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Quantum Annealed Criticality
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Experimentally there exist many materials with first-order phase transitions at finite temperature
that display quantum criticality. Classically, a strain-energy density coupling is known to drive first-
order transitions in compressible systems, and here we generalize this Larkin-Pikin[1] mechanism to
the quantum case. We show that if the T" = 0 system lies above its upper critical dimension, the line
of first-order transitions can end in a quantum annealed critical point where zero-point fluctuations
restore the underlying criticality of the order parameter.

The interplay of first-order phase transitions with
quantum fluctuations is an active area [2-9] in the study
of exotic quantum states near zero-temperature phase
transitions [10-14]. In many metallic quantum ferro-
magnets, coupling of the magnetization to low energy
particle-hole excitations transforms a high temperature
continuous phase transition into a low temperature dis-
continuous one, and the resulting classical tricritical
points have been observed in many systems [2-9]. Exper-
imentally there also exist insulating materials that have
classical first-order transitions that display quantum crit-
icality [15-19], and here we provide a theoretical basis for
this observed behavior.

At a first-order transition the quartic mode-mode cou-
pling of the effective action becomes negative. One mech-
anism for this phenomenon, studied by Larkin and Pikin
[1] (LP), involves the interaction of strain with a fluctu-
ating critical order parameter. LP found that a diverging
specific heat in the clamped system of fixed dimensions
leads to a first-order transition in the unclamped system
at constant pressure. Specifically, the Larkin-Pikin crite-
rion [1, 20] for a first order phase transition is
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where V is the volume, ACYy is the singular part of
the specific heat capacity in the clamped system, T, is
the transition temperature and d”ffg, is its strain deriva-
tive. The effective bulk modulus « is defined as x~!
K™™' — (K + 34)~ where K and p are the bare bulk
and the shear moduli in the absence of coupling to the

order parameter fields; more physically x ~ K % where
¢y, and cp are the longitudinal and the transverse sound
velocities [21]. We note that shear strain plays a crucial
role in this approach that requires g > 0. Short-range
fluctuations in the atomic displacements renormalize the
quartic coupling of the critical modes, but it is the cou-
pling of the uniform (¢ = 0) strain to the energy density,
the modulus squared of the critical order parameter, that
results in a macroscopic instability of the critical point

leading to a discontinuous transition.
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FIG. 1. Proposed Temperature-Field-Pressure Phase Di-
agram with a sheet of first-order transitions bounded by
second-order phase lines linking the three critical points,
two classical and one quantum; Inset: Temperature-Pressure
“slice” indicating a line of classical phase transitions ending in
a “quantum annealed critical point” with the standard tem-
perature fan where the underlying order parameter criticality
is restored by zero-point fluctuations.

Here we rewrite the Larkin-Pikin criterion in terms
of correlation functions so that it can be generalized
to the quantum case. We show that if the T' = 0
quantum system lies above its upper critical dimension,
the corrections to the renormalized bulk modulus are
non-universal; the line of classical first-order transitions
can end in a “quantum annealed critical point” where
zero-point fluctuations restore the underlying criticality
of the order parameter. We end with a discussion of
the temperature-field-pressure phase diagram and spe-
cific measurements to probe it (cf. Fig. 1).

Low-temperature measurements on ferroelectric insu-
lators provide a key motivation for our study [15-19].
At finite temperatures and ambient pressure these ma-
terials often display first-order transitions due to strong
electromechanical coupling [22]; yet in many cases [15—



| their dielectric susceptibilities suggest the presence
of pressure-induced quantum criticality associated with
zero-temperature continuous transitions [15-19]. It is
thus natural to explore whether a quantum generalization
of the Larkin-Pikin approach [1], involving the coupling
of critical order parameter fluctuations to long wave-
length elastic degrees of freedom, can be developed to
describe this phenomenon.

