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TOPOLOGICAL FINITENESS PROPERTIES OF MONOIDS

PART 2: SPECIAL MONOIDS, ONE-RELATOR MONOIDS,

AMALGAMATED FREE PRODUCTS, AND HNN EXTENSIONS

ROBERT D. GRAY 1 and BENJAMIN STEINBERG2

Abstract. We show how topological methods developed in a previous article can be applied
to prove new results about topological and homological finiteness properties of monoids. A
monoid presentation is called special if the right-hand side of each relation is equal to 1. We
prove results which relate the finiteness properties of a monoid defined by a special presentation
with those of its group of units. Specifically we show that the monoid inherits the finiteness
properties Fn and FPn from its group of units. We also obtain results which relate the geometric
and cohomological dimensions of such a monoid to those of its group of units. We apply these
results to prove a Lyndon’s Identity Theorem for one-relator monoids of the form 〈A | r = 1〉.
In particular we show that all such monoids are of type F∞ (and FP∞), and that when r is not a
proper power, then the monoid has geometric and cohomological dimension at most 2. The first
of these results, resolves an important case of a question of Kobayashi from 2000 on homological
finiteness properties of one-relator monoids. We also show how our topological approach can
be used to prove results about the closure properties of various homological and topological
finiteness properties for amalgamated free products and HNN-extensions of monoids. To prove
these results we introduce new methods for constructing equivariant classifying spaces for
monoids, as well as developing a Bass–Serre theory for free constructions of monoids.

1. Introduction

Topological methods play an important role in the modern study of infinite discrete groups.
Recall that an Eilenberg–Mac Lane complex of type K(G, 1) is an aspherical CW complex
with fundamental group G. For any group G a K(G, 1) complex exists, and it is unique
up to homotopy equivalence. While the existence of such spaces is elementary, it is often a
much harder problem to find a K(G, 1) complex which is suitably ‘nice’ to be used for doing
calculations. This is important if one wants to compute homology and cohomology groups.
This is part of the motivation for the study of higher order topological finiteness properties
of groups, a topic which goes back to pioneering work of Wall [61] and Serre [57]. We recall
that a group is of type Fn if there is a K(G, 1)-complex with a finite n-skeleton. The property
F1 is equivalent to finite generation, while a group is of type F2 if and only if it is finitely
presented, so Fn gives a natural higher dimensional analogue of these two fundamental finiteness
properties. The geometric dimension of a group G, denoted gd(G), is the minimum dimension of
aK(G, 1) complex. The topological finiteness property Fn and geometric dimension correspond,
respectively, to the homological finiteness property FPn and the cohomological dimension of
the group. The study of topological and homological finiteness properties is an active area of
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2 TOPOLOGICAL FINITENESS PROPERTIES

research. We refer the reader to [11, Chapter 8], [24, Chapters 6-9] and [12] for more background
on this topic.

The homological finiteness properties FPn and cohomological dimension have also been ex-
tensively studied more generally for monoids. One major motivation for studying homological
finiteness properties of monoids comes from important connections with the theory of rewriting
systems, and the word problem for finitely presented monoids. It is well known that there are
finitely presented monoids with undecidable word problem. Given that the word problem is
undecidable in general, a central theme running through the development of geometric and com-
binatorial group and monoid theory has been to identify and study classes of finitely presented
monoids all of whose members have solvable word problem. A finite complete rewriting system
is a finite presentation for a monoid of a particular form (both confluent and Noetherian) which
gives a solution of the word problem for the monoid; see [7]. Complete rewriting systems are
also of interest because of their close connection with the theory of Gröbner–Shirshov bases;
see [60]. The connection between complete rewriting systems and homological finiteness prop-
erties is given by the Anick-Groves-Squier Theorem which shows that a monoid that admits
such a presentation must be of type FP∞; see [4, 58] and [10]. The property FPn for monoids
also arises in the study of Bieri–Neumann–Strebel–Renz invariants of groups; see [6].

A number of other interesting homological and homotopical finiteness properties have been
studied in relation to monoids defined by complete rewriting systems; see [3, 28, 55]. The
cohomological dimension of monoids has also received attention in the literature; see for ex-
ample [13, 27, 47]. In fact, for monoids these properties depend on whether one works with
left ZM -modules or right ZM -modules, giving rise to the notions of both left- and right-FPn,
and left and right cohomological dimension. In general these are independent of each other;
see [15, 27, 53]. Working with bimodules resolutions of the (ZM,ZM)-bimodule ZM one ob-
tains the notion bi-FPn introduced and studied in [36]. This property is of interest from the
point of view of Hochschild cohomology, which is the standard notion of cohomology for rings;
see [30, 51]. For more background on the study of homological finiteness properties in monoid
theory, and the connections with the theory of string rewriting systems, see [10,16,52].

While homological finiteness properties of monoids have been extensively studied, in contrast,
until recently there was no corresponding theory of topological finiteness properties of monoids.
The results in this paper are part of a research programme of the authors, initiated in [25], aimed
at developing such a theory. A central theme of this work is that the topological approach allows
for less technical, and more conceptual, proofs than had previously been possible using only
algebraic means. Other recent results in the literature where topological methods have been
usefully applied in the study of monoids include, e.g. [8, 46,50].

This paper is the sequel to the article [25] where we set out the foundations of M -equivariant
homotopy theory for monoids acting on CW complexes, and the corresponding study of topolog-
ical finiteness properties of monoids. In that paper we introduced the notion of a left equivariant
classifying space for a monoid, which is a contractible projective M -CW complex. A left equi-
variant classifying space always exists, for any monoid M , and it is unique up to M -homotopy
equivalence. We then define the corresponding finiteness conditions left-Fn and left geometric
dimension in the obvious natural way in terms of the existence of a left equivariant classifying
space satisfying appropriate finiteness properties. It follows easily from the definitions that
left-Fn implies left-FPn, and that the left geometric dimension is an upper bound on the left
cohomological dimension of the monoid. There are obvious dual definitions and statements
working with right actions. We also developed a two-sided analogue of this theory in [25], with
two-sided M actions, defining the notion of a bi-equivariant classifying space for a monoid, and
the resulting finiteness properties bi-Fn and geometric dimension. It follows from the definitions
that bi-Fn implies bi-FPn (in the sense of [36]) and that the geometric dimension is an upper
bound for the Hochschild cohomological dimension. See Section 2 below for full details and
formal definitions of all of these notions.
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The aim of this paper is to apply the ideas and results from [25] to solve some open prob-
lems concerning homological finiteness properties of monoids that seemed resistant to algebraic
techniques. Let us begin with some history. An important open problem is whether every one-
relator monoid has decidable word problem. While the question is open in general, it has been
solved in a number of special cases; see Adjan [1] and Adjan and Oganesyan [2]. Related to this
is another open question which asks whether every one-relator monoid admits a presentation by
a finite complete rewriting system. Of course, a positive answer to this question would imply
a positive solution to the word problem. In light of the Anick-Groves-Squier Theorem which
states that monoids which admit finite complete presentations are of type right- and left-FP∞,
it is natural to ask whether all one-relator monoids are of type FP∞. This question was posed
by Kobayashi in [34, Problem 1]. The question is also natural given the fact that all one-relator
groups are all of type FP∞, as a consequence of Lyndon’s Identity Theorem for one-relator
groups; see Lyndon [42].

The first positive result concerning the word problem for one-relator monoids dealt with the
case of, so-called, special one-relator monoids [1]. A special monoid is one defined by a finite
presentation of the form 〈A | w1 = 1, . . . , wk = 1〉. They were first studied in the sixties by
Adjan [1] and Makanin [44]. Adjan proved that the group of units of a one-relator special
monoid is a one-relator group and reduced the word problem of the monoid to that of the
group, which has a decidable word problem by Magnus’s theorem [43]. Makanin proved more
generally that the group of units of a k-relator special monoid is a k-relator group and reduced
the word problem of the monoid to that of the group. See [63] for a modern approach to these
results. Thus there is a much closer connection for special monoids between the group of units
and the monoid than is customary.

One of the main results of this paper is that if M = 〈A | w1 = 1, . . . , wk = 1〉, and if G is
the group of units of M , then if G is of type FPn with 1 ≤ n ≤ ∞, then M is also of type left-
and right-FPn. Moreover, we prove that both the left and right cohomological dimensions of M
are bounded below by cdG, and are bounded above by max{2, cdG}. We shall also prove the
topological analogues of these results, obtaining the corresponding statements with right and
left-Fn and geometric dimension. These results are obtained by proving new results about the
geometry of Cayley digraphs of special monoids, including the observation that the quotient of
the Cayley digraph by its strongly connected components is a regular rooted tree on which the
monoid acts by simplicial maps. We use this to show how one can construct a left equivariant
classifying space for a special monoid from an equivariant classifying space for its group of units.

We shall then go on to apply these results to prove a Lyndon’s Identity Theorem [42] for one-
relator monoids of the form 〈A | w = 1〉. Specifically, we show that our results can be applied to
construct equivariant classifying spaces for one-relator monoids of this form, which have finitely
many orbits of cells in each dimension, and have dimension at most 2 unless the monoid has
torsion. We apply this to give a positive answer to Kobayashi’s question [34, Problem 1] on
homological finiteness properties of one-relator monoids, in the case of one-relator monoids of
the form 〈A | w = 1〉, by proving that all such monoids are of type left- and right-F∞ and
FP∞. We also show that if M = 〈A | w = 1〉 with w not a proper power then the left and
right cohomological dimension of M are bounded above by 2, and if w is a proper power then
they are both equal to ∞. The analogous topological result for the left and right geometric
dimension of a one-relator special monoid is also obtained. In fact, it will follow from our results
that when w is not a proper power then the Cayley complex of the one-relator monoid M is an
equivariant classifying space for M of dimension at most 2. This is the analogue, for one-relator
special monoids, of the fact that the presentation complex of a torsion-free one-relator group
is aspherical and is thus a K(G, 1) complex for the group of dimension at most 2; see [14, 22].
These results on special monoids, and one-relator monoids, will be given in Section 3.

The results we obtain in this paper for special one-relator monoids form an important infinite
family of base cases for the main result in our article [26] where we prove a Lyndon’s Identity
Theorem for arbitrary one-relator monoids 〈A | u = v〉. Applying this result, in [26] we give a



4 TOPOLOGICAL FINITENESS PROPERTIES

positive answer to Kobayashi’s question by showing that every one-relator monoid 〈A | u = v〉
is of type left- and right-FP∞.

In Section 4 below we prove several new results about the preservation of topological and
homological finiteness properties for amalgamated free products of monoids. Monoid amal-
gamated products are far more complicated than group ones. For example, an amalgamated
free product of finite monoids can have an undecidable word problem, and the factors do not
necessarily embed, or intersect, in the base monoid; see [56]. In particular there are no normal
form results at our disposal when working with monoid amalgamated free products. We give
a method for constructing an equivariant classifying spaces for an amalgamated free product
of monoids L = M1 ∗W M2 from equivariant classifying spaces of the monoids M1, M2 and
W . To do this, we use homological ideas of Dicks [18] on derivations to construct a Bass–Serre
tree T for the amalgam L. We also develop an analogous theory in the two-sided case. These
constructions are used to prove several results about the closure properties of Fn, FPn, and
geometric and cohomological dimension.

Finally, in Section 5 we consider HNN extensions construction for monoids, in the sense of
Otto and Pride [54], and those defined by Howie [32]. As in the case of amalgamated free
products, we give constructions of equivariant classifying spaces, and apply these to deduce
results about the closure properties of topological and homological finiteness properties. This
also involves constructing appropriate Bass–Serre trees. As special cases of our results we
recover generalisations of a number of results of Otto and Pride from [54] and [55].

2. Preliminaries

In this section we recall some of the relevant background from [25] needed for the rest
of the article. For full details, and proofs of the statements made here we refer the reader
to [25, Sections 2-4]. For additional general background on algebraic topology, and topological
methods in group theory, we refer the reader to [48] and [24].

2.1. The category of M-sets. Let M be a monoid. A left M -set consists of a set X and
a mapping M × X → X written (m,x) 7→ mx called a left action, such that 1x = x and
m(nx) = (mn)x for all m,n ∈ M and x ∈ X. Right M -sets are defined dually, they are the
same thing as left Mop-sets, where Mop is the opposite of the monoid M which is the monoid
with the same underlying set M and multiplication given by x · y = yx. A bi-M -set is an
M ×Mop-set. A mapping f : X → Y between M -sets is M -equivariant if f(mx) = mf(x) for
all x ∈ X, m ∈ M , and M -sets together with M -equivariant mappings form a category.

If X is an M -set and A ⊆ X, then A is said to be a free basis for X if and only if each
element of X can be uniquely expressed as ma with m ∈ M and a ∈ A. The free left M -set on
A exists and can be realised as the set M × A with action m(m′, a) = (mm′, a). Note that if
G is a group, then a left G-set X is free if and only if G acts freely on X, that is, each element
of X has trivial stabilizer. In this case, any set of orbit representatives is a basis. An M -set P
is projective if any M -equivariant surjective mapping f : X → P has an M -equivariant section
s : P → X with f ◦s = 1P . Every freeM -set is projective, and an M -set is projective if and only
if it is a retract of a free one. Each projective M -set P is isomorphic to an M -set of the form∐

a∈A Mea (disjoint union, which is the coproduct in the category of M -sets) with ea ∈ E(M),
where E(M) denotes the set of idempotents of the monoid M . In particular, projective G-sets
are the same thing as free G-sets for a group G.

If A is a right M -set and B is a left M -set, then A⊗M B is the quotient of A×B by the least
equivalence relation ∼ such that (am, b) ∼ (a,mb) for all a ∈ A, b ∈ B and m ∈ M . We write
a⊗ b for the class of (a, b) and note that the mapping (a, b) 7→ a⊗ b is universal for mappings
f : A × B → X with X a set and f(am, b) = f(a,mb). If M happens to be a group, then M
acts on A × B via m(a, b) = (am−1,mb) and A ⊗M B is just the set of orbits of this action.
The tensor product A ⊗M () preserves all colimits because it is a left adjoint to the functor
X 7→ XA.
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If B is a left M -set there is a natural preorder relation ≤ on B where x ≤ y if and only if
Mx ⊆ My. We write x ≈ y if there is a sequence z1, z2, . . . , zn of elements of B such that for
each 0 ≤ i ≤ n − 1 either zi ≤ zi+1 or zi ≥ zi+1. This is clearly an equivalence relation and
we call the ≈-classes of B the weak orbits of the M -set. This corresponds to the notion of the
weakly connected components in a directed graph. If B is a right M -set then we use B/M to
denote the set of weak orbits of the M -set while if B is a left M -set we use M\B to denote
the set of weak orbits. Note that if 1 denotes the trivial right M -set and B is a left M -set,
then we have M\B = 1 ⊗M B. Let M,N be monoids. An M -N -biset is an M × Nop-set. If
A is an M -N -biset and B is a left N -set, then the equivalence relation defining A⊗N B is left
M -invariant and so A⊗N B is a left M -set with action m(a⊗ b) = ma⊗ b.

2.2. Projective M-CW complexes. A left M -space is a topological space X with a contin-
uous left action M ×X → X where M has the discrete topology. A right M -space is the same
thing as a left Mop-space and a bi-M -space is an M ×Mop-space. Each M -set can be viewed
as a discrete M -space. Colimits in the category of M -spaces are formed by taking colimits in
the category of spaces and observing that the result has a natural M -action.

Our main interest in this article will be in M -spaces X where X is a CW complex. Follow-
ing [25] we define a (projective) M -cell of dimension n to be an M -space of the form Me×Bn

where e ∈ E(M) is an idempotent and Bn has the trivial action. In the special case e = 1,
we call it a free M -cell. We then define a projective M -CW complex in an inductive fashion
by imitating the usual definition of a CW complex but by attaching M -cells Me×Bn via M -
equivariant maps from Me× Sn−1 to the (n− 1)-skeleton. Formally, a projective (left) relative
M -CW complex is a pair (X,A) of M -spaces such that X = lim−→Xn with in : Xn → Xn+1

inclusions, X−1 = A, X0 = P0 ∪ A with P0 a projective M -set and where Xn is obtained as a
pushout of M -spaces

Pn × Sn−1 Xn−1

Pn ×Bn Xn

(2.1)

with Pn a projective M -set and Bn having a trivial M -action for n ≥ 1. The set Xn is the
n-skeleton of X and if Xn = X and Pn 6= ∅, then X is said to have dimension n. Since
Pn is isomorphic to a coproduct of M -sets of the form Me with e ∈ E(M), we are indeed
attaching M -cells at each step. If A = ∅, we call X a projective M -CW complex. Note that
a projective M -CW complex is a CW complex and the M -action is cellular (in fact, takes
n-cells to n-cells). We can define projective right M -CW complexes and projective bi-M -CW
complexes by replacing M with Mop and M × Mop, respectively. We say that X is a free
M -CW complex if each Pn is a free M -set. A projective M -CW complex X is of M -finite type
if Pn is a finitely generated projective M -set for each n, and we say that X is M -finite if it
is finite dimensional and of M -finite type (i.e., X is constructed from finitely many M -cells).
The degree n component of the cellular chain complex for the projective M -CW complex X is
isomorphic to ZPn as a ZM -module, and hence is projective.

