2
would be a consequence of the resulting statement applied to both F and F |∂M .

Question 3. May the summand
∫

∂M
|h(F, x)|m−2 dH m−1

σ x in Corollary 2 be
replaced by the sum of the geodesic diameters of the connected components of
∂M computed with respect to the induced Riemannian distance on ∂M?
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1.4.3 Interlude: lower density ratio bounds

The insights discussed so far allow us to deduce lower bounds on the density
based on the connectedness hypothesis. To illustrate this, we state here the
underlying conditional lower density ratio bound in the case of properly embedded
submanifolds regarding the varifold-result on the density in Theorem D.

Corollary 3 (Conditional lower density ratio bound, see 6.3). Suppose U is
an open subset of Rn, M is a properly embedded, connected m dimensional
submanifold-with-boundary of U of class 2, a ∈ M , 0 < r < ∞, B(a, r) ⊂ U ,
and M ∼ U(a, r) ̸= ∅.

Then, for some positive finite number Γ determined by m, there holds

Γ−1r ≤ H m(U(a, r) ∩M)1/m +
∫

U(a,r)∩M
|h(M, ·)|m−1 dH m

+ H m−1(U(a, r) ∩ ∂M)1/(m−1) +
∫

U(a,r)∩∂M
|h(∂M, ·)|m−2 dH m−1;

here, the summand
∫

U(a,r)∩∂M
|h(∂M, ·)|m−2 dH m−1 shall be omitted if m = 2.

This is a consequence of Corollary 1 generalised to Lipschitzian functions
and applied with f(x) = sup{r − |x− a|, 0} for x ∈ U . Since M ∼ U(a, r) ̸= ∅,
our novel type of Sobolev-Poincaré inequality for this f takes the flavour of a
Sobolev inequality because sup im f = diam f [M ]. Small spheres show that the
hypothesis M ∼ U(a, r) ̸= ∅ cannot be omitted. Therefore, whereas p = m is
the critical exponent in general, the critical exponent for the summability of the
mean curvature vector in the connected case is p = m− 1. This is the key to the
regularising effects of indecomposability. For further illustration, we consider
the following class of submanifolds (not necessarily properly embedded).

Hypotheses 4. Suppose 1 ≤ p < ∞, M is a connected m dimensional sub-
manifold of class ∞ of Rn which meets every compact subset of Rn in a set
of finite H m measure such that its second fundamental form b(M, ·) satisfies∫

M
∥b(M,x)∥p dH m x < ∞ and the divergence theorem holds in the sense that∫

M
Tan(M,x)♮ • D θ(x) dH m x = −

∫
M

h(M,x) • θ(x) dH m x

for θ ∈ D(Rn,Rn), and A = (ClosM) ∩ {a :Θm(H m ⌞M,a) = 0}.

In view of [MS23, 3.3, 6.1], Theorem D guarantees that

H m−p(A) = 0 in case m− 1 ≤ p < m.

The next example shows not only that this bound is sharp but also that there is
no corresponding result in the range 1 ≤ p < m− 1. This exhibits a discontinuity
in p regarding the optimal upper bound on the Hausdorff dimension of A.
Example (Sharpness of the lower density bounds, see 5.5 and 5.7). Suppose
m < n. Then, the following two statements hold.

(1) If m − 1 < q < m, then there exists M satisfying the Hypotheses 4 for
1 ≤ p < q such that H m−q(A) > 0 for the associated set A.

(2) If m ≥ 3, then there exists M satisfying the Hypotheses 4 for 1 ≤ p < m−1
such that H m(A) > 0 for the associated set A.
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1.4.4 Aim 3: applicability to geometric variational problems

For this purpose, we were guided by the following two model cases:
(A) The Plateau problem for integral currents (more generally, G chains).

(B) The Plateau problem for sets using Čech homology.
The solution to each of these problems gives rise to an associated varifold V
which is stationary away from the boundary. This entails the challenge:
(vi) Does the natural connectedness property of the solution (G chain or set)

entail a suitable indecomposability property of the associated varifold?
Introducing indecomposability of type D(U,R), (vi) has been resolved in [MS23],
see Theorem G therein for Case (A) and Corollary 2 therein for Case (B); in
particular, for Case (B), it suffices to verify connectedness of spt ∥V ∥. On the
other hand, for Case (B), two considerations which do not pose a particular
difficulty in Case (A), see 8.1 and 8.5, add two final challenges to our list:
(vii) Is there an a priori estimate for ∥δV ∥ in terms of the boundary data?

(viii) Does connectedness of the boundary imply connectedness of spt ∥V ∥?
For these challenges in the present Case (B), a key ingredient is provided by C.
Labourie with [Lab22, Lemmata 1.2.2 and 2.2.1] which ensure

B ⊂ spt ∥V ∥,

see 8.22. The treatment of (vii) then uses the following theorem which rests on
a refinement of W. Allard’s estimates regarding boundary behaviour in [All75].
It employs H. Federer’s concept of reach from [Fed59, 4.1].
Theorem F (see 8.12). Suppose R = reach(B), V is an m dimensional varifold
in Rn, ∥V ∥(B) = 0, spt δV ⊂ B ⊂ spt ∥V ∥, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost
all x, and

M = R−m sup{∥V ∥ U(b, R/2) : b ∈ B}.
Then, for some positive finite number Γ determined by m, there holds

∥δV ∥ ≤ ΓMH m−1 ⌞B.

For Case (B), the ∥V ∥ measure of Rn, and thus the number M , can readily
be estimated in terms of B and m, see 8.22. Regarding (viii), we can rely on
the study of connected components of spt ∥V ∥ from [Men16a, Corollary 6.14]
in combination with the isoperimetric inequality to deduce connectedness of
spt ∥V ∥ from that of its subset B, see 8.13. In combination with Theorem E,
this yields the following theorem which is also applicable to varifolds constructed
by min-max methods or Brakke flows, see 8.18 and 8.20.
Theorem G (see 8.17). Suppose B is connected, V is an m dimensional varifold
in Rn, ∥V ∥(Rn) < ∞, 1 ≤ λ < ∞,

B ⊂ spt ∥V ∥, ∥δV ∥ ≤ λH m−1 ⌞B,

Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, and d is the geodesic diameter of spt ∥V ∥.
Then, there holds

d ≤ Γ7.4(m)λ
∫

B
|h(B, b)|m−2 dH m−1 b;

here, by convention, we stipulate
∫

B
|h(B, b)|0 dH 1 b = H 1(B) regarding m = 2.

12
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2 Notation
Basic sources As in Parts I and II (see [MS22, MS23]), our notation follows
[Men16a] and is thus largely consistent with H. Federer’s terminology for geomet-
ric measure theory listed in [Fed69, pp. 669–676] and W. Allard’s notation for
varifolds introduced in [All72]. This includes, for distributions S, the variation
measure ∥S∥, see [Men16a, 2.18]; for certain varifolds V and sets E, the notion of
distributional boundary, V ∂ E, of E with respect to V , see [Men16a, 5.1]; for cer-
tain varifolds V , concepts relating to generalised V weak differentiability—that
is, the space T(V ) of generalised V weakly differentiable real valued functions f ,
the generalised V weak derivative, V D f , for such f , and the subspace TG(V )
of nonnegative members of T(V ) realising the concept of zero boundary values
on an open subset G of BdryU—, see [Men16a, 8.3, 9.1].

Review Here, we list symbols not already reviewed in [Men16a, Introduction,
Section 1]: the Grassmann manifold, G(n,m), of all m dimensional subspaces
of Rn, see [Fed69, 1.6.2]; the norms associated with inner products, | · |, see
[Fed69, 1.7.1]; the seminorm, ∥ · ∥, on Hom(V,W ) associated with normed spaces
V and W , see [Fed69, 1.10.5]; the infimum and supremum, inf S and supS, of
a subset S of the extended real numbers, see [Fed69, 2.1.1]; the class 2X of
all subsets of X, see [Fed69, 2.1.2]; the restriction, ϕ ⌞A, of a measure ϕ to a
set A, see [Fed69, 2.1.2]; the support, abbreviated sptϕ, of a measure ϕ, see
[Fed69, 2.2.1]; the least Lipschitz constant, Lip f , of a map f between metric
spaces, see [Fed69, 2.2.7]; the Lebesgue spaces, Lp(ϕ, Y ), see [Fed69, 2.4.12];
the support, denoted spt f , of a member f of K (X), see [Fed69, 2.5.13]; the
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variation, Vb
ag, of g from a to b for maps of the real line into a complete metric

space, see [Fed69, 2.5.16]; the n dimensional Lebesgue measure, L n, see [Fed69,
2.6.5]; the diameter of S, diamS, see [Fed69, 2.8.8]; the absolutely continuous
part ψϕ of a measure ψ with respect to ϕ, see [Fed69, 2.9.1];5 the derivative, g′,
of a function on the real line, see [Fed69, 2.9.19]; the number α(m) and the m
dimensional Hausdorff measure, H m, for 0 ≤ m < ∞, see [Fed69, 2.10.2]; the m
dimensional densities, Θ∗m(ϕ, a), Θm

∗ (ϕ, a), and Θm(ϕ, a), see [Fed69, 2.10.19];
the differential, D f , see [Fed69, 3.1.1]; the closed cones of tangent and normal
vectors, Tan(S, a) and Nor(S, a), see [Fed69, 3.1.21]; the unit sphere, Sn−1, in
Rn, see [Fed69, 3.2.13]; the vector space, E (U, Y ), of functions of class ∞ and
the support, sptT , of a distribution T in U of type Y , see [Fed69, 4.1.1]; the
chain complex of integral currents in Rn with m-th chain group Im(Rn) and
boundary operator ∂, see [Fed69, 4.1.7, 4.1.24]; the member [u, v] of I1(Rn)
associated with the line segment from u to v, see [Fed69, 4.1.8]; the weight, ∥V ∥,
of a varifold V , see [All72, 3.1]; the image, f#V , of a varifold V under a map
f of class ∞, see [All72, 3.2]; and, the first variation, δV , of a varifold V , see
[All72, 4.2].

Modification For the push forward, f#ϕ, of a measure ϕ by a function f , we
use the definition in [MS22, 3.9] which extends [Fed69, 2.1.2].

Amendments Modelled on [Fed69, 4.1.7], we employ the restriction notation,
ϕ ⌞ f , for the measure ϕ weighted by f introduced in [MS22, 3.6]; this weighted
measure was discussed—without name—in [Fed69, 2.4.10]. For subsets A of
Euclidean space, we adopt the concept of reach and the symbol reach(A) from
[Fed59, 4.1] as well as those of approximate differentiability of order 2 with the
corresponding approximate mean curvature, denoted by ap h(A, ·), from [San19,
3.8] and [MS23, 6.9]. For certain immersions F into an open subset U of Rn, we
use the concepts of mean curvature vector, denoted h(F, ·), of varifold associated
with (F,U), and of Riemannian distance associated with F as laid down in [MS23,
6.10, 6.13, 10.1], respectively. The terms immersion and embedding are employed
in accordance with [Hir94, p. 21]. Whenever k is a positive integer or k = ∞,
we mean by a [sub]manifold-with-boundary of class k a Hausdorff topological
space with a countable base of its topology that is, in the terminology of [Hir94,
pp. 29–30], a Ck [sub]manifold. For manifolds-with-boundary M of class k, we
similarly adapt the notion of chart of class k and Riemannian metric of class
k−1 from [Hir94, p. 29, p. 95] and denote by ∂M its boundary as in [Hir94, p. 30].
Whenever G is a complete normed commutative group as defined in [MS22,
3.1], we employ the following notation regarding the group Rloc

m (Rn, G) of m
dimensional locally rectifiable G chains S in Rn, see [MS22, 4.5]: the notion of
weight measure, ∥S∥, see [MS22, 4.5]; the homomorphisms

f# : Rloc
m (Rn, G) → Rloc

m (Rν , G)

associated with locally Lipschitzian maps f : Rn → Rν , see [MS22, 4.6]; the
Cartesian product

× : Rloc
m (Rn,Z) × Rloc

µ (Rν , G) → Rloc
m+µ(Rn × Rν , G),

5As was stipulated in [Men16a] for similar notions, ψϕ will also be employed in the case
where one of the measures ψ or ϕ on X fails to be finite on bounded sets but there exist open
sets U1, U2, U3, . . . covering X at which ϕ and ψ are finite.
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see [MS22, 4.7]; the isomorphism ιRn,m : Rloc
m (Rn) → Rloc

m (Rn,Z), see [MS22,
5.1]; the chain complex of integral G chains in Rn with m-th chain group
Im(Rn, G)—identified with a subgroup of Rloc

m (Rn, G)—and boundary operator
∂G, see [MS22, 5.11, 5.13, 5.17]; and, indecomposability of members of Im(Rn, G),
see [MS23, 6.6]. Finally, for certain varifolds, we make use of the concept of
indecomposability of type Ψ introduced in [MS23, 7.1].

Definitions in the text Following [Men16b, 6.6], the terms geodesic distance
and geodesic diameter are laid down in 7.1. The locally convex space C k(M,Y )
is defined in 7.10.

