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ON INSTABILITY OF RADIAL STANDING WAVES FOR THE

NONLINEAR SCHRÖDINGER EQUATION WITH

INVERSE-SQUARE POTENTIAL

VAN DUONG DINH

Abstract. We show the strong instability of radial ground state standing
waves for the focusing L2-supercritical nonlinear Schrödinger equation with
inverse-square potential

i∂tu + ∆u + c|x|−2u = −|u|αu, (t, x) ∈ R × R
d,

where d ≥ 3, u : R × Rd → C, c 6= 0 satisfies c < λ(d) :=
(

d−2

2

)

2

and
4

d
< α < 4

d−2
. This result extends a recent result of Bensouilah-Dinh-Zhu

[On stability and instability of standing waves for the nonlinear Schrödinger

equation with inverse-square potential, arXiv:1805.01245] where the stability
and instability of standing waves were shown in the L2-subcritical and L2-
critical cases.

1. Introduction

In the last decade, there has been a great deal of interest in studying the nonlinear
Schrödinger equation with inverse-square potential, namely

i∂tu+ ∆u+ c|x|−2u = µ|u|αu, (t, x) ∈ R × R
d, (1.1)

where d ≥ 3, u : R × R
d → C, c 6= 0 satisfies c < λ(d) :=

(

d−2
2

)2
, µ ∈ R and

α > 0. The nonlinear Schrödinger equation (1.1) appears in a variety of physical
settings, such as quantum field equations or black hole solutions of the Einstein’s
equations (see e.g. [8, 9, 19]) and quantum gas theory (see e.g. [1, 26, 27]). The
mathematical interest in the nonlinear Schrödinger equation with inverse-square
potential comes from the fact that the potential is homogeneous of degree −2 and
thus scales exactly the same as the Laplacian. Recently, the equation (1.1) has been
intensively studied (see e.g. [2, 3, 4, 7, 12, 13, 20, 21, 24, 28, 32] and references
therein).

In this paper, we consider the L2-supercritical nonlinear Schrödinger equation
with inverse-square potential, namely

{

i∂tu+ ∆u+ c|x|−2u = −|u|αu, (t, x) ∈ R × Rd,
u(0) = u0 ∈ H1,

(1.2)

where d ≥ 3, u : R × Rd → C, u0 : Rd → C, c 6= 0 satisfies c < λ(d) and
4
d
< α < 4

d−2 .
The main purpose of this paper is to study the instability of radial ground state

standing waves for (1.2). Before stating our result, let us recall known results related
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to the stability and instability of standing waves for the nonlinear Schrödinger-like
equations. The stability of standing waves for the classical nonlinear Schrödinger
equation (i.e. c = 0 in (1.2)) is widely pursued by physicists and mathematicians
(see e.g. [14] for reviews). To our knowledge, the first work addressed the orbital
stability of standing waves for the classical NLS belongs to Cazenave-Lions [10] via
the concentration-compactness principle. Later, Weinstein in [29, 30] gave another
approach to prove the orbital stability of standing waves for the classical NLS.
Afterwards, Grillakis-Shatah-Strauss in [17, 18] gave a criterion based on a form
of coercivity for the action functional (see (1.4)) to prove the stability of standing
waves for a Hamiltonian system which is invariant under a one-parameter group
of operators. Since then, a lot of results on the orbital stability of standing waves
for nonlinear dispersive equations were obtained. For the nonlinear Schrödinger
equation with a harmonic potential, Zhang [31] succeeded in obtaining the orbital
stability of standing waves by the weighted compactness lemma. Recently, the
orbital stability phenomenon was proved for the fractional nonlinear Schrödinger
equation by establishing the profile decomposition for bounded sequences in Hs

(see e.g. [25, 33]). The instability of standing waves for the classical NLS was
first studied by Berestycki-Cazenave [5] (see also [11]). Later, Le Coz in [22] gave
an alternative, simple proof of the classical result of Berestycki-Cazenave. The key
point is to establish the finite time blow-up by using the variational characterization
of the ground states as minimizers of the action functional and the virial identity.
For the Schrödinger equations with more general nonlinearities, this method does
not work due the the lack of virial identities. In such cases, one may use a powerful
tool of Grillakis-Shatah-Strauss [17, 18] to derive the instability of standing waves.

Recently, the authors in [4] succeeded, using a profile decomposition theorem
proved by the first author [2], to establish the stability of standing waves for (1.2)
in the L2-subcritical regime and the instability by blow-up in the L2-critical regime.
The main goal here is to extend these results to the L2-supercritical case but only
for radial ground state standing waves.