A projective M -CW subcomplex of X is an M -invariant subcomplex A ⊆ X which is a
union of M -cells of X. If X is a projective M -CW complex then so is Y = X × I where I
is given the trivial action. If we retain the above notation, then Y0 = X0 × ∂I ∼= X0

∐
X0.

The n-cells for n ≥ 1 are obtained from attaching Pn × Bn × ∂I ∼= (Pn

∐
Pn) × Bn and

Pn−1 × Bn−1 × I. Notice that X × ∂I is a projective M -CW subcomplex of X × I. An M -
homotopy between M -equivariant continuous maps f, g : X → Y between M -spaces X and Y
is an M -equivariant mapping H : X × I → Y with H(x, 0) = f(x) and H(x, 1) = g(x) for
x ∈ X where I is viewed as having the trivial M -action. We write f ≃M g in this case.
We say that X,Y are M -homotopy equivalent, written X ≃M Y , if there are M -equivariant
continuous mappings (called M -homotopy equivalences) f : X → Y and g : Y → X such that
gf ≃M 1X and fg ≃M 1Y . Every M -equivariant continuous mapping of projective M -CW
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complexes is M -homotopy equivalent to a cellular one. This is the cellular approximation
theorem; see [25, Theorem 2.8].

If X is a left M -space and A is a right M -set, then A⊗M X is a topological space with the
quotient topology. The following base change result will be used frequently below.

Proposition 2.1. [25, Proposition 3.1 and Corollary 3.2] If A is an M -N -biset that is projective
(free) as an M -set and X is a projective (free) N -CW complex, then A ⊗N X is a projective
(free) M -CW complex. If A is in addition finitely generated as an M -set and X is of N -finite
type, then A⊗N X is of M -finite type. Moreover, dimA⊗N X = dimX.

Remark 2.2. We shall use the observation that if X is a free right M -set on A, then A is in
bijection with X/M and hence X ∼= X/M × M as a right M -set where M acts trivially on
X/M . Hence if Y is a projective M -CW complex, then X ⊗M Y ∼=

∐
A Y ∼= X/M × Y where

X/M has the discrete topology. Moreover, these homeomorphisms come from isomorphisms of
the CW structure.

2.3. Equivariant classifying spaces and topological finiteness properties for monoids.

A (left) equivariant classifying space X for a monoid M is a projective M -CW complex which
is contractible. A right equivariant classifying space for M will be a left equivariant classifying
space for Mop. In some cases, an equivariant classifying space for a monoid may be constructed
using the Cayley digraph of the monoid as the 1-skeleton. Recall that if M is a monoid and
A ⊆ M , then the (right) Cayley digraph Γ(M,A) of M with respect to A is the graph with
vertex setM and with edges in bijection withM×A where the directed edge (arc) corresponding
to (m,a) starts at m and ends at ma. Note that Γ(M,A) is a free M -graph and is M -finite if
and only if A is finite (see Section 4 below for the definition of M -graph).

Equivariant classifying spaces of monoids are unique up to M -homotopy equivalence; see [25,
Theorem 6.3 & Corollary 6.5]. The definition of equivariant classifying spaces for monoids leads
naturally to the definitions of the following topological finiteness properties. A monoid M is
of type left-Fn (for a non-negative integer n) if there is an equivariant classifying space X for
M such that Xn is M -finite, i.e., such that M\X has finite n-skeleton. We say that M is of
type left-F∞ if M has an equivariant classifying space X that is of M -finite type, i.e., M\X
is of finite type. The monoid M is defined to have type right-Fn if Mop is of type left-Fn for
0 ≤ n ≤ ∞. The left geometric dimension of M is defined to be the minimum dimension of a
left equivariant classifying space for M . The right geometric dimension is defined dually.

The homological analogue of left-Fn is the finiteness property left-FPn, where a monoid M
is said to be of type left-FPn if there is a projective resolution P = (Pi)i≥0 of the trivial left
ZM -module Z such that Pi is finitely generated for i ≤ n. There is a dual notion of right-FPn,
and we say a monoid is of type FPn if it is both of type left- and right-FPn. For any monoid
M , if M is of type left-Fn for some 0 ≤ n ≤ ∞ then it is of type left-FPn. Indeed, if X is
an equivariant classifying space for M then the augmented cellular chain complex of X gives a
projective ZM-resolution of the trivial ZM -module Z with the desired finiteness properties. If
M is a monoid of type left-F2, then M is of type left-Fn if and only if M is of type left-FPn for
0 ≤ n ≤ ∞. In particular, for finitely presented monoids the conditions left-Fn and left-FPn

are equivalent. In the special case that the monoid M is a group, the definition of left-Fn above
is easily seen to agree with the usual definition of Fn for groups. The left geometric dimension
is clearly an upper bound on the left cohomological dimension, denoted left cdM , of a monoid
M where the left cohomological dimension of M is the shortest length of a projective resolution
of the trivial left ZM-module Z.

To define the bilateral notion of a classifying space, first recall that M is an M × Mop-set
via the action (mL,mR)m = mLmmR. We say that a projective M ×Mop-CW complex X is
a bi-equivariant classifying space for M if π0(X) ∼= M as an M ×Mop-set and each component
of X is contractible; equivalently, X has an M ×Mop-equivariant homotopy equivalence to the
discrete M ×Mop-set M . We can augment the cellular chain complex of X via the canonical
surjection ε : C0(X) → H0(X) ∼= Zπ0(X) ∼= ZM . Since each component of X is contractible,
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this gives a projective bimodule resolution of ZM . A bi-equivariant classifying space may
be constructed for any monoid [25, Corollary 7.4]. As in the one-sided case, bi-equivariant
classifying spaces are unique up to M ×Mop-homotopy equivalence; see [25, Theorem 7.2].

A monoid M is said to be of type bi-Fn if there is a bi-equivariant classifying space X for
M such that Xn is M × Mop-finite, i.e., M\X/M has finite n-skeleton. We say that M is
of type bi-F∞ if M has a bi-equivariant classifying space X that is of M × Mop-finite type,
i.e., M\X/M is of finite type. We define the geometric dimension of M to be the minimum
dimension of a bi-equivariant classifying space for M . The homological analogue of bi-Fn is the
property bi-FPn (in the sense of [36]), where a monoid is said to be of type bi-FPn if there is a
projective resolution

· · · → P1 → P0 → ZM → 0

of the (ZM,ZM)-bimodule ZM , where P0, P1, . . . , Pn are finitely generated projective (ZM,ZM)-
bimodules. For 0 ≤ n ≤ ∞, if M is of type bi-Fn, then it is of type bi-FPn. If M is of type bi-Fn

for 0 ≤ n ≤ ∞, then M is of type left-Fn and type right-Fn. If M is a monoid of type bi-F2,
then M is of type bi-Fn if and only if M is of type bi-FPn for 0 ≤ n ≤ ∞; see [25, Theorem 7.15].
In particular, for finitely presented monoids bi-Fn and bi-FPn are equivalent. The Hochschild
cohomological dimension of M , written dimM , is the length of a shortest projective resolution
of ZM as a Z[M × Mop]-module. The Hochschild cohomological dimension bounds both the
left and right cohomological dimension and the geometric dimension bounds the Hochschild co-
homological dimension. The geometric dimension also bounds both the left and right geometric
dimensions because if X is a bi-equivariant classifying space for M of dimension n, then X/M
is an equivariant classifying space of dimension n.

2.4. A theorem of Brown. We end this section by recalling a result of Brown which will be
useful for proofs of results about homological finiteness properties of monoids. Unless otherwise
stated, all modules considered here are left modules. Let us say that a module V over a (unital)
ring R is of type FPn if it has a projective resolution that is finitely generated through degree
n; this is equivalent to having a free resolution that is finitely generated through degree n;
see [11, Proposition 4.3]. We say that V is of type FP∞ if it has a projective (equivalently, free)
resolution that is finitely generated in all degrees. So a monoid is of type left FPn if and only
if the trivial left module is of type FPn. One says that V has projective dimension at most d
if it has a projective resolution of length d. Note that the left cohomological dimension of a
monoid is the projective dimension of the trivial left module. Notice also that both the class of
modules of type FPn and the class of modules having projective dimension at most d are closed
under direct sum.

The following is lemma of K. Brown [9]. Recall that a morphism of chain complexes is a
weak equivalence if it induces an isomorphism on homology.

Lemma 2.3. [9, Lemma 1.5] Let R be a ring and C = (Ci) a chain complex of (left) R-modules
and, for each i, let (Pij)j≥0 be a projective resolution of Ci. Then one can find a chain complex
Q = (Qn) with Qn =

⊕
i+j=n Pij such that there is a weak equivalence f : Q → C.

Corollary 2.4. Suppose that R is a ring and

Cn −→ Cn−1 −→ · · · −→ C0 −→ V

is a partial resolution of an R-module V .

(1) If Ci is of type FPn−i, for 0 ≤ i ≤ n, then V is of type FPn.
(2) Let d ≥ n and suppose that Cn → Cn−1 is injective. If Ci has a projective dimension of

at most d− i, for 0 ≤ i ≤ n, then V has a projective dimension at most d.

Proof. To prove the first item, put C = (Ci) and let (Pij)j≥0 be a projective resolution of
Ci by finitely generated projectives that is finitely generated through degree n − i. Then the
chain complex Q from Lemma 2.3 is a complex of projectives with Qk finitely generated, for
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0 ≤ k ≤ n, with H0(Q) ∼= H0(C) = V and Hq(Q) ∼= Hq(C) = 0 for 0 < q < n. Thus if we
augment

Qn −→ Qn−1 −→ · · · −→ Q0

by the natural epimorphism Q0 → H0(Q) ∼= V , we obtain a partial projective resolution of V
of length n by finitely generated projectives.

For the second item, again let C = (Ci) and let (Pij)j≥0 be a projective resolution of Ci of
length at most d − i. Then the chain complex Q from Lemma 2.3 is a complex of projectives
of length at most d with H0(Q) ∼= H0(C) ∼= V and Hq(Q) = Hq(C) = 0 for q > 0. Thus if we
augment Q by the canonical epimorphism Q0 → H0(Q) ∼= V , we obtain a projective resolution
of V of length at most d. �

Next we show that projective dimension and FPn are stable under flat base extension.

Lemma 2.5. Suppose that ϕ : R → S is a ring homomorphism and that S is flat as a right
R-module. Let V be a left R-module.

(1) If V is of type FPn, then S ⊗R V is of type FPn as an S-module.
(2) If V has projective dimension at most d, then S ⊗R V has projective dimension at most

d over S.

Proof. Since S⊗RR ∼= S and tensor products preserve direct sums and retracts, it follows that if
P is a (finitely generated) projective R-module, then S⊗RP is a (finitely generated) projective
S-module. If (Pi) is a projective resolution of V , then by flatness of S and the preceding
observation, we obtain that (S ⊗R Pi) is a projective resolution of S⊗R V with S⊗R Pi finitely
generated whenever Pi is. The result follows. �

A typical way to apply Corollary 2.4 in order to prove that a monoid M is of type FPn is
to find an action of M by cellular mappings on a contractible CW complex X such that the
ith-cellular chain group Ci(X) is of type FPn−i as a ZM -module for 0 ≤ i ≤ n.

3. Special monoids and one-relator monoids

Let M be the monoid defined by the finite presentation 〈A | w1 = 1, . . . , wk = 1〉. Presen-
tations of this form are called special, and monoids which admit such presentations are called
special monoids. Special presentations were first studied by Adjan [1] and Makanin [44]. The
main aim of this section is to prove some results which relate the topological and homological
finiteness properties of special monoids to the corresponding properties holding in their group
of units. By specialising to the case of one-relator monoids and combining with results of Ad-
jan [1] and Lyndon [42] we then obtain a result characterising homological and cohomological
finiteness properties of special one-relator monoids. These results answer an important case
of the open problem of Kobayashi [34] which asks whether all one-relator monoids are of type
right and left-FP∞. As discussed in the introduction to this paper, additional motivation for
this question comes from its connection to the question of whether one-relator monoids admit
presentations by finite complete rewriting systems which, in turn, relates to the longstanding
open problem of whether such monoids have decidable word problem.

For rewriting systems we follow [31, Chapter 12]. We recall some basic definitions and
notation here. Let A be a non-empty set, known as an alphabet, and let A∗ denote the free
monoid of all words over A. If w = a1a2 . . . an ∈ A∗, with ai ∈ A for 1 ≤ i ≤ n, then we write
|w| = n and call this the length of the word w. A rewriting system R over A is a subset of
A∗×A∗. The pair 〈A | R〉 is called a monoid presentation. The elements of R are called rewrite
rules. For words u, v ∈ A∗ we write u →R v if there are words α, β ∈ A∗ and a rewrite rule (l, r)
in R such that u = αlβ and v = αrβ. We use →∗

R
to denote the reflexive transitive closure of

→R, while ↔∗
R

denotes the symmetric closure of →∗
R
. The relation ↔∗

R
defines a congruence

on A∗ and the quotient A∗/ ↔∗
R
is called the monoid defined by the presentation 〈A | R〉. For

any word w ∈ A∗ we use [w]R to denote the ↔∗
R
-class of the word w. So for words u, v ∈ A∗



TOPOLOGICAL FINITENESS PROPERTIES 9

when we write u = v it means that u and v are equal as words in A∗, while [u]R = [v]R means
that u and v represent the same element of the monoid defined by the presentation. We also
sometimes write u =R v to mean the [u]R = [v]R. When the set of rewrite rules with respect
to which we are working with is clear from context, we shall often omit the subscript R and
simply write [u], →, →∗ and ↔∗.

A word u is called irreducible if no rewrite rule can be applied to it, that is, there is no word
v such that u → v. We use Irr(R) to denote the set of irreducible words of the system R. The
rewriting system R is Noetherian if there is no infinite chain of words ui ∈ A∗ with ui → ui+1

for all i ≥ 1. The system is confluent if whenever u →∗ u1 and u →∗ u2 there is a word v ∈ A∗

such that u1 →∗ v and u2 →∗ v. A rewriting system that is both Noetherian and confluent is
called complete. If R is a complete rewriting system then each ↔∗ equivalence class contains a
unique irreducible word. Thus in this situation, Irr(R) provides a set of normal forms for the
elements of the monoid defined by the presentation 〈A | R〉.

Let M = 〈A | w1 = 1, . . . , wk = 1〉 = 〈A | T 〉 be the finitely presented special monoid defined
above. The symbol M will be used to denote this monoid for the remainder of this section.
We call w1, w2, . . . , wk the defining relators of this presentation. Let Γ(M,A) denote the right
Cayley graph of M with respect to A. The strongly connected components of Γ(M,A) are
called the Schützenberger graphs of M . Here we say that two vertices u and v of a directed
graph belong to the same strongly connected component if and only if there is a directed
path from u to v, and also a directed path from v to u. Our aim is to prove that any two
Schützenberger graphs of M are isomorphic to each other and that, modulo the Schützenberger
graphs, the Cayley graph of M has a tree-like structure. We begin by summarising some results
of Zhang [63] on special monoids that will be used extensively below.

Let G be the group of units of M . By [63, Theorem 3.7], we have that G has a group
presentation with k defining relations. Let R be the submonoid of right invertible elements.
Then R is isomorphic to a free product of G with a finitely generated free monoid by [63,
Theorem 4.4].

In more detail, we say that a word u ∈ A∗ is invertible if [u] ∈ M is invertible. Let u ∈ A+

be a non-empty invertible word. We say that the invertible word u is indecomposable if no
non-empty proper prefix of u is invertible. Every non-empty invertible word v has a unique
decomposition v = v1v2 . . . vl where each vi is indecomposable. To obtain this decomposition,
first write v = v1u1 where v1 is the shortest non-empty invertible prefix of v. Since v and v1
are invertible it follows that u1 is invertible. If u1 is non-empty we repeat this process writing
u1 = v2u2 where v2 is the shortest non-empty invertible prefix of u1. Continuing in this way
gives the decomposition v = v1v2 . . . vl. It is unique since if v′1v

′
2 . . . v

′
k were some other such

decomposition then v1v2 . . . vl = v′1v
′
2 . . . v

′
k, neither v1 nor v′1 can be a proper prefix of the

other, hence v1 = v′1, and then inductively we see that vi = v′i for all i. We call u ∈ A+ a
minimal invertible word if it is indecomposable and invertible and the length of u does not
exceed the length of any of the relators in T . Each relation word wi in T represents the identity
of M and thus is invertible. Therefore each relation word wi has a unique decomposition
wi = wi,1wi,2 . . . wi,ni

into indecomposable invertible words. The words wi,j for 1 ≤ i ≤ n,
1 ≤ j ≤ nj are called the minimal factors of the relators of the presentation. Each minimal
factor is clearly a minimal invertible word.