In the simplest case of a scalar order parameter 1) and
isotropic elasticity, the Larkin-Pikin (LP) mechanism [23]
refers to a system where the order parameter (&) is
coupled to the volumetric strain with interaction energy
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is the atomic displacement, ey (z) = Trle(Z)] is the vol-
umetric strain and A is a coupling constant associated
with the strain-dependence of T, A = (). Though
the elastic degrees of freedom are assumed to be Gaus-
sian, and thus can be formally integrated out exactly,
this must be done with some care. This is because the
strain field separates into a uniform (¢ = 0) term defined
by boundary conditions and a finite-momentum (¢ # 0)
contribution determined by fluctuating atomic displace-
ments

) is the strain tensor, u (%)
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where {a,b} € [1,3] and u,(q) is the Fourier transform
of uy(x). Here we employ periodic boundary conditions
to a finite size system with volume V = L? and discrete
momenta ¢ = 2T’T(l, m,n), where [,m,n are integers.

The uniform strain vanishes when the crystal is exter-
nally clamped. The main effect of integrating out the
finite wavevector fluctuations in the strain is to induce
a finite correction to the short-range interactions of the
critical fluctuations that can be absorbed into the quar-
tic ¥* terms in the action. By contrast, fluctuations in
the uniform component of the strain induce an infinite-
range attractive interaction between the critical modes
(see Supplementary Materials), and it is this component
of the interactions that is responsible for driving first or-
der behavior. The problem is then reduced to the inter-
action of critical order parameter modes, mediated by the
fluctuations of a uniform strain field ¢ with bulk modulus
k (for details see Supplementary Materials). Conceptu-
ally, the Larkin-Pikin approach amounts to a study of
critical phenomena in a clamped system, followed by a
stability analysis of the critical point once the clamping
is removed.

Recently it was proposed to adapt the Larkin-Pikin ap-
proach to pressure(P)-tuned quantum magnets where it

is often found that ‘fg; — 00 as T, — 0; the authors

argued that the associated quantum phase transitions
should then be first-order [24-26]. However such a di-
verging coupling of the critical order parameter fluctua-
tions and the lattice should lead to structural instabilities
near the quantum phase transition that have not been ob-
served [9, 27]. Furthermore dynamics must be included
when treating thermodynamic quantities at zero temper-
ature [28, 29].

We recast the Larkin-Pikin criterion in the language
of correlation functions, generalizing the LP approach
to the quantum case summing over all possible space-
time configurations. The strain field again separates into
two contributions as in equation (3), one associated with
static uniform boundary conditions and the other deter-
mined by short wavelength displacements fluctuating at
all frequencies
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where qo = (¢,iv,) with a € [1,4], up(q) = up(q, ivy)
and v, = 2mnT is a Matsubara frequency (kg = 1). A
detailed analysis indicates that when these space-time
elastic degrees of freedom are integrated out, they lead
to the coupling of the quantum critical order parame-
ter modes to a classical strain field ¢, uniform in both
space and time, with the same effective bulk modulus
k as in the finite-temperature case (see Supplementary
Material). The resulting effective action takes the form
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where (Z,7) are the Euclidean space-time co-ordinates
and L[] is the Lagrangian of the order parameter ¢ (&, 7)

that undergoes a continuous transition in the clamped
system; in the simplest case L[] is a ¥* field theory
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The partition function of the unclamped system is then

Z[¢] = e BFl¢] — /D[w]efseff[w@]’ (7)

where the trace is over the internal variable ¢, and Z[¢]
to be evaluated at the stationary point F'[¢] = 0. The
renormalized bulk modulus, & = k — Ak, is
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where 0¢2(%,7) = (%, 7) — (»?). In the classical prob-
lem there is no time-dependence, and foﬁ dr - p=1/T
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FIG. 2. Diagrammatic approach to the generalized Larkin-
Pikin criterion a) Bare interaction is a sum of a local and a
nonlocal contribution mediated by fluctuations in the strain;
b) Feynman diagram showing renormalization of the strain
propagator by coupling to energy fluctuations.

so at the transition
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Ak in (9) is proportional to energy fluctuations, and can
be re-expressed as %ACV; we thus recover the LP cri-
terion (1) (k < Ak or & < 0) for a first-order transition.
We note that the renormalized quartic mode-mode cou-
pling coefficient associated with (23) changes sign con-
comitantly with the renormalized bulk modulus; the for-
mer has contributions from both the strain coupling and
from higher order parameter fluctuations [30].