Throughout this paper, we call a standing wave a solution of (1.2) of the form
eiωtφω, where ω ∈ R is a frequency and φω ∈ H1 is a nontrivial solution to the
elliptic equation

−∆φω + ωφω − c|x|−2φω − |φω |αφω = 0. (1.3)

Note that the existence of positive radial solutions to the elliptic equation

−∆φ+ φ− c|x|−2φ− |φ|αφ = 0

was shown in [21, Theorem 3.1] and [13, Theorem 4.1]. By setting φω(x) :=

(
√
ω)

2
α φ(

√
ωx), it is easy to see that φω is a solution of (1.3). This shows the

existence of positive radial solutions to (1.3).
Note also that (1.3) can be written as S′

ω(φω) = 0, where

Sω(v) := E(v) +
ω

2
‖v‖2

L2

=
1

2
‖v‖2

Ḣ1
c

+
ω

2
‖v‖2

L2 − 1

α+ 2
‖v‖α+2

Lα+2

(1.4)

is the action functional. Here

‖v‖2
Ḣ1

c

:= ‖∇v‖2
L2 − c‖|x|−1v‖2

L2 (1.5)

is the Hardy functional.
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We denote the set of non-trivial radial solutions of (1.3) by

Arad,ω :=
{

v ∈ H1
rad\{0} : S′

ω(v) = 0
}

,

where H1
rad is the space of radial H1 functions.

Definition 1.1 (Radial ground states). A function φ ∈ Arad,ω is called a radial

ground state for (1.3) if it is a minimizer of Sω over the set Arad,ω. The set of
radial ground states is denoted by Grad,ω. In particular,

Grad,ω = {φ ∈ Arad,ω : Sω(φ) ≤ Sω(v), ∀v ∈ Arad,ω} .
We have the following result on the existence of radial ground states for (1.3).

Proposition 1.2. Let d ≥ 3, c 6= 0 be such that c < λ(d), 4
d
< α < 4

d−2 and ω > 0.

Then the set Grad,ω is not empty, and it is characterized by

Grad,ω =
{

v ∈ H1
rad\{0}, : Sω(v) = d(rad, ω), Kω(v) = 0

}

,

where

Kω(v) := ∂λSω(λv)|λ=1 = ‖v‖2
Ḣ1

c

+ ω‖v‖2
L2 − ‖v‖α+2

Lα+2

is the Nehari functional and

d(rad, ω) := inf
{

Sω(v) : v ∈ H1
rad\{0}, Kω(v) = 0

}

. (1.6)

We refer the reader to Section 2 for the proof of the above result.

Remark 1.3. Recently, Fukaya-Ohta in [15] studied the instability of standing
waves for the nonlinear Schrödinger equation with an attractive inverse power po-
tential, namely

i∂tu+ ∆u+ γ|x|−αu = −|u|p−1u,

where γ > 0, 0 < α < min{2, d} and 4
d
< p− 1 < 4

d−2 if d ≥ 3 and 4
d
< p− 1 < ∞ if

d = 1 or d = 2. The potential V (x) = γ|x|−α belongs to Lr(Rd)+L∞(Rd) for some
r > min{1, d/2}. This special property allows them to use the weak continuity of
the potential energy (see e.g. [23, Theorem 11.4]) to prove the existence of non-
radial ground states. In our case, the inverse-square potential V (x) = c|x|−2 does

not belong to L
d

2 (Rd) + L∞(Rd), so the weak continuity of potential energy is not
applicable to our potential. At the moment, we do not know how to show the
existence of non-radial ground states for (1.3). We hope to consider this problem
in a future work.

Let us now recall the definition of the strong instability.

Definition 1.4 (Strong instability). We say that the standing wave eiωtφω is
strongly unstable if for any ǫ > 0, there exists u0 ∈ H1 such that ‖u0 − φω‖H1 < ǫ
and the solution u(t) of (1.2) with initial data u0 blows up in finite time.

Our main result of this paper is the following:

Theorem 1.5. Let d ≥ 3, c 6= 0 be such that c < λ(d), 4
d
< α < 4

d−2 , ω > 0 and

φω ∈ Grad,ω. Then the standing wave solution eiωtφω of (1.2) is strongly unstable.

To our knowledge, the usual strategy to show the strong instability of stand-
ing waves is to use the characterization of ground states combined with the virial
identity. However, in the presence of the inverse-square potential, the existence of
ground states is well-known. However, the regularity as well as the decay of ground
states are not yet known. Therefore, it is not known that the ground states φω
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belongs to the weighted space Σ := H1 ∩ L2(|x|2dx) in order to apply the virial
identity. This is a reason why we only consider the instability of radial ground state
standing waves in this paper. If one can show that φω ∈ Σ, then one can study the
instability of non-radial ground state standing waves.

The proof of Theorem 1.5 is based on the characterization of the radial ground
states and the localized virial estimates. Thanks to the radial symmetry of the
ground state, we are able to use the localized virial estimates derived by the second
author in [13] to show the finite time blow-up. We refer the reader to Section 3 for
more details.

The rest of the paper is organized as follows. In Section 2, we give the proof of
the existence of radial ground states for (1.3) given in Proposition 1.2. The proof
of our main result-Theorem 1.5 will be given in Section 3.