Let ∆ be the set of all minimal invertible words δ ∈ A∗ such that δ is equal in M to at least
one of the minimal factors wi,j of the relators. Clearly ∆ is a finite set of words over A. It is
also immediate from the definition that ∆ contains in particular all of the minimal factors wi,j

of the relators. It is also a consequence of the definitions that no non-empty proper prefix of a
word from ∆ can be equal to a non-empty proper suffix of a word from ∆. On the other hand,
a word from ∆ can, in general, arise as a subword of a word from ∆ (and there are examples
where this happens). It also follows from the definitions that ∆ is a prefix code, meaning that
no word from ∆ is a prefix of any other word from ∆. It follows that ∆ freely generates a free
submonoid of A∗.
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The elements represented by the words from ∆ give a finite generating set for the group of
units G of the monoid M . Indeed, it may be shown that every indecomposable invertible word
v is equal in M to some word from ∆; see [63, Lemma 3.4], and every invertible word can be
written as a product of indecomposable invertible words.

A finite presentation for the group of units G of M , with respect to the finite generating
set ∆ may be constructed in the following way. We partition the finite set of words ∆ as the
disjoint union ∆ = ∆1 ∪∆2 ∪ . . . ∪∆m of non-empty sets where two words belong to the same
set ∆j if and only if they represent the same element of the monoid M . Note that two distinct
factors wi,j could well represent the same element of M even if they are not equal as words.
Set B = {b1, b2, . . . , bm} and define a map φ from ∆ to B which maps every word from the set
∆j to the letter bj . Extend this to a surjective homomorphism φ : ∆∗ → B∗. Note that for any
word v ∈ A∗, if v ∈ ∆∗ then as observed above v has a unique decomposition v = v1v2 . . . vl
where each vi ∈ ∆∗ and thus the mapping φ is well-defined on the subset ∆∗ of A∗. Let T0 be
the rewriting system over the alphabet B given by applying φ to each of the relators from the
presentation 〈A | T 〉 (recall that each wj ∈ ∆∗) to obtain

T0 = {(s, 1) : s is some cyclic permutation of some φ(wj)}.

This means for each relator wj from T , we decompose wj into its minimal factors, then read
the factors recording the sets ∆i to which each of them belongs, and then write down the
corresponding word over B, and all of its cyclic conjugates.

Theorem 3.1. [63, Theorem 3.7] Let M be the monoid defined by a finite special presentation
〈A | T 〉. Then 〈B | T0〉 is a finite monoid presentation for the group of units G of M .

It follows that 〈B | φ(w1) = 1, . . . , φ(wk) = 1〉 is a group presentation for the group of units
of M with the same number of defining relations as the presentation of M .

Choose and fix some order on the finite alphabet A, and for words x, y ∈ A∗ write x < y
if x precedes y in the resulting shortlex ordering [31, Definition 2.60]. Now define a rewriting
system S = S(T ) over A as follows:

S = {(u, v) | u, v ∈ ∆∗ : φ(u) =T0
φ(v) & u > v}.

In fact, it follows from the results of Zhang that the condition φ(u) =T0
φ(v) is equivalent to

saying that u =T v, i.e. that u and v represent the same element of the group of units of the
monoid M . So the condition φ(u) =T0

φ(v) could be replaced by the condition u =T v in the
definition of S.

Theorem 3.2. [63, Proposition 3.2] The infinite presentation 〈A | S〉 is Noetherian, confluent
and defines the monoid M . In fact, the rewriting systems T and S = S(T ) are equivalent, that
is, ↔∗

S=↔∗
T .

We shall prove statements about M by working with the irreducible words Irr(S) associated
with this infinite complete rewriting system. For the rest of this section, when we say a word
over the alphabet A is irreducible, we mean that it is irreducible with respect to the rewriting
system S.

The submonoid of right units R is generated by the prefixes of the words from ∆. Indeed,
let I be the set of non-empty prefixes of words from ∆, that is,

I = {x ∈ A+ | xy ∈ ∆ for some y ∈ A∗}.

Clearly all words in the set I represent right invertible elements of M . Conversely, we have the
following result.

Lemma 3.3. [63, Lemma 3.3] Let u ∈ A∗ be irreducible modulo S = S(T ). If [u]T is right
invertible, then u ∈ I∗.
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It follows from this lemma that I constitutes a finite generating set for the submonoid R of
right units of the monoid M (that is, the submonoid of all right invertible elements). Further-
more, in [63, Theorem 4.4] Zhang proves the following result which describes the structure of
the submonoid of right units of the monoid M .

Theorem 3.4. [63, Theorem 4.4] Let M be a finitely presented special monoid. The submonoid
of right units R of M is a free product of the group of units G and a finitely generated free
monoid.

Monoid free products will be formally defined in Section 4 below. Our next goal is to show
that the Cayley graph of a special monoid has a tree-like structure. The action of the monoid
on the corresponding tree will be used to construct a free resolution of the trivial module.

Let T be the set of irreducible words in A∗ with no suffix in I.

Lemma 3.5. Let w ∈ T and let u ∈ A∗ be irreducible. Then wu is irreducible.

Proof. If wu is not irreducible, then since both w and u are irreducible it follows that w = xy
and u = zw with yz a left-hand side of a rewrite rule and y, z both non-empty. But every left
hand side of a rewrite rule is in ∆∗ and so y has a non-empty suffix v that is a prefix of an
element of ∆. But then v ∈ I, contradicting that w ∈ T . �

We recall the definition of the pre-order ≤R on the monoid M . For all m,n ∈ M we write
m ≤R n if and only if mM ⊆ nM , and write m R n if m ≤R n and n ≤R m. Obviously R

is an equivalence relation on M , usually called Green’s R-relation, and M/ R is a poset with
the order induced by ≤R . In terms of the right Cayley graph Γ(M,A) of M we have m ≤R n
if and only if there is a directed path from n to m, while the R-classes are the vertex sets of
the Schützenberger graphs of the monoid.

Let L be a subset of A∗ containing the empty word. For any two words α, β ∈ L write α � β
if and only if β is a prefix of α. This defines a poset which we denote by PL. This poset is the
reversal of the prefix order on the set of words L. This poset is countable since A is finite. The
empty word is the unique maximal element of the poset. This poset is locally-finite in the sense
that every interval [x, y] in this poset contains finitely many elements. In fact the principal
filter of every element in this poset is finite since a word admits only finitely many prefixes.
Recall that if s and t are elements of a poset P then we say s covers t if s < t and [s, t] = {s, t}.
A locally finite poset is completely determined by its cover relations. The Hasse diagram of a
poset P is a graph whose edges are the cover relations. Hasse diagrams are drawn in such a
way that if s < t then t is drawn with a higher vertical coordinate than s.

Proposition 3.6. Let L ⊆ A∗ contain the empty word. Then the Hasse diagram of PL is a
rooted tree (with root the empty word).

Proof. For n ≥ 0, let Ln consist of those words from L of length at most n. Let Λ (respectively,
Λn) be the Hasse diagram of PL (respectively, PLn). Then Λ = lim

−→
Λn and hence, since a direct

limit of trees is a tree, it suffices to handle the case that L is finite. We proceed by induction
on |L|. If |L| = 1, then Λ consists of a single vertex and there is nothing to prove. Assume true
for languages with at most n elements and suppose that L has n + 1 elements. Suppose that
w ∈ L has maximum length. Let v be the longest proper prefix of w belonging to L (it could
be the empty word). Let Λ′ be the Hasse diagram of PL\{w}; it is a rooted tree with root the
empty word by induction. Then there is an edge between v to w in Λ and that is the only edge
incident on w. Hence Λ and Λ′ have the same Euler characteristic and so Λ is a tree (as Λ′

was). �

It is possible for an element of PL to cover infinitely many distinct elements of PL. For
example, if L = {ǫ, ab, aab, aaab, aaaab, . . .} then ǫ covers all the other words in this set.

The following fact is essentially established in [63, Lemma 5.2] and the discussion afterwards.
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Proposition 3.7. Every element m ∈ M can uniquely be expressed in the form m = [wm]um
with wm ∈ T and um ∈ R. Moreover, the irreducible word v ∈ A∗ representing m is wmt where
t ∈ I∗ is the longest suffix of v in I∗ and [t] = um. Furthermore, if m,n ∈ M , then m ≤R n if
and only if wn is a prefix of wm. Hence the Hasse diagram of M/R is a tree rooted at 1.

Proof. Let v ∈ A∗ be the irreducible word with [v] = m. Then v = v′v′′ where v′′ is the
longest suffix in I∗. It follows that v′ ∈ T and v′′ represents an element of R. This shows the
existence of such a factorization. For uniqueness, let w ∈ T and x ∈ A∗ be an irreducible word
representing an element of R. By [63, Lemma 3.3], we have that x ∈ I∗. Then wx is irreducible
by Lemma 3.5. Thus wx = v′v′′. By choice of v′′, we must have |x| ≤ |v′′|. If |x| < |v′′|,
then some non-empty prefix of v′′ is a suffix of w. As I is prefix-closed, whence so is I∗, this
contradicts that w ∈ T . Thus x = v′′ and hence w = v′. This establishes the uniqueness of the
decomposition.

Suppose now that m = nn′ with n′ ∈ M . Let z be a right inverse of um and let v be an
irreducible word representing unn

′z. Then wnv is an irreducible word representing nn′z = mz =
[wm]umz = [wm] by Lemma 3.5. Thus wm = wnv and so wn is a prefix of wm. Conversely,
suppose that wn is a prefix of wm. Clearly, [wn] R n and [wm] R m as um, un are right
invertible. So it suffices to observe that [wm] ≤R [wn].

The final statement follows from Proposition 3.6. �

Retaining the notation of Proposition 3.7 we obtain the following immediate corollary.

Corollary 3.8. The action of R on the right of M is free with transversal T = {[w] | w ∈ T }.
Furthermore, M/R ∼= M/R.

Another corollary is that all principal right ideals of M are isomorphic as right M -sets.

Corollary 3.9. Let n ∈ M . Then the mapping ϕn : M → nM given by ϕn(m) = [wn]m is an
isomorphism of right M -sets.

Proof. As nM = [wn]M , the map ϕn is clearly a surjective homomorphism of right M -sets. To
see that is an isomorphism, suppose that ϕn(m) = ϕn(m

′). Let v, v′ ∈ A∗ be irreducible words
representing m,m′, respectively. Then wnv and wnv

′ are irreducible by Lemma 3.5. As they
represent the same element of M , we deduce that v = v′ and so m = m′. �

We now generalize Corollary 3.9 to show that every right ideal of M is a free M -set.

Theorem 3.10. Let M be a special monoid. Then every right ideal of M is a free right M -set
and dually every left ideal of M is a free left M -set.

Proof. Let X be a right ideal of M and let X ′ = {w ∈ T | [w] ∈ X}. Let U ′ be the set of
elements w ∈ X ′ with no proper prefix in X ′. We claim that X is freely generated as an M -set
by U = {[w] | w ∈ U ′}. By Proposition 3.7 if s, t ∈ U are distinct, then sM ∩ tM = ∅. Indeed,
if m ∈ sM ∩ tM , then wm has both ws and wt as prefixes and hence either ws is a prefix of
wt, or vice versa, contradicting the definition of U ′. Also, by Corollary 3.9, for each s ∈ U , we
have that sM ∼= M as a right M -set. It follows that U freely generates a sub-M -subset Y of
X. We show that Y = X.

If m ∈ X, then m = [wm]um with wm ∈ T and um ∈ R. Then [wm] ∈ X as [wm] R m. Let
w ∈ T be the shortest prefix of wm with [w] ∈ X. Then w ∈ U ′ and m ∈ [w]M ⊆ Y . This
completes the proof. �

Remark 3.11. Note that if X is a free right M -set on a subset B and if X has a finite generating
set, then B is finite. Indeed, if C is a finite generating set for X, then there is a finite subset
B′ ⊆ B such that C ⊆ B′M . But then B ⊆ B′M and hence B = B′ by freeness of the action.

Let Γ(M,A) be the Cayley graph of M with respect to A. Let Γ(M,A,m) denote the
strongly connected component of m (also called the Schützenberger graph of m). An immediate
geometric consequence of Corollary 3.9 is the following.
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Corollary 3.12. Let n ∈ M . Then there is an isomorphism of A-labeled graphs Γ(M,A, 1) →
Γ(M,A, n) sending 1 to [wn]. If Γn is the induced subgraph of Γ(M,A) consisting of all vertices
accessible from n, then Γ(M,A) is isomorphic to Γn as an A-labeled graph via an isomorphism
taking 1 to [wn].

Corollary 3.12 recovers as a special case the result [45, Theorem 4.6] that all the maximal
subgroups of a special monoid are isomorphic to each other. This is because the Schützenberger
group of a regular R-class is isomorphic to the automorphism group of its labelled Schützenberger
graph [59, Theorem 3].

Next we wish to show that there is a unique edge entering any strongly connected component
of Γ(M,A) other than the strong component of 1, and that it ends at an element of T (see
Corollary 3.8 for the notation). Let us say that an edge of a digraph enters a strong component
C of the graph if its initial vertex is not in C and its terminal vertex is in C.

Proposition 3.13. Let n ∈ T \ {1} (and so n = [wn]). Then if wn = xa with a ∈ A, we have

that [x] >R n, [a] /∈ R and [x]
a

−→ n is the unique edge entering Γ(M,A, n).

Proof. Note that x is irreducible. Let x = x′x′′ with x′′ the longest suffix of x in I∗. Then
x′ = w[x] and wn is not a prefix of x′. Thus [x] >R [wn] = n by Proposition 3.7. It follows that

[x]
a
−→ n enters Γ(M,A, n) and hence a /∈ R.

Suppose that m
b
−→ m′ enters Γ(M,A, n). Let w be an irreducible word representing m.

Then w = wmy where y ∈ I∗ is the longest suffix of w in I∗. We claim that wb has no suffix in
I. Indeed, if it did, then since I is prefix-closed and wm has no suffix in I, we must have that
yb has a suffix in I. Then yb = rs where s ∈ I. Since r is a prefix of y and I (and hence I∗) is
prefix-closed, we obtain that yb = rs ∈ I∗. Thus yb represents an element of R and so

m′ = [wmyb] R [wm] R m

a contradiction. Thus wb has no suffix in I.
We claim that wb is irreducible. Suppose that wb is not irreducible. Then since w is irre-

ducible, each left-hand side in the rewriting system belongs to ∆∗ and ∆ ⊆ I, we must have
that wb has a suffix in I, a contradiction.

Putting it all together, we deduce that wb ∈ T and so wb = wn by Proposition 3.7. It follows
that b = a and w = x, completing the proof. �

Let Γ be the directed graph obtained from Γ(M,A) by collapsing each strongly connected
component (and its internal edges) to a point. So the vertex set of Γ is M/R and there is
an edge (m,a) from the R-class Rm of m to the R-class Rma of ma if m ∈ M , a ∈ A and
Rm 6= Rma. We aim to show that Γ is a regular rooted tree isomorphic to the Hasse diagram
of M/R. Note that this tree can be of infinite degree.

Theorem 3.14. The graph Γ is isomorphic as a digraph to the Hasse diagram of M/R ordered
by ≥R . This graph is a regular rooted tree with root the strong component of 1.

Proof. We retain the above notation. Suppose first that w,w′ ∈ T and there is an edge from
Γ(M,A, [w′]) to Γ(M,A, [w]); it is unique by Proposition 3.13. Then, by Proposition 3.13, we
have that if w = xa with a ∈ A, then [x] R [w′]. Thus if x′ is the longest suffix of x belonging to
I∗, then x = w′x′ and w = w′x′a. Since I is prefix-closed, it follows that if y is any non-empty
prefix of x′, then w′y has a suffix in I and hence does not belong to T . Thus in the prefix order
on T , there is no element between w′ and w. It follows from Proposition 3.7 that in the Hasse
diagram of M/R with respect to ≥R, there is an edge from R[w′] to R[w].

Conversely, suppose that there is an edge in the Hasse diagram from R[w′] to R[w] with
w,w′ ∈ T . Then w′ is a proper prefix of w by Proposition 3.7 and so w = w′y with y ∈ A∗

irreducible and non-empty. Let a ∈ A be the last letter of y, so y = y′a. Then [w′] ≤R [w′y′] ≤R

[w] and so one of these inequalities is an equality. Since w is not a prefix of w′y′, it follows
from Proposition 3.7 (or by [63, Lemma 5.2]) that the second inequality is strict. Thus [w′y′]
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belongs to the strong component of [w′] and the image of the edge [w′y′]
a

−→ [w] connects the
strong component of [w′] to the strong component of [w] in Γ (and is the only such edge by
Proposition 3.13).

Since the reverse prefix order on any set of words containing the empty word is a rooted tree,
it follows that Γ is a rooted tree with root the strong component of 1. By construction of Γ
and Corollary 3.12 it follows that all vertices have the same cardinality set of children. �

Note that in general if M is a monoid generated by a finite set A, and if R′ and R′′ are
R-classes of M such that R′ covers R′′ in the poset M/ R, then there must exist elements
x ∈ R′ and y ∈ R′′ and a generator a ∈ A such that xa = y in M . The second part of the proof
of the above theorem shows that in a finitely generated special monoid in this situation there
are unique elements x ∈ R′, y ∈ R′′ and a ∈ A satisfying these properties.