3 The special case of extrinsic diameter and no
boundary

To highlight some of the principal ideas, we provide the short proof a special
case of Theorem E in this section; the general case will be treated in 7.4.

3.1 Theorem. Suppose m and n are integers, 2 ≤ m ≤ n, V ∈ Vm(Rn),
spt ∥V ∥ is compact, ∥δV ∥ is a Radon measure, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost
all x, V is indecomposable, and

(1) if m = 2, then ψ = ∥δV ∥, and

(2) if m > 2, then ∥δV ∥ is absolutely continuous with respect to ∥V ∥ and
ψ = ∥V ∥ ⌞ |h(V, ·)|m−1.

Then, there holds
diam spt ∥V ∥ ≤ Γψ(Rn),

where Γ is a positive, finite number determined by m.

Proof. By [All72, 3.5 (1b), 5.5 (1)], V is rectifiable and ∥V ∥ = H m ⌞Θm(∥V ∥, ·).
Assume ψ(Rn) < ∞. Let A denote the set of all a ∈ spt ∥V ∥ such that

lim sup
s→0+

∥V ∥(B(a, s))(1/m)−1∥δV ∥ B(a, s) < (2γ(m))−1.

Note ∥V ∥(Rn ∼A) = 0 by [Fed69, 2.8.18, 2.9.5], hence A is dense in spt ∥V ∥
and

diam spt ∥V ∥ = sup{diam p[A] : p ∈ O∗(n, 1)}.
Next, suppose p ∈ O∗(n, 1) and let ϕ = p#ψ. Then, for each b ∈ p[A], there

exists 0 < r < ∞ such that
r ≤ ∆ϕB(b, r),

where ∆ = m(2γ(m))m; in fact, one may choose a ∈ A with p(a) = b and take

r = inf
{
s : ∥δV ∥ B(a, s) > (2γ(m))−1∥V ∥(B(a, s))1−1/m

}
,

hence 0 < r < ∞ and ∥V ∥ B(a, r) ≥ (2mγ(m))−mrm by [Men09, 2.5] implying

(2γ(m))−1∥V ∥(B(a, r))1−1/m ≤ ∥δV ∥ B(a, r)
≤ ∥V ∥(B(a, r))1−1/(m−1)ψ(B(a, r))1/(m−1),

(2mγ(m))−1r ≤ ∥V ∥(B(a, r))1/m ≤ (2γ(m))m−1ψB(a, r).
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Consequently,
L 1(p[A]) ≤ 2∆β(1)ψ(Rn).

The proof will be concluded by showing

diam p[A] = L 1(p[A]).

If this were not the case, there would exist b ∈ R such that

inf p[A] < b < sup p[A], Θ1(p#∥V ∥, b) = 0

by [Fed69, 2.2.17, 2.10.19 (4)] since (p#∥V ∥)(R ∼ p[A]) = 0, hence one could use
[All72, 4.10 (1)] or [Men16a, 8.7, 8.29] to infer

δ(V ⌞{(a, S) : p(a) > b}) = (δV ) ⌞{a : p(a) > b}

which would be incompatible with the indecomposability hypothesis on V .

3.2 Remark. Inspection of the final argument shows that the indecomposability
hypothesis on V may be weakened to indecomposability of type O∗(n, 1).
3.3 Remark. In case m = 2, a related inequality for submanifolds involving the
second fundamental form is provided in [Sim93, Lemma 1.2].

4 Sobolev-Poincaré inequality
The purpose of this section is to establish (see 4.5) our new Sobolev-Poincaré
inequality, Theorem C; the key ingredient therein is a monotonicity lemma
(see 4.1) based on the isoperimetric inequality. Following this, the setting of
connected submanifolds, Corollary 1, results as corollary (see 4.8). We also
include a simpler version of our Sobolev-Poincaré inequality for varifolds that
are suitably indecomposable and have no boundary (see 4.10).

The lemma below will presently be applied only with q = ∞. We include the
case q < ∞ since it yields a new proof of previous Sobolev inequalities (see 4.3).

4.1 Lemma. Suppose m and n are positive integers, m ≤ n, U is an open subset
of Rn, V ∈ Vm(U), ∥δV ∥ is a Radon measure, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost
all x, f ∈ TBdry U (V ), 0 ≤ s ≤ r ≤ ∥V ∥(∞)(f),

either, m = q = 1 and λ = 1,

or, m < q ≤ ∞ and λ =
(
(1/m− 1/q)

/
(1 − 1/q)

)1−1/q
,

V D f ∈ Lq(∥V ∥,Hom(Rn,R)), 0 < ϵ < γ(m)−1,

∥V ∥ {x : f(x) ≥ y} < ∞, ∥δV ∥ {x : f(x) ≥ y} ≤ ϵ ∥V ∥({x : f(x) ≥ y})1−1/m

for s < y < r, and δ = γ(m)−1 − ϵ.
Then, the quantities

∥V ∥({x : f(x) ≥ y})1/m−1/q(∥V ∥ ⌞{x : f(x) ≥ y})(q)(V D f) + δλy, if q < ∞,

∥V ∥({x : f(x) ≥ y})1/m∥V ∥(∞)(V D f) + δλy, if q = ∞,

are nonincreasing in y, for s < y < r.
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Proof. We treat the case m < q < ∞. The cases m = q = 1 and q = ∞ follow
by a similar but simpler argument. Abbreviate α = 1 − 1/q and β = 1 − 1/m.
Let i : U → Rn denote the inclusion, define

E(υ) = {x : f(x) ≥ −υ}, g(υ) = ∥V ∥(E(υ)), G(υ) = g(υ)1−β/α,

h(υ) =
∫

E(υ) |V D f |q d∥V ∥, Wυ = i#(V ⌞E(υ) × G(n,m)) ∈ Vm(Rn)

for −r < υ < −s, and notice that

Θm(∥Wυ∥, x) ≥ 1 for ∥Wυ∥ almost all x

by [Fed69, 2.8.9, 2.8.18, 2.9.11]. Furthermore, as (∥V ∥+∥δV ∥) {x : f(x) = υ} = 0
for all but countably many υ, we have (see [Men16a, 9.1])

∥δWυ∥ ≤ i#
(
∥δV ∥ ⌞E(υ) + ∥V ∂ E(υ)∥

)
for L 1 almost all −r < υ < −s.

For such υ, the isoperimetric inequality (see [MS18, 3.5, 3.7]) yields

γ(m)−1g(υ)1−1/m ≤ ∥δV ∥(E(υ)) + ∥V ∂ E(υ)∥(U).

In view of [Men16a, 8.29] and [Fed69, 2.9.19], we deduce the inequalities

0 < (γ(m)−1 − ϵ)g(υ)1−1/m ≤ ∥V ∂ E(υ)∥(U) ≤ g′(υ)1−1/qh′(υ)1/q,

δλ = (γ(m)−1 − ϵ)(1 − β/α)α ≤ (g1−β/α)′(υ)αh′(υ)1−α = G′(υ)αh′(υ)1−α

for L 1 almost all −r < υ < −s. Therefore, noting 0 <
∫ υ

−r
h′ dL 1 ≤ h(υ)

for −r < υ < −s by [Fed69, 2.9.19], we obtain (using the inequality relating
geometric and arithmetic means)

δλ ≤ αG′(υ)G(υ)α−1h(υ)1−α + (1 − α)h′(υ)h(υ)−αG(υ)α = (Gαh1−α)′(υ)

for L 1 almost all −r < υ < −s, whence the conclusion follows by integration
with respect to L 1 using [Fed69, 2.9.19].

4.2 Remark. For q = ∞, the pattern of the preceding proof is that of [All72, 8.3].
4.3 Remark. The preceding lemma in particular entails the estimates [Men16a,
10.1 (2b) (2d)] with a different, somewhat more explicit constant.

We next gather the set of conditions on density and first variation that we
assume for both varifolds occurring in the Sobolev-Poincaré estimate in 4.5.

4.4. Suppose U is an open subset of Rn, V is a varifold in U , m = dimV , ∥δV ∥
is a Radon measure, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, and, either m = 1
and ϕ = ∥V ∥, m = 2 and ϕ = ∥δV ∥, or m > 2, h(V, ·) ∈ Lloc

m−1(∥V ∥,Rn), and
ϕ = ∥V ∥ ⌞ |h(V, ·)|m−1.

4.5 Theorem. Suppose m and n are integers, 2 ≤ m ≤ n, U is an open subset
of Rn, V1 ∈ Vm(U) and V2 ∈ Vm−1(U) satisfy the conditions of 4.4,

V2 = 0 if m = 2, ∥δV1∥ ≤ ∥V1∥ ⌞ |h(V1, ·)| + ∥V2∥ if m > 2,
∥δV2∥ is absolutely continuous with respect to ∥V2∥ if m > 3,
f ∈ TBdry U (Vi), |Vi D f(x)| ≤ 1 for ∥Vi∥ almost all x,

ϕi are associated with Vi as in 4.4,

17



for i ∈ {1, 2}, and E = {x : f(x) > 0}.
Then, there exists a Borel subset Y of R such that

f(x) ∈ Y for ∥V1∥ almost all x,
L 1(Y ) ≤ Γ

(
∥V1∥(E)1/m + ϕ1(E) + ∥V2∥(E)1/(m−1) + ϕ2(E)

)
,

where Γ is a positive finite number determined by m.

Proof. We assume (∥Vi∥ + ϕi)(E) < ∞ for i ∈ {1, 2}; in particular, we have
∥δVi∥(E) < ∞. Define I = R ∩ {y : y > 0},

µi = f#∥Vi∥, νi = f#∥δVi∥, and ωi = f#ϕi

for i ∈ {1, 2}. Let α = ω1 if m = 2 and α = f#(∥V1∥ ⌞ |h(V1, ·)|) if m > 2. With

∆1 = 2mγ(m), ∆2 = sup
{

2(m− 1)γ(m− 1), 2∆1(2γ(m))1/(m−1)},
we define

λi = ∆i µi(I)1/ dim Vi for i ∈ {1, 2}

and functions ri : R → R, for i ∈ {1, 2}, by

ri(b) = sup
{
s : 0 ≤ s < b and ∆i µi(B(b, s))1/ dim Vi ≥ s

}
whenever b ∈ R.

Since the sets (R × R) ∩
{

(b, s) : 0 ≤ s < b and ∆i µi(B(b, s))1/ dim Vi ≥ s
}

are
relatively closed in (R × R) ∩ {(b, s) : s < b}, we may deduce that ri are Borel
functions for i ∈ {1, 2}. We also note ri(b) ≤ λi for b ∈ R and i ∈ {1, 2}. Let
C = {b :µ1 {b} > 0} and notice that C is countable. Moreover, we define

Qi = R ∩ {b : ri(b) > 0} for i ∈ {1, 2}, B = {b : r1(b) > r2(b)}.

Our two estimates below rest on the basic fact that

νi B(b, ri(b)) ≥ (2γ(dimVi))−1µi(B(b, ri(b)))1−1/ dim Vi

whenever λi < b ∈ Qi and i ∈ {1, 2}; in fact, we note [Men16a, 8.12, 8.13, 9.9]
and apply, for small s > 0, 4.1 with m, V , s, r, q, f(x), and ϵ replaced by dimVi,
Vi, 0, s, ∞, sup{ri(b) + s− |f(x) − b|, 0}, and (2γ(dimVi))−1.

Next, the following two estimates will be proven

L 1(Q2 ∩ {b : b > λ2}) ≤ ∆3 ω2(I), L 1(B ∩ {b : b > λ1}) ≤ ∆4 ω1(I),

where ∆3 = 2m+1∆2γ(m− 1)m−2 and ∆4 = 2m(m−1)+3γ(m)m−1∆1. Whenever
λ2 < b ∈ Q2, the basic fact and Hölder’s inequality yield

∆−1
2 r2(b) ≤ µ2(B(b, r2(b)))1/(m−1) ≤ (2γ(m− 1))m−2ω2 B(b, r2(b)),

whence we deduce the first estimate by Vitali’s covering theorem (see [Fed69,
2.8.5, 2.8.8] with δ = diam and τ = 3/2). To similarly prove the second estimate
suppose λ1 < b ∈ B. We first notice that b > r1(b) > r2(b) yields

µ2(B(b, r1(b)))1/(m−1) ≤ ∆−1
2 r1(b)

≤ 2−1(2γ(m))1/(1−m)µ1(B(b, r1(b))1/m < ∞.
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Combining this estimate with the following consequence of the basic fact,

µ1(B(b, r1(b)))1/m ≤ (2γ(m))1/(m−1)ν1(B(b, r1(b)))1/(m−1)

≤ (2γ(m))1/(m−1)(α(B(b, r1(b)))1/(m−1) + µ2(B(b, r1(b)))1/(m−1)),
we first obtain

2−1µ1(B(b, r1(b)))1/m ≤ (2γ(m))1/(m−1)α(B(b, r1(b)))1/(m−1),

and then, using Hölder’s inequality,

∆−1
1 r1(b) ≤ µ1(B(b, r1(b)))1/m ≤ 2m(m−1)γ(m)m−1 ω1 B(b, r1(b)).