2. Existence of radial ground states

In this section, we give the proof the existence of radial ground states for (1.3)
given in Proposition 1.2. The proof of Proposition 1.2 follows from several lemmas.
Let us denote the ω-Hardy functional by

Hω(v) := ‖v‖2
Ḣ1

c

+ ω‖v‖2
L2.

Using the sharp Hardy inequality

λ(d)‖|x|−1v‖2
L2 ≤ ‖∇v‖2

L2,

we see that for c < λ(d) and ω > 0 fixed,

Hω(v) ∼ ‖v‖2
H1 . (2.1)

We note that the action functional can be rewritten as

Sω(v) :=
1

2
Kω(v) +

α

2(α+ 2)
‖v‖α+2

Lα+2 =
1

α+ 2
Kω(v) +

α

2(α+ 2)
Hω(v). (2.2)

Let us start with the following result.

Lemma 2.1. d(rad, ω) > 0.

Proof. Let v ∈ H1
rad\{0} be such that Kω(v) = 0. By the Sobolev embedding, (2.1)

and the fact Hω(v) = ‖v‖α+2
Lα+2, we have

‖v‖2
Lα+2 ≤ C1‖v‖2

H1 ≤ C2Hω(v) = C2‖v‖α+2
Lα+2,

for some C1, C2 > 0. This implies that

α

2(α+ 2)
‖v‖α+2

Lα+2 ≥ α

2(α+ 2)

(

1

C2

)

α+2
α

.

Taking the infimun over v ∈ H1
rad\{0}, we obtain d(rad, ω) > 0. �

We now denote the set of all minimizers of (1.6) by

Mrad,ω :=
{

v ∈ H1
rad\{0} : Kω(v) = 0, Sω(v) = d(rad, ω)

}

.

Lemma 2.2. The set Mrad,ω is non-empty.
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Proof. Let (vn)n≥1 be a minimizing sequence of d(rad, ω), i.e. vn ∈ H1
rad\{0},

Kω(vn) = 0 and Sω(vn) → d(rad, ω) as n → ∞. Since Kω(vn) = 0, we have
Hω(vn) = ‖vn‖α+2

Lα+2 for any n ≥ 1. Using (2.2), the fact Sω(vn) → d(rad, ω) as
n → ∞ implies that

α

2(α+ 2)
Hω(vn) =

α

2(α+ 2)
‖vn‖α+2

Lα+2 → d(rad, ω),

as n → ∞. We infer that there exists C > 0 such that

Hω(vn) ≤ 2(α+ 2)

α
d(rad, ω) + C,

for all n ≥ 1. It follows from (2.1) that (vn)n≥1 is a bounded sequence in H1
rad.

Using the compact embedding H1
rad →֒ Lα+2, there exists v0 ∈ H1

rad such that

vn ⇀ v0 weakly in H1 and strongly in Lα+2 as n → ∞.

Writting vn = v0 + rn, where rn ⇀ 0 weakly in H1 as n → ∞. We have

Kω(vn) = Hω(vn) − ‖vn‖α+2
Lα+2 = Hω(v0) +Hω(rn) − ‖vn‖α+2

Lα+2 + on(1),

as n → ∞. Here on(1) means that on(1) → 0 as n → ∞. Since Kω(vn) = 0 and
Hω(rn) ≥ 0 for all n ≥ 1, we get

Hω(v0) ≤ ‖vn‖α+2
Lα+2 + on(1),

as n → ∞. Taking the limit n → ∞, we obtain

Hω(v0) ≤ 2(α+ 2)

α
d(rad, ω).

Since vn → v0 strongly in Lα+2, it follows that

‖v0‖α+2
Lα+2 = lim

n→∞
‖vn‖α+2

Lα+2 =
2(α+ 2)

α
d(rad, ω).

We thus get Kω(v0) ≤ 0. Now suppose that Kω(v0) < 0. We have for µ > 0,

Kω(µv0) = µ2Hω(v0) − µα+2‖v0‖α+2
Lα+2.

It is easy to see that the equation Kω(µv0) = 0 admits a unique non-zero solution

µ0 =

(

Hω(v0)

‖v0‖α+2
Lα+2

)
1
α

.

Since Kω(v0) < 0, we have µ0 ∈ (0, 1). By the definition of d(rad, ω) and (2.2), we
get

d(rad, ω) ≤ Sω(µ0v0) =
α

2(α+ 2)
Hω(µ0v0) = µ2

0

α

2(α+ 2)
Hω(v0)

<
α

2(α+ 2)
Hω(v0) ≤ d(rad, ω),

which is a contradiction. Therefore, Kω(v0) = 0. Moreover,

Sω(v0) =
α

2(α+ 2)
‖v0‖α+2

Lα+2 = d(rad, ω).