We note that the left action of M on Γ(M,A) induces a left action of M on Γ by cellular
mappings since strong components are mapped into strong components. However, elements of
m can collapse edges to a point. In fact, Γ (being a tree) is a simplicial graph (1-dimensional
simplicial complex) and M acts by simplicial mappings. For example, consider the bicyclic
monoid B = 〈a, b | ab = 1〉. Then since a R 1 left multiplication by a collapses the vertices
corresponding to the strong components of 1 and b and hence collapses the edge between these
components.

We can view the vertex set of Γ as M/R and so if we use the simplicial chain complex for
Γ, we have C0(Γ) ∼= Z[M/R] ∼= ZM ⊗ZR Z as a ZM -module. We can identify C1(Γ) as a
ZM -module with the quotient C1(Γ(M,A))/N where N is the ZM -submodule generated as an

abelian group by edges m
a
−→ ma with a ∈ A and m R ma. Note that C1(Γ(M,A)) is a free

ZM -module of rank |A|. We shall show that N is a free ZM -module of finite rank, as well. It
will then follow that C1(Γ) is of type FP∞ with projective dimension at most 1.

Note that N is the direct sum over all a ∈ A of the submodules Na spanned by edges

m
a
−→ ma with m R ma and so it suffices to show that each of these submodules Na is a

finitely generated free ZM -module.

Proposition 3.15. Let a ∈ A. Then Na is a finitely generated free ZM -module. Consequently,
N is a finitely generated free ZM -module.

Proof. Let L = {m ∈ M | m R ma}. Then L is a left ideal of M and Na
∼= ZL. First observe

that if a ∈ R, then L = M and there is nothing to prove. So assume that a ∈ A \ R. By
Theorem 3.10 we have that L is a free left M -set. By Remark 3.11 it suffices to prove that L
is finitely generated.

We claim that L is generated by I ′ = {[w] ∈ L | w ∈ I} , which is finite as I is finite. Let
m ∈ L and let w ∈ A∗ be irreducible with [w] = m. There are two cases. Assume first that wa
is irreducible. Then since ma R m, it follows from Proposition 3.7 that wa /∈ T (as wa is not
a prefix of w) and so wa = sxa with xa ∈ I. Since a /∈ R, we must have that x is non-empty.
Since I is prefix-closed, x ∈ I. Thus [x], [xa] ∈ R and hence [x] R [x]a. Then m = [s][x] and
[x] ∈ I ′. So m ∈ MI ′.

Next assume that wa is not irreducible. Then wa = sxa with xa ∈ ∆, as w is irreducible.
But a /∈ R and so x is non-empty. Thus x ∈ I. Also xa ∈ ∆ ⊆ I. Thus [x], [xa] ∈ R and so
[x] R [x]a. Also, m = [s][x] with [x] ∈ I ′ and so m ∈ MI ′. This completes the proof. �

Now all is in place to prove the first main result of this section.

Theorem 3.16. Let M be a finitely presented special monoid with group of units G.

(1) If G is of type FPn with 1 ≤ n ≤ ∞, then M is of type left-FPn and of type right-FPn.
(2) cdG ≤ left cdM ≤ max{2, cdG} and cdG ≤ right cdM ≤ max{2, cdG}.

Proof. We retain the above notation. We prove the results for left-FPn and left cohomological
dimension (the other results are dual). First note that if L denotes the submonoid of left
invertible elements, then M is a free left L-set by the dual of Proposition 3.7. If B is the basis
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of M as a left L-set, then each element m ∈ M can be expressed uniquely as umbm with bm ∈ B
and um ∈ L. But then if g ∈ G with gm = m, we must have gumbm = umbm. It follows that
gum = um by uniqueness. But since L is a free product of G with a finitely generated free
monoid by [63, Theorem 4.4], it follows that G acts freely on the left of L and so g = 1. Thus
ZM is a free left ZG-module and so cdG ≤ left cdM as any projective resolution of Z over ZM
is a projective resolution over ZG.

The graph Γ is a tree with a simplicial action by M described above. So we have an exact
sequence of ZM -modules

0 −→ C1(Γ) −→ C0(Γ) −→ Z −→ 0.

We have identified C1(Γ) ∼= C1(Γ(M,A))/N where C1(Γ(M,A)) is free of rank |A| and N is
a finitely generated free module by Proposition 3.15. Thus C1(Γ) is of type FP∞ and has
projective dimension at most 1.

On the other hand, C0(Γ) ∼= Z[M/R] ∼= ZM ⊗ZR Z. By Zhang’s theorem [63, Theorem 4.4],
R = G ∗ C∗ where C is a finite alphabet, and hence R is of type FPn whenever G is, and,
left cdR ≤ max{1, cdG} by [17, Theorem 5.5] (or see Corollaries 4.6 and 4.9 below). Note that
a finitely generated free monoid is of type FP∞ and of cohomological dimension 1 because its
Cayley graph is a tree and a free M -CW complex of finite type of dimension 1.

As ZM is a free, and hence flat, right ZR-module by Corollary 3.8, it follows from Lemma 2.5
that C0(Γ) ∼= ZM ⊗ZR Z is of type FPn and of projective dimension at most max{1, cdG}.

The result now follows from an application of Corollary 2.4. �

In general, the left- and right-cohomological dimensions of a monoid are not equal. In fact
they are completely independent of each other; see [27]. One immediate corollary of the above
result is that if M is a finitely presented special monoid with left- and right-cohomological
dimensions both at least equal to 2, then the left cohomological dimension of M is equal to its
right cohomological dimension.

As an application of Theorem 3.16 we now show how it can be used to prove that all special
one-relator monoids are of type FP∞, answering a case of a question of Kobayashi. We also
recover Kobayashi’s result (see [33, Theorem 7.2] and [34, Corollary 7.5]) that if the relator is
not a proper power then the cohomological dimension is at most 2.

A word u ∈ A∗ is called primitive if it is not a proper power in A∗.

Lemma 3.17. [41, Corollary 4.2] For every nonempty word w ∈ A∗ there is a unique primitive
word p and a unique integer k ≥ 1 such that w = pk.

The following lemma is well known. We include it here for completeness.

Lemma 3.18. Let M = 〈A | w = 1〉. Write w = pk where p is a primitive word and k ≥ 1.
The group of units G of M is a one-relator group with torsion if and only if k > 1.

Proof. Since it is a prefix and suffix of w, it follows that p is invertible in M . Therefore, the
decomposition of w into indecomposable invertible factors has the form w = (p1p2 . . . pl)

k where
p1p2 . . . pl is the decomposition of p into indecomposable invertible factors. Let P = {pi : 1 ≤
i ≤ l} ⊆ A∗. Let X = {xp : p ∈ P} be an alphabet in bijection with the set of words P , so
distinct words pi and pj from P correspond to distinct letters xpi and xpj from the alphabet
X. It follows from [1, Lemma 96] that the group of units of the monoid M is isomorphic
to the group defined by the group presentation Gp〈X | (xp1xp2 . . . xpl)

k = 1〉. Observe that
xp1xp2 . . . xpl ∈ X∗, i.e. this is a positive word over the alphabet X. In particular the word

(xp1xp2 . . . xpl)
k is cyclically reduced. Since the word p1p2 . . . pl is primitive by assumption it

follows that the word xp1xp2 . . . xpl ∈ X∗ is also primitive. Hence (xp1xp2 . . . xpl)
k is a proper

power if and only if k > 1. But then by a well-known result of Karrass, Magnus and Solitar
characterising elements of finite order in one-relator groups [43, Theorem 5.2] it follows that
the group of units of M is a one-relator group with torsion if and only if k > 1. �
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Well-written accounts of the result [1, Lemma 96] of Adjan used in the previous proof may
be found in [38, Section 1] and [39, Section 2]. The following result gives a positive answer to
Kobayashi’s question [34, Problem 1] in the case of special one-relator monoids

Corollary 3.19. Let M be the one-relator monoid 〈A | w = 1〉. Then M is of type left- and
right-FP∞. Moreover, if w is not a proper power then left cdM ≤ 2 and right cdM ≤ 2, and
otherwise left cdM = right cdM = ∞.

Proof. We prove the results for left-FP∞ and left cohomological dimension (the other results
are dual). The group of units G of M is a one-relator group by Adjan’s theorem [1, Lemma
96] (this also follows from the results of Zhang described above), and hence of type FP∞ by
Lyndon’s theorem [42]. This proves the first statement in light of Theorem 3.16. The second
statement follows since by Lemma 3.18 the group G is a one-relator group whose defining
relator is not a proper power in the first case and is a proper power in the second. By a
theorem of Lyndon [42] G has cohomological dimension at most 2 in the first case and has
infinite cohomological dimension in the second. The result now follows from Theorem 3.16. �

We now turn our attention to proving the topological analogue of Theorem 3.16. We do this
by showing how an equivariant classifying space for a special monoid may be constructed from
an equivariant classifying space for its group of units.

Note that while for finitely presented monoids it follows from [25] that the properties left
FPn and left Fn are equivalent, in contrast it is not known whether left cd(M) and left gd(M)
coincide (this is even open for groups). Therefore, the second part of the following theorem is
not an immediate consequence of Theorem 3.16.

Theorem 3.20. Let M be a finitely presented special monoid with group of units G.

(1) If G is of type Fn with 1 ≤ n ≤ ∞, then M is of type left- and right-Fn.
(2) gdG ≤ left gdM ≤ max{2, gdG} and gdG ≤ right gdM ≤ max{2, gdG}.

Proof. We prove the results for left-Fn and left geometric dimension. The other results are
dual. It is proved in [25, Section 6] for finitely presented monoids the properties left-Fn and
left-FPn coincide. Now part (1) of the theorem follows from the first part of Theorem 3.16.
(One can also see this directly from the construction below.)

To prove part (2), first note that we showed that M was a free left G-set at the beginning
of the proof of Theorem 3.16. Hence any free M -CW complex is a free G-CW complex. Also
note that Theorem 3.10 implies that every projective M -set is free, as Me is a left ideal for
any idempotent e. Thus any projective M -CW complex X is a free M -CW complex and so it
follows that G\X is K(G, 1)-space. The inequality gdG ≤ right gdM follows.

We shall now explain how to construct an equivariant classifying space for M of dimension
max{2, gd(G)}.

Let XG be an equivariant classifying space for the group G. Since G is a group it follows
that the projective G-CW complex XG is a free G-CW complex. By Zhang’s theorem [63,
Theorem 4.4], the submonoid of right units R of M is isomorphic to the monoid free product
G ∗ C∗ where C∗ is a free monoid over a finite alphabet C. The right Cayley graph Γ(C∗)
of C∗ with respect to the generating set C is a tree and thus is a free equivariant classifying
space for the monoid C∗. In particular C∗ is of geometric dimension at most 1. Let X be
the left equivariant classifying space for R ∼= G ∗ C∗ given by the construction in the proof of
Theorem 4.5 in Section 4 below. From the construction it follows thatX is a free R-CW complex
and an equivariant classifying space for R. (If XG has a G-finite n-skeleton, then X has an
R-finite n-skeleton.) It also follows from the construction of X that dimX ≤ max{1,dimXG}
(compare with Theorem 4.8).

Now M is an M -R-biset, which is free as a left M -set and is also free as a right R-set by
Corollary 3.8, and X is a free left R-CW complex. It follows from Proposition 2.1 that M⊗RX
is a free left M -CW complex with dimM ⊗RX = dimX. (It will have M -finite n-skeleton if X
has R-finite n-skeleton.) The complex M ⊗R X is a disjoint union of copies of X, one for each
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R-class of M by Remark 2.2. To make this concrete, take the transversal T of the R-classes of
M defined above, which is a basis for M as a free right R-set. Then each element of M ⊗R X
can be uniquely written in the form t⊗ x with t ∈ T and x ∈ X and M ⊗R X =

∐
t∈T t⊗X.

We say that two elements m ⊗ x and m′ ⊗ x′ of M ⊗R X belong to the same copy of X in
M ⊗R X if and only if m R m′.

Fix a basepoint x0 ∈ Q ⊆ X0. Next we connect the space M ⊗R X by attaching edges
m ⊗ x0 → ma ⊗ x0 for each m ∈ M and a ∈ A. This is the same as attaching a free M -cell
M × B1 of dimension 1 based at 1 ⊗ x0 → a ⊗ x0 for each a ∈ A. Let Y denote the resulting
free M -CW complex. The R-order in the monoid M induces in a natural way an order on the
copies of X in Y , and there is an edge joining two distinct copies of X in Y if and only if there
is an edge in the right Cayley graph of M joining the corresponding R-classes. Moreover, it
follows from the definition of Y , and Proposition 3.13, that there is at most one edge joining
any pair of distinct copies of X in Y . It follows that if we contract each of the copies of X in Y
we obtain the graph Γ in Theorem 3.14, which is a regular rooted tree, together with possibly
infinitely many loops at each vertex. These loops arise from the edges m⊗x0 → ma⊗x0 where
m R ma added in the construction of Y . (Notice that if M ⊗RX has M -finite n-skeleton, then
so does Y .)

To turn Y into an equivariant classifying space for M we add 2-cells to deal with these
loops, in the following way. It follows from Proposition 3.15 that for each a ∈ A, the set
L = {m ∈ M | m R ma} is a free left M -set generated by a finite set Fa ⊆ L with Fa ⊆ R.
For each r ∈ Fa, choose a path in pr in 1 ⊗ X from 1 ⊗ x0 to 1 ⊗ rx0, choose a path qr in
1 ⊗X from 1 ⊗ x0 to 1 ⊗ rax0, and let er denote the edge in Y labelled by a from 1 ⊗ rx0 to
1⊗ rax0. Note that since r ∈ Fa ⊆ L it follows that r ∈ R and ra ∈ R and so 1⊗ rx0 = r⊗ x0
and 1 ⊗ rax0 = ra ⊗ x0 and hence er is indeed one of the edges that was added during the
construction of Y . Now for each a ∈ A attach a free 2-cell M ×B2 to Y by attaching a 2-cell at
1⊗ x0 with boundary path prerq

−1
r and all of its translates under the action of M . We do this

for each a ∈ A and call the resulting complex Z. Now if we contract the copies of X in Z, we
obtain the tree Γ, together with loops at each vertex each of which bounds a single disk. Thus
Z is homotopy equivalent to the tree Γ, and hence is contractible. This shows that Z is an
equivariant classifying space for the monoid M . (Note that if Y has M -finite n-skeleton, then
so does Z hence giving an alternative proof that if G is of type Fn, then M is of type left-Fn.)

To complete the proof, since the free M -CW complex Z was constructed from M ⊗R X
by attaching 1-cells and 2-cells, and since we have already observed that dimM ⊗R X =
dimX ≤ max{1,dimXG}, it follows that dimZ ≤ max{2,dimXG} and hence left gd(M) ≤
max{2, gd(G)}. �

For special one-relator monoids we obtain the following corollary which is the topological
analogue of Corollary 3.19.

Corollary 3.21. Let M be the one-relator monoid 〈A | w = 1〉. Then M is of type left- and
right-F∞. Moreover, if w is not a proper power then left gdM ≤ 2 and right gdM ≤ 2, and
otherwise left gdM = right gdM = ∞.

In particular this results says that for every special one-relator monoid whose defining relator
is not a proper power admits an equivariant classifying space of dimension at most 2. In fact,
in this case it turns out that the Cayley complex of the monoid gives an equivariant classifying
space of dimension at most 2, as the following result demonstrates.

Theorem 3.22. Let M = 〈A | w = 1〉 such that w is not a proper power. Let X be the
2-complex obtained by filling in each loop labeled by w in the Cayley graph Γ(M,A) of M . Then
X is left equivariant classifying space for M with dimension at most 2.

Proof. It follows from the proof of [25, Theorem 6.14] thatX is anM -finite simply connected free
M -CW complex of dimension at most 2. It is shown in [34, Corollary 7.5] that the presentation
〈A | w = 1〉 is strictly aspherical in the sense defined in [33, Section 2]. The cellular chain
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complex of X gives a free resolution displayed in Equation (7.2) in [33, Theorem 7.2]. This
shows that X is acyclic. Since X is acyclic and simply connected it follows from the Whitehead
and Hurewicz theorems that X is contractible, and hence X is a left equivariant classifying
space for the monoid M . �

The analogous result to Theorem 3.22 is also known to hold for one-relator groups. This
was first observed in [14] and is a consequence of Lyndon’s Identity Theorem [42]. A more
topological proof is given in [22].

We currently do not know whether the two-sided analogues of the results proved in this
section, for bi-Fn and (two-sided) geometric dimension, hold. One way to establish these results
might be to seek a better understanding of the two-sided Cayley graphs of special monoids.

As mentioned in the introduction, building on the ideas presented in this section, in [26]
we have extended these results to arbitrary one-relator monoids. In particular in [26] we give
a positive answer to Kobayashi’s question [34, Problem 1] by showing that every one-relator
monoid 〈A | u = v〉 is of type left- and right-F∞ and FP∞.