Vitali’s covering theorem now yields the second estimate.
We now define Y = C ∪ Q1. Since Q1 ⊂ B ∪ Q2 ⊂ I, the preceding two

estimates imply that the asserted property of Y may be established by proving

µ1(R ∼(C ∪Q1)) = 0.

For this purpose, we define

Υ = (sptµ1) ∩
{
y : y > 0 and lim sup

s→0+

ν1 B(y, s)
µ1(B(y, s))1−1/m

≥ (2γ(m))−1
}

and notice that µ1(Υ ∼C) = 0 by [Fed69, 2.8.9, 2.8.18, 2.9.5]. The assertion
then follows verifying (sptµ1) ∼ Υ ⊂ Q1 ∪ {0}; in fact, for 0 < b ∈ (sptµ1) ∼ Υ
and small s > 0, we note [Men16a, 8.12, 8.13, 9.9] and apply 4.1 with V , s, r, q,
f(x), and ϵ replaced by V1, 0, s, ∞, sup{s− |f(x) − b|, 0}, and (2γ(m))−1, to
infer r1(b) > 0.

4.6 Remark. We recall from [MS23, 7.12, 7.13 (1)] that, under the hypotheses of
the preceding theorem, if V1 is indecomposable of type {f}, then

diam spt f#∥V1∥ ≤ L 1(Y )

and if additionally ∥V1∥ {x : f(x) ≤ y} > 0 for 0 < y < ∞, then

diam spt f#∥V1∥ = ∥V1∥(∞)(f).

4.7 Remark. We notice that TBdry U (Vi) = T(Vi) ∩ {f : f ≥ 0} in case U = Rn

by [Men16a, 9.2].
In the special case of connected properly embedded submanifolds of class 2

and a function of class 1 thereon, the following corollary, Corollary 1, results.

4.8 Corollary. Suppose m and n are integers, 2 ≤ m ≤ n, U is an open subset
of Rn, M is a properly embedded, connected m dimensional submanifold-with-
boundary of U of class 2, f : M → R is of class 1 relative to M , spt f is compact,
| D f(x)| ≤ 1 for x ∈ M ∼ ∂M , and E = M ∩ {x : f(x) ̸= 0}.

Then, there holds

diam f [M ] ≤ 2Γ4.5(m)
(
H m(E ∩M)1/m +

∫
E∩M

|h(M,x)|m−1 dH m x

+ H m−1(E ∩ ∂M)1/(m−1) +
∫

E∩∂M
|h(∂M, x)|m−2 dH m−1 x

)
;

here, the summand
∫

E∩∂M
|h(∂M, x)|m−2 dH m−1 x shall be omitted if m = 2.
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Proof. We recall [MS23, 6.14]. We define V1 ∈ RVm(U) and V2 ∈ RVm−1(U)
such that

∥V1∥ = H m ⌞M, V2 = 0 if m = 2, ∥V2∥ = H m−1 ⌞ ∂M if m > 2;

hence, V1 is indecomposable of type D(U,R) by [MS23, 7.9]. Employing [Fed69,
3.1.22], we construct a function g : U → R of class 1 with compact support such
that g|M = f . From [Men16a, 8.7, 8.16, 9.2, 9.4], we infer that |g| ∈ TBdry U (Vi)
with ∣∣Vi D |g|(x)

∣∣ ≤ 1 for ∥Vi∥ almost all x

for i ∈ {1, 2}. In view of [MS23, 7.13 (2)] the conclusion now follows from 4.5 and
4.6 applied with f replaced by |g| because diam f [M ] ≤ 2 diam g[M ], if 0 ∈ im f ,
and diam f [M ] = diam g[M ] as f [M ] is an interval, if 0 /∈ im f .

To prepare for the case without boundary, we collect another set of hypotheses
on density and first variation. It will be assumed to hold in 4.10.

4.9. Suppose U is an open subset of Rn, V is a varifold in U , 2 ≤ m = dimV ,
∥δV ∥ is a Radon measure, Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, and, either
m = 2 and ψ = ∥δV ∥, or m > 2, ∥δV ∥ is absolutely continuous with respect to
∥V ∥, h(V, ·) ∈ Lloc

m−1(∥V ∥,Rn), and ψ = ∥V ∥ ⌞ |h(V, ·)|m−1.

4.10 Corollary. Suppose U , V , and ψ are as in 4.9, Γ = 2m+3mγ(m), f ∈
TBdry U (V ), V is indecomposable of type {f}, and

|V D f(x)| ≤ 1 for ∥V ∥ almost all x.

Then, there holds

diam spt f#∥V ∥ ≤ Γ
(
∥V ∥({x : f(x) > 0})1/m + γ(m)m−1ψ {x : f(x) > 0}

)
.

Proof. With a possibly larger number Γ, this follows from 4.5 and 4.6 with
V1 = V and V2 = 0. We verify the eligibility of the present number Γ by noting
that, for V2 = 0, we can take ∆4 = 2m+2∆1γ(m)m−1 in the proof of 4.5; in fact,

∆−1
1 r1(b) ≤ µ1(B(b, r1(b)))1/m ≤ (2γ(m))m−1ω1 B(b, r1(b))

whenever λ1 < b ∈ B by the basic fact and Hölder’s inequality.

4.11 Remark. As in 4.6, we note that, in case ∥V ∥ {x : f(x) ≤ y} > 0 whenever
0 < y < ∞, we have diam spt f#∥V ∥ = ∥V ∥(∞)(f).

5 Examples
In the present section, we construct (see 5.5 and 5.7) the Example mentioned
the introduction which shows the sharpness of Theorem D. As preparations, we
list an arithmetic formula and terminology for cylinders (see 5.1–5.2) and then
indicate a procedure to smooth out corners (see 5.3–5.4).

5.1. If 0 ≤ x < 1 and i is a nonnegative integer, then
∞∑

j=i

(j + 1)xj = (1 − x)−2(
(i+ 1)xi − ixi+1)

.
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5.2. Whenever u ∈ Sn−1, a ∈ Rn, 0 < r < ∞, and 0 ≤ h ≤ ∞, we define

Z(a, r, u, h) = Rn ∩
{
x : |x− a|2 = ((x− a) • u)2 + r2, 0 ≤ (x− a) • u ≤ h

}
.

5.3 Lemma. Suppose n is an integer, n ≥ 2, Y is an n − 1 dimensional
submanifold-with-boundary of class ∞ of Rn−1, ∂Y is connected and compact,
ϵ > 0, and, identifying Rn ≃ Rn−1 × R, the subsets Q and U of Rn satisfy

Q ≃ Y × {t : 0 ≤ t < ∞}, U ≃ (Y ∩ {y : dist(y, ∂Y ) < ϵ}) × {z : 0 ≤ z < ϵ}.

Then, there exists a properly embedded n dimensional submanifold-with-
boundary M of class ∞ of Rn such that ∂M is connected and M ∼U = Q∼U .

Proof. As ∂Y is compact, we employ [MS23, 3.9, 3.12] to construct δ > 0 such
that the function f : G → R, with G = Rn−1 ∩ {y : dist(y, ∂Y ) < δ} and

f(y) = dist(y, ∂Y ) if y ∈ Y , f(y) = − dist(y, ∂Y ) else,

for y ∈ G, is of class ∞ and satisfies | D f(y)| = 1 for y ∈ G. Then, defining
g : G × R → R × R by g(y, z) = (f(y), z) for y ∈ G and z ∈ R and noting
im D g(y, z) = R ×R for y ∈ G and z ∈ R, the assertion reduces (e.g., by [Fed69,
3.1.18]) to the case n = 2 and Y = {y : 0 ≤ y < ∞} which is elementary.

5.4 Remark. By induction on n, the preceding lemma implies the following
proposition: If 2 ≤ n ∈ Z, −∞ < ak < bk < ∞ for k = 1, . . . , n, ϵ > 0, and

Q = Rn ∩ {x : ak ≤ x • ek ≤ bk for k = 1, . . . , n},
U = Q ∩

{
x : dist(x,Q ∩ {χ : card{k :χ • ek = ak or χ • ek = bk} ≥ 2}) < ϵ

}
,

where e1, . . . , en form the standard base of Rn, then there exists a properly
embedded n dimensional submanifold-with-boundary M of Rn of class ∞ such
that ∂M is connected and M ∼U = Q∼U .

In the first example below related to the sharpness of Theorem D, we are
able to control the second fundamental form b(M, ·) instead of merely h(M, ·).

5.5 Theorem. Whenever m and n are positive integers, 2 ≤ m < n, and
m− 1 < q < m, there exists a bounded, connected m dimensional submanifold
M of class ∞ of Rn such that∫

M
∥b(M,x)∥p dH m x < ∞ whenever 1 ≤ p < q,∫

M
Tan(M,x)♮ • D θ(x) dH m x = −

∫
M

h(M,x) • θ(x) dH m x

for θ ∈ D(Rn,Rn), and such that A = (ClosM) ∼M satisfies

H m−q(A) = α(m− q)21−m+q, Θm(H m ⌞M,a) = 0 for a ∈ A.

Proof. We assume n = m + 1 and let d = m − q. Whenever J is a compact
subinterval of R, we denote by Φ(J) the family consisting of the two disjoint
subintervals{
t : inf J ≤ t ≤ inf J + 2−1/d diam J

}
,

{
t : supJ − 2−1/d diam J ≤ t ≤ sup J

}
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of J . Letting G0 = {{t : −1/2 ≤ t ≤ 1/2}}, we define Gi =
⋃

{Φ(S) :S ∈ Gi−1}
for every positive integer i and C =

⋂∞
i=0

⋃
Gi. By [Fed69, 2.10.28], there holds

H d(C) = α(d)2−d.

For every nonnegative integer i, we let ri = 2−i/d and si =
∑∞

j=i(j + 1)rj , hence
diam J = ri whenever J ∈ Gi and, using 5.1, we compute

si = (1 − 2−1/d)−1(
i+ (1 − 2−1/d)−1)

ri.

Suppose e1, . . . , en form the standard base of Rn. We observe that 5.3 may
be employed to construct a subset N of the cube

Rn ∩
{
x : 0 < x • en < 1 and |x • ek| < 1

2 for k = 1, . . . , n− 1
}

such that its union with (see 5.2)

Z
(

r1−1
2 e1 + en,

r1
4 , en,∞

)
∪ Z

( 1−r1
2 e1 + en,

r1
4 , en,∞

)
∪ Z

(
0, 1

4 ,−en,∞)

is a properly embedded, connected m dimensional submanifold of class ∞ of Rn.
In particular, there exists 0 ≤ κ < ∞ satisfying

H m(N) ≤ κ, sup im ∥b(N, ·)∥ ≤ κ.

With N(a, r) = Rn ∩ {x : r−1(x− a) ∈ N} for a ∈ Rn and 0 < r < ∞, we use

Xi =
{
Z

( sup J+inf J
2 e1 + (s0 − si)en,

ri

4 , en, iri) :J ∈ Gi

}
,

Ψi =
{
N

( sup J+inf J
2 e1 + (s0 − si + iri)en, ri

)
: J ∈ Gi

}
,

Hi =
⋃i

j=0
⋃

(Xj ∪Ψj), and Mi = {x :x ∈ Hi or x− 2(x • en)en ∈ Hi}, to define

M =
⋃

{Mi : i is a nonnegative integer}.

Clearly, M is a connected m dimensional submanifold of class ∞ of Rn and

A = Rn ∩ {x :x • e1 ∈ C, |x • en| = s0, and x • ek = 0 for k = 2, . . . , n− 1},

where A = (ClosM) ∼M .
Next, we will show the following assertion. There holds

H m(M ∩ B(a, r)) ≤ 22+m/d(1 − 21−m/d)−2(mα(m) + κ)(i+ 1)1+d−mrm

whenever a ∈ A, i is a nonnegative integer, and si+1 ≤ r ≤ si. For this purpose,
we let I = {t : |t− a • e1| ≤ r} and firstly estimate

λi = card{J : I ∩ J ̸= ∅, J ∈ Gi} ≤ 4(1 − 2−1/d)−2(i+ 1)d;

in fact, Gi is special for {t : −1/2 ≤ t ≤ 1/2} by [Fed69, 2.10.28 (2) (4)], hence

card{J : I ⊃ J ∈ Gi}rd
i ≤ (2r)d ≤ 2(1 − 2−1/d)−2(i+ 1)drd

i .

Since 2−i
∑∞

j=i 2j(j + 1)rm
j ≤ (1 − 21−m/d)−2(i+ 1)rm

i by 5.1, we estimate

H m(M ∩ B(a, r)) ≤ λi(mα(m) + κ)(1 − 21−m/d)−2(i+ 1)rm
i .
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Hence, together with the first estimate and ri ≤ 21/d(1 − 2−1/d)(i+ 1)−1si+1,
the assertion follows.