This shows that v0 is a minimizer of d(rad, ω). The proof is complete. �

Lemma 2.3. Mrad,ω ⊂ Grad,ω.
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Proof. Let φ ∈ Mrad,ω. Since Kω(φ) = 0, we have Hω(φ) = ‖φ‖α+2
Lα+2. Since φ

is a minimizer of d(rad, ω), there exists a Lagrange multiplier µ ∈ R such that
S′

ω(φ) = µK ′
ω(φ). We thus have

0 = Kω(φ) = 〈S′
ω(φ), φ〉 = µ 〈K ′

ω(φ), φ〉 .
It is easy to see that

K ′
ω(φ) = −2∆φ+ 2ωφ− 2c|x|−2φ− (α+ 2)|φ|αφ.

Therefore,

〈K ′
ω(φ), φ〉 = 2Hω(φ) − (α+ 2)‖φ‖α+2

Lα+2 = −α‖φ‖α+2
Lα+2 < 0.

This implies that µ = 0, hence S′
ω(φ) = 0. In particular, we have φ ∈ Arad,ω. To

prove φ ∈ Grad,ω, it remains to show that Sω(φ) ≤ Sω(v) for all v ∈ Arad,ω. To see
this, let v ∈ Arad,ω. We have

Kω(v) = 〈S′
ω(v), v〉 = 0.

By definition of Mrad,ω, we have Sω(φ) ≤ Sω(v). The proof is complete. �

Lemma 2.4. Grad,ω ⊂ Mrad,ω.

Proof. Let φ ∈ Grad,ω. Since Mrad,ω is not empty, we take ψ ∈ Mrad,ω. By Lemma
2.3, ψ ∈ Grad,ω. In particular, Sω(φ) = Sω(ψ). Since ψ ∈ Mrad,ω, we get

Sω(φ) = Sω(ψ) = d(rad, ω).

It remains to show that Kω(φ) = 0. Since φ ∈ Arad,ω, we have S′
ω(φ) = 0, hence

Kω(φ) = 〈S′
ω(φ), φ〉 = 0. Therefore, φ ∈ Mrad,ω and the proof is complete. �

Proof of Proposition 1.2. Proposition 1.2 follows immediately from Lemmas 2.2,
2.3 and 2.4. �

3. Instability of radial standing waves

In this section, we give the proof of the instability of radial ground state standing
waves given in Theorem 1.5. Let us start by recalling the local well-posedness in
the energy space H1 for (1.2) proved by Okazawa-Suzuki-Yokota [24].

Theorem 3.1 (Local well-posedness [24]). Let d ≥ 3, c 6= 0 be such that c < λ(d)
and 4

d
< α < 4

d−2 . Then for any u0 ∈ H1, there exists T ∈ (0,+∞] and a maximal

solution u ∈ C([0, T ), H1) of (1.2). The maximal time of existence satisfies either

T = +∞ or T < +∞ and

lim
t↑T

‖∇u(t)‖L2 = ∞.

Moreover, the local solution enjoys the conservation of mass and energy

M(u(t)) =

∫

|u(t, x)|2dx = M(u0),

E(u(t)) =
1

2

∫

|∇u(t, x)|2dx− c

2

∫

|x|−2|u(t, x)|2dx− 1

α+ 2

∫

|u(t, x)|α+2dx

= E(u0),

for any t ∈ [0, T ).
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We refer the reader to [24, Proposition 5.1] for the proof of the above result. Note
that the existence of local solution is based on a refined energy method of the well-
known energy method proposed by Cazenave [11, Chapter 3]. The uniqueness of
local solutions follows from Strichartz estimates proved by Burq-Planchon-Stalker-
Zadel [7].

We next recall the so-called Pohozaev’s identities for (1.3). We give the proof
for the reader’s convenience.

Lemma 3.2. Let ω > 0. If φω ∈ H1 is a solution to (1.3), then

‖φω‖2
Ḣ1

c

+ ω‖φω‖2
L2 − ‖φω‖α+2

Lα+2 = 0,

and
(

1 − d

2

)

‖φω‖2
Ḣ1

c

− dω

2
‖φω‖2

L2 +
d

α+ 2
‖φω‖α+2

Lα+2.

Proof. Multiplying both sides of (1.3) with φω and integrating over Rd, we obtain
easily the first identity. Let us prove the second identity. Due to the singularity of
the inverse-square potential at zero, we multiply both sides of (1.3) with x · ∇φω

and integrate on P (r,R) := {x ∈ Rd : r ≤ |x| ≤ R} for some R > r > 0. We have

−
∫

P (r,R)

∆φω(x · ∇φω)dx =

∫

P (r,R)

∇φω · ∇(x · ∇φω)dx−
∫

∂Br

|∇φω |2(x · n1)dS

−
∫

∂BR

|∇φω |2(x · n2)dS,

where n1 = − x
r

is the unit inward normal at x ∈ ∂Br and n2 = x
R

is the unit
outward normal at x ∈ ∂BR. We also have

∫

P (r,R)

∇φω · ∇(x · ∇φω)dx =

(

1 − d

2

)
∫

P (r,R)

|∇φω |2dx+
1

2

∫

∂Br

|∇φω |2(x · n1)dS

+
1

2

∫

∂BR

|∇φω |2(x · n2)dS.