The renormalized bulk modulus & can also be obtained
diagrammatically (cf. Figure 2). In the low-energy ef-
fective action, the quartic term now has a contribution
from the coupling of the order parameter fluctuations to
the effective uniform strain. We then can use a Dyson
equation for the strain propagator to determine 5. More
specifically we can write
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that results in
f=k— Ak =K—Axye (11)

where xy2 = xy2(¢, iu7,,)|qw _, 1s the static susceptibil-
ity for 12, where
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is the Fourier transform of the fluctuations in v? and
d = 3. The sign of & in (11) is determined by the infrared
behavior of Axk; if it diverges, as it does classically (for a
scalar order parameter and isotropic elasticity), then this
correction is universal and the transition is first order.

Another possibility is revealed in the zero-temperature
long-wavelength Gaussian approximation of (11). If we
make the Gaussian approximation (§v?(z)6%(0)) =~
({09 (2)0v(0)))?, then
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where x4 (g, iv), the order parameter susceptibility, is the
Fourier transform of the correlator (¢ (x)¥(0)). Since

dimensionally [x] = [q%} and [v] = [¢*], we find that

in the approach to the quantum phase transition
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so that the quantum corrections to s are non-singular for
d 4+ z > 4. The presence of quantum zero-point fluctua-
tions increases the effective dimensionality of the phase
space for order parameter fluctuations. If the effective di-
mensionality of the quantum system lies above its upper
critical dimensionality, this will have the effect of liber-
ating the quantum critical point from the inevitable in-
frared slavery experienced by its finite-temperature clas-
sical counterpart. In particular the correction to the
renormalized bulk modulus is then non-universal, allow-
ing for quantum annealed criticality where zero-point
fluctuations toughen the system against the macroscopic
instability present classically, restoring its underlying
continuous phase transition.

We have therefore identified a theoretical scenario
where there is a quantum continuous transition even
though all transitions at finite temperature are first-
order. Application of a field conjugate and paral-
lel/antiparallel to the order parameter in such a system
leads to a line of first-order transitions ending in two
classical critical points. Therefore by continuity there is
a surface of first-order phase transitions in the phase di-
agram (cf. Figure 1) connecting the three critical points,
one quantum and two classical, bounded by second-order
phase lines. This phase diagram then presents an alter-
native scenario of the interplay of discontinuous transi-
tions and fluctuations to that studied in metallic magnets
where applied field is needed to observe quantum criti-
cality in addition to the tuning parameter [9].

The specific heat exponent « plays a key role in the uni-
versality of the classical Larkin-Pikin criterion (1) since
the coupling of the order parameter to the lattice is a
strain-energy density. For the scalar (n = 1) case consid-
ered here, a > 0, so that Ak is singular and the finite-
temperature transition is always first-order; for d+z > 4,
there is a quantum annealed criticality but no quantum
tricritical point since the quartic mode-mode term in the
effective action jumps from negative to positive due to
the change of effective dimension.

For systems with multi-component order parameters
(n > 2), « is negative so the correction to the renormal-



ized bulk modulus will be nonuniversal even at finite tem-
peratures [20, 31, 32]. In this case, there can be a classi-
cal tricritical point at finite pressures with a second-order
transition that continues to zero temperature; this situ-
ation should be robust to everpresent disorder following
the Harris criterion [33]. By contrast everpresent elastic
anisotropy is known to destabilize criticality in the clas-
sical isotropic elastic scalar (n = 1) lattice and to drive it
first-order into an inhomogeneous state [20, 31, 32]; here
quantum annealed criticality may still be possible due to
the increase of effective dimensionality. The coupling of
domain dynamics to anistropic strain has been studied
classically for ferroelectrics [34], and implications for the
quantum case are a topic for future work.