The assertion of the preceding paragraph implies

Θm(H m ⌞M,a) = 0 whenever a ∈ A

and, as ClosM is compact, also H m(M) < ∞. Noting∫
Z(a,r,u,h) ∥b(Z(a, r, u, h), x)∥p dH m x ≤ mα(m)rm−p(h/r),∫

N(a,r) ∥b(N(a, r), x)∥p dH m x ≤ κ1+prm−p

for a ∈ Rn, 0 < r < ∞, u ∈ Sn−1, and 0 ≤ h ≤ ∞, we estimate∫
M

∥b(M,x)∥p dH m x ≤ 2(κ1+p + 4mα(m))
∑∞

i=0(i+ 1)2i(1+(p−m)/d) < ∞

whenever 1 ≤ p < q. Since H m−1(∂Mi) ≤ mα(m)2i(1+(1−m)/d) for every
positive integer i, the conclusion now readily follows.

5.6 Remark. The preceding theorem answers the third question posed in [Sch16,
Section A].

In the second example below related to the sharpness of Theorem D, we are
again able to control the second fundamental form b(M, ·) instead of h(M, ·).

5.7 Theorem. Whenever m and n are positive integers and 3 ≤ m < n, there
exists a bounded, connected m dimensional submanifold M of class ∞ of Rn

such that ∫
M

∥b(M,x)∥p dH m x < ∞ whenever 1 ≤ p < m− 1,∫
M

Tan(M,x)♮ • D θ(x) dH m x = −
∫

M
h(M,x) • θ(x) dH m x

for θ ∈ D(Rn,Rn), and such that

H m((ClosM) ∼M) = 1, Θm(H m ⌞M,a) = 0 for a ∈ (ClosM) ∼M.

Proof. We assume n = m+ 1. With each A ⊂ Rn, we associate sets

A(a, r) = Rn ∩
{
x : r−1(x− a) ∈ A

}
for a ∈ Rn and 0 < r < ∞.

Let e1, . . . , en denote the standard base vectors of Rn. We define

D = Rn ∩ {x :x • en = 0 and |x| < 1},
H = Rn ∩ {u : for some k ∈ {1, . . . ,m}, u = ek or u = −ek}.

We define γ : Rn → 2H by

γ(x) = H ∼{u : for some k, x • ek = 1 and u = ek or x • ek = 0 and u = −ek}

for x ∈ Rn. Notice that 5.3 may be used to construct a subset R of the cylinder

Rn ∩
{
x : 0 ≤ x • en <

1
4 and |x− (x • en)en| < 1

4
}

such that R ∪
(
Rn ∩ {x :x • en = 0} ∼D(0, 1

4 )
)

∪ Z( en

4 ,
1
8 , en,∞), see 5.2, is a

properly embedded, connected m dimensional submanifold of Rn of class ∞. Let
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S denote the reflection {x :x− 2(x • en)en ∈ R} of R along Rn ∩ {x :x • en = 0}.
Considering the submanifold furnished by 5.4 applied with ϵ = 1

16 and (ak, bk)
replaced by (− 3

8 ,
3
8 ) if k < n and (− 1

4 ,
1
4 ) if k = n, we observe that 5.3 may also

be employed to construct, for G ⊂ H, a subset NG of the cuboid

Rn ∩
{
x : |x • en| ≤ 1

4 and |x • ek| < 1
2 for k = 1, . . . ,m

}
such that NG contains D( en

4 ,
1
4 ) ∪D(− en

4 ,
1
4 ) and such that

NG ∪
⋃ {

Z( u
2 ,

1
8 , u,∞) :u ∈ G

}
is a properly embedded, connected m dimensional submanifold of Rn of class
∞. Clearly, there exists 0 ≤ κ < ∞ satisfying

H m(R) ≤ κ, sup im ∥b(R, ·)∥ ≤ κ, H m(NG) ≤ κ, sup im ∥b(NG, ·)∥ ≤ κ

whenever G ⊂ H.
In this paragraph, we define various objects for each positive integer i. Let

ri = 2−i(i+1) and define Ci to consist of those x ∈ Rn such that

x • en = 2−i, 0 ≤ x • ek ≤ 1, and 2i−1x • ek ∈ Z

for k = 1, . . . ,m. We have cardCi = (2i−1 + 1)m. Then, noting ri

2 < 2−i, we
define Xi(u), for u ∈ H, to be the family consisting of the sets

Z
(
x+ ri

2 u,
ri

8 , u, 2
−i − ri

2
)

corresponding to x ∈ Ci with u ∈ γ(x). We have cardXi(u) = (2i−1 +1)m−12i−1.
With C0 = ∅, we define Ψi to be the family consisting of the sets

Nγ(x)(x, ri) ∼D(x− ri

4 en,
ri+1

4 )

corresponding to x ∈ Ci with x+ 2−ien /∈ Ci−1 as well as the sets

Nγ(x)(x, ri) ∼
(
D(x+ ri

4 en,
ri

4 ) ∪D(x− ri

4 en,
ri+1

4 )
)

corresponding to x ∈ Ci with x+ 2−ien ∈ Ci−1. Noting ri

4 + 3ri+1
4 < ri ≤ 2−i−1,

we also define Ωi to be the family consisting of the sets

S
(
x− ri

4 en, ri+1
)

∪ Z
(
x− ( ri

4 + ri+1
4 )en,

ri+1
8 ,−en, 2−i−1 − ri

4 − 3ri+1
4

)
∪R

(
x− (2−i−1 − ri+1

4 )en, ri+1
)

corresponding to x ∈ Ci. Clearly, we have card Ψi = cardCi = card Ωi. Finally,
we let Mi =

⋃i
j=1

⋃
u∈H

⋃
(Xj(u) ∪ Ψj ∪ Ωj).

Now, we define M =
⋃∞

i=1 Mi and notice that M is a bounded, connected m
dimensional submanifold of class ∞ of Rn such that

(ClosM) ∼M = Rn ∩ {x :x • en = 0 and 0 ≤ xk ≤ 1 for k = 1, . . . ,m}.

Since we have H m−1(∂D(a, r)) = mα(m)rm−1 and

H m(Z(a, r, u, h)) = mα(m)rm−1h, sup im ∥b(Z(a, r, u, h), ·)∥ = r−1,

H m(R(a, r)) ≤ κrm, sup im ∥b(R(a, r), ·)∥ ≤ κr−1,

H m(NG(a, r)) ≤ κrm, sup im ∥b(NG(a, r), ·)∥ ≤ κr−1
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whenever a ∈ Rn, 0 < r < ∞, u ∈ Sn−1, 0 < h < ∞, and G ⊂ H, one may use
the fact that

∑∞
i=1 2iλrϵ

i < ∞ whenever λ ∈ R and ϵ > 0 to conclude

lim
i→∞

2imH m(M ∼Mi−1) = 0, lim
i→∞

H m−1(∂Mi) = 0,∫
M

∥b(M,x)∥p dH m x < ∞ for 1 ≤ p < m− 1,

whence we readily deduce the asserted conclusion.

5.8 Remark. The construction bears some similarities with [Men09, 1.2].

6 Lower density bounds
In this section, we provide (see 6.7) Theorem D. The key to this are conditional
lower density ratio bounds (see 6.3–6.6) which are in turn based on the Sobolev-
Poincaré inequality (see 4.5). Moreover, to treat small positive density ratios, a
compactness lemma (see 6.1) is employed.

6.1 Lemma. Suppose 1 ≤ M < ∞.
Then, there exists a positive, finite number Γ with the following property.
If m and n are positive integers, m ≤ n ≤ M , a ∈ Rn, 0 < r < ∞,

V ∈ Vm(U(a, r)), ∥δV ∥ U(a, r) ≤ Γ−1rm−1,

∥V ∥ B(a, s) ≥ M−1α(m)sm whenever 0 < s < r,

and Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, then

∥V ∥ U(a, r) ≥ (1 −M−1)α(m)rm.

Proof. If the lemma were false for some M , there would exist sequences Γi with
Γi → ∞ as i → ∞ and sequences mi, ni, ai, ri, and Vi showing that Γ = Γi

does not have the asserted property.
We could assume for some positive integers m and n that m ≤ n ≤ M ,

m = mi, n = ni, ai = 0, and ri = 1 whenever i is a positive integer. Defining
V ∈ Vm(Rn ∩ U(0, 1)) to be the limit of some subsequence of Vi, we would
obtain

∥V ∥ U(0, 1) ≤ (1 −M−1)α(m), 0 ∈ spt ∥V ∥, δV = 0.

Finally, using [All72, 5.6, 8.6, 5.1 (2)], we would then conclude that

Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x,
Θm(∥V ∥, 0) ≥ 1, ∥V ∥ U(0, 1) ≥ α(m),

a contradiction.

6.2 Remark. The pattern of the preceding proof is that of [Men16a, 7.3].

The conditional lower density bounds follow rather immediately from the
Sobolev-Poincaré inequality (see 4.5) and its corollary (see 4.10), respectively.
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6.3 Lemma. Suppose m and n are positive inters, 2 ≤ m ≤ n, U is an open
subset of Rn, V1 ∈ Vm(U) and V2 ∈ Vm−1(U) satisfy the conditions of 4.4, V1
is indecomposable of type D(U,R),

V2 = 0 if m = 2, ∥δV1∥ ≤ ∥V1∥ ⌞ |h(V1, ·)| + ∥V2∥ if m > 2,
∥δV2∥ is absolutely continuous with respect to ∥V2∥ if m > 3,

ϕi are associated with V1 as in 4.4 for i ∈ {1, 2},

a ∈ spt ∥V1∥, 0 < r < ∞, B(a, r) ⊂ U , and (spt ∥V1∥) ∼ U(a, r) ̸= ∅.
Then, there holds

Γ4.5(m)−1r ≤ ∥V1∥(U(a, r))1/m +ϕ1U(a, r)+∥V2∥(U(a, r))1/(m−1) +ϕ2U(a, r).

Proof. In view of [MS18, 4.6 (1)], [Men16a, 9.2, 9.4], and [MS23, 7.4], one may
apply 4.5 and 4.6 with f(x) replaced by sup{r − |x− a|, 0}.

We also include a version without boundary with more explicit constants.

6.4 Lemma. Suppose U , V , and ψ are as in 4.9, a ∈ spt ∥V ∥, 0 < r < ∞,
B(a, r) ⊂ U , (spt ∥V ∥) ∼ U(a, r) ̸= ∅, and V is indecomposable of type D(U,R).

Then,

2−m−3m−1γ(m)−1r ≤ ∥V ∥(U(a, r))1/m + γ(m)m−1ψU(a, r).

Proof. In view of [MS18, 4.6 (1)], [Men16a, 9.2, 9.4], and [MS23, 7.4], one may
apply 4.10 and 4.11 with f(x) replaced by sup{r − |x− a|, 0}.

6.5 Remark. If either m < n or m = n = 2, considering small spheres or small
disks, respectively, shows that neither the nonemptyness hypothesis nor the
indecomposability hypothesis may be omitted.
6.6 Remark. If m = 1 and V otherwise is as in 4.9, then r ≤ ∥V ∥ U(a, r); in
fact, the indecomposability hypothesis implies {x : |x−a| = s} ∩ spt ∥V ∥ ≠ ∅ for
0 < s < r, whence the inequality follows, since H 1 ⌞ spt ∥V ∥ ≤ ∥V ∥ by [All72,
3.5 (1b)] and [Men16a, 4.8 (4)].

Theorem D is contained in the first item of the next theorem. The remaining
items discuss—for special dimensions—slightly more general boundary conditions.

6.7 Theorem. Suppose m and n are positive inters, 2 ≤ m ≤ n, U is an open
subset of Rn, V1 ∈ Vm(U), V2 ∈ Vm−1(U),

Θdim Vi(∥Vi∥, x) ≥ 1 for ∥Vi∥ almost all x and i ∈ {1, 2},
∥δV1∥ is a Radon measure, ∥δV2∥ is a Radon measure,

V1 is indecomposable of type D(U,R), and λ = 2−4α(2)−1γ(2)−2.
Then, the following three statements hold.

(1) If m − 1 ≤ p < m, ∥δV1∥ ≤ ∥V1∥ ⌞ |h(V1, ·)| + ∥V2∥, ∥δV2∥ is absolutely
continuous with respect to ∥V2∥, h(V1, ·) ∈ Lloc

p (∥V1∥,Rn), and, in case
m > 2, additionally h(V2, ·) ∈ Lloc

p−1(∥V2∥,Rn), then

H m−p
(

spt ∥V1∥ ∩
{
x :Θm

∗ (∥V1∥, x) < 1 and Θm−1
∗ (∥V2∥, x) < 1

})
= 0.
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(2) If m = 3, ∥δV1∥ ≤ ∥V1∥ ⌞ |h(V1, ·)| + ∥V2∥, h(V1, ·) ∈ Lloc
2 (∥V1∥,Rn), and

A = spt ∥V1∥ ∩
{
x :Θ3

∗(∥V1∥, x) < 1 and Θ2
∗(∥V2∥, x) < λ

}
,

then
H 1 ⌞A ≤ sup

{
27γ(2)2, 22Γ4.5(3)

}
∥δV2∥ ⌞A.

(3) If m = 2, V2 = 0, and A = spt ∥V1∥ ∩
{
x :Θ2

∗(∥V1∥, x) < λ
}

, then

H 1 ⌞A ≤ 28γ(2)2∥δV1∥ ⌞A.

In particular, in all cases, H m ⌞ spt ∥V1∥ ≤ ∥V1∥.