Thus,

−
∫

P (r,R)

∆φω(x · ∇φω)dx =

(

1 − d

2

)
∫

P (r,R)

|∇φω|2dx− 1

2

∫

∂Br

|∇φω |2(x · n1)dS

− 1

2

∫

∂BR

|∇φω |2(x · n2)dS.

Similarly,

ω

∫

P (r,R)

φω(x · ∇φω)dx = −dω

2

∫

P (r,R)

|φω |2dx+
ω

2

∫

∂Br

|φω |2(x · n1)dS

+
ω

2

∫

∂BR

|φω |2(x · n2)dS,
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and

−c
∫

P (r,R)

|x|−2φω(x · ∇φω)dx = −c
(

1 − d

2

)
∫

P (r,R)

|x|−2|φω |2dx

− c

2

∫

∂Br

|x|−2|φω |2(x · n1)dS

− c

2

∫

∂BR

|x|−2|φω|2(x · n2)dS,

and finally

−
∫

P (r,R)

|φω |αφω(x · ∇φω)dx =
d

α+ 2

∫

P (r,R)

|φω |α+2dx

− 1

α+ 2

∫

∂Br

|φω |α+2(x · n1)dS

− 1

α+ 2

∫

∂BR

|φω|α+2(x · n2)dS.

Adding the above identities, we get

(

1 − d

2

)

[

∫

P (r,R)

|∇φω |2dx − c

∫

P (r,R)

|x|−2|φω |2dx
]

− dω

2

∫

P (r,R)

|φω|2dx

+
d

α+ 2

∫

P (r,R)

|φω|α+2dx = I1(r) + I2(R), (3.1)

where

I1(r) =
1

2

∫

∂Br

|∇φω |2(x · n1)dS − ω

2

∫

∂Br

|φω |2(x · n1)dS

+
c

2

∫

∂Br

|x|−2|φω |2(x · n1)dS +
1

α+ 2

∫

∂Br

|φω |α+2(x · n1)dS

= −r
(
∫

∂Br

1

2
|∇φω |2 − ω

2
|φω|2 +

c

2
|x|−2|φω |2 +

1

α+ 2
|φω|α+2dS

)

,

and

I2(R) =
1

2

∫

∂BR

|∇φω |2(x · n2)dS − ω

2

∫

∂BR

|φω|2(x · n2)dS

+
c

2

∫

∂BR

|x|−2|φω |2(x · n2)dS +
1

α+ 2

∫

∂BR

|φω |α+2(x · n2)dS

= R

(
∫

∂BR

1

2
|∇φω |2 − ω

2
|φω |2 +

c

2
|x|−2|φω|2 +

1

α+ 2
|φω |α+2dS

)

.

Denote

A(φω) =
1

2
|∇φω|2 − ω

2
|φω|2 +

c

2
|x|−2|φω |2 +

1

α+ 2
|φω|α+2.

We have
∫

B

A(φω)dx =

∫ 1

0

∫

∂Br

A(φω)dSdr < ∞, (3.2)
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where B is the unit ball in Rd. Hence, there exists a sequence rn → 0 such that

rn

∫

∂Brn

A(φω)dS → 0 as n → ∞.

Indeed, if

lim inf
r→0

r

∫

∂Br

A(φω)dS = c > 0,

then
∫

∂Br

A(φω)dS

would not be in L1(0, 1), which contradicts to (3.2). On the other hand, since
∫

Rd

A(φω)dx =

∫ +∞

0

∫

∂BR

A(φω)dSdR < ∞,

there exists a sequence Rn → +∞ such that

Rn

∫

∂BR

A(φω)dS → 0 as n → ∞.

This implies that I1(rn) → 0 and I2(Rn) → 0 as n → ∞. Now substituting r by rn

and R by Rn in (3.1) and taking n → ∞, we obtain the second identity. The proof
is complete. �

Throughout this section, we denote the functional

Q(v) := ‖v‖2
Ḣ1

c

− dα

2(α+ 2)
‖v‖α+2

Lα+2.

Note that if we take

vλ(x) := λ
d

2 v(λx), (3.3)

then we have

‖vλ‖L2 = ‖v‖L2, ‖∇vλ‖L2 = λ‖∇v‖L2 ,

‖|x|−1vλ‖L2 = λ‖|x|−1v‖L2, ‖vλ‖Lα+2 = λ
dα

2(α+2) ‖v‖Lα+2.
(3.4)

Thus,

Sω(vλ) =
λ2

2
‖v‖2

Ḣ1
c

+
ω

2
‖v‖2

L2 − λ
dα

2

α+ 2
‖v‖α+2

Lα+2,

and
Q(v) = ∂λSω(vλ)

∣

∣

λ=1
.