Because of its underlying non-universal nature, the
possibility of pressure-tuned quantum annealed critical-
ity must be determined in specific setttings. Ferro-
electrics have a dynamical exponent z = 1, so such three-
dimensional materials are in their marginal dimension;
logarithmic corrections to the bulk modulus are certainly
present but they are not expected to be singular. In-
deed such contributions to the dielectric susceptibility, x,
in the approach to ferroelectric quantum critical points
have not been observed to date [18]; furthermore here
the temperature-dependence of x is described well by a
self-consistent Gaussian approach appropriate above its
upper critical dimension [18, 19]. Therefore there may
be a very weak first-order quantum phase transition but
experimentally it appears to be indistinguishable from
a continuous one. We note that near quantum critical-
ity the main effect of long-range dipolar interactions, not
included in this treatment, is to produce a gap in the
logitudinal fluctuations, but the transverse fluctuations
remain critical [35-37]; the excellent agreement between
theory and experiment at ferroelectric quantum critical-
ity confirms that this is the case [18, 19].

Dielectric loss and hysteresis measurements can be
used to probe the line of classical first-order transitions,
and to determine the nature of the quantum phase tran-
sition. The Gruneisen ratio (I'), the ratio of the ther-
mal expansion and the specific heat, is known to change
signs across the quantum phase transition [38, 39]; fur-
thermore it is predicted to diverge at a 3D ferroelectric
quantum critical point as I' % so this would be a good
indicator of underlying quantum criticality [19]. Both
the bulk modulus and the longitudinal sound velocity
should display jumps near quantum annealed criticality,
though specifics are material-dependent since the fluctu-
tation contributions to both are non-universal.

In summary, we have developed a theoretical frame-
work to describe compressible insulating systems that
have classical first-order transitions and display pressure-
induced quantum criticality. We have generalized the
Larkin-Pikin criterion [1] in the language of correlation
and response functions; from this standpoint it is clear
that the correction to the renormalized bulk modulus,

singular at finite temperature, is non-universal at 7' = 0
for d + z > 4 so then the quantum transition may be
continuous. Our analyis has been performed for the case
of a scalar order parameter and isotropic elasticity where
the phase transition is first-order for all finite temper-
ature; in this extreme instance we argue that it is still
possible to have quantum annealed criticality. Naturally
the presence of a finite-pressure classical tricritical point
ensures a continuous quantum phase transition. The key
point is that a compressible material can host a quantum
critical phase even if it displays a first-order transition at
ambient pressure. More generally the order of the clas-
sical phase transition can be different from its quantum
counterpart.

We note in ending that there are experiments on metal-
lic systems [10—12] that also suggest quantum annealed
criticality, so a quantum generalization of the electronic
case [13] with possible links to previous work on metallic
magnets should be pursued [9]; implications for doped
paraelectric materials and polar metals [19] will also be
explored. Extension of this work to quantum transitions
between two distinct ordered states separated by first-
order classical transitions may be relevant to the iron-
based superconductors [44] and to the enigmatic heavy
fermion material U RusSis where quantum critical end-
points have been suggested [45]. Finally the possibility
of quantum annealed criticality in compressible materi-
als, magnetic and ferroelectric, provides new settings for
the exploration of exotic quantum phases where a broad
temperature range can be probed with easily accessible
pressures due to the lattice-sensitivity of these systems.
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SUPPLEMENTARY MATERIAL FOR QUANTUM ANNEALED CRITICALITY

Overview

The key idea of the Larkin-Pikin approach is that we integrate out the Gaussian strain degrees of freedom from the
action to derive an effective action for the order parameter field so that

:/D[u]/pw]efsw’u] — Z:/D[@/D[w}e*seffw}. (15)

The key element in this procedure is a separation of the strain field into uniform and fluctuating components. When
we integrate out the uniform component of the strain, it induces an infinite-range attractive interaction between the
order parameter modes mediated by a classical field ¢ that is uniform in both space and time. The main effect of
the integration of the fluctuating strain component is to renormalize the short-range interactions between the order
parameter modes; however completion of the Gaussian integral also leads to an infinite range repulsive order parameter
interaction. The overall infinite range interaction is attractive, but this subtlety needs to be checked carefully in both
the classical and quantum cases, as is performed explicitly in this Supplementary Material; here we summarize its
main results. The relevant quantum generalization of the effective action in (15) is