Proof. Firstly, we notice that in case of (1) we may assume V2 = 0 if m = 2;
in fact, since Θ1(∥V2∥, x) ≥ 1 for x ∈ spt ∥V2∥ by [Men16a, 4.8 (4)], we may
otherwise replace U by U ∼ spt ∥V2∥ by [MS23, 7.5].

Secondly, we notice for i ∈ {1, 2} that Vi ∈ RVdim Vi(U) by [All72, 5.5 (1)]
and that

∥Vi∥ = H dim Vi ⌞Θdim Vi(∥Vi∥, ·)

by [All72, 3.5 (1b)]. Taking p = m− 1 in case of (2) or (3), we define

ψ1 = ∥V1∥ ⌞ |h(V1, ·)|p in case of (1) or (2), ψ1 = ∥δV1∥ in case of (3),
ψ2 = ∥V2∥ ⌞ |h(V2, ·)|p−1 in case of (1), ψ2 = ∥δV2∥ in case of (2) or (3).

Taking ϵ = inf
{

2−7γ(2)−2, 2−2Γ4.5(3)−1}
and

λ1 = 1 in case of (1) or (2), λ1 = λ in case of (3),
λ2 = 1 in case of (1) or (3), λ2 = λ in case of (2),

δ = 2−mα(m)−1Γ4.5(m)−m in case of (1) or (2), δ = 0 in case of (3),
ϵ1 = 0 in case of (1) or (2), ϵ1 = 2−8γ(2)−2 in case of (3),

ϵ2 = 0 in case of (1) or (3), ϵ2 = ϵ in case of (2),

we furthermore define

A1 = spt ∥V1∥ ∩
{
x :Θm

∗ (∥V1∥, x) < λ1
}
, A2 =

{
x :Θm−1

∗ (∥V2∥, x) < λ2
}
,

Q1 =
{
x :Θm

∗ (∥V1∥, x) > δ
}
, Q2 =

{
x :Θ∗m−1(∥V2∥, x) > 0

}
,

Xi =
{
x :Θ∗m−p(ψi, x) > ϵi

}
for i ∈ {1, 2}.

Clearly, we have X2 = ∅ in case of (3). Moreover, we observe that [Fed69,
2.10.19 (3)] may be employed (cf. [FZ73, p. 152, l. 9–16]) to conclude

2−8γ(2)−2 H 1 ⌞X1 ≤ ψ1 in case of (3), ϵH 1 ⌞X2 ≤ ψ2 in case of (2),
H m−p(X1) = 0 in case of (1) or (2), H m−p(X2) = 0 in case of (1).

Clearly, we have Q2 = ∅ in case of (3). Applying [Men09, 2.10] with ϵ, Γ, and s
replaced by (2γ(2))−1, 24γ(2), and 1, we obtain

H 1(A1 ∩Q1 ∼X1) = 0 in case of (3), H 1(A2 ∩Q2 ∼X2) = 0 in case of (2).
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According to [Men09, 2.11], there holds

H m−p(A2 ∩Q2) = 0 in case of (1).

Moreover, we obtain

A1 ∩Q1 ⊂ X1 ∪Q2 in case of (1) and (2);

in fact, whenever sup{n, 1/δ} ≤ M < ∞ and a ∈ Q1 ∼(X1 ∪Q2), all sufficiently
small r > 0 satisfy

B(a, r) ⊂ U, ∥V1∥ B(a, s) ≥ M−1α(m)sm for 0 < s < r,

(α(m)rm)1−1/pψ1(U(a, r))1/p + ∥V2∥ U(a, r) ≤ Γ6.1(M)−1rm−1,

whence we infer ∥V1∥ U(a, r) ≥ (1−M−1)α(m)rm by 6.1 and Hölder’s inequality.
Next, we verify

spt ∥V1∥ ⊂ Q1 ∪X1 ∪Q2 ∪X2;

in fact, this follows from 6.3 and Hölder’s inequality in case of (1), from 6.3
alone in case of (2), and from 6.4 in case of (3). Therefore, we obtain

A1 ∩A2 ⊂ (A2 ∩Q2) ∪X1 ∪X2 in case of (1) or (2),
A1 ⊂ (A1 ∩Q1) ∪X1 in case of (3),

whence the main conclusion follows.
Since λ2 H m−1 ⌞U ∼A2 ≤ ∥V2∥ by [Fed69, 2.10.19 (3)] and

H m {x : 0 <Θm(∥V1∥, x) < 1} = 0,

the main conclusion yields Θm(∥V1∥, x) ≥ 1 for H m almost all x ∈ spt ∥V1∥
and the postscript follows.

6.8 Remark. The exponent of the Hausdorff measure H m−p in (1) may not be
replaced by any smaller number determined by m and p even if V2 = 0 by [MS23,
6.1] and 5.5. Similarly, if m ≥ 3, the hypothesis m− 1 ≤ p in (1) may not be
replaced by m − 1 − ϵ ≤ p for any 0 < ϵ ≤ 1 determined by m and p even if
V2 = 0 by [MS23, 6.1] and 5.7.

6.9 Remark. The case m = 1, not treated here, was studied in [Men16a, 4.8];
similarly, results on the case p = m and V2 = 0 are summarised in [Men16a, 7.6].

7 Geodesic diameter
In this section, we establish (see 7.4 and 7.12) Theorem E and Corollary 2.
For this purpose, we firstly study and characterise the geodesic diameter of
closed subsets of Euclidean space (see 7.1–7.3). Then, we deduce (see 7.4–7.9)
the bounds on the geodesic diameter in the varifold setting. As corollaries, we
treat the cases of immersions (see 7.10–7.14), submanifolds (see 7.15–7.17), and
λ-minimising currents (see 7.18–7.21).
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7.1 Definition (see [Men16b, 6.6]). Whenever X is a boundedly compact metric
space, the geodesic distance on X is the pseudometric on X whose value at
(a, x) ∈ X ×X equals the infimum of the set of numbers

Vsup I
inf I C

corresponding to all continuous maps C : R → X such that C(inf I) = a and
C(sup I) = x for some compact non-empty subinterval I of R. Moreover, the
diameter with respect to the geodesic distance is termed geodesic diameter.

7.2 Remark (see [Men16b, 6.3]). The same definition results if one considers
maps C : {y : 0 ≤ y ≤ b} → X with LipC ≤ 1 and b = Vb

0C corresponding to
0 ≤ b < ∞. (In fact, if it is finite, the infimum is attained by some such C.)

7.3 Lemma. Suppose X is a closed subset of Rn and d denotes the geodesic
diameter of X.

Then, there holds

d = sup{diam f [X] : 0 ≤ f ∈ D(Rn,R) and | D f(x)| ≤ 1 for x ∈ X}.

Proof. In view of [Fed69, 2.9.20] and 7.2, the supremum does not exceed d.
To prove the converse inequality, we define pseudometrics σδ : X ×X → R

by letting σδ(a, x), for (a, x) ∈ X ×X and 0 < δ ≤ 1, denote the infimum of the
set of numbers

j∑
i=1

|xi − xi−1|

corresponding to all finite sequences x0, x1, . . . , xj ∈ X with x0 = a, xj = x, and
|xi − xi−1| ≤ δ for i = 1, . . . , j. One readily verifies that

σδ(χ, a) ≤ σδ(x, a) + |x− χ| whenever a, x, χ ∈ X and |x− χ| ≤ δ;

in particular, Lip(σδ(·, a)|B(x, δ)) ≤ 1 in case σδ(a, x) < ∞. Denoting by ϱ the
geodesic distance on X, we have

|a− x| ≤ σδ(a, x) ≤ ϱ(a, x) and lim
δ→0+

σδ(a, x) = ϱ(a, x) for a, x ∈ X

by [Men16b, 6.3]. Consequently, one readily verifies6

d ≤ sup{diam im sup{s− σδ(·, a), 0} : 0 ≤ s < ∞, 0 < δ ≤ 1, and a ∈ X}.

This estimate implies that the conclusion is a consequence of the following
assertion: if ϵ > 0, 0 ≤ s < ∞, 0 < δ ≤ 1, a ∈ X, and ζ = sup{s − σδ(·, a), 0},
then there exists a nonnegative function Z ∈ D(Rn,R) such that

|Z(x) − ζ(x)| ≤ ϵ and | DZ(x)| ≤ 1 whenever x ∈ X.

To prove this assertion, we first observe that ζ is a real valued function with
Lip(ζ|B(x, δ)) ≤ 1 for x ∈ X. Moreover, since sup im ζ < ∞, it is sufficient

6In fact, as σδ is real valued in case d < ∞, we have

d = sup{diam im sup{s− σδ(·, a), 0} : 0 ≤ s < ∞, 0 < δ ≤ 1, and a ∈ X}.
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to prove the assertion with | DZ(x)| ≤ 1 replaced by | DZ(x)| ≤ 1 + ϵ. For
this purpose, we will employ the partition of unity given in [Fed69, 3.1.13]; in
particular, let V1 be the number constructed there, κ = sup{1, V1}, and define

Φ = {U(χ, δ) :χ ∈ X ∩ U(a, s+ δ)} ∪ {Rn ∼ B(a, s)}, U =
⋃

Φ,
h(x) = 1

20 sup
{

inf{dist(x,Rn ∼T ), 1} :T ∈ Φ
}

for x ∈ U.

Employing a Lipschitzian extension (see [Fed69, 2.10.44]) and convolution, we
construct, for each T ∈ Φ, a nonnegative function gT ∈ E (Rn,R) satisfying

|gT (x) − ζ(x)| ≤ (129)−n(20κ)−1δϵ for x ∈ T , | D gT (x)| ≤ 1 for x ∈ Rn,

where we may assume that gT = 0 if T = Rn ∼ B(a, s), since spt ζ ⊂ B(a, s).
Taking S, Sx, and vs, for s ∈ S, as in [Fed69, 3.1.13] and choosing τ : S → Φ
such that spt vs ⊂ τ(s) for s ∈ S, we define G =

∑
s∈S vsgτ(s). Clearly, we have

|G(x) − ζ(x)| ≤ ϵ for x ∈ X and sptG ⊂ U(a, s + 2δ). Noting h(x) ≥ δ
20 for

x ∈ X, we furthermore estimate∣∣∣∣∣∑
s∈S

D vs(x)gτ(s)(x)

∣∣∣∣∣ ≤
∑

s∈Sx

| D vs(x)||gτ(s)(x) − ζ(x)| ≤ ϵ, | DG(x)| ≤ 1 + ϵ

for x ∈ X. Applying [MS22, 3.16] with U , E0, and E1 replaced by Rn, Rn ∼U ,
and X to obtain f with the properties listed there, we may take Z ∈ D(Rn,R)
defined by Z(x) = f(x)G(x) for x ∈ U and Z(x) = 0 for x ∈ Rn ∼U .

Next, we turn to Theorem E, the general a priori estimate of the geodesic
diameter in the varifold setting with boundary.

7.4 Theorem. Suppose m and n are integers, 2 ≤ m ≤ n, V1 ∈ Vm(Rn) and
V2 ∈ Vm−1(Rn) satisfy the conditions of 4.4 with U = Rn, V1 is indecomposable
of type D(Rn,R), (∥V1∥ + ∥V2∥)(Rn) < ∞,

V2 = 0 if m = 2, ∥δV1∥ ≤ ∥V1∥ ⌞ |h(V1, ·)| + ∥V2∥ if m > 2,
∥δV2∥ is absolutely continuous with respect to ∥V2∥ if m > 3,

ϕi are associated with Vi as in 4.4, for i ∈ {1, 2}, and d denotes the geodesic
diameter of spt ∥V1∥.

Then, there holds, for some positive finite number Γ determined by m,

d ≤ Γ(ϕ1 + ϕ2)(Rn).

Proof. The isoperimetric inequality and Hölder’s inequality yield

∥V2∥(Rn)1/(m−1) ≤ γ(m− 1)m−2 ϕ2(Rn).

We will show

∥V1∥(Rn)1/m ≤ (2γ(m))m−1 ϕ1(Rn) + (2γ(m))1/(m−1)γ(m− 1)m−2 ϕ2(Rn);

in fact, ifm = 2, then ∥V1∥(Rn)1/2 ≤ γ(2)ϕ1(Rn) by the isoperimetric inequality,
and, if m > 2, then we may assume ∥V1∥(Rn)1−1/m > 2γ(m) ∥V2∥(Rn), in which
case the isoperimetric inequality may be used to obtain

∥V1∥(Rn)1−1/m ≤ 2γ(m)
∫

|h(V1, x)| d∥V1∥x,
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whence the asserted inequality follows by Hölder’s inequality.
Next, suppose X = spt ∥V1∥ and f satisfies the conditions of 7.3. Then,

f ∈ T∅(Vi) and ∥Vi∥(∞)(Vi Df) ≤ 1 for i ∈ {1, 2} by [MS18, 4.6 (1)] and
[Men16a, 9.2]. Hence, 4.5 and 4.6 yield

diam spt f#∥V1∥ ≤ ∆(ϕ1 + ϕ2)(Rn),

where ∆ = Γ4.5(m)
(
1+γ(m−1)m−2(1+(2γ(m))1/(m−1))+(2γ(m))m−1)

. Finally,
we notice f [X] ⊂ spt f#∥V1∥ as f is continuous.7

7.5 Remark. The preceding theorem answers the fourth question posed in [Sch16,
Section A].
7.6 Remark. By [MS23, 10.21], integral varifolds satisfying the hypotheses with
m = 2 and n = 3 occur in the minimisation of the Willmore energy with clamped
boundary condition amongst connected surfaces; see [NP20, Theorem 4.1].