Lemma 3.3. Let d ≥ 3, c 6= 0 be such that c < λ(d), 4
d
< α < 4

d−2 and ω > 0. Let

φω ∈ Grad,ω. Then

Sω(φω) = inf{Sω(v) : v ∈ H1
rad

\{0}, Q(v) = 0}.
Proof. Let dn := inf{Sω(v) : v ∈ H1

rad\{0}, Q(v) = 0}. Thanks to the Pohozaev’s
identities, it is easy to check that Sω(φω) = Q(φω) = 0. By the definition of dn,

Sω(φω) ≥ dn. (3.5)

We now consider v ∈ H1
rad\{0} be such that Q(v) = 0. If Kω(v) = 0, then by

Proposition 1.2, Sω(v) ≥ Sω(φω). Assume that Kω(v) 6= 0. Let vλ be as in (3.3).
We have

Kω(vλ) = λ2‖v‖2
Ḣ1

c

+ ω‖v‖2
L2 − λ

dα

2 ‖v‖α+2
Lα+2.
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We see that limλ→0 Kω(vλ) = ω‖v‖2
L2 > 0. Since dα

2 > 2, we have limλ→+∞ Kω(vλ) =

−∞. Thus, there exists λ0 > 0 such that Kω(vλ0 ) = 0. By Proposition 1.2, we get
Sω(vλ0 ) ≥ Sω(φω). On the other hand, a direct computation shows that

∂λSω(vλ) = λ‖v‖2
Ḣ1

c

− dα

2(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2

= λ

(

‖v‖2
Ḣ1

c

− dα

2(α+ 2)
λ

dα

2 −2‖v‖α+2
Lα+2

)

.

The equation ∂λSω(vλ) = 0 admits a unique non-zero solution

λ1 =

( ‖u‖2
Ḣ1

c

dα
2(α+2) ‖v‖α+2

Lα+2

)

2
dα−4

which is equal to 1 since Q(v) = 0. It follows that ∂λSω(vλ) > 0 if λ ∈ (0, 1)
and ∂λSω(vλ) < 0 if λ ∈ (1,∞). In particular, we get Sω(vλ) < Sω(v) for any
λ > 0 and λ 6= 1. Since λ0 > 0, it follows that Sω(vλ0 ) ≤ Sω(v). This implies that
Sω(v) ≥ Sω(φω) for any v ∈ H1

rad\{0}, Q(v) = 0. Taking the infimum, we obtain

Sω(φω) ≤ dn. (3.6)

Combining (3.5) and (3.6), we prove the result. �

Let φω ∈ Grad,ω. We denote

Brad,ω := {v ∈ H1
rad\{0} : Sω(v) < Sω(φω), Q(v) < 0}.

Lemma 3.4. Let d ≥ 3, c 6= 0 be such that c < λ(d), 4
d
< α < 4

d−2 and ω > 0. Let

φω ∈ Grad,ω. Then Brad,ω is invariant under the flow of (1.2), that is, if u0 ∈ Brad,ω,

then the corresponding solution u(t) to (1.2) with u(0) = u0 satisfies u(t) ∈ Brad,ω

for any t ∈ [0, T ).

Proof. Let u0 ∈ Brad,ω. By the conservation of mass and energy,

Sω(u(t)) = Sω(u0) < Sω(φω), ∀t ∈ [0, T ). (3.7)

It remains to show that Q(u(t)) < 0 for any t ∈ [0, T ). Suppose that there exists
t0 ∈ [0, T ) such that Q(u(t0)) ≥ 0. By the continuity of t 7→ Q(u(t)), there exists
t1 ∈ (0, t0] such that Q(u(t1)) = 0. By Lemma 3.3, Sω(u(t1)) ≥ Sω(φω) which
contradicts to (3.7). �

Lemma 3.5. Let d ≥ 3, c 6= 0 be such that c < λ(d), 4
d
< α < 4

d−2 and ω > 0. Let

φω ∈ Grad,ω. If v ∈ Brad,ω, then

Q(v) ≤ 2(Sω(v) − Sω(φω)).

Proof. Let vλ be as in (3.3). Set g(λ) := Sω(vλ). We have

g(λ) =
λ2

2
‖v‖2

Ḣ1
c

+
ω

2
‖v‖2

L2 − λ
dα

2

α+ 2
‖v‖α+2

Lα+2,

g′(λ) = λ‖v‖2
Ḣ1

c

− dα

2(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2 =

Q(vλ)

λ
,
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and

(λg′(λ))′ = 2λ‖v‖2
Ḣ1

c

− d2α2

4(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2

= 2

(

λ‖v‖2
Ḣ1

c

− dα

2(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2

)

− dα(dα − 4)

4(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2

= 2g′(λ) − dα(dα − 4)

4(α+ 2)
λ

dα

2 −1‖v‖α+2
Lα+2.

Since dα > 4, we see that

(λg′(λ))′ ≤ 2g′(λ), ∀λ > 0. (3.8)

Since Q(v) < 0, the equation ∂λSω(vλ) = 0 admits a unique non-zero solu-
tion λ0 ∈ (0, 1). Taking the integration over λ0 and 1 and note that Q(vλ0 ) =
λ0

(

∂λSω(vλ)
)∣

∣

λ=λ0
= 0, we get

Q(v) −Q(vλ0 ) ≤ 2(Sω(v) − Sω(vλ0 )) ≤ 2(Sω(v) − Sω(φω)).