4. Amalgamated free products

For graph of groups, including free products with amalgamation and HNN extensions, there
are well-established methods for constructing a K(G, 1) from K(G, 1)s of the vertex and edge
groups; see for example [29, page 92]. This can then be used to prove results for groups about
the behaviour of the properties Fn and geometric dimension for amalgamated free products and
HNN extensions. In this section, and the two sections that follow it, we use topological methods
to investigate the behaviour of topological and homological finiteness properties of monoids, for
free products with amalgamation, and HNN extension constructions.

A monoid amalgam is a triple [M1,M2;W ] where M1,M2 are monoids with a common
submonoid W . The amalgamated free product is then the pushout in the diagram

W M1

M2 M1 ∗W M2

(4.1)

in the category of monoids. Monoid amalgamated products are much more complicated than
group ones. For instance, the amalgamated free product of finite monoids can have an unde-
cidable word problem, and the factors do not have to embed or intersect in the base monoid;
see [56]. So there are no normal forms available in complete generality that allow one construct
a Bass–Serre tree. We use instead the homological ideas of Dicks. For more details about these
methods we refer the reader to [19, Chapter 1, Sections 4-7].

An M -graph X is a one-dimensional CW complex with a cellular action by M sending edges
to edges. Given an M -graph X we use V to denote its set of 0-cells and E to denote its set
of 1-cells. Given any M -graph, if we choose some orientation for the edges, then the attaching
maps of the 1-cells define functions ι, τ from E to V where in X each oriented edge e starts at
ιe and ends at τe. We call V and E the vertex set, and edge set respectively, of the M -graph X.
We shall assume that the monoid action preserves the orientation. It shall sometimes be useful
to think of an M -graph as given by a tuple (X,V,E, ι, τ) where X is an M -set, X = V ∪ E
a disjoin union where each of V and E is closed under the action of M , and ι, τ : E → V are
M -equivariant maps.

Let M be a monoid and let X be an M -graph. Let ZV and ZE denote the free abelian groups
on V and E, respectively. The cellular boundary map of X is the M -linear map ∂ : ZE → ZV
with ∂(e) = τe− ιe for all e ∈ E. The sequence

ZE
∂

−−→ ZV
ǫ
−→ Z −→ 0
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is the augmented cellular chain complex of X, where ǫ is the augmentation map sending∑
v∈V nvv to

∑
v∈V nv (i.e., each element of the basis V is mapped to 1). Throughout this

section we shall frequently be confronted with the task of showing that a given M -graph is a
tree or a forest. To do this, it is useful to recall that the M -graph X is a forest if and only if
∂ : ZE → ZV is injective; see [19, Lemmas 6.4], i.e.,

0 −→ ZE
∂
−−→ ZV

ǫ
−→ Z −→ 0

is exact.
The results in this section improve, and give simpler proofs of, several results of Cremanns

and Otto [17] on the behaviour of FPn under free products and certain rather restricted free
products of monoids with amalgamation. The proofs in Cremanns and Otto are quite long and
technical, as is often the case for results in this area. The results in this section demonstrate
the type of result our topological methods were introduced to prove. They show that the
topological approach may be used to prove more general results in a less technical and more
conceptual way. Our results also generalise and simplify proofs of some results of Kobayashi [35]
on preservation of left-, right- and bi-FPn under free products (see for example [35, Proposition
4.1]). There are no bi-FPn analogues in the literature of the two-sided results we obtain below
on the behaviour of bi-Fn and geometric dimension for free products with amalgamation. Also,
as far as we are aware, the results that we obtain here are the first to appear in the literature
on cohomological dimension of amalgamated free products of monoids.

A monoid presentation is said to have finite homological type, abbreviated to FHT, if the,
so-called, homotopy bimodule of the given presentation is finitely generated. The homotopy
bimodule is a ZM -bimodule constructed from a complex of ZA∗-bimodules defined using the
set of defining relations R of the presentation 〈A | R〉 of the monoid M , and a particular family
of disjoint circuits in the derivation graph associated with the presentation. The property
FHT was originally introduced by Wang and Pride [62]. We refer the reader to that paper, or
to [36, Section 3], for full details of the definition of FHT. It was proved in [37] that for finitely
presented monoids FHT and bi-FP3 (equivalently bi-F3) are equivalent. So some of the results
below also have an interpretation in terms of FHT.

4.1. The one-sided setting. Let us define a tree T for a pushout diagram (4.1). Let us assume
that fi : W → Mi, for i = 1, 2, is the homomorphism in the diagram and put L = M1 ∗W M2 for
the pushout. The right multiplicative actions of M1, M2 and W give three different partitions
of L into weak orbits. Since W ≤ Mi the W -orbits give a finer partition than both the M1-
and M2-orbits. We can then define a directed bipartite graph T with one part given by the
M1-orbits and the other part given by the M2-orbits. When an M1-orbit intersects an M2-orbit,
that intersection will be a union of W -orbits, and in this case we draw directed edges from the
M1-orbit to the M2-orbit labelled by the W -orbits in this intersection.

In more detail, let T be the L-graph with vertex set

V = L/M1

∐
L/M2

and edge set

E = L/W

where M1,M2,W act on the right of L by first applying the canonical map to the pushout and
then right multiplying. We write [x]K for the class of x ∈ L in L/K. The edge [x]W connects
[x]M1

with [x]M2
(and we usually think of it as oriented in this direction). The incidence here is

easily seen to be well defined and the action of L on the left of these sets is by cellular mappings
sending edges to edges and preserving orientation. Hence T is an L-graph.

Lemma 4.1. The graph T is connected.

Proof. The pushout L, being a quotient of the free product M1 ∗M2, is generated by the images
of M1 and M2 under the natural maps (which we omit from the notation even though they need
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not be injective). We define the length of x ∈ L to be the minimum k such that x = x1 · · · xk
with xi ∈ M1 ∪ M2. We prove by induction on the length of x that there is a path in T
from [1]M1

to [x]M1
. If x = 1, this is trivial, so assume the statement is true for length k

and x = x1 · · · xk+1. Let p be a path from [1]M1
to [x2 · · · xk+1]M1

. Then x1p is a path from
[x1]M1

to [x]M1
. If x1 ∈ M1, then [x1]M1

= [1]M1
and so x1p is a path from [1]M1

to [x]M1
.

If x1 ∈ M2, then [x1]W is an edge connecting [x1]M1
and [x1]M2

= [1]M2
and [1]W is an edge

connecting [1]M1
with [1]M2

and so there is a path from [1]M1
to [x]M1

. Finally, if x ∈ L, then
[x]M2

is connected by [x]W to [x]M1
, which in turn is connected by a path to [1]M1

. Thus T is
connected. �

We aim to prove that T is a tree by showing that the cellular boundary map ∂ : ZE → ZV is
injective. To prove this we shall make use of semidirect products of monoids and the concept
of a derivation. An account of this theory for groups may be found in [19] where it is applied
to show that the standard graph of the fundamental group of a graph of groups is a tree;
see [19, Theorem 7.6].

LetM be a monoid and let A be a left ZM -module. Then we can form the semidirect product
A ⋊M , of the abelian group A and the monoid M , with elements A × M and multiplication
given by

(a,m)(a′,m′) = (a+ma′,mm′).

The natural projection π : A ⋊ M → M , (a,m) 7→ m is clearly a monoid homomorphism. A
splitting of this projection is a monoid homomorphism σ : M → A⋊M such that π(σ(m)) = m
for all m ∈ M . Associated to any splitting σ of π is a mapping d : M → A defined as the unique
function satisfying

σ(m) = (d(m),m)

for all m ∈ M . It follows from the fact that σ is a homomorphism that the function d : M → A
must satisfy

d(mm′) = d(m) +md(m′) (4.2)

for all m,m′ ∈ M . Any function d : M → A satisfying (4.2) is called a derivation. A derivation
is called inner if it is of the form d(m) = ma − a for some a ∈ A. It is easy to check that a
mapping d : M → A is a derivation if and only if m 7→ (d(m),m) provides a splitting of the
semidirect product projection A⋊M → M .

Lemma 4.2. The graph T is a tree.

Proof. Since T is connected by Lemma 4.1, it suffices to show that the cellular boundary map
∂ : ZE → ZV is injective. To show this, we define a left inverse β : ZV → ZE. In what follows,
we abuse notation by identifying an element of M1, M2 or W with its image in L.

First define ϕ1 : M1 → ZE ⋊ L by ϕ1(m1) = (0,m1). Then ϕ1 is clearly a monoid ho-
momorphism. Define ϕ2 : M2 → ZE ⋊ L by ϕ2(m2) = ([1]W − [m2]W ,m2). Notice that
m2 7→ [1]W − [m2]W is the inner derivation of the ZM2-module ZE associated to −[1]W ∈ ZE
and hence ϕ2 is a homomorphism. Next, we observe that ϕ1f1 = ϕ2f2. Indeed, if w ∈ W ,
then ϕ1f1(w) = (0, w) and ϕ2f2(w) = ([1]W − [w]W , w) = (0, w) as [1]W = [w]W . Thus there
is a well defined homomorphism ϕ : L → ZE ⋊L extending ϕ1, ϕ2 by the universal property of
a pushout. This map must split the semidirect product projection by construction of ϕ1, ϕ2.
Indeed, for all m1 ∈ L in the image of M1 we have ϕ(m1) = ϕ1(m1) = (0,m1) and for all
m2 ∈ L in the image of M2 we have

ϕ(m2) = ϕ2(m2) = ([1]W − [m2]w,m2).

It follows that for all m1 ∈ L in the image of M1 we have π(ϕ(m1)) = m1, and for all m2 ∈ L
in the image of M2 we have π(ϕ(m2)) = m2. Since, as already observed above, L is generated
by the images of M1 and M2 under the natural maps, and since π and ϕ are homomorphisms,
we conclude that π(ϕ(l)) = l for all l ∈ L, as required. It follows that ϕ(x) = (d(x), x) for some
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derivation d : L → ZE with the property that d(m1) = 0 form1 ∈ M1 and d(m2) = [1]W−[m2]W
for m2 ∈ M2.

Define β : ZV → ZE by β([x]M1
) = d(x) and β([x]M2

) = d(x) + [x]W for x ∈ L. We must
show that this is well defined. First suppose that x ∈ L and m1 ∈ M1. Then d(xm1) =
xd(m1) + d(x) = d(x) because d vanishes on the image of M1. If x ∈ L and m2 ∈ M2, then

d(xm2) + [xm2]W = xd(m2) + d(x) + [xm2]W

= x([1]W − [m2]W ) + d(x) + [xm2]W = d(x) + [x]W .

It follows that β is well defined.
We now compute

β∂([x]W ) = β([x]M2
)− β([x]M1

) = d(x) + [x]W − d(x) = [x]W

for x ∈ L. Thus β∂ = 1ZE and so ∂ is injective. This completes the proof that T is a tree. �

Since T is a tree we obtain an exact sequence of ZL-modules

0 −→ ZE
∂
−−→ ZV

ǫ
−→ Z −→ 0

where E,V are the edge and vertex sets of T , respectively. See [19, Theorem 6.6]. The exactness
of this cellular chain complex of T can be reformulated in the following manner.

Corollary 4.3. There is an exact sequence of ZL-modules

0 −→ ZL⊗ZW Z −→ (ZL⊗ZM1
Z)⊕ (ZL⊗ZM2

Z) −→ Z −→ 0

where L = M1 ∗W M2 is the pushout.

Proof. This follows from the definition of T , the fact that T is a tree, and the observation that
Z[L/K] ∼= ZL⊗ZK Z for K = M1,M2,W . �

We call T the Bass–Serre tree of the pushout.
If f : X → Y and g : X → Z are continuous mappings of topological spaces, the homotopy

pushout of f, g is the space obtained by attaching X×I to Y
∐

Z by the mapping h : X×∂I →
Y
∐

Z with h(x, 0) = f(x) and h(x, 1) = g(x). IfX,Y,Z are CW complexes and f, g are cellular
mappings, then h is cellular and so the homotopy pushout U of f and g is a CW complex. If, in
addition, X,Y,Z are projective M -CW complexes and f, g are cellular and M -equivariant, then
U is a projective M -CW complex by [25, Lemma 2.1]. Moreover, by the description of the cells
coming from the proof of [25, Lemma 2.1], if Y,Z have M -finite n-skeleton and X has M -finite
(n− 1)-skeleton (whence X × I has M -finite n-skeleton), then U has M -finite n-skeleton.

The homotopy pushout construction is functorial with respect to commutative diagrams

Y X1

X2 Y ′ X ′
1

X ′
2

f1

r
f2

s

t

g1

g2

Moreover, if r, s, t are homotopy equivalences, then it is well known that the induced mapping of
homotopy pushouts is a homotopy equivalence; see for example [20, Theorem 4.2.1], or [21, page
19] where it is observed that homotopy colimits have the strong homotopy equivalence property.

For the reader’s convenience, we shall prove a special case of this fact that will be crucial in
what follows. Recall that if Y is a space, the suspension of Y is the space ΣY = Y × I/(Y ×
{0} ∪ Y × {1}). If Y is contractible, then the mapping ΣY → I induced by the projection
Y × I → I is a homotopy equivalence.
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Lemma 4.4. Let M be a monoid and X1,X2, Y locally path connected M -spaces. Assume
that the natural mappings ri : Xi → π0(Xi), for i = 1, 2, and r : Y → π0(Y ) are homotopy
equivalences (where the set of path components is given the discrete topology). Let fi : Y → Xi

be continuous mappings, for i = 1, 2, and let Z be the homotopy pushout of X1,X2 along Y ,
which is naturally an M -space. Let Γ be the M -graph with vertex set π0(X1)

∐
π0(X2) and edge

set π0(Y ) where the edge corresponding to C ∈ π0(Y ) connects the component of f1(C) to the
component of f2(C); this is the homotopy pushout of π0(X1) and π0(X2) along π0(Y ). Then
the natural M -equivariant mapping h : Z → Γ is a homotopy equivalence.

Proof. The mapping h takes an element of Xi to its path component and an element (y, t) ∈
Y × I to (C, t) where C is the component of y. This is well defined, by construction of the
homotopy pushout, and is M -equivariant. As the connected components of Xi, for i = 1, 2,
are disjoint and contractible subcomplexes, Z is homotopy equivalent to the space obtained by
contracting each of these subcomplexes to a point. Then Z has the homotopy type of the CW
complex obtained by adjunction of

∐
C∈π0(Y )ΣC to the discrete set π0(X1)

∐
π0(X2) where

ΣC is attached via the mapping sending (y, 0) to the component of f1(C) and (y, 1) to the
component of f2(C). Since the mapping ΣC → I induced by the projection C × I → I is a
homotopy equivalence by contractibility of C, it follows that h is a homotopy equivalence. This
completes the proof. �

We now prove some preservation results for amalgamated free products. We shall apply the
observation in Remark 2.2 without comment.

Theorem 4.5. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as right
W -sets. If M1,M2 are of type left-Fn and W is of type left-Fn−1, then M1 ∗W M2 is of type
left-Fn.

Proof. Let Xi be an equivariant classifying space for Mi with Mi-finite n-skeleton, for i =
1, 2, and let Y be an equivariant classifying space for W with W -finite (n − 1)-skeleton. By
[25, Lemma 6.2] and the cellular approximation theorem [25, Theorem 2.8], we can find W -
equivariant cellular mappings fi : Y → Xi, for i = 1, 2. Let L = M1 ∗W M2. By McDuff [49], L
is a free right Mi-set, for i = 1, 2, and a free right W -set. Then X ′

i = L⊗Mi
Xi, for i = 1, 2, is

a projective L-CW complex with L-finite n-skeleton and Y ′ = L ⊗W Y is a projective L-CW
complex with L-finite (n−1)-skeleton by Proposition 2.1. Let f̃i : Y

′ → X ′
i be the map induced

by fi, for i = 1, 2, and let Z be the homotopy pushout of f̃1, f̃2. It is a projective L-CW
complex. We claim that Z is an equivariant classifying space for L. Note that Z has an L-finite
n-skeleton by construction.

Our goal is to show that Z is homotopy equivalent to the Bass–Serre tree T . By [25, Propo-
sition 3.4], we have that π0(X

′
i)

∼= L ⊗Mi
π0(Xi) ∼= L/Mi and π0(Y

′) ∼= L ⊗W π0(Y ) ∼= L/W
and fi induces the natural mapping L/W → L/Mi under these identifications, for i = 1, 2. As
X ′

i
∼= L/Mi ×Xi and Y ′ ∼= L/W × Y (by freeness of L as a right K-set for K = M1,M2,W )

and Xi, for i = 1, 2, and Y are contractible, the projections X ′
i → π0(X

′
i), for i = 1, 2, and

Y ′ → π0(Y
′) are homotopy equivalences. It follows that Z is homotopy equivalent to T , by

Lemma 4.4, and hence contractible. This completes the proof. �

Note that we do not assume that the monoids M1 and M2 are finitely generated, or finitely
presented, in the above result. Recall that a monoid can be of type left-F2 without being finitely
presented, and can be of type left-F1 without being finitely generated; see [25, Section 6]. The
hypotheses of Theorem 4.5 hold if W is trivial or if M1,M2 are left cancellative and W is a
group. As another example, if we consider N, then, for any k > 0, N is a free kN-set with
basis {0, 1, . . . , k − 1}. Since kN ∼= N, it follows from Theorem 4.5 that N ∗kN=mN N is of type
left-F∞, as N is of type left-F∞, for any k,m > 0. As a special case of Theorem 4.5 we obtain
the following result as a corollary.
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Corollary 4.6. A free product M ∗ N of monoids of type left-Fn is of type left-Fn. If M,N
are finitely presented monoids, then M ∗N is of type left-Fn if and only if M and N both are
of type left-Fn.