In the case without boundary, somewhat more explicit constants may be
obtained by using 4.10 instead of 4.5.

7.7 Corollary. Suppose V and ψ are as in 4.9 with U = Rn, ∥V ∥(Rn) < ∞, V
is indecomposable of type D(Rn,R), d denotes the geodesic diameter of spt ∥V ∥,
and Γ = 2m+4mγ(m)m.

Then, there holds
d ≤ Γψ(Rn).

Proof. With a possibly larger number Γ, this follows from 7.4 with V1 = V and
V2 = 0. We verify the eligibility of the present number Γ by noting that

diam spt f#∥V ∥ ≤ 2m+3mγ(m)
(
∥V ∥(Rn)1/m + γ(m)m−1 ψ(Rn)

)
≤ Γψ(Rn)

by 4.10 in conjunction with the isoperimetric inequality and Hölder’s inequality,
whenever f satisfies the conditions of 7.3 with X = spt ∥V ∥.

7.8 Remark. Each component (see [Men16a, 6.12] and [MS23, 5.1, 7.2]) of a
varifold occurring in the level-set mean curvature flow of two-convex submanifolds
of dimension m in Rm+1 satisfies the hypotheses, see [GH20, Corollary 1.1].
7.9 Remark. Here, we compare our proof with that of P. Topping’s analogous
result for immersions (see [Top08, Theorem 1.1]). The principal geometric
idea—suitable smallness of mean curvature implies lower density ratio bounds
in balls—is the same. Our formulation (see 4.1 and 6.4) may be traced back
to [All72, 8.3], whereas his formulation (see [Top08, Lemma 1.2]) was inspired
by his local non-collapsing result for Ricci flow (see [Top05, Theorem 4.2]). To
implement this geometric idea for varifolds, one faces the difficulty that one
cannot—a priori—assume the existence of either geodesics or lower density
bounds; the latter are employed to obtain [Top08, Lemma 1.2]. Instead, our
proof avoids these tools—though, lower density bounds are independently proven
in 6.7—and proceeds through the characterisation of geodesic diameter (see
7.3) and the Sobolev-Poincaré inequality (see 4.5) in conjunction with basic
properties from the study of indecomposability (see [MS23, 7.12]).

To prepare for the use of the Whitney-type approximation results in 7.12,
we firstly define the appropriate topological function space.

7In fact, as f is closed, we have f [X] = spt f#∥V1∥.
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7.10 Definition. Suppose k is a positive integer, M is a compact manifold-
with-boundary of class k, and Y is a Banach space.

Then, C k(M,Y ) is defined (see [Men16b, 2.4]) to be the locally convex space
of all maps from M into Y of class k topologised by the family of all seminorms,
that correspond to charts ϕ of M of class k and compact subsets K of dmnϕ,
and have value

sup
(
{0} ∪

{
∥ Dl(F ◦ ϕ−1)(x)∥ :x ∈ K ∼ϕ[∂M ], l = 0, . . . , k

})
at F ∈ C k(M,Y ).

7.11 Remark. Choosing a positive integer ι and charts ϕi of M of class k with
compact subsets Ki of dmnϕi, for i = 1, . . . , ι, satisfying M =

⋃ι
i=1 IntKi, the

topology of the locally convex space C k(M,Y ) is induced by the norm ν on
C k(M,Y ) whose value at F ∈ C k(M,Y ) equals

sup
(
{0} ∪

{
∥ Dj(F ◦ ϕ−1

i )(x)∥ :x ∈ Ki ∼ϕi[∂M ], i = 0, . . . , ι, j = 0, . . . , k
})

;

in fact, each seminorm occurring in 7.10 is bounded by a finite multiple of ν
by the general formula for the differentials of a composition, see [Fed69, 3.1.11].
Similarly, we see that the topology of C k(M,Rn) agrees with that of the space
named “Ck

W (M,Rn)” in [Hir94, p. 35]. Consequently, if n > 2 dimM , the set of
embeddings of M into Rn of class 2 is dense in C 2(M,Rn) by [Hir94, 2.1.0].

Next, we present Corollary 2, the a priori estimate of the geodesic diameter
of immersions of compact manifolds-with-boundary.

7.12 Corollary. Suppose m and n are positive integers, 2 ≤ m ≤ n, M is a
compact connected m dimensional manifold-with-boundary of class 2, the map
F : M → Rn is an immersion of class 2, g is the Riemannian metric on M
induced by F , and σ is the Riemannian distance associated with (M, g).

Then, there holds

diamσ M ≤ Γ7.4(m)
(∫

M
|h(F, ·)|m−1 dH m

σ +
∫

∂M
|h(F |∂M, ·)|m−2 dH m−1

σ

)
;

here 00 = 1.

Proof. First, the special case, that F is an embedding, will be treated; in this
case, F induces an isometry between σ and the geodesic distance on F [M ] by
[Fed69, 2.10.13, 3.2.3 (1)] and 7.2. We define V1 ∈ Vm(Rn) to be associated
with (F,Rn) and V2 ∈ Vm−1(Rn) to be 0 if m = 2 and to be associated with
(F |∂M,Rn) if m > 2. Hence, [MS23, 6.14, 10.3] yield

Θdim Vi(∥Vi∥, x) ≥ 1 for ∥Vi∥ almost all x and i ∈ {1, 2},
∥V1∥ = F#H m

σ , ∥δV1∥ = ∥V1∥ ⌞ |h(F [M ∼ ∂M ], ·)| + F#(H m−1
σ ⌞ ∂M),

∥V2∥ = F#(H m−1
σ ⌞ ∂M) if m > 2, ∥δV2∥ = ∥V2∥ ⌞ |h(F [∂M ], ·)| if m > 2.

Since V1 is indecomposable of type D(U,R) by [MS23, 7.9 (1) (4)], the special
case now follows from 7.4.

In the general case, we assume n > 2m and obtain from 7.11 a sequence of
embeddings Fi : M → Rn of class 2 converging to F in C 2(M,Rn) as i → ∞;
in particular, h(Fi, x) → h(F, x), uniformly for x ∈ M , as i → ∞ by [MS23,
6.11] and 7.11. Moreover, denoting by gi the Riemannian metrics on M induced
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by Fi and by σi the Riemannian distance of (M, gi), we observe that, given
1 < λ < ∞, all sufficiently large i satisfy

λ−2⟨(w,w), g(z)⟩ ≤ ⟨(w,w), gi(z)⟩ ≤ λ2⟨(w,w), g(z)⟩

whenever z ∈ M and w belongs to the tangent space of M at z, whence we infer
λ−1σ ≤ σi ≤ λσ and λ−kH k

σ ≤ H k
σi

≤ λkH k
σ for 0 ≤ k < ∞. Therefore, the

conclusion follows from the special case applied with F replaced by Fi.

7.13 Remark. In the case m = 2 with diamσ f [M ] replaced by diam f [M ] a
better constant is obtained in [Miu22, Theorem 1.1].
7.14 Remark. The integral

∫
∂M

|h(F |∂M, ·)|m−2 dH m−1
σ equals H 1

σ (∂M) if
m = 2 but it may not be replaced by H m−1

σ (∂M)1/(m−1) if m > 2; it suffices to
take m = n.

Turning to the case of submanifolds, we state the immediate corollary and
then discuss the impossiblity of a seemingly natural sharpening of the result.

7.15 Corollary. Suppose m and n are integers, 2 ≤ m ≤ n, M is a compact
connected m dimensional submanifold-with-boundary of class 2 of Rn, f : M → R
is of class 1 relative to M , and κ = sup{| D f(x)| :x ∈ M ∼ ∂M}.

Then, there holds (here, 00 = 0)

diam f [M ] ≤ Γ7.4(m)
(∫

M
|h(M, ·)|m−1 dH m +

∫
∂M

|h(∂M, ·)|m−2 dH m−1)
κ.

Proof. We combine [Fed69, 2.9.20], [MS23, 10.3], and 7.12.

7.16 Remark. In contrast to other Poincaré inequalities, the derivative D f may
not be measured with respect to (H m ⌞M)(q) for any m < q < ∞, see 7.17.

7.17 Example. Whenever m is an integer and 2 ≤ m < q < ∞, the infimum of
the set of numbers

γ(M)1−m/q ·
(∫

M
| D f |q dH m

)1/q
,

where γ(M) =
∫

M
|h(M, z)|m−1 dH m z +

∫
∂M

|h(∂M, z)|m−2 dH m−1 z, corre-
sponding to all compact connected m dimensional submanifolds-with-boundary
of class ∞ of Rm+1 and functions f : M → R of class 1 relative to M with
diam f [M ] = 1, equals 0; in fact, the same holds if we require ∂M = ∅.

Proof. Whenever 1 ≤ r < ∞, we consider

M = Sm−1 × {y : 0 ≤ y ≤ r} ⊂ Rm × R ≃ Rm+1,

and f : M → R such that f(x, y) = y/r for (x, y) ∈ M ; hence, diam f [M ] = 1.
Noting | D f(x, y)| = 1/r for (x, y) ∈ M ∼ ∂M , we use [Fed69, 3.2.23] to compute∫

M
|h(M, ·)|m−1 dH m = H m−1(Sm−1)(m− 1)m−1r,∫

∂M
|h(∂M, ·)|m−2 dH m−1 = 2H m−1(Sm−1)(m− 1)m−2,∫

M
| D f |q dH m = H m−1(Sm−1)r1−q.

The principal assertion follows and the postscript may be obtained by adding
half-spheres with boundary ∂M to the cylinder M and approximation.
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Finally, we shall introduce the setting of λ-minimising currents, apply our
general diameter estimate to it, and discuss its significance.

7.18 Example. Suppose m and n are integers, 2 ≤ m ≤ n, 0 ≤ λ < ∞, and,
following [DS93a], the integral current Q ∈ Im(Rn) satisfies

∥Q∥(Rn) ≤ ∥Q+ ∂ R∥(Rn) + λ∥R∥(Rn) whenever R ∈ Im+1(Rn).

Noting [Fed69, 4.1.28] and [All72, 3.5 (1c)], we take V ∈ IVm(Rn) characterised
by ∥V ∥ = ∥Q∥. Then,

∥δV ∥ ≤ λ∥V ∥ + ∥ ∂ Q∥

by [DS93a, (2.3)], hence, noting ∥ ∂ Q∥∥Q∥ = 0 by [Fed69, 4.1.28], we obtain

∥δV ∥∥V ∥ ≤ λ∥V ∥, ∥δV ∥ − ∥δV ∥∥V ∥ ≤ ∥ ∂ Q∥;

in fact, [Fed69, 2.9.2] applied with ψ = ∥ ∂ Q∥ and ϕ = ∥V ∥ yields a Borel set B
such that

∥ ∂ Q∥(B) = 0 and ∥V ∥(Rn ∼B) = 0,

whence we infer ∥δV ∥∥V ∥ ≤ ∥δV ∥ ⌞B ≤ λ∥V ∥ and thus ∥δV ∥ ⌞B ≤ ∥δV ∥∥V ∥.
Recalling ∥δV ∥∥V ∥ = ∥V ∥ ⌞ |h(V, ·)| from [MS23, 3.21], we deduce

∥V ∥(∞)(h(V, ·)) ≤ λ and ∥δV ∥ ≤ ∥V ∥ ⌞ |h(V, ·)| + ∥ ∂ Q∥.

7.19 Corollary. Suppose m and n are integers, 2 ≤ m ≤ n, 0 ≤ λ < ∞,
Q ∈ Im(Rn) is indecomposable,

∥Q∥(Rn) ≤ ∥Q+ ∂ R∥(Rn) + λ∥R∥(Rn) for R ∈ Im+1(Rn),

d denotes the geodesic diameter of the set sptQ, and γ = Γ7.4(m); if m > 2,
then suppose W ∈ Vm−1(Rn), ∥δW∥ is a Radon measure, Θm−1(∥W∥, x) ≥ 1
for ∥W∥ almost all x, and ∥ ∂ Q∥ ≤ ∥W∥; if m > 3, then suppose ∥δW∥ is
absolutely continuous with respect to ∥W∥ and h(W, ·) ∈ Lloc

m−2(∥W∥,Rn).
Then, H m ⌞ sptQ ≤ ∥Q∥, the set sptQ is approximately differentiable of

order 2 at ∥Q∥ almost all a, and the following three statements hold.

(1) If m = 2, then d ≤ γ
( ∫

| ap h(sptQ, ·)| d∥Q∥ + ∥ ∂ Q∥(Rn)
)
.

(2) If m = 3, then d ≤ γ
( ∫

| ap h(sptQ, ·)|2 d∥Q∥ + ∥δW∥(Rn)
)
.