S = [ 560+ T2+ 2w A (o 1 ) 07l (16)

where
L[, b*] = 1(8 ) + Sy + e
AT gk 2 4!

is the ¥* Lagrangian, with a renormalized short-range interaction

12)2
b* =b— 7)\4 (17)
K+ g,u
and an effective bulk modulus
1 1 1
—-—= = — . 18
k K K+ %,u (18)

In the classical case

/d4x — %/d% (19)

Soslind] = 7 [ @567+ Do+ Llob )+ N0+ 1

and so we recover the classical effective action

" WA (20)

with definitions as above. We note that in the main text we have replaced the renormalized b* by b and we have set
P =0 for presentational simplicity.

Preliminaries

The partition function can be written as an integral over the order parameter and strain fields

2= [ D] [ Duje st (21)

where 1) is the order parameter field and u(z) is the local displacement of the lattice that determines the strain fields

according to the relation
8ua aub
a . 22
eas(t) = <8xb+3xa> (22)




Here the action is is determined by an integral over the Lagrangian L, S = [ d*zL. In the quantum case, Ik diz =
Jdr [ d®z is a space-time integral over configurations that are periodic in imaginary time 7 € [0, 8], where the f3
inverse temperature (kg = 1). In the classical case the time-dependence disappears and the integral over 7 is replaced
by 1/T so that S = L [ d*zL.

The action divides up into three parts

S=S,+8+8p= /d4x(LA[u] + Lib, ] + Lu[)]), (23)

where the contributions to the Lagrangian are: (i) a Gaussian term describing the elastic degrees of freedom in an
isotropic system

[ . 2
Lyfu]l = 3 {pu% + (K - 3u> el + 2ue§b} — OubCab (24)

where o4 is the external stress and we have assumed a summation convention in which repeated indices are summed
over, so that for instance, ey = Y,_; 5 ey and €2, = €qpeab = Y., 51 3 €2p ; (il) an interaction term

Li[Y, e] = Xeytp? (25)

describing the coupling between the volumetric strain e;; = Tr[e] and the “energy density” 1?2 of the order parameter
W; (iii) the Lagrangian Lg[i] of the order parameter that, in the simplest case, is a 1* field theory

b
Lol 8] = 50,80 + 507 + 7o, (26)

where we have explicitly noted its dependence on the interaction strength b. At a finite temperature critical point,
all time-derivative terms are dropped from these expressions.

Since the integral over the strain fields is Gaussian, the latter can be integrated out of the partition function leading
to an effective action of the ¢ fields Ses¢[¢)] = Sp[Y] + AS[¢)] where

e~ ASY] — /D —(Sa+S1) (27)
If we write the elastic action in the schematic, discretized form
1
Sa+Sr= §ZULMUUJ —I—/\Zu]wf (28)
(2] J
then the effective action becomes simply

AS = lndet —wa (29)

where the second term is recognized as an induced attractive interaction between the order-parameter fields. The
subtlety in this procedure derives from the division of the strain field into two parts: a uniform contribution determined
by boundary conditions and a fluctuating component in the bulk. For the classical case

eab(f) =é€ap + —= Z qaub 67) + qbua(qj) ‘ (30)
";60
where the uy(¢) are the Fourier transform of the atomic displacements, while in the quantum problem
eab(T,7) = €ap + —== ZZ (qatun(q) + qotia(g)) €777, (31)
iVn §#0

where v, = 27nT is the bosonic Matsubara frequency. Note that the exclusion of all terms where ¢ = 0 from
the summation also excludes the special point where both iv, and ¢ are zero. As we now demonstrate, the overall
attractive interaction (o fzbei;lw?) contains both short-range and infinite range components.