Proof. If M and N are of type left-Fn, then M ∗N is of type left-Fn by Theorem 4.5 as M,N
are free {1}-sets. Conversely, if M,N are finitely presented, then so is M ∗ N and hence left
Fn is equivalent to left-FPn for these monoids. A result of Pride [53] says that a retract of a
left-FPn monoid is left-FPn. As M,N are retracts of M ∗N , the converse follows. �

The fact that for finitely presented monoids M,N of type left-FPn, the free product M ∗N
is of type left-FPn was first proved in [17, Theorem 5.5].

The following corollary is classical.

Corollary 4.7. If [G1, G2;H] is an amalgam of groups with G1, G2 of type left-Fn and H of
type left-Fn−1, then G1 ∗H G2 is of type left Fn.

Proof. Since G1, G2 are free left H-sets, this follows from Theorem 4.5. �

The homotopy pushout construction in the proof of Theorem 4.5 also serves to establish the
following.

Theorem 4.8. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as right
W -sets. Suppose that di is the left geometric dimension of Mi, for i = 1, 2, and d is the left
geometric dimension of W . Then the left geometric dimension of M1 ∗W M2 is bounded above
by max{d1, d2, d+ 1}.

Corollary 4.9. Let M and N be monoids of left geometric dimension at most n. Then M ∗N
has left geometric dimension at most max{n, 1}.

We now wish to prove a homological analogue of Theorem 4.5.

Theorem 4.10. Let [M1,M2;W ] be an amalgam of monoids such that ZL is flat as a right
ZM1-, ZM2- and ZW -module, where L = M1 ∗W M2. If M1,M2 are of type left-FPn and W is
of type left-FPn−1, then M1 ∗W M2 is of type left-FPn.

Proof. By Lemma 2.5 and the hypotheses, we deduce that ZL⊗ZMi
Z is of type FPn, for i = 1, 2,

and ZL⊗ZW Z is of type FPn−1. The result now follows by applying Corollary 2.4 to the exact
sequence in Corollary 4.3. �

Remark 4.11. It is reasonable to consider whether it might be possible to weaken the hypoth-
esis of Theorem 4.10 to just assuming that ZM1 and ZM2 are flat as ZW -modules. In [23,
Lemma 5.2(a)], Fiedorowicz claims that if [M1,M2;W ] is an amalgam of monoids such that
ZM1 and ZM2 are flat as left ZW -modules, then ZL (where L = M1 ∗W M2) is flat as a left
ZMi-module, for i = 1, 2, and as a left ZW -module. Unfortunately, his result is not correct.
The following counterexample to [23, Lemma 5.2(a)] is due to Tyler Lawson (see [40]), whom
we thank for allowing us to reproduce it. Let

M1 = 〈a, a−1 | aa−1 = 1, a−1a = 1〉, W = {b}∗, and M2 = {c, d}∗.

So M1 is isomorphic to the infinite cyclic group, and W and M2 are the free monoids of
ranks 1 and 2, respectively. Let f1 : W → M1 be the homomorphism which maps b 7→ a, let
f2 : W → M2 be the homomorphism which maps b 7→ c, and let L be the monoid amalgam
[M1,M2;W ] with respect to the embeddings f1 and f2. Then L is isomorphic to the monoid
with presentation

〈a, a−1, d | aa−1 = 1, a−1a = 1〉,

that is, to Z ∗ {d}∗.
As the commutative ring ZM1 is a localization of ZW , it is clearly flat as a left ZW -module.

Since W is a free factor in M2, we have that M2 is a free left W -set and hence ZM2 is a free
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left ZW -module (and thus flat). On the other hand, ZL is not flat as a left ZM2-module. This
may be shown by considering the exact sequence of ZM2-modules

0 → ZM2 ⊕ ZM2 → ZM2 → Z → 0,

where the first map sends (u, v) to uc + vd, and the second sends c and d to zero. Here Z is
made a left ZM2-module by having c and d annihilate it rather than via the trivial module
structure. Tensoring this sequence over ZM2 on the left by ZL gives the sequence

0 → ZL⊕ ZL → ZL → 0 → 0,

which is not left exact since the first factor of the direct sum is taken isomorphically to the
middle term by invertibility of a. Hence ZL is not flat as a ZM2-module. A nearly identical
proof was given by Bergman to show that universal localization does not preserve flatness in
the non-commutative setting [5, Page 70].

Since [23, Lemma 5.2(a)] does not hold, it cannot be used to weaken the hypothesis of
Theorem 4.10 to assuming only that ZM1 and ZM2 are flat as ZW -modules. Similarly [23,
Lemma 5.2(a)] cannot be used to weaken the hypotheses of any of Theorems 4.14, 4.28 or 4.29.

It follows from results of McDuff [49] that the hypotheses of Theorem 4.5 are satisfied when
M1 and M2 are free as W -sets which gives the following corollary.

Corollary 4.12. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as
right W -sets. If M1,M2 are of type left-FPn and W is of type left-FPn−1, then M1 ∗W M2 is
of type left-FPn.

Corollary 4.12 applies, in particular, when W is trivial. Thus we obtain the following im-
provement on [17, Theorem 5.5] in which we do not need to assume the factors are finitely
presented.

Corollary 4.13. Let M1,M2 be monoids of type left-FPn. Then M1 ∗M2 is of type left-FPn.

Theorem 4.14. Let [M1,M2;W ] be an amalgam of monoids such that ZL, where L = M1 ∗W
M2, is flat as a right ZM1-, ZM2- and ZW -module. If M1,M2 have left cohomological dimension
at most d and W has left cohomological dimension at most d − 1, then M1 ∗W M2 has left
cohomological dimension at most d.

Proof. By Lemma 2.5 and the hypotheses, we deduce that ZL ⊗ZMi
Z is of cohomological

dimension at most d, for i = 1, 2, and ZL ⊗ZA Z is of cohomological dimension d − 1. We
deduce the theorem by applying Corollary 2.4 to the exact sequence in Corollary 4.3. �

Again, combining this with results of McDuff [49] gives the following.

Corollary 4.15. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as
right W -sets. Suppose that di is the left cohomological dimension of Mi, for i = 1, 2, and d is
the left cohomological dimension of W . Then the left cohomological dimension of M1 ∗W M2 is
bounded above by max{d1, d2, d+ 1}.

4.2. The two-sided setting. We need some preliminary properties of tensor products before
investigating amalgams in the two-sided context.

Proposition 4.16. If f : M → N is a monoid homomorphism, then there is an N × Nop

isomorphism F : N ⊗M M ⊗M N → N ⊗M N defined by F (n⊗m⊗ n′) = nm⊗ n′.

Proof. The mapping h : N ×M × N → N ⊗M N given by (n,m, n′) 7→ nm ⊗ n′ is N × Nop-
equivariant and satisfies (nm′,m,m′′n′) 7→ nm′m ⊗m′′n′ = nm′mm′′ ⊗ n′ = h(n,m′mm′′, n′)
and so the mapping F is well defined. The mapping k : N × N → N ⊗M M ⊗M N given by
(n, n′) 7→ n⊗ 1⊗ n satisfies k(nm,n′) = nm⊗ 1⊗ n′ = n⊗m⊗ n′ = n⊗ 1⊗mn′ = k(n,mn′)
for m ∈ M and hence induces a mapping N ⊗M N → N ⊗M M ⊗M N . Clearly, h and k induce
inverse mappings as nm⊗ 1⊗ n′ = n⊗m⊗ n′ for m ∈ M . �
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The next proposition will frequently be used to decongest notation.

Proposition 4.17. Let A be right M -set, B a left M -set and C a left M × Mop-set. Then
A⊗M C ⊗M B is naturally isomorphic to (A×B)⊗M×Mop C in the category of sets where we
view A×B as a right M ×Mop-set via the action (a, b)(m,m′) = (am,m′b).

Proof. Define f : A×C×B → (A×B)⊗M×MopC by f(a, c, b) = (a, b)⊗c. Then f(am, c,m′b) =
(am,m′b) ⊗ c = (a, b) ⊗ mcm′ and so f induces a well-defined mapping A ⊗M C ⊗M B →
(A × B) ⊗M×Mop C. Define g : A × B × C → A ⊗M C ⊗M B by g(a, b, c) = a ⊗ c ⊗ b. Then
g(am,m′b, c) = am ⊗ c ⊗m′b = a ⊗mcm′ ⊗ b = g(a, b,mcm′) and so g induces a well-defined
mapping (A × B) ⊗M×Mop C → A ⊗M C ⊗M B. The maps induced by f and g are clearly
mutually inverse and natural in A,B,C. �

Remark 4.18. A nearly identical proof shows that if A is a right ZM -module, B is a left ZM -
module and C is an ZM -bimodule, then we have that A⊗ZM C⊗ZM B ∼= (A⊗B)⊗ZM⊗ZMop C
as abelian groups and the isomorphism is natural.

Proposition 4.19. Suppose that A is a free right M -set, B is a free left M -set and C is an
M -M -biset. Then A⊗M C ⊗M B is naturally isomorphic to A/M ×C ×M\B in the category
of sets.

Proof. By freeness, A ⊗M C ∼= A/M × C via a ⊗ c 7→ ([a], c) where [a] is the class of a and,
moreover, this is a right M -set isomorphism. Therefore, A⊗M C ⊗M B ∼= (A/M ×C)⊗M B ∼=
A/M × C ×M\B because B is a free left M -set on M\B. The isomorphism is clearly natural
in A,B,C. �

We now wish to consider a pushout diagram (4.1) in the bimodule setting. Let us assume
that fi : W → Mi is the homomorphism in the diagram, for i = 1, 2, and we continue to use L
to denote the pushout. Let us proceed to define a forest T . The vertex set of T will be

V = (L⊗M1
L)

∐
(L⊗M2

L)

and the edge set will be

E = L⊗W L.

We shall write [x, y]K for the tensor x⊗ y in L⊗K L for K = M1,M2,W . The edge [x, y]W will
connect [x, y]M1

to [x, y]M2
, and we think of it as oriented in this direction. Note that T is an

L× Lop-graph. Note that [x, y]K 7→ xy is well defined for any of K = M1,M2,W .

Lemma 4.20. There is an L× Lop-equivariant isomorphism π0(T ) → L induced by the multi-
plication map on vertices.

Proof. As an edge [x, y]W connects [x, y]M1
to [x, y]M2

, we have that multiplication [x, y]Mi
7→ xy

on vertices induces an L × Lop-equivariant surjective mapping π0(T ) → L. To prove the
injectivity, we first claim that [1, x]M1

is connected by an edge path to [x, 1]M1
for all x ∈ L

by induction on the length of x. If x = 1, there is nothing to prove. So assume the claim for
length k and let x = x1 · · · xk+1 with xi ∈ M1 ∪ M2 (again abusing notation as Mi need not
embed in L). Let p be a path from [1, x2 · · · xk+1]M1

to [x2 · · · xk+1, 1]M1
. Then x1p1 is a path

from [x1, x2 · · · xk+1]M1
to [x, 1]M1

. If x1 ∈ M1, then [x1, x2 · · · xk+1]M1
= [1, x]M1

and we are
done. If x1 ∈ M2, then [x1, x2 · · · xk+1]W is an edge between [x1, x2 · · · xk+1]M1

and [1, x]M2
.

But [1, x]W is an edge from [1, x]M1
to [1, x]M2

and so we are again done in this case.
If x = x1x2 with x1, x2 ∈ L, there is a path p from [1, x1]M1

to [x1, 1]M1
by the above claim.

Then px2 is a path from [1, x]M1
to [x1, x2]M1

. Thus any two vertices [u, v]M1
and [u′, v′]M1

with uv = u′v′ are connected in T . But [u, v]W connects [u, v]M2
to [u, v]M1

and hence any two
vertices [u, v]Mi

and [u′, v′]Mj
with uv = u′v′ are connected for all i, j ∈ {1, 2}. This completes

the proof. �
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Next we prove that T is a forest. Note that ZE is a ZL-bimodule.
If A is a bimodule over a monoid ring ZK then we can form the two-sided semidirect product

A ⊲⊳ K, of the abelian group A and the monoid K, with elements A × K and multiplication
given by

(a, k)(a′, k′) = (ak′ + ka′, kk′).

A splitting σ of the projection π : A ⊲⊳ K → K is a monoid homomorphism σ : K → A ⊲⊳ K
such that π(σ(k)) = k for all k ∈ K. A mapping d : K → A is a derivation if

d(kk′) = kd(k′) + d(k)k′

for all k, k′ ∈ K. A derivation in inner if d(k) = ka−ak for some a ∈ A. Derivations correspond
to splittings of the two-sided semidirect product projection A ⊲⊳ K → K, each splitting being
of the form k 7→ (d(k), k) with d a derivation.

Lemma 4.21. The graph T is a forest.

Proof. A graph with vertex set V and edge set E is a forest if and only if the cellular boundary
map ∂ : ZE → ZV is injective. We again use derivations to construct a left inverse to ∂. As
usual, we identify elements of M1, M2 and W with their images in L (abusing notation).

Define ϕ1 : M1 → ZE ⊲⊳ L by ϕ1(m1) = (0,m1); this is clearly a homomorphism. Next define
ϕ2 : M2 → ZE ⊲⊳ L by ϕ2(m2) = ([1,m2]W−[m2, 1]W ,m2). Note thatm2 7→ [1,m2]W−[m2, 1]W
is the inner derivation of the ZM2-bimodule ZE associated to the element −[1, 1]W and hence
ϕ2 is a homomorphism. If w ∈ W , then

ϕ2f2(w) = ([1, w]W − [w, 1]W , w) = (0, w) = ϕ1f1(w)

as [1, w]W = [w, 1]W for w ∈ W . Therefore, there is a homomorphism ϕ : L → ZE ⊲⊳ L
extending ϕ1, ϕ2, which is a splitting of the projection by construction. Thus ϕ(x) = (d(x), x)
for some derivation d : L → ZE satisfying d(m1) = 0 for m1 ∈ M1 and d(m2) = [1,m2]W −
[m2, 1]W for m2 ∈ M2.

We now define β : ZV → ZE by β([x, y]M1
) = d(x)y and β([x, y]M2

) = d(x)y + [x, y]W . To
show that this is well defined, we need that if m1 ∈ M1, then [xm1, y]M1

and [x,m1y]M1
are

sent to the same element and if m2 ∈ M2, then [xm2, y]M2
and [x,m2y]M2

are sent to the same
element. But d(xm1)y = xd(m1)y+d(x)m1y = d(x)m1y because d(m1) = 0. Also, we compute

d(xm2)y + [xm2, y]W = xd(m2)y + d(x)m2y + [xm2, y]W

= x([1,m2]W − [m2, 1]W )y + d(x)m2y + [xm2, y]W

= d(x)m2y + [x,m2y]W .

We then obtain

β∂([x, y]W ) = β([x, y]M2
)− β([x, y]M1

) = d(x)y + [x, y]W − d(x)y = [x, y]W .

Thus β∂ = 1ZE and hence ∂ is injective. This completes the proof that T is a forest. �

We call T the Bass–Serre forest of the pushout. Since H0(T ) ∼= Zπ0(T ) ∼= ZL as an L×Lop-
bimodule (by Lemma 4.20), Lemma 4.21 has the following reinterpretation.

Corollary 4.22. There is an exact sequence of L× Lop-modules

0 −→ ZL⊗ZW ZL −→ (ZL⊗ZM1
ZL)⊕ (ZL⊗ZM2

ZL) −→ ZL −→ 0

where L = M1 ∗W M2 is the pushout.

Proof. This follows by consideration of the cellular chain complex of the forest T and using that
ZV/∂ZE = H0(T ) ∼= ZL, as observed before the corollary. �

Theorem 4.23. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as both
left and right W -sets. If M1,M2 are of type bi-Fn and W is of type bi-Fn−1, then M1 ∗W M2 is
of type bi-Fn.
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Proof. Let Xi be a bi-equivariant classifying space for Mi with Mi ×Mop
i -finite n-skeleton, for

i = 1, 2, and Y a bi-equivariant classifying space for W with W ×W op-finite (n − 1)-skeleton.
Fix bi-equivariant isomorphisms ri : Mi → π0(Xi) and r : W → π0(Y ). By [25, Lemma 7.1]
and the cellular approximation theorem [25, Theorem 2.8], we can find W ×W op-equivariant
cellular mappings fi : Y → Xi, for i = 1, 2, such that the composition of r with the composition
of the mapping induced by fi with r−1

i is the inclusion, for i = 1, 2. Let L = M1 ∗W M2. By
McDuff [49], L is a free as both a left and a right Mi-set, for i = 1, 2, and as a left and right
W -set.