(3) If m > 3, then d ≤ γ
( ∫

| ap h(sptQ, ·)|m−1 d∥Q∥ +
∫

|h(W, ·)|m−2 d∥W∥
)
.

Proof. We associate V ∈ IVm(Rn) with Q as in 7.18. Noting [MS22, 5.1] and
[MS23, 6.7], the varifold V is indecomposable of type D(Rn,R) by [MS23, 10.9].
Therefore, applying 6.7 and 7.4 with (V1, V2) replaced by (V, 0) if m = 2 and
(V,W ) if m > 2 yields H m ⌞ sptQ ≤ ∥Q∥ and that the last three conclusions hold
with ap h(sptQ, ·) replaced by h(V, ·). Finally, [Men13, 4.8], in conjunction with
[Fed69, 2.10.19 (4)] and [San19, 3.22], shows that the set sptQ is approximately
differentiable of order 2 with ap h(sptQ, a) = h(V, a) at ∥Q∥ almost all a.

7.20 Remark. For any Q ∈ Im(Rn) satisfying the condition

“There exists no R ∈ Im(Rn) with ∂ R = 0 such that R ̸= 0 ̸= Q−R
and ∥R∥ + ∥Q−R∥ = ∥Q∥.”
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indecomposability of ∂ Q implies that of Q. For Q as in 7.18, this condition is
guaranteed by

λm∥Q∥(Rn) ≤ α(m+ 1)(m+ 1)m+1

via the optimal isoperimetric inequality for integral currents of [Alm86, § 10].
7.21 Remark. Both [DS93a] and the preceding theorem are tailored to apply to
the integral currents with prescribed mean curvature vector studied in [DF90,
DF92, Duz93] and to the codimension-one area minimising integral currents with
prescribed volume and boundary constructed in [DS92]. The condition discussed
in 7.20 is particularly natural in this context as exemplified by [DS92, 1.2, 1.3]
and [Duz93, 2.3]; the same holds for the mass bound guaranteeing it in view of
[DF90, 6.1]. For n − m = 1, its usage to obtain connectedness of the regular
part of sptQ appears in [DS93b, p. 358].

8 Plateau problems
In this section, we demonstrate how to apply our geodesic diameter estimate
(see 7.4) to solutions of Plateau problems. Firstly, we consider the setting of
integral chains with coefficients in a complete normed commutative group (see
8.1–8.8); in particular, we obtain Theorem A. Then, we study (see 8.9–8.21)
natural classes of varifolds with conditions on their first variation away from the
boundary; this results (see 8.12 and 8.17) in Theorems F and G. Drawing from
the literature, our theory finally becomes applicable to the Plateau problem for
sets based on Čech homology yielding (see 8.22) Theorem B.

8.1 Lemma (classical). Suppose m and n are integers, 1 ≤ m ≤ n, G is a
complete normed commutative group, S ∈ Im(Rn, G),

∥S∥(Rn) ≤ ∥T∥(Rn) whenever T ∈ Im(Rn, G) and ∂G T = ∂G S,

and V ∈ RVm(Rn) is characterised by ∥V ∥ = ∥S∥.
Then, there holds

|(δV )(g)| ≤
∫

| Norm−1(∥ ∂G S∥, x)♮(g(x))| d∥ ∂G S∥x for g ∈ D(Rn,Rn).

Proof. Suppose g ∈ D(Rn,Rn) and λ = Lip g. We define h : R ×Rn → Rn and
ht : Rn → Rn such that h(t, x) = ht(x) = x+ tg(x) whenever (t, x) ∈ R × Rn;
we abbreviate It = spt [0, t] for t ∈ R and ϕ = ∥ ∂G S∥. Identifying [0, t] ∈ I1(R)
with ιR,1([0, t]) ∈ I1(R,Z), see [MS22, 5.1], we notice

[0, t] × (∂G S) ∈ Rm(R × Rn, G) with ∥[0, t] × ∂G S∥ = (L 1 ⌞ It) × ϕ

whenever t ∈ R by [MS22, 4.7]. Employing [MS22, 5.13 (6), 5.16, 5.13 (4), 4.5,
4.6], we then obtain

(ht)#S ∈ Im(Rn, G), h#([0, t] × S) ∈ Im+1(Rn, G),
h#([0, t] × ∂G S) ∈ Im(Rn, G),

(ht)#S − S = ∂G h#([0, t] × S) + h#([0, t] × ∂G S),
∂G

(
(ht)#S − h#([0, t] × ∂G S)

)
= ∂G S,

∥S∥(Rn) − ∥h#([0, t] × ∂G S)∥(Rn) ≤ ∥(ht)#S∥(Rn),
∥h#([0, t] × ∂G S)∥(Rn) ≤

∫
It×Rn

∥∥∧
m(L 1 × ϕ,m) ap Dh

∥∥ dL 1 × ϕ
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whenever t ∈ R; in case |t|λ < 1, we also observe that ht is a diffeomorphism
with im ht = Rn, hence ∥(ht)#V ∥(Rn) = ∥(ht)#S∥(Rn) by [MS22, 3.27, 3.28,
4.6]. For L 1 × ϕ almost all (s, x) ∈ It × Rn, recalling

Tanm(L 1 × ϕ, (s, x)) = R × Tanm−1(ϕ, x)

from [MS22, 4.4, 4.7], we finally estimate∥∥∧
m(L 1 × ϕ,m) ap Dh(s, x)

∥∥ ≤ (1 + |t|λ)m−1∣∣ Norm−1(ϕ, x)♮(g(x))
∣∣

+(m− 1)|t|λ(1 + |t|λ)m−2∣∣ Tanm−1(ϕ, x)♮(g(x))
∣∣;

thus, [All72, 4.1] yields the conclusion.

8.2 Remark. The case G = Z appears in [All72, 4.8 (4)] whose method we employ.
8.3 Remark. It follows that if such S is indecomposable, then spt ∥S∥ is connected
by [MS23, 7.7, 10.9].

Theorem A corresponds to the case G = Z in the next theorem, see [MS22,
5.1].

8.4 Theorem. Suppose m and n are integers, 2 ≤ m ≤ n, G is a complete
normed commutative group, S ∈ Im(Rn, G) is indecomposable,

∥S∥(Rn) ≤ ∥T∥(Rn) whenever T ∈ Im(Rn, G) and ∂G T = ∂G S,

Θm(∥S∥, x) ≥ 1 for ∥S∥ almost all x, d denotes the geodesic diameter of spt ∥S∥,
and γ = Γ7.4(m); if m > 2, then suppose W ∈ Vm−1(Rn), ∥δW∥ is a Radon
measure, Θm−1(∥W∥, x) ≥ 1 for ∥W∥ almost all x, and ∥ ∂G S∥ ≤ ∥W∥; if
m > 3, then suppose ∥δW∥ is absolutely continuous with respect to ∥W∥.

Then, the following three statements hold.

(1) If m = 2, then d ≤ γ ∥ ∂G S∥(Rn).

(2) If m = 3, then d ≤ γ ∥δW∥(Rn).

(3) If m > 3, then d ≤ γ
∫

|h(W,x)|m−2 d∥W∥x.

Proof. Let V ∈ RVm(Rn) be characterised by ∥V ∥ = ∥S∥. From 8.1, we obtain
∥δV ∥ ≤ ∥ ∂G S∥; in particular, h(V, ·) = 0 by [All72, 3.5 (1b)]. In view of [MS23,
10.9], the conclusion then follows by applying 7.4 with (V1, V2) replaced by (V, 0)
if m = 2 and (V,W ) if m > 2.

8.5 Remark. For any S ∈ Im(Rn, G) satisfying

∥S∥(Rn) ≤ ∥T∥(Rn) whenever T ∈ Im(Rn, G) and ∂G T = ∂G S,

indecomposability of ∂G S implies indecomposability of S.
8.6 Remark. We recall [MS22, 5.1, 6.2] and suppose G = Z or G = Z/dZ for
some positive integer d. Then, whenever B ∈ Im−1(Rn, G) with ∂G B = 0, there
exists S ∈ Im(Rn, G) with ∂G S = B satisfying

∥S∥(Rn) ≤ ∥T∥(Rn) whenever T ∈ Im(Rn, G) and ∂G T = ∂G S;

in fact, in view of [MS22, 4.6, 5.13 (6)], we combine [Fed69, 4.1.11, 4.1.16,
4.2.17 (2), 4.2.26]. For these G, the density hypotheses are redundant. For general
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G, the validity of a rectifiability theorem analogous to [Fed69, 4.2.16 (3)]—which
is central to this minimisation process—has been characterised in [Whi99, 7.1]
in the context of the flat m-chains over G introduced in [Fle66]; see [MS22, p. 7]
regarding the pending comparison to the present concept of G chains.
8.7 Remark. Here, we discuss the novelty of our results in the case that G = Z,
B is a connected orientable compact m − 1 dimensional submanifold of Rn,
and ∥ ∂Z S∥ = H m−1 ⌞B: If B is of class 4, then connectedness of spt ∥S∥ was
first noted—as a consequence of profound regularity results—in [DLDPHM23,
p. 6]; yet, the implication itself is elementary, see 8.3. That spt ∥S∥ is necessarily
path-connected—in fact, must have finite geodesic diameter—is new. If B is of
class 2 and m = n− 1, then finiteness of the geodesic diameter of spt ∥S∥ can
be deduced from earlier results—recalling [Fed69, 4.1.20, 4.1.31 (2)], it suffices
to combine [Men16b, Theorem 6.8 (1)] with [HS79, 11.2 (1) (3)]—whereas the a
priori bound on the geodesic diameter in terms of B and m is new.
8.8 Remark. As in [Miu22, Section 3], the preceding theorem implies nonexistence
of indecomposable solutions to the Plateau problem in the case that the diameter
of spt ∥ ∂G S∥ strictly exceeds the upper bound for d in the conclusion by [MS22,
5.13 (5)].

Now, we return to the setting of varifolds.

8.9 Lemma. Suppose m and n are positive integers, m ≤ n, B is an m − 1
dimensional submanifold of Rn of class 2, 0 < s < R, b ∈ B, V ∈ Vm(U(b, s)),
b ∈ spt ∥V ∥, ∥V ∥(B ∩ U(b, s)) = 0,∣∣ Nor(B, z)♮(z − y)

∣∣ ≤ (2R)−1|z − y|2 for y, z ∈ B,

U(b, s/(1 − s/R)) ∩ (ClosB) ∼B = ∅,

spt δV ⊂ B, and Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x.
Then, the following two statements hold.

(1) If 0 < r < s/2, then

∥δV ∥ B(b, r) ≤
(
r−1 +m/(R− s)

)
∥V ∥ B(b, 2r);

in particular, Θ∗m−1(∥δV ∥, b) ≤ 2mα(m− 1)−1α(m)Θm(∥V ∥, b).

(2) The function mapping 0 < r ≤ s onto

∥V ∥ U(b, r)
rm

exp
(

3mR
2(R− s)2 r

)
is nondecreasing. Moreover, there holds 1/2 ≤ Θm(∥V ∥, b) < ∞.

Proof. We notice that [All75, 2.2 (3) (4), 3.1, 3.5 (1) (2)] remain valid if the
submanifold B therein is required to be of class 2, instead of class ∞. From
[All75, 2.2 (4b)], we thus infer that for a ∈ U(b, s) there exists a unique y ∈ B
with |y − a| = dist(a,B) < R. Therefore, [All75, 2.2 (3), 3.1 (1) (2)] yield

∥δV ∥(ψ) ≤
∫

| Dψ(x) ◦ S♮| dV (x, S) +m/(R− s)
∫
ψ d∥V ∥

for 0 ≤ ψ ∈ D(U(b, s),R); in particular, ∥δV ∥ is a Radon measure and hence
V ∈ RVm(U(b, s)) by [All72, 5.5 (1)]. Moreover, we have

1/2 ≤ Θm(∥V ∥, b) < ∞
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by [Men16a, 4.8 (2) (4)] if m = 1 and by [All75, 3.5 (1) (2)] if m ≥ 2.
To verify (1), we define f : U(b, s) → R by

f(x) = sup
{

0, 1 − r−1 dist(x,B(b, r))
}

for x ∈ U(b, s),

hence 0 ≤ f ≤ 1, f(x) = 1 for x ∈ B(b, r), Lip f = r−1, and spt f = B(b, 2r).
Recalling [All72, 3.5 (1b)] and [Men16a, 8.7], and approximating f by nonnegative
members of D(U(b, s),R) for instance by means of [Men16b, 3.7], we conclude

∥δV ∥(f) ≤
∫

|V D f | d∥V ∥ +m/(R− s)
∫
f d∥V ∥

and infer (1), as |V D f(x)| ≤ Lip f for x ∈ dmnV D f .
Finally, the first conclusion of (2) may be obtained by adapting the case

α = 0 of [All75, 3.4 (2)] as follows:8 Recalling that [All75, 2.2 (3) (4), 3.1 (3)]
remain valid for B therein required to be of class 2 instead of class ∞, in the
statement of [All75, 3.4 (2)], omit the definition of µ and modify the definition of
Φ(r) to Φ(r) = 3kR

2(R−s)2 r, and, in its proof, omit the first paragraph, replace α by
0 throughout, replace “g ∈ X (U(0, s))” by “g : U(0, s) → Rn is of class 1 with
compact support”, and omit the summand involving µ in the last equation.