The Gaussian Strain integral: Classical Case
Our task is to calculate the Gaussian integral,
(~ASl] _ / Dleas, tgle= 54+ (32)
where the classical action
1 3|1 2 2 (= 2 2/~ .
Sa+Sr= T d°x 3 K — 3H €1 (Z) + pean(Z)* + (M=(Z) + Pey (@) |, (33)

where we have denoted o,, = —Pdgp in terms of the pressure P. We begin by splitting the strain field into the ¢ =0
and finite ¢ components,

€ab(Z) = €ap + % % % (gaus(q) + qpua(q)) 7. (30)

This separation enables us to use periodic boundary conditions, putting the system onto a spatial torus with discrete
momenta § = 2T”(l, m,n). After this transformation, the action divides up into two terms, S = S{eqp, ¥] + S[u, v]. We
shall define the integrals

/deabe—S[eah,wJ _e—Sill,

and
/D[u]e‘s[u’w] = ¢~ %2[¥], (34)
The uniform part of the action is
Steantl = 3 |5 (5= 30) -+ ] + 7 iy + Pl
= §eabMabcdecd + Vab€ab, (35)

where 1/)2 = % [ d3zyp? (£)e’?7 is the Fourier transform of the fluctuations in “energy density” and

I Pyea
Pabved
—_—— 1
Mabcd =K (5ab§cd) —|—2p, (5ac5bd - 35ab56d>a (36)
Vv 2
Vab = T()\lbq:o + P)da- (37)

The nonuniform part of the action is
1 1., S L,
Su. ] = 7 3 (@ Maro(a) + @) - () (39)

where

2
Mgy = KK - u> Qaqs + 11 (47 0ar + QaQb)] )
G, = (iAW uﬁq) 7 (39)
When we integrate over the uniform part of the strain field,

1 1 _
ieabMabcdecd + Vapeap — S1[Y] = _§vabMablcd'Ucd (40)
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a
projecting the longitudinal and transverse components of the strain. The inverse of M is then given by

Now the two terms P _, and P%_, in M (36) are independent projection operators (PrbefPechd =P ., TeLT),

_ T]|1 1 1
Mablcd = V E(éabiscd) =+ ﬂ <6ac6bd - 35ab6cd>:| ’ (41)

so the Gaussian integral over the uniform part of the strain field gives

V1

Sily] = - %

UﬂbMabcdv('d ()\1/}2 0 + P) (42)

2

Now the matrix entering the fluctuating part of the action Sfu, ], can be projected into the longitudinal and
transverse components of the strain

4\ . . N
Maa) = | (K + 30) o + 6 1) (13)
where §, = q,/q are the direction cosines of ¢. The inversion of this matrix is then
4\ 1
MNP =q77 (K + 3M> Gado + 1" (Sap — QaQb)] ) (44)

so the Gaussian integral over fluctuating part of the strain field leads to

% > %“Z(@Mab(ﬂub(@ +aq) - 4@ —

G#0
1
Sald] = — 55 3 aa(~D My (Dar(@
q;ﬁO
o S (45)
q#O K+ 3H
We can rewrite this as a sum over all , plus a remainder at ¢ = 0:
2 \% /\2
S 2 2
2[v] = Zw qu+ t i i,
1 A2 \% A2
__ Brv (7)) + —— (22— 4
2TK+§M/ @) + or Ve i T (46)

The first term is a local attraction while the second term, involving only the ¢ = 0 Fourier component, corresponds
to to a repulsive long range interaction.
When we combine the results of the two integrals (42) and (46) we obtain

V A2 5, 1 )
ASIY] = 7 o) ~ T [ @) - NP+ P (47)
where
1 1 1
= - (48)
r K K+ %M

is the effective Bulk modulus.
The final step in the procedure, is to carry out a Hubbard Stratonovich transformation, factorizing the long-range
attraction in terms of a stochastic uniform field ¢,

Vo2

~ar Wi o [ e [56 aev ). (19)

Combining (47) and (49) we obtain the following expression for

/d3 { + i + A (¢ + ;) V2(z) — Q(KA;IWW(Q;)] . (50)
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Finally, adding this term to the original order parameter action Sg[¢] = 7 [ d*zLg[1,b], our final partition function
can be written

Z = /d(b/D[z/)]e_Seff[w’¢] (51)

where Scr¢[1), @] = Sp[] + AS[¢), ¢] is given by

2
Splhdl =7 [ @0 |56+ 4 LT+ A+ )l (52)

where
1 a b*
b = = 2 @2 0 4
L1,67) = 5O + 5u2 +
is the ¥* Lagrangian, with a renormalized short-range interaction

12)\2

b =b— ———5—.
K“rg,uz

(53)
Note that in the main text we have dropped the “x” on b for presentational simplicity; there b refers to this renormalized
interaction (53).