Here, the last inequality comes from the fact Q(vλ0 ) = 0. The proof is complete. �

The key ingredient in showing the strong instability of radial standing waves is
to use localized virial estimates to establish the finite time blowup. Let us recall
localized virial estimates related to (1.2). Let θ : [0,∞) → [0,∞) be such that

θ(r) =

{

r2 if 0 ≤ r ≤ 1,
const. if r ≥ 2,

and θ′′(r) ≤ 2 for r ≥ 0.

The precise constant here is not important. For R > 1, we define the radial function

ϕR(x) = ϕR(r) := R2θ(r/R), r = |x|. (3.9)

We define the virial potential by

VϕR
(t) :=

∫

ϕR(x)|u(t, x)|2dx. (3.10)

Lemma 3.6 (Radial virial estimate [13]). Let d ≥ 3, c 6= 0 be such that c < λ(d),
4
d
< α < 4

d−2 , R > 1 and ϕR be as in (3.9). Let u : I ×Rd → C be a radial solution

to (1.2). Then for any t ∈ I,

d2

dt2
VϕR

(t) ≤ 8‖u(t)‖2
Ḣ1

c

− 4dα

α+ 2
‖u(t)‖α+2

Lα+2 +O
(

R−2 +R−
(d−1)α

2 ‖u(t)‖
α

2

Ḣ1
c

)

(3.11)

= 8Q(u(t)) +O
(

R−2 +R−
(d−1)α

2 ‖u(t)‖
α

2

Ḣ1
c

)

(3.12)

= 4dαE(u(t)) − 2(dα− 4)‖u(t)‖2
Ḣ1

c

+O
(

R−2 +R−
(d−1)α

2 ‖u(t)‖
α

2

Ḣ1
c

)

.

(3.13)

The implicit constant depends only on ‖u0‖L2 , d and α. Here A = O(B) means

there exists a constant C > 0 such that A = CB.

We refer the reader to [13, Lemma 5.4] for the proof of the above result.
We are now able to prove our main result.

Proof of Theorem 1.5. Let ǫ > 0, ω > 0 and φω ∈ Grad,ω. Since φλ
ω → φω in H1

as λ → 1, there exists λ0 > 1 such that ‖φω − φλ0
ω ‖H1 < ǫ. By decreasing λ0 if

necessary, we claim that φλ0
ω ∈ Brad,ω. To see this, we first notice that Q(φω) = 0.
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This fact follows from the Pohozaev’s identities related to (1.3) given in Lemma
3.2:

ω‖φω‖2
L2 =

4 − (d− 2)α

2(α+ 2)
‖φω‖α+2

Lα+2 =
4 − (d− 2)α

dα
‖φω‖2

Ḣ1
c

. (3.14)

On the other hand, a direct computation shows

Sω(φλ
ω) :=

λ2

2
‖φω‖2

Ḣ1
c

+
ω

2
‖φω‖2

L2 − λ
dα

2

α+ 2
‖φω‖α+2

Lα+2,

∂λSω(φλ
ω) := λ‖φω‖2

Ḣ1
c

− dα

2(α+ 2)
λ

dα−2
2 ‖φω‖α+2

Lα+2 =
Q(φλ

ω)

λ
.

It is easy to see that the equation ∂λSω(φλ
ω) = 0 has a unique non-zero solution

( ‖φω‖2
Ḣ1

c

dα
2(α+2) ‖φω‖α+2

Lα+2

)

2
dα−4

= 1.

The last inequality comes from the fact Q(φω) = 0. This implies in particular that
{

∂λSω(φλ
ω) > 0 if λ ∈ (0, 1),

∂λSω(φλ
ω) < 0 if λ ∈ (1,∞),

from which we get Sω(φλ
ω) < Sω(φω) for any λ > 0, λ 6= 1. Since Q(φλ

ω) =
λ∂λSω(φλ

ω), we also have
{

Q(φλ
ω) > 0 if λ ∈ (0, 1),

Q(φλ
ω) < 0 if λ ∈ (1,∞).

As an application of the above argument, we have

Sω(φλ0
ω ) < Sω(φω), Q(φλ0

ω ) < 0.

This shows that φλ0
ω ∈ Brad,ω and the claim follows.

By Theorem 3.1, there exists a unique solution u ∈ C([0, T ), H1) to (1.2) with
initial data u(0) = u0 = φλ0

ω , where T > 0 is the maximal existence time. Since
u0 = φλ0

ω is radial, it is well-known that the corresponding solution is also radial.
The rest of this note is to show that u blows up in finite time. It is done by several
steps.
Step 1. We claim that there exists a > 0 such that Q(u(t)) ≤ −a for any t ∈ [0, T ).
Indeed, since Brad,ω is invariant under the flow of (1.2), we see that u(t) ∈ Brad,ω

for any t ∈ [0, T ). By Lemma 3.5, we get

Q(u(t)) ≤ 2(Sω(u(t)) − Sω(φω)) = 2(Sω(φλ0
ω ) − Sω(φω)).

