
Mode-Coupling Theory of the Glass Transition: A Primer

Liesbeth M. C. Janssen1, ∗

1Theory of Polymers and Soft Matter, Department of Applied Physics,
Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

(Dated: February 22, 2022)

Understanding the physics of glass formation remains one of the major unsolved challenges of condensed
matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon
cooling or compression, but at the same time undergoes only minute structural changes. Among the numerous
theories put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands out as the only
framework that provides a fully first-principles-based description of glass phenomenology. This review outlines
the key physical ingredients of MCT, its predictions, successes, and failures, as well as recent improvements
of the theory. We also discuss the extension and application of MCT to the emerging field of non-equilibrium
active soft matter.

I. INTRODUCTION TO THE PHYSICS OF GLASS
FORMATION

Glasses are solid materials that lack any long-range struc-
tural order, representing a state of matter that lies somewhere
in between a crystalline solid and a disordered liquid. The
most common pathway towards a glassy state is by rapidly
cooling a liquid to below its melting point–thus entering the
so-called supercooled regime–, until the liquid’s viscosity η
simply becomes so large that it stops flowing on any practical
time scale [1–3]. The operational definition of the glass tran-
sition temperature Tg is the point where the viscosity exceeds
a value of 1012 Pa.s or the structural relaxation time τ exceeds
100 seconds, but most glasses in our everyday lives have a vis-
cosity that is still orders of magnitude higher [4]. Aside from
common applications such as window panes and household
items, amorphous solids can be found in, e.g., phase-change
memory devices, pharmaceutical compounds, optical fibers,
and wearable electronics, and there is compelling evidence
that even living cells employ glass-like behavior to regulate
intra- and intercellular processes [5–11]. Curiously, most of
the water in the universe is also believed to exist in the glassy
state [12].

Given the vast abundance and importance of glasses, it may
come as a surprise that we still understand very little about
them. In fact, after decades of intense research, there is still no
consensus on which physical mechanisms underlie the process
of glass formation. Unraveling the nature of the glassy state
ranks among the ”most compelling puzzles and questions fac-
ing scientists today” [13], and Nobel laureate Philip Anderson
even called it ”the deepest and most interesting unsolved prob-
lem in solid-state theory” [14]. What makes the glass transi-
tion so notoriously difficult to understand? At the heart of the
problem lies the fact that a vitrifying material exhibits a spec-
tacular growth of viscosity (or relaxation time) upon cooling
or compression, but at the same time undergoes only minute
structural changes. Thus, at the molecular level, the structure
of a glass is almost indistinguishable from that of a normal liq-
uid (as probed by, e.g., the radial distribution function or the
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static structure factor), yet their viscosities differ by at least
fifteen (!) orders of magnitude. This is unlike any conven-
tional thermodynamic phase transition, such as the liquid-to-
crystal transition, which is marked by the appearance of long-
range, periodic structural order (Fig. 1). Nonetheless, it is not
unimaginable that some kind of ’amorphous order’ emerges
during vitrification, albeit in a far less obvious way than in the
crystallization example. A popular hypothesis is that the sub-
tle microstructural changes observed in supercooled liquids
might somehow contain a ’hidden’ growing (and possibly di-
verging) length scale that accompanies the transition from liq-
uid to amorphous solid, and indeed a large ongoing effort is
devoted to identifying such a length scale [15, 16].

Another major unresolved piece of the glass puzzle is that
not all materials vitrify in the same manner. More specifically,
the viscosity growth as a function of inverse temperature can
differ significantly from one material to another. These differ-
ences are captured in an empirical property called ’fragility’
[1, 17], which characterizes the slope of the viscosity with
temperature as a material approaches the glass transition (Fig.
2). Materials such as silica fall in the class of ’strong’ glass
formers, exhibiting an Arrhenius-type (exponential) viscosity
growth upon cooling, while ’fragile’ materials have a viscos-
ity that increases faster than an Arrhenius law. It is widely
believed that a thorough understanding of the mechanisms un-
derlying fragility will be key to achieving a universal descrip-
tion of the glass transition, but no theory to date has been able
to predict a material’s degree of fragility from the sole knowl-
edge of its microscopic structure [18].