8.10 Remark. The method of proof of (1) is adapted from [All75, 3.4 (1)].
8.11 Remark. If m = 1, then the sharp estimate Θ0(∥δV ∥, b) ≤ 2Θ1(∥V ∥, b)
holds as we could apply [All75, 3.1 (2)] after the first paragraph of the proof.

The preceding lemma readily yields Theorem F.

8.12 Theorem. Suppose m and n are positive integers with m ≤ n, B is a
nonempty compact m−1 dimensional submanifold of class 2 of Rn, R = reach(B),
V ∈ Vm(Rn), ∥V ∥(B) = 0, spt δV ⊂ B ⊂ spt ∥V ∥, Θm(∥V ∥, x) ≥ 1 for ∥V ∥
almost all x,

M = R−m sup{∥V ∥ U(b, R/2) : b ∈ B},
and Γ = 4mα(m− 1)−1 exp(3m).

Then, there holds 0 < R < ∞, ΓM ≥ 2m−1α(m)α(m− 1)−1, and

∥δV ∥ ≤ ΓMH m−1 ⌞B.

Proof. Since reach(B, b) > 0 for b ∈ B by [Fed59, 4.12], there holds R > 0 by
[Fed59, 4.2]. Moreover, observing that B cannot be convex, we obtain R < ∞
from [Fed59, 4.2]; in particular, the first conclusion holds. Next, [Fed59, 4.18]
yields

| Nor(B, b)♮(y − b)| ≤ (2R)−1|y − b|2 whenever y, b ∈ B.

Applying 8.9 (1) with s = R/2 and 8.9 (2) with r = s = R/2, we obtain

Θ∗m−1(∥δV ∥, b) ≤ 2mα(m− 1)−1α(m)Θm(∥V ∥, b) ≤ ΓM for b ∈ B;

in particular, the second conclusion holds because Θm(∥V ∥, b) ≥ 1/2 for b ∈ B
by 8.9 (2). As Θm−1(H m−1 ⌞B, b) = 1 by [Fed69, 3.1.23, 3.2.17], we infer

lim sup
r→0+

∥δV ∥ B(b, r)
(H m−1 ⌞B) B(b, r) ≤ ΓM for b ∈ B.

8This presupposes the following typographical corrections to [All75, 3.4 (2)]: in the statement,
replace “m(s)1/k/(R− s)” by ”km(s)1/k/(R− s) < 1” on line 3 thereof; on page 427, replace
“(6)” by “(b)” on line 7, “D(R)” by “E 0(R)”, “Φ” by “φ”, and “near 0” by “near 0 with
sup sptφ < s” all on line 19, and “ξ” by “ζ” on line 27.
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Since ∥δV ∥(Rn ∼B) = 0, this implies firstly that ∥δV ∥ is absolutely continuous
with respect to H m−1 ⌞B by [Fed69, 2.9.2, 2.9.15] and then the last conclusion
by [Fed69, 2.8.18, 2.9.7].

Boundary connectedness may be exploited with the following lemma.

8.13 Lemma. Suppose m and n are positive integers, m ≤ n, U is an open
subset of Rn, X ∈ Vm(U), ∥X∥(U) < ∞, β = ∞ if m = 1, β = m/(m− 1) if
m > 1,

sup{(δX)(θ) : θ ∈ D(U,Rn), ∥X∥(β)(θ) ≤ 1} < γ(m)−1,

and Θm(∥X∥, x) ≥ 1 for ∥X∥ almost all x.
Then, the closure of every connected component of spt ∥X∥ meets BdryU ;

in particular, if BdryU ∩ Clos spt ∥X∥ is connected, then so is Clos spt ∥X∥.

Proof. Let i : U → Rn be the inclusion map and denote by Φ the family of
connected components of spt ∥X∥. Suppose C ∈ Φ, hence spt(∥X∥ ⌞C) = C
and ∥δ(X ⌞C × G(n,m))∥ = ∥δX∥ ⌞C by [Men16a, 6.14 (4)] and [MS23, 5.1].
Defining

V = i#(X ⌞C × G(n,m)) ∈ Vm(Rn),

we note 0 < ∥V ∥(Rn) < ∞ and infer spt ∥V ∥ = ClosC and

spt δV ⊂ spt ∥V ∥ ⊂ ClosU, ∥δV ∥ ⌞U = i#(∥δX∥ ⌞C).

We conclude ∥δV ∥(BdryU) > 0 because, using [MS23, 3.3, 3.4], we may estimate

γ(m)−1∥V ∥(Rn)1−1/m ≤ ∥δV ∥(Rn) ≤ ∥δX∥(U) + ∥δV ∥(BdryU)
< γ(m)−1∥V ∥(Rn)1−1/m + ∥δV ∥(BdryU);

hence, BdryU ∩ spt ∥V ∥ ≠ ∅ and the principal conclusion follows. Accordingly,
if B = BdryU ∩ Clos spt ∥X∥ is connected, then so are B ∪

⋃
{ClosC :C ∈ Φ}

and its closure Clos spt ∥X∥.

8.14 Remark. If m = 1, then γ(1) = 2−1 by [MS18, 3.8, 3.9] and γ(1)−1 may
not be replaced by any larger value in the preceding lemma.
8.15 Remark. If m = 2 and V is integral, then γ(m)−1 may be replaced by
the larger value (

∫
Sm |h(Sm, ·)|m dH m)1/m by [KS04, A.18]; the latter value is

evidently sharp.
(
Based on [Men23, 24.1], the same replacement is feasible in

case 2 ≤ m = n− 1 and V is integral.
)

8.16 Remark. To illustrate the preceding lemma, let B = BdryU ∩ Clos spt ∥W∥
be the fixed boundary of either a Brakke flow Vt, 0 ≤ t < ∞, or a stationary inte-
gral varifold V∞, resulting from it as subsequential limit as t → ∞; one is assured
of the existence of such objects under broad conditions by [ST21, Theorem 2.2,
Corollary 2.4]. Thus, if this boundary B is connected, so must be Clos spt ∥Vt∥,
whenever Vt satisfies the first variation condition, and Clos spt ∥V∞∥.

In combination with results from [MS23], Theorem G now follows.

8.17 Theorem. Suppose m and n are integers, 2 ≤ m ≤ n, B is a compact
connected m − 1 dimensional submanifold of class 2 of Rn, V ∈ Vm(Rn),
∥V ∥(Rn) < ∞, 1 ≤ λ < ∞,

B ⊂ spt ∥V ∥, ∥δV ∥ ≤ λH m−1 ⌞B,
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Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, and d is the geodesic diameter of spt ∥V ∥.
Then, there holds

d ≤ Γ7.4(m)λ
∫

B
|h(B, b)|m−2 dH m−1 b;

here, 00 = 1.

Proof. We note V ∈ RVm(Rn) by [All72, 5.5 (1)]; in particular, ∥V ∥(B) = 0 by
[All72, 3.5 (1b)]. Thus, taking X = V |2(Rn ∼ B)×G(n,m), the set

spt ∥V ∥ = Clos spt ∥X∥

is connected by 8.13. We then apply [MS23, 10.16] in conjunction with [MS23, 9.2]
to conclude that V is indecomposable of type D(Rn,R). We let W ∈ Vm−1(Rn)
be defined by

W (k) = λ
∫

B
k(b,Tan(B, b)) dH m−1 b for k ∈ K (Rn × G(n,m− 1))

so that
∥δV ∥ ≤ ∥W∥.

The conclusion now follows from 7.4 applied with (V1, V2) replaced by (V, 0) if
m = 2 and (V,W ) if m > 2, respectively.

8.18 Remark. Our hypotheses have been arranged so as to include with λ = 1
the varifolds furnished by the min-max methods of [DLR18, Theorem 2.6 (b)]
and [Mon20, Theorem 1.3] when, in these theorems, the prescribed boundary is
connected and the ambient Riemannian manifold is a convex body in Rn.

The preceding two theorems combine into two corollaries.

8.19 Corollary. Suppose m and n are integers, 2 ≤ m ≤ n, B is a nonempty
compact connected m−1 dimensional submanifold of class 2 of Rn, R = reach(B),
V ∈ Vm(Rn), ∥V ∥(Rn) < ∞, ∥V ∥(B) = 0,

spt δV ⊂ B ⊂ spt ∥V ∥,

Θm(∥V ∥, x) ≥ 1 for ∥V ∥ almost all x, M = R−m sup{∥V ∥ U(b, R/2) : b ∈ B},
and d is the geodesic diameter of spt ∥V ∥.

Then, there holds

d ≤ ΓM
∫

B
|h(B, b)|m−2 dH m−1 b,

where Γ is a positive, finite number determined by m; here, 00 = 1.

Proof. Let κ = 2m−1α(m)α(m− 1)−1. We will show that one may take

Γ = sup
{
κ−1, 1

}
Γ7.4(m)Γ8.12(m).

From 8.12, we obtain Γ8.12(m)M ≥ κ and

∥δV ∥ ≤ Γ8.12(m)MH m−1 ⌞B;

hence, we may apply 8.17 with λ = sup{1,Γ8.12(m)M}.

40



8.20 Remark. The preceding corollary is applicable to the image in Rn of the
varifolds furnished by subsequential limits as time approaches ∞ of the Brakke
flow with fixed boundary in [ST21, Corollary 2.4] when the boundary in the
cited source is a connected m− 1 dimensional submanifold of class 2 of Rn; in
this case, M is bounded a priori by the initial conditions of the flow.

8.21 Corollary. Suppose m and n are integers, 2 ≤ m ≤ n, B is a nonempty
compact connected m−1 dimensional submanifold of class 2 of Rn, R = reach(B),
S is a (H m,m) rectifiable subset of Rn,

B ⊂ S, S = spt(H m ⌞S),∫
S

Tanm(H m ⌞S, x) • D θ(x) dH m x = 0 for θ ∈ D(Rn ∼B,Rn),
M = R−m sup{H m(S ∩ U(b, R/2)) : b ∈ B},

and d is the geodesic diameter of S.
Then, there holds

d ≤ Γ8.19(m)M
∫

B
|h(B, b)|m−2 dH m−1 b;

here, 00 = 1.

Proof. We take V ∈ RVm(Rn) such that ∥V ∥ = H m ⌞S in 8.19.

Finally, we include the derivation of Theorem B.
8.22 Remark. Adopting the terminology of [FK18, § 12] and drawing from the
literature,9 we will deduce the following corollary: If G is a commutative group,
L is a subgroup of the (m− 1)-th Čech homology group of B, Č (B,L,G) denotes
the family of closed subsets of Rn spanning L, E ∈ Č (B,L,G),

H m(E) = inf
{
H m(F ) :F ∈ Č (B,L,G)

}
, S = spt(H m ⌞E),

then H m(E) ≤ H m−1(B) diam(B)/m and the geodesic diameter of S is bounded
by Γ8.19(m) reach(B)−mH m(E)

∫
B

|h(B, b)|m−2 dH m−1 b. Let C be the convex
hull of B. We assume L ̸= {0} because L = {0} implies H m(E) = 0. Verifying

Yc = {tb+ (1 − t)c : b ∈ B, 0 ≤ t ≤ 1} ∈ Č (B,L,G) for c ∈ C

by means of [ES52, Chapter 9, Theorems 3.4, 4.4, and 5.1], the estimate of
H m(E) follows from [Fed69, 3.2.20]; thus, noting [FK18, 12.3, 12.4], the set E
is (H m,m) rectifiable by [FK18, 10.1] applied with U , C , Si, S, and F replaced
by Rn ∼B, Č (B,L,G), E, E, and (Rn × G(n,m)) × {1} and∫

E
Tanm(H m ⌞E, x) • D θ(x) dH m x = 0 for θ ∈ D(Rn ∼B,Rn)

by [All72, 4.1]; hence, H m ⌞S = H m ⌞E by [All72, 2.8 (4a), 8.3], S ⊂ C by
[Sim83, 19.2], and, noting [Fed69, 4.1.16], we may assume E ⊂ C by [FK18,
12.3]. Inferring S ∈ Č (B,L,G) from [Lab22, 2.2.1] applied with Ek and E
replaced by E and S and noting B ⊂ S by [Lab22, 1.2.2], the preceding corollary
becomes applicable. We also record that, noting [Fed69, 2.10.11, 4.1.16] and
[Lab22, 2.1.3], the existence of such E, additionally contained in the convex hull

9The authors did not verify the results of [ES52, FK18, Pug19, Lab22] employed.
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of B, is guaranteed for instance by [Lab22, 3.2.2] applied with Γ = B, d = m,
and I = H m. Finally, the isoperimetric inequality [Pug19, Theorem 2] yields

H m(E) ≤ ∆ H m−1(B)m/(m−1),

where ∆ is a finite number determined by n; in fact, in view of [FK18, 12.3, 12.4],
the estimate is entailed by applying the inequality with A, Y , and L, replaced
by B, Yc, and H m−1(B)1/(m−1) for some c ∈ C because Yc ∈ Č (B,L,G).
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