For i = 1, 2, X ′
i = L⊗Mi

Xi⊗Mi
L ∼= (L×Lop)⊗L×LopXi (the isomorphism by Proposition 4.17)

is a projective L× Lop-CW complex with L× Lop-finite n-skeleton and Y ′ = L⊗W Y ⊗W L ∼=
(L × Lop) ⊗L×Lop Y is a projective L × Lop-CW complex with L × Lop-finite (n − 1)-skeleton
by Proposition 2.1. Let Fi : Y

′ → X ′
i be the mapping induced by fi, for i = 1, 2, and let Z

be the homotopy pushout of F1, F2; it is a projective L × Lop-CW complex. We claim that
Z is a bi-equivariant classifying space for L. Note that Z has an L × Lop-finite n-skeleton by
construction.

Our goal is to show that Z is homotopy equivalent to the Bass–Serre forest T via an L×Lop-
equivariant homotopy equivalence. By [25, Proposition 3.4] and Proposition 4.16 we have that
π0(X

′
i)

∼= L⊗Mi
M ⊗Mi

L ∼= L⊗Mi
L, for i = 1, 2, and π0(Y

′) ∼= L⊗W W ⊗W L ∼= L⊗W L and,
moreover, Fi induces the natural mapping L⊗W L → L⊗Mi

L, for i = 1, 2 (by construction).
Thus, by Lemma 4.4, it suffices to show that the projections X ′

i → π0(X
′
i), for i = 1, 2, and

Y ′ → π0(Y ) are homotopy equivalences.
Since L is free as a left and right Mi-set, for i = 1, 2, and as a left and right W -set, we have

by Proposition 4.19 that X ′
i
∼= L/Mi×Xi×Mi\L (for i = 1, 2) and Y ′ ∼= L/W ×Y ×W\L. As

X1,X2, Y are homotopy equivalent to their sets of path components via the canonical projection,
we deduce that the projections to path components are, indeed, homotopy equivalences for
X ′

1,X
′
2, Y

′. This completes the proof. �

The hypotheses of Theorem 4.23, of course, hold ifW is trivial. It also holds if we amalgamate
two copies of N along cyclic submonoids. So N ∗kN=mN N is of type bi-F∞ for any m,k > 0.

Corollary 4.24. A free product M ∗N of monoids of type bi-Fn is of type bi-Fn. If M,N are
finitely presented monoids, then M ∗ N is of type bi-FPn if and only if M and N both are of
type bi-FPn.

Proof. The first statement follows from Theorem 4.23. The second follows from the equivalence
of bi-Fn and bi-FPn for finitely presented monoids and the result of Pride [53] that the class of
monoids of type bi-FPn is closed under retracts. �

The hypotheses of Theorem 4.23 also hold if M1,M2 are cancellative and W is a group. The
homotopy pushout construction in the proof of Theroem 4.23 yields the following theorem.

Theorem 4.25. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as left
and right W -sets. Suppose that di is the geometric dimension of Mi, for i = 1, 2 and d is the
geometric dimension of W . Then the geometric dimension of M1 ∗W M2 is bounded above by
max{d1, d2, d+ 1}.

Since only the trivial monoid has geometric dimension 0, we obtain the following special case.

Corollary 4.26. Let M and N be monoids of geometric dimension at most n. Then M ∗ N
has geometric dimension at most n.

Next we wish to consider the homological analogue.

Proposition 4.27. Suppose that A is a flat right ZM -module and B is a flat left ZM -module.
Then A⊗B is a flat right ZM ⊗ ZMop-module (with respect to the structure (a⊗ b)(m,m′) =
am⊗m′b).
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Proof. If 0 −→ J −→ K −→ L −→ 0 is a short exact sequences of M -bimodules, then 0 −→
A⊗ZM J −→ A⊗ZM K −→ A⊗ZM L −→ 0 is exact by flatness of A. Therefore,

0 −→ A⊗ZM J ⊗ZM B −→ A⊗ZM K ⊗ZM B −→ A⊗ZM L⊗ZM B −→ 0

is exact by flatness of B. The result now follows by Remark 4.18. �

Theorem 4.28. Let [M1,M2;W ] be an amalgam of monoids such that ZL is flat as both a left
and right ZMi-module and ZW -module, for i = 1, 2, where L = M1 ∗W M2. If M1,M2 are of
type bi-FPn and W is of type bi-FPn−1, then M1 ∗W M2 is of type bi-FPn.

Proof. Note that Z[L× Lop] ∼= ZL⊗ ZLop is a flat right Z[Mi ×Mop
i ]-module, for i = 1, 2, and

a flat right-Z[W × W op]-module by Proposition 4.27. By Lemma 2.5 and the hypotheses, we
deduce that Z[L×Lop]⊗Z[Mi×M

op
i ]ZMi is of type FPn, for i = 1, 2, and Z[L×Lop]⊗Z[W×W op]ZW

is of type FPn−1. The result now follows by applying Corollary 2.4 to the exact sequence in
Corollary 4.22, in light of Proposition 4.16 and Proposition 4.17. �

Theorem 4.29. Suppose that [M1,M2;W ] is an amalgam of monoids such that Mi has Hochschild
cohomological dimension at most d, for i = 1, 2, W has Hochschild cohomological dimension at
most d − 1, and ZL is flat as both a left and right ZMi-module and ZW -module, for i = 1, 2,
where L = M1 ∗W M2. Then M1 ∗W M2 has Hochschild cohomological dimension at most d.

As with the one-sided results, combining these results with results of McDuff [49] gives the
following corollaries.

Corollary 4.30. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as both
left and right W -sets. If M1,M2 are of type bi-FPn and W is of type bi-FPn−1, then M1 ∗W M2

is of type bi-FPn. This applies, in particular, to free products.

Corollary 4.31. Let [M1,M2;W ] be an amalgam of monoids such that M1,M2 are free as left
and right W -sets. Suppose that di is the Hochschild cohomological dimension of Mi, for i = 1, 2
and d is the Hochschild cohomological dimension of W . Then the Hochschild cohomological
dimension of M1 ∗W M2 is bounded above by max{d1, d2, d+ 1}.

We remark that the results of this section and the previous section have analogues for the
amalgamation of a finite family of monoids over a common submonoid.

5. HNN extensions

In this section we shall present several new theorems about the behaviour of homological
and topological finiteness properties for HNN extensions of monoids. Several natural HNN
extension definitions for monoids have arisen in the literature in different contexts.

First in this section we consider a generalization of a construction of Otto and Pride, which
they used to distinguish finite derivation type from finite homological type [54]. Let M be a
monoid, A a submonoid and ϕ : A → M a homomorphism. The free monoid generated by a set
A is denoted by A∗. Then the Otto-Pride extension of M with base monoid A is the quotient
L of the free product M ∗ {t}∗ by the smallest congruence such that at = tϕ(a) for a ∈ A, i.e.,
L = 〈M, t | at = tϕ(a), a ∈ A〉. For example, if A = M and ϕ is the trivial homomorphism,
then the Otto-Pride extension is the monoid M ∪M where M is an adjoined set of right zeroes
in bijection with M . Otto and Pride have considered Otto-Pride extensions of groups where ϕ
is injective, in [54] and [55].

5.1. The one-sided case. The following model for L will be useful for constructing normal
forms and for proving flatness results.

Proposition 5.1. View M as a right A-set via right multiplication and as a left A-set via the
action a ⊙ m = ϕ(a)m for a ∈ A. Then L is isomorphic to the monoid with underlying set
R =

∐∞
i=0Ri, where R0 = M and Ri+1 = Ri ⊗A M , and with multiplication defined by

(m1 ⊗ · · · ⊗mk)(m
′
1 ⊗ · · · ⊗m′

ℓ) = m1 ⊗ · · · ⊗mk−1 ⊗mkm
′
1 ⊗m′

2 ⊗ · · · ⊗m′
ℓ.
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In particular, M and t∗ embed in L (where t is identified with 1⊗ 1 ∈ R1).

Proof. It is a straightforward exercise to verify that R is a monoid with identity 1 ∈ R0 = M .
Define f : M ∪ {t} → R by f(m) = m and f(t) = 1 ⊗ 1. Then if a ∈ A, we have that
f(a)f(t) = a⊗ 1 = 1⊗ϕ(a) = f(t)f(ϕ(a)) and so f induces a homomorphism f : L → R. Note
that f is surjective. Indeed, R0 is in the image of f by construction. Assume that Ri is in
the image of f and let m1 ⊗ · · · ⊗ mi+1 ∈ Ri. If f(x) = m1 ⊗ · · · ⊗ mi (by induction), then
f(xtmi+1) = m1⊗· · ·⊗mi⊗mi+1. Now define g : R → L by g(m1⊗· · ·⊗mi) = m1tm2t · · · tmi.
It is easy to verify that this is well defined using the defining relations of L and trivially g is a
homomorphism. Now gf(m) = m for m ∈ M and gf(t) = g(1 ⊗ 1) = t. Therefore, gf = 1L
and so f is injective. This concludes the proof that f is an isomorphism. �

As a corollary, we can deduce a normal form theorem for L if M is free as a right A-set.

Corollary 5.2. Let ϕ : A → M be a homomorphism with A a submonoid of M . Let L = 〈M, t |
at = tϕ(a), a ∈ A〉 be the Otto-Pride extension. Suppose that M is a free right A-set with basis
C containing 1. Then every element of M can be uniquely written in the form c0tc1 · · · tcka
with k ≥ 0, ci ∈ C and a ∈ A. Consequently, L is free both as a right M -set and a right A-set.

Proof. Since M is free as a right A-set on C, retaining the notation of Proposition 5.1, we
have that Ri

∼= Ci+1 ×A via the mapping (c0, . . . , ci, a) 7→ c0 ⊗ c1 ⊗ · · · ⊗ cia. Composing this
mapping with the isomorphism g in the proof of Proposition 5.1 provides the desired normal
form. Clearly, L is a free right M -set on the normal forms with ck = 1 = a and L is a free right
A-set on the normal forms with a = 1. This completes the proof. �

Note that if M is left cancellative and A is a group, then M is a free right A-set.

Corollary 5.3. Let M be a monoid, A a submonoid and ϕ : A → M be a homomorphism. Let
L = 〈M, t | at = tϕ(a), a ∈ A〉 be the Otto-Pride extension. Suppose that ZM is flat as a right
ZA-module. Then ZL is flat both as a right ZM -module and a right ZA-module.

Proof. Put V0 = ZM and Vi+1 = Vi ⊗ZA ZM . Then by Proposition 5.1, we have that as a right
ZM -module, ZL ∼=

⊕
i≥0 Vi so it suffices to show that Vi is flat as both a right ZM -module

and a right ZA-module. We prove this by induction. As V0 is a free right ZM -module and a
flat ZA-module, by assumption, this case is handled. Assume that Vi is flat both as a right
ZM -module and a right ZA-module. Let h : U → W be an injective homomorphism of ZM -
modules (respectively, ZA-modules). Then the induced mapping ZM ⊗ZM U → ZM ⊗ZM W
(respectively, ZM ⊗ZA U → ZM ⊗ZA W ) is injective since ZM is flat as a right module over
both ZM and ZA. Then tensoring these injective mappings on the left with Vi over ZA results
in an injective mapping by flatness of Vi. Thus we see that Vi+1 is flat as a right ZM -module
and as a right ZA-module. �

We now construct a Bass–Serre tree for Otto-Pride extensions. Again fix a monoid M
together with a homomorphism ϕ : A → M from a submonoid A and let L be the Otto-Pride
extension. We define a graph T with vertex set V = L/M and edge set E = L/A. An edge [x]A
connects [x]M to [xt]M (oriented in this way), where [x]K denotes the class of x in L/K. This
is well defined because if a ∈ A, then [xa]M = [x]M and [xat]M = [xtϕ(a)]M = [xt]M . Clearly,
the left action of L is by cellular mappings sending edges to edges and so T is an L-graph. We
aim to prove that T is a tree.

Lemma 5.4. The graph T is connected.

Proof. The monoid L is generated by M ∪ {t}. The length of an element x is its shortest
expression as a product in these generators. We prove by induction on length that there is
a path from [1]M to [x]M . If x = 1, there is nothing to prove. Assume that x = yz with
y ∈ M ∪ {t} and z of length one shorter. Let p be a path from [1]M to [z]M . Then yp is a
path from [y]M to [x]M . If y ∈ M , then [y]M = [1]M and we are done. If y = t, then since [1]A
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connects [1]M with [t]M = [y]M and so we are done in this case, as well. It follows that T is
connected. �

Next we use derivations to prove that T is a tree.

Lemma 5.5. The graph T is a tree.

Proof. We prove that ∂ : ZE → ZV is injective. It will then follows that T is a tree as it was
already shown to be connected in Lemma 5.4. Define γ : M ∪ {t} → ZE ⋊ L by γ(m) = (0,m)
for m ∈ M and γ(t) = ([1]A, t). Then if a ∈ A, we have that γ(a)γ(t) = (0, a)([1]A, t) =
([a]A, at) = ([1]A, tϕ(a)) = ([1]A, t)(0, ϕ(a)) = γ(t)γ(ϕ(a)). Therefore, γ extends to a homo-
morphism γ : L → ZE ⋊ L splitting the semidirect product. Thus γ(x) = (d(x), x) for some
derivation d : L → ZE with d(m) = 0 for m ∈ M and d(t) = [1]A.

Define β : ZV → ZE by β([x]M ) = d(x). This is well defined because if m ∈ M , then
d(xm) = xd(m) + d(x) = d(x) as d(m) = 0. Now we compute that β∂([x]A) = β([xt]M ) −
β([x]M ) = d(xt)− d(x) = xd(t) + d(x) − d(x) = x[1]A = [x]A. Therefore, β∂ = 1ZE and hence
∂ is injective. We conclude that T is a tree. �

We call T the Bass–Serre tree of the extension. Lemma 5.5 can be restated in terms of exact
sequences using that Z[L/K] ∼= ZL⊗ZK Z for K = M,A.

Corollary 5.6. There is an exact sequence

0 −→ ZL⊗ZA Z −→ ZL⊗ZM Z −→ Z −→ 0

of left ZL-modules.

The analogue of the homotopy pushout that we shall need in this context is the homotopy
coequalizer. If f, g : Y → X are continuous mappings, then the homotopy coequalizer M(f, g) is
the space obtained by gluing Y ×I to X via the mapping h : Y ×∂I → X given by h(y, 0) = f(y)
and h(y, 1) = g(y). If X and Y are CW complexes and f, g are cellular, then M(f, g) is a CW
complex. If X,Y are projective M -CW complexes and f, g are M -equivariant and cellular,
then M(f, g) is a projective M -CW complex by [25, Lemma 2.1]. Moreover, if X has M -finite
n-skeleton and Y has M -finite (n− 1)-skeleton, then M(f, g) has M -finite n-skeleton.

Homotopy coequalizers like homotopy pushouts, are examples of homotopy colimits. If
f ′, g′ : Y ′ → X ′ are continuous mappings and r : Y → Y ′ and s : X → X ′ are continuous
such that

Y X

Y ′ X ′

f

g
r s

f ′

g′

commutes, then there is an induced continuous mapping t : M(f, g) → M(f ′, g′) (which will be
M -equivariant if all spaces are M -spaces and all maps are M -equivariant). Moreover, if r, s
are homotopy equivalences, then so is t; see [21, page 19]. For example, the graph T is the
homotopy coequalizer of i, j : L/A → L/M given by i([x]A) = [x]A and j([x]A) = [xt]A (where
these sets are viewed as discrete spaces).

Theorem 5.7. Let M be a monoid, A a submonoid and ϕ : A → M be a homomorphism. Let
L = 〈M, t | at = tϕ(a), a ∈ A〉 be the Otto-Pride extension. Suppose that M is free as a right
A-set. If M is of type left-Fn and A is of type left-Fn−1, then L is of type left-Fn.

Proof. Let X be an equivariant classifying space for M with M -finite n-skeleton and let Y be
an equivariant classifying space for A with A-finite (n − 1)-skeleton. Using [25, Lemma 6.2]
and the cellular approximation theorem [25, Theorem 2.8], we can find continuous cellular
mappings f, g : Y → X such that f(ay) = af(y) and g(ay) = ϕ(a)g(y) for all a ∈ A and
y ∈ Y . To construct g, we view X as an A-space via the action a⊙ x = ϕ(a)x for a ∈ A. Let
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X ′ = L⊗M X and Y ′ = L⊗A Y . These are projective L-CW complexes by Proposition 2.1 and
X ′ has L-finite n-skeleton, Y ′ has L-finite (n− 1)-skeleton.