Thus the main effects of integrating out the strain field are a renormalization of the short-range interaction of the
order parameter field and the development of an infinite-range interaction mediated by an effective strain field ¢. If
we differentiate the action with respect to the pressure, we obtain the volumetric strain

5S
3P(7)

= eal®) = 3 (P+ M (@) (54)

which, as a result of integrating out the strain fluctuations, now contains a contribution from the order parameter.
Again in the main text we set P = 0 for presentational simplicity.

The Gaussian Strain integral: Quantum Case

In the quantum case, the action in the Gaussian strain integral

e ASIY] — /D[eab,uq}ef(sfﬁsf) (55)

now involves an integral over space time, with S = [ dizL = foﬂ dr [ d3zL. We now restore the kinetic energy terms
in Lagrangian (24) and (26), so that now the quantum action takes the form

Sa+ 5= /de3x [gulz + <K - ;,u) el (z) + %ZMeab(x)Q + (M2 (x) + Pey(z) | - (56)

Again our task is to cast this into matrix form
1 s N 20 7—1,,2
Sa+S;= izuiMijuﬁAZujzpj — ?ZwiMm. b3, (57)
q J 0,J

where now the summations run over the discrete wavevector and Matsubara frequencies ¢ = (ivy,, ¢), where v, = %’rn,

q= 2{(]’, I, k). As before, we must separate out the static, § = 0 component of the strain tensor, writing

1 i s
ea(z,T) =¢€ — = (qaus(q) + qpu HTF=vnr) 58
ab(T,T) = €ap + W;Z 5 (@ats(a) + gyus()) (58)
n ‘Héo
Note that there is no time-dependence to the uniform part of the strain, since the boundary conditions are static.

However the fluctuating component excludes ¢ = 0, but includes all Matsubara frequencies; with these caveats, the
quantum integration of the strain fields closely follows that of the classical case.
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Again the action divides up into two terms, S = Sleqp, ¥] + S[u, 1], corresponding to the distinct unifom and finite
¢ contributions to the strain. We shall again define the integrals

/deabe—S[eab,w] _ e-Silv]

and
/ Dluje~Stv] — =521 (59)

The uniform part of the action

1 2 1 14
S[eab7¢] = /d’r |:2 <K — 3#) 6121 + 22,[,Lezb:| + ?(A'{/J?ZO + P)ell
= §€abMabcdecd + Vab€ab, (60)

where

1
Mabcd = |:K(6ab5cd) + 2,“4 <5ac5bd - 35ab56d):| )
Vab = VB(M—g + P)bas, (61)

is unchanged, but now
2 1 4 2 —i(§-T—vnT)
Yy = Vi d*zy(z)e (62)

is the space-time Fourier transform of the order parameter intensity. The non-uniform part is now
1, . .
Sl = 5 (il Masmla) + ) (@) ) (63)
ivn §#0

where

2
My, = [pVZ (K - 3“) Qa @ + 1 (q%8as + qa%)] ,

ay = (IAWVBY2,) @ (64)

When we integrate over the uniform part of the strain field, we obtain

%eabMabcdecd + VabCab —>
S1[Y] = *%UabM;blcdvcd
= e+ PP (65)
or
SilY] =~ [ AWy + PP (66)

For presentational simplicity, we will now set P = 0 since the role of pressure here follows that in the classical
treatment already described.

The matrix entering the fluctuating part of the action can be projected into the longitudinal and transverse com-
ponents

Mo = | (24 4+ 500 ) i+ 24 10) 6o = )] (67)

where §, = ¢, /q is the unit vector. The inversion of this matrix is then

1 . 1 .
an% + ) (Gab — Qaqb):| ) (68)

M= —— 5 3\
o [ pvi + cig?
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where

K+3 2
C%: 3H7 C%:ﬁ (69)
P P

are the longitudinal and transverse sound velocities. The two terms appearing in M ~! are recognized as the propa-
gators for longitudinal and tranverse phonons.