This proves the claim with a = 2(Sω(φω) − Sω(φλ0
ω )) > 0.

Step 2. We next claim that there exists b > 0 such that

d2

dt2
VϕR

(t) ≤ −b, (3.15)

for any t ∈ [0, T ), where VϕR
(t) is as in (3.10). Indeed, since the solution u(t) is

radial, we apply Lemma 3.6 to have

d2

dt2
VϕR

(t) ≤ 4dαE(u(t)) − 2(dα− 4)‖u(t)‖2
Ḣ1

c

+O
(

R−2 +R−
(d−1)α

2 ‖u(t)‖
α

2

Ḣ1
c

)

,

for any t ∈ [0, T ) and any R > 1. The Young inequality implies for any ǫ > 0,

R−
(d−1)α

2 ‖u(t)‖
α

2

Ḣ1
c

. ǫ‖u(t)‖2
Ḣ1

c

+ ǫ− α

4−αR−
2(d−1)α

4−α .
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Note that in our consideration, we always have 0 < α < 4. We thus get

d2

dt2
VϕR

(t) ≤ 4dαE(u(t))−2(dα−4)‖u(t)‖2
Ḣ1

c

+Cǫ‖u(t)‖2
Ḣ1

c

+O
(

R−2 + ǫ− α

4−αR−
2(d−1)α

4−α

)

,

for any t ∈ [0, T ), any R > 1, any ǫ > 0 and some constant C > 0.
To see (3.15), we follow the argument of Bonheure-Castéras-Gou-Jeanjean [6].

Fix t ∈ [0, T ) and denote

µ :=
4dα|E(u0)| + 2

dα− 4
.

We consider two cases.
Case 1.

‖u(t)‖2
Ḣ1

c

≤ µ.

Since 4dαE(u(t))−2(dα−4)‖u(t)‖2
Ḣ1

c

= 8Q(u(t)) ≤ −8a for any t ∈ [0, T ), we have

d2

dt2
VϕR

(t) ≤ −8a+ Cǫµ+O
(

R−2 + ǫ− α

4−αR−
2(d−1)α

4−α

)

.

By choosing ǫ > 0 small enough and R > 1 large enough depending on ǫ, we see
that

d2

dt2
VϕR

(t) ≤ −4a.

Case 2.

‖u(t)‖2
Ḣ1

c

> µ.

In this case, we have

4dαE(u0) − 2(dα− 4)‖u(t)‖2
Ḣ1

c

< −2 − (dα− 4)‖u(t)‖2
Ḣ1

c

.

Thus,

d2

dt2
VϕR

(t) ≤ −2 − (dα− 4)‖u(t)‖2
Ḣ1

c

+ Cǫ‖u(t)‖2
Ḣ1

c

+O
(

R−2 + ǫ− α

4−αR−
2(d−1)α

4−α

)

.

Since dα− 4 > 0, we choose ǫ > 0 small enough so that

dα− 4 − Cǫ ≥ 0.

This implies that

d2

dt2
VϕR

(t) ≤ −2 +O
(

R−2 + ǫ− α

4−αR−
2(d−1)α

4−α

)

.

We next choose R > 1 large enough depending on ǫ so that

d2

dt2
VϕR

(t) ≤ −1.

Note that in both cases, the choices of ǫ > 0 and R > 1 are independent of t.
Therefore, the claim follows with b = min{4a, 1} > 0.
Step 3. By Step 2, the solution u(t) satisfies

d2

dt2
VϕR

(t) ≤ −b < 0,

for any t ∈ [0, T ). The convexity argument of Glassey (see e.g. [16]) implies that
the solution blows up in finite time. The proof is complete. �



14 VAN DUONG DINH

Acknowledgments

V. D. Dinh would like to express his deep gratitude to his wife-Uyen Cong for
her encouragement and support. The authors would like to thank the reviewers for
their helpful comments and suggestions.

References

[1] G. E. Astrakharchik, B. A. Malomed, Quantum versus mean-field collapse in a many-

body system, Phys. Rev. A 92 (2015), 043632. 1
[2] A. Bensouilah, L2 concentration of blow-up solutions for the mass-critical NLS with

inverse-square potential, preprint arXiv:1803.05944, 2018. 1, 2
[3] A. Bensouilah, V. D. Dinh, Mass concentration and characterization of finite time blow-

up solutions for the nonlinear Schrödinger equation with inverse-square potential, preprint
arXiv:1804.08752, 2018. 1

[4] A. Bensouilah, V. D. Dinh, S. Zhu, On stability and instability of standing waves for the

nonlinear Schrödinger equation with inverse-square potential, to appear in J. Math. Phys.
2018. 1, 2
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