Let F : Y ′ → X ′ be the mapping induced by f and defineG : Y ′ → X ′ by G(u⊗y) = ut⊗g(y).
The latter is well defined since if a ∈ A, then uat ⊗ g(y) = utϕ(a) ⊗ g(y) = ut ⊗ ϕ(a)g(y) =
ut ⊗ g(ay). Clearly, G is L-equivariant, continuous and cellular. Let Z = M(F,G) be the
homotopy coequalizer. Then Z is a projective L-CW complex with L-finite n-skeleton. We aim
to show that Z is homotopy equivalent to T and hence contractible.

By [25, Proposition 3.4] we have that π0(Y
′) ∼= L ⊗A π0(Y ) ∼= L/A and π0(X

′) ∼= L ⊗M

π0(X) ∼= L/M as X,Y are connected. By construction F and G induce the mappings [u]A 7→
[u]M and [u]A 7→ [ut]M , respectively, on path components under these identifications. As the
tree T is the homotopy coequalizer of these two mappings, it suffices to show that the projections
X ′ → π0(X

′) and Y ′ → π0(Y
′) are homotopy equivalences. Then Z will be homotopy equivalent

to T .
Since L is free as a right M -set and as a right A-set, we have that X ′ ∼= L/M × X and

Y ′ ∼= L/A × Y as L-CW complexes. As X and Y are contractible and L/M and L/A are
discrete, we deduce that the projections to connected components are homotopy equivalences
in both cases. This completes the proof. �

The proof of Theorem 5.7 can be used to show that if M is free as a right A-set, M has
left geometric dimension d and A has left geometric dimension d′, then L has left geometric
dimension at most max{d, d′+1}. The hypothesis of Theorem 5.7 applies ifM is left cancellative
and A is a group or if M = N and A is a cyclic submonoid.

Next we prove the homological analogue of Theorem 5.7 under the weaker assumption of
flatness.

Theorem 5.8. Let M be a monoid and let ϕ : A → M be a homomorphism from a submonoid
A of M . Let L = 〈M, t | at = tϕ(a), a ∈ A〉 be the Otto-Pride extension. Suppose that ZM is
flat as a right ZA-module. If M is of type left-FPn and A is of type left-FPn−1, then L is of
type left-FPn.

Proof. By Corollary 5.3, ZL is flat as a right ZM -module and as a right ZA-module. It follows
from Lemma 2.5 and the hypotheses that ZL⊗ZM Z is of type FPn and ZL ⊗ZA Z is of type
FPn−1. The result now follows by applying Corollary 2.4 to the exact sequence in Corollary 5.6.

�

One can prove similarly the following theorem.

Theorem 5.9. Let M be a monoid and ϕ : A → M a homomorphism from a submonoid A
of M . Let L = 〈M, t | at = tϕ(a), a ∈ A〉 be the Otto-Pride extension. Suppose that ZM is
flat as a right ZA-module. If M has left cohomological dimension at most d and A has left
cohomological dimension at most d− 1, then L has left cohomological dimension at most d.

5.2. The two-sided case. It turns out that in the two-sided setting we shall need to consider
Otto-Pride extensions corresponding to injective monoid homomorphisms ϕ : A → M from a
submonoid A of M in order to make the construction left-right dual. Putting B = ϕ(A), we
have that B is isomorphic to A. Otto and Pride considered the special case when M and A are
groups (and hence so is B). We shall call an Otto-Pride extension HNN-like if ϕ is injective. Let
L be the Otto-Pride extension. It is straightforward to check L = 〈M, t | tb = ϕ−1(b)t, b ∈ B〉
and hence left/right duals of Proposition 5.1 and Corollary 5.2 are valid with B in the role of A
and using left sets instead of right sets. Note that an HNN-like Otto-Pride extension of groups,
which is the case considered by Otto and Pride, embeds as a submonoid of the corresponding
group HNN extension (note that the Otto-Pride extension does not contain t−1 and hence is
a monoid, not a group). Our results give geometric proofs of a number of the results of [54]
and [55].
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In what follows, we shall always view L as a right A-set via left multiplication and as a left
A-set via a⊙ x = ϕ(a)x. Therefore, we view L× Lop as a right A× Aop-set via (x, y)(a, a′) =
(xa, ϕ(a′)y).

Proposition 5.10. There is an isomorphism

L⊗A L ∼= L⊗A A⊗A L ∼= (L× Lop)⊗A×Aop A

of left L× Lop-sets.

Proof. The first isomorphism is given by x ⊗ y 7→ x ⊗ 1 ⊗ y with inverse x ⊗ a ⊗ y 7→ xa ⊗ y
(the reader should check that these are well defined and equivariant). The second isomorphism
sends x ⊗ a ⊗ y to (x, y) ⊗ a with inverse mapping (x, y) ⊗ a to x⊗ a⊗ y. The reader should
again check that this is well defined and equivariant. �

We now associate a Bass–Serre forest T to an HNN-like Otto-pride extension. The vertex set
of T is V = L⊗M L and the edge set is E = L⊗AL. Again, we write [x, y]K for the tensor x⊗y
of L ⊗K L, for K = M,A. With this notation, the edge [x, y]A connects [x, ty]M to [xt, y]M
(which we think of as oriented in this way). To check that this is well defined, observe that if
x, y ∈ L and a ∈ A, then [xa, y]A = [x, ϕ(a)y]A and [xa, ty]M = [x, aty]M = [x, tϕ(a)y]M and
[xat, y]M = [xtϕ(a), y]M = [xt, ϕ(a)y]M . By construction, T is an L× Lop-graph.

It is immediate from the definition of the incidences in T that the multiplication mapping
L⊗M L → L induces an L× Lop-equivariant surjection π0(T ) → L. We aim to show that it is
an isomorphism.

Lemma 5.11. The multiplication mapping L ⊗M L → L induces an L × Lop-equivariant iso-
morphism of π0(T ) with L.

Proof. We first prove by induction on the length of x as a product of elements of M ∪ {t} that
there is a path from [1, x]M to [x, 1]M . If x = 1 , there is nothing to prove. Otherwise, assume
x = uy with u ∈ M ∪{t} and y of shorter length. Let p be a path from [1, y]M to [y, 1]M . Then
up is a path from [u, y]M to [x, 1]M . If u ∈ M , then [u, y]M = [1, x]M and we are done. If u = t,
then [1, y]A is an edge connecting [1, x]M = [1, ty]M to [t, y]M = [u, y]M and so we are again
done.

Now if x = uv in L, then by the above, there is a path p from [1, u]M to [u, 1]M . Then pv is
a path from [1, x]M to [u, v]M . If follows that all vertices [u′, v′]M with u′v′ = x are in a single
connected component and hence the multiplication map induces an isomorphism from π0(T ) to
L. �

Next we use derivations to prove that T is a forest.

Lemma 5.12. The graph T is a forest.

Proof. It suffices to prove that the cellular boundary map ∂ : ZE → ZV is injective. Define
a mapping γ : M ∪ {t} → ZE ⊲⊳ L by γ(m) = (0,m) for m ∈ M and γ(t) = ([1, 1]A, t). If
a ∈ A, then we compute γ(a)γ(t) = ([a, 1]A, at) = ([1, ϕ(a)]A, tϕ(a)) = γ(t)γ(ϕ(a)) and hence
γ extends to a homomorphism γ : L → ZE ⊲⊳ L splitting the two-sided semidirect product
projection. Thus γ(x) = (d(x), x) for some derivation d : L → ZE such that d(m) = 0 for
m ∈ M and d(t) = [1, 1]A. Define β : ZV → ZE by β([x, y]M ) = d(x)y. We must verify that
β is well defined. If m ∈ M , then d(xm)y = xd(m)y + d(x)my = d(x)my because d(m) = 0.
This shows that β is well defined. Next we compute that

β∂([x, y]A) = β([xt, y]M )− β([x, ty]M ) = d(xt)y − d(x)ty

= xd(t)y + d(x)ty − d(x)ty = x[1, 1]Ay = [x, y]A

as d(t) = [1, 1]A. This establishes that β∂ = 1ZE and hence T is a forest. �



TOPOLOGICAL FINITENESS PROPERTIES 33

We call T the Bass–Serre forest for L.
The exactness of the sequence

0 −→ ZE −→ ZV −→ H0(T ) −→ 0,

coming from T being a forest, together with the isomorphism ZL ∼= Zπ0(L) ∼= H0(T ) coming
from Lemma 5.11, yields the following exact sequence.

Corollary 5.13. Let L be the HNN-like Otto-Pride extension associated to a monomorphism
ϕ : A → M with A a submonoid of M . Then there is an exact sequence

0 −→ ZL⊗ZA ZL −→ ZL⊗ZM ZL −→ ZL −→ 0

where ZL is viewed as a right ZA-module via the inclusion and as a left ZA-module via ϕ.

Suppose that we have an HNN-like Otto-Pride extension L with base monoid A and monomor-
phism ϕ : A → M . Put B = ϕ(A).

Proposition 5.14. If M is free as a right A-set and as a left B-set, then L is free as both a
right and a left M -set. Moreover, L is free as a right A-set and a left B-set. Hence L is free
as a left A-set via the action a⊙ x = ϕ(a)x for a ∈ A and x ∈ L.

Proof. This follows from Corollary 5.2 and its dual. �

The flat version is the following.

Proposition 5.15. If ZM is a flat right ZA-module and a flat left ZB-module, then ZL is flat
as both a right and a left ZM -module. Furthermore, ZL is flat as a right ZA-module and a left
ZB-module. Thus ZL is flat as a left ZA-module via the ZA-module structure coming from ϕ.

Proof. This follows from Corollary 5.3 and its dual. �

We can now investigate the two-sided topological and homological finiteness of HNN-like
Otto-Pride extensions. The following theorem generalises [54, Theorem 1] and [55, Theorem 5].

Theorem 5.16. Let L be an HNN-like Otto-Pride extension of M with respect to an injective
homomorphism ϕ : A → M and put B = ϕ(A). Suppose that M is free as a right A-set and as
a left B-set. Then if M is of type bi-Fn and A is of type bi-Fn−1, then L is of type bi-Fn.

Proof. Let X be a bi-equivariant classifying space for M with M -finite n-skeleton and Y a
bi-equivariant classifying space for A with A-finite (n − 1)-skeleton. Let r : M → π0(X) and
r′ : A → π0(Y ) be equivariant isomorphisms. By [25, Lemma 7.1] and the cellular approximation
theorem [25, Theorem 2.8], we can find cellular mappings f1, f2 : Y → X such that f1(aya

′) =
af1(y)a

′ and f2(aya
′) = ϕ(a)f2(y)ϕ(a

′) for a, a′ ∈ A and y ∈ Y and, moreover, r−1(f1)∗r
′ is the

inclusion and r−1(f2)∗r
′ = ϕ where (fi)∗ is the induced mapping on the set of path components,

for i = 1, 2.
In what follows, we view L as a (free) right A-set via the inclusion and a (free) left A-set via ϕ.

Put X ′ = L⊗MX⊗ML and Y ′ = L⊗AY ⊗AL. They are projective L×Lop-CW complexes with
L×Lop-finite n-, (n−1)-skeletons, respectively, by Proposition 2.1 and 4.17. Define F1, F2 : Y

′ →
X ′ by F1(u⊗y⊗v) = u⊗f1(y)⊗tv and F2(u⊗y⊗v) = ut⊗f2(y)⊗v. Let us verify that this is well
defined. If a, a′ ∈ A, then we have that ua⊗f1(y)⊗tϕ(a′)v = ua⊗f1(y)⊗a′tv = u⊗f1(aya

′)⊗tv
and so F1 is well defined. Also, we have that uat⊗ f2(y)⊗ ϕ(a′)v = utϕ(a)⊗ f2(y)⊗ ϕ(a′)v =
ut⊗ϕ(a)f2(y)ϕ(a

′)⊗v = ut⊗f2(aya
′)⊗v and so F2 is well defined. Clearly, F1, F2 are continuous

L× Lop-equivariant cellular mappings. Let Z = M(F1, F2) be the homotopy coequalizer. It a
projective L×Lop-CW complex with L×Lop-finite n-skeleton by construction. We prove that
Z is a bi-equivariant classifying space for Z. To do this it suffices to construct an L × Lop-
equivariant homotopy equivalence to the Bass–Serre forest T .

First note, by [25, Proposition 3.4], that π0(X
′) ∼= L ⊗M M ⊗M L ∼= L ⊗M L (by Propo-

sition 4.16) and π0(Y
′) ∼= L ⊗A A ⊗A L ∼= L ⊗A L (by Proposition 5.10). The mapping

L ⊗A L → L ⊗M L induced by F1 is u ⊗ v 7→ u ⊗ tv and the mapping induced by F2 is
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u ⊗ v 7→ ut ⊗ v. As T is the homotopy coequalizer of these two mappings of discrete sets
L ⊗A L → L ⊗M L, to complete the proof it suffices to show that X ′ and Y ′ are homotopy
equivalent to their sets of path components (via the natural projections). But this follows be-
cause X and Y are homotopy equivalent to their respective sets of path components and the
isomorphisms X ′ ∼= L/M ×X ×M\L and Y ′ ∼= L/A × Y × B\L coming from L being free as
both a left and right M -set and as a right A-set and left B-set (cf. Proposition 5.14). �

The hypotheses of Theorem 5.16 hold if M and A are groups or, more generally, if M is
cancellative and A is a group. It also holds if M = N and A is a cyclic submonoid. The proof
of Theorem 5.16 shows that if M is free as a right A-set and a left B-set, M has geomet-
ric dimension d and A has geometric dimension d′, then L has geometric dimension at most
max{d, d′ + 1}.

The flat homological analogue of Theorem 5.16 has a similar proof.

Theorem 5.17. Let L be an HNN-like Otto-Pride extension of M with respect to a monomor-
phism ϕ : A → M and put B = ϕ(A). Assume that ZM is flat as a right ZA-module and as a
left ZB-module. If M is of type bi-FPn and A is of type bi-FPn−1, then L is of type bi-FPn.

Proof. We have that ZL is flat as both a right and a left ZA-module and as a right and a
left ZM -module by Proposition 5.15 (viewing L as a left A-module via ϕ). Therefore, Z[L ×
Lop] ∼= ZL ⊗ ZLop is flat as both a right Z[M × Mop]-module and as a right-Z[A × Aop]-
module by Proposition 4.27. Applying Lemma 2.5 and the hypotheses, we conclude that Z[L×
Lop]⊗Z[M×Mop]ZM is of type FPn and Z[L×Lop]⊗Z[A×Aop]ZA is of type FPn−1. The result now
follows by applying Corollary 2.4 to the exact sequence in Corollary 5.13, taking into account
Proposition 4.16, Proposition 4.17 and Proposition 5.10,. �

As an example, if M is any group containing a copy of Z and A = N, viewed as a submonoid
of M , then since ZM is free as a module over the group ring of Z, which in turn is flat over the
monoid ring of N, being a localization, we conclude that ZM is flat over the monoid ring of N.

One can similarly prove that if L is an HNN-like Otto-Pride extension of M with respect to a
monomorphism ϕ : A → M and ZM is flat as a right ZA-module and as a left ZB-module, where
B = ϕ(A), then if M has Hochschild cohomological dimension at most d and A has Hochschild
cohomological dimension at most d−1, then L has Hochschild cohomological dimension at most
d.

We end this section by briefly explaining what happens for a different HNN extensions of
monoids construction of the sort considered by Howie [32]. Suppose that M is a monoid and
A,B are isomorphic submonoids via an isomorphism ϕ : A → B. Let C be an infinite cyclic
group generated by t. The HNN extension of M with base monoids A,B is the quotient L of
the free product M ∗ C by the congruence generated by the relations at = tϕ(a) for a ∈ A.
In other words, L = 〈M, t, t−1 | tt−1 = 1 = t−1t, at = tϕ(a),∀a ∈ A〉. The following results
may be proved in a similar way to Theorems 5.7 and Theorem 5.16, respectively, using suitably
modified definition of Bass-–Serre tree, and Bass-Serre forest, for these contexts.

Theorem 5.18. Let L be an HNN extension of M with base monoids A,B. Suppose that,
furthermore, M is free as both a right A-set and a right B-set. If M is of type left-Fn and A is
of type left-Fn−1, then L is of type left-Fn.

Theorem 5.19. Let L be an HNN extension of M with base monoids A,B. Suppose that,
furthermore, M is free as both a right and a left A-set (via the inclusion) and as a right and a
left B-set. If M is of type left-Fn and A is of type bi-Fn−1, then L is of type bi-Fn.

Theorem 5.18 recovers the usual topological finiteness result for HNN extensions of groups.
It also applies if M is left cancellative and A is a group. The analogue of Theorem 5.18 for left
geometric dimensions states that if M is free as both a right A-set and a right B-set, M has
left geometric dimension at most d and A has geometric dimension at most d − 1, then L has
geometric dimension at most d. Theorem 5.19 applies if M is cancellative and A is a group.
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Similarly, if M is free as both a right and a left A-set and as a right and a left B-set, then if
M has geometric dimension at most d and A has geometric dimension at most d − 1, then L
has geometric dimension at most d.
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