When we integrate over the fluctuating component of the strain field, only the longitudinal phonons couple to the
order parameter:

S @ Ma@unla) + la) - i(a) -
i G#0
Sald] = —5 303 aul-a) My (as(a)

wn §#£0

_ Vﬁ)\ 2 2 q2
- 2 Vi <pu,%+<K+§u>q2>' (70)

iVn,q7#0
Now in this last term,
2
q
71
(/w% + (K + §u)q2> ()
the ¢ = 0 term vanishes for any finite v,,, but in the case where v, = 0, the limiting ¢ — 0 form of this term is finite:
2 0 vy, #0
< 2 d 1 2 ) = 1y f 0 (72)
pri+ (K + 3p1)q 750 Kiip Un .
We can thus replace
2 2 2 )2
q 2 2 q ( q:O)
W2 bl ( ) V2 g ( ) - : (73)
W%;#O I\ pr2 + (K + 51)q wzn;q pr2+ (K +3m¢) K+ 35p
so that
V B2 9 \2 Vﬁ)\ 9 9 < q? )
S = —F— (i _ 74
2[¢] 2(K + %M) (¢q_0) Z;q w ¢ pV2 (K + /,L) ( )
If we now combine S; and S5, we obtain
VB2 V BA? q?
S+ Sy = L (92_)* - —— 2 2 . [0)
1 2 2% ( q—O) 2 Eq:w qd}q pV,,zl i (K+ %M)qz ( )
where
1 1 1
—= == 76
r K K+ %ﬂ (76)

is the effective Bulk modulus, as in the classical case.
Next we carry out a Hubbard-Stratonovich transformation, rewriting the the long-range attraction in terms of a
stochastic static and uniform scalar field ¢ as follows

2
S er = [ [56 Aot ()

The remaining interaction term can be divided up into two parts as follows

2

— I\ (K ipe?) K tgui T ¢+ )]
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The first term inside the brackets is independent of momentum and frequency, leading to a finite local attraction term
that will act to renormalize the b term in the Lagrangian £y ; as in the classical case. The second term is a non-local
and retarded interaction. Due to Lorentz invariance, simple power-counting shows that this term has the same scaling
dimensionality as a local repulsive term, and thus it will not modify the critical behavior of the second-order phase
transition.

If we transform back into into space-time co-ordinates, then we obtain

2
51 + SQ = /d4x [;(Z)Q + )\(ZN/)Q(x) — m¢4($) + SNL = SEff[¢7¢] + SNL (79)
3
where
_ /\72 41, 41,/ 2 T I—I/ 2 x/
SN: = SRR T /d d42’ 0, (1?) @)V (z — 2')0, (%) (z) (80)
and
- d4q 072 W(§T—ivnT) _ 1 1

vie) = [ 2 (W +/> ¢ = (TP T &) (&)

is the non-local interaction mediated by the acoustic phonons. Then the final quantum partition function resulting
from integrating out the strain fields in the quantum case can be written (P # 0)

g /d¢/p[¢]e—seff[w,¢]—sm (82)
where
Solind] = [ate 562+ T+ Lol A (o4 1 ) 2l (59
and

b*
£l ] = 3 (0 + S + 20

is the ¥* Lagrangian, with a renormalized short-range interaction

12)2
b* =b— A - (84)
K+ g,u
and an effective bulk modulus
1 1 1
- (85)

kK K+iu

Thus, as in the classical case, the main effect of integrating out the strain field, is a renormalization of the short-range
interaction of the order parameter field, and the development of an infinite range interaction, mediated by an effective
strain field ¢. The introduction of a nonlocal contribution with the same scaling dimensions as the 1* term will not
affect the properties of the fixed point, and thus it will not change the universality class of the fixed point, as in the
classical Larkin-Pikin case. However we emphasize that in its quantum generalization the effective dimension of the
theory is deyy = d 4 2. Again we note that in the main text we have replaced the coefficient of the renormalized
interaction b* in (84) by b for presentational simplicity.
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