While the viscosity already gives an important clue about
the complex behavior of glass-forming materials, the most de-
tailed information is contained in the microscopic relaxation
dynamics, and this will also be the focus of the remainder of
this review. A common probe of such dynamics is the time-
dependent density-density correlation function or so-called in-
termediate scattering function, F (k, t), which probes correla-
tions in particle density fluctuations over a certain wavenum-
ber k and over a time interval t [19]. Simply put, F (k, t)
measures to what extent the instantaneous molecular configu-
ration of a material will resemble the new configuration a time
t later; the wavenumber k designates the inverse length scale
over which this resemblance is measured. By choosing k as
approximately one inverse particle diameter, F (k, t) will thus
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FIG. 1. Schematic picture of the structure of (a) a normal liquid,
(b) an amorphous solid, i.e. a glass, and (c) a crystalline solid. The
first panel highlights four (green) particles which are separated by a
distance r from a (red) reference particle. The right panels illustrate
the corresponding radial distribution functions g(r), which describe
the probability of finding a particle a distance r away from any ref-
erence particle, relative to the ideal-gas case. The first peak in g(r)
represents the first solvation shell at r ≈ 1d, where d is the par-
ticle diameter. The dashed black lines indicate the ideal-gas result
g(r) = 1.

probe the relaxation dynamics at the molecular level, while
the limit k → 0 describes the macroscopic dynamics. We
note that the characteristic relaxation time τ associated with
F (k, t) is also a measure for the viscosity (with the shear mod-
ulus as the proportionality factor [4]), and hence F (k, t) also
provides a means to quantify e.g. the fragility.

The behavior of F (k, t) upon cooling thus reveals how the
microscopic relaxation dynamics changes during the vitrifica-
tion process [20, 21] (Fig. 3). In a normal high-temperature
liquid, F (k, t) will decay to zero in a rapid and simple expo-
nential fashion, since the particles can move around easily and
therefore quickly lose track of their initial positions. At tem-
peratures in the supercooled regime, however, F (k, t) shows
a more complex multi-step relaxation pattern (also see Fig.
6): at intermediate times (the so-called β-relaxation regime),
a plateau develops during which F (k, t) remains constant,
indicating the transient freezing of particles; only at suffi-
ciently long times will the correlation function fully decay to
zero. Notably, this final decorrelation process (so-called α-
relaxation) is not a simple exponential decay, as in a normal

FIG. 2. Typical fragility plot, showing the logarithm of the viscosity
as a function of inverse temperature 1/T , normalized with respect
to the glass transition temperature Tg . A viscosity of 10−3 Pa.s cor-
responds to a normal liquid, while a value of 1012 Pa.s defines a
glassy solid. So-called strong glass formers such as silica exhibit an
Arrhenius-type growth of the viscosity upon cooling, while fragile
glass formers such as o-terphenyl show a much steeper temperature
dependence close to Tg . Many materials, including colloidal hard
spheres and confluent cells, fall in between these two extremes.

liquid, but rather a more slowly decaying, ’stretched’ expo-
nential behavior of the form exp(−t/τ)β , with 0 < β < 1. As
the temperature decreases toward the glass transition temper-
ature, the plateau in F (k, t) will extend to increasingly long
times, until it finally exceeds the entire time window of ob-
servation. Thus, at the glass transition, F (k, t) fails to decor-
relate on any practical time scale–implying that particles al-
ways stay reasonably close to their initial positions–, mark-
ing the onset of solidity. The final value of the intermediate
scattering function, f(k) = limt→∞ F (k, t), is known as the
non-ergodicity parameter [22], and is often used as the order
parameter for the glass transition: f(k) = 0 corresponds to
the liquid state, and f(k) > 0 indicates a solid (Fig. 3).

There are several other aspects in the dynamics of super-
cooled liquids that differ markedly from those seen in ordi-
nary liquids, including the emergence of dynamic heterogene-
ity [24–27] and the breakdown of the Stokes-Einstein relation
[28, 29]. Dynamic heterogeneity refers to the fact that struc-
tural relaxation does not take place uniformly throughout the
entire material–as in a normal liquid–, but rather in clusters
of collectively rearranging particles, while the rest of the su-
percooled liquid remains temporarily frozen (Fig. 4). The ap-
pearance of such mobile domains will vary both in space and
in time, thus giving rise to non-trivial spatiotemporal fluctua-
tions that become more pronounced as the glass transition is
approached. Dynamic heterogeneity cannot be seen in F (k, t)
itself, but rather in the fluctuations of F (k, t) among different
particle trajectories [30]. These fluctuations are encoded in
the so-called dynamic susceptibility χ4(t), whose peak height
is a measure for the size of the cooperatively rearranging re-
gions. As a material is supercooled, a growing χ4(t) thus in-
dicates a growing dynamic length scale associated with vitri-
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FIG. 3. Schematic picture of the structure and dynamics in a nor-
mal liquid, supercooled liquid, and glass. Panels (a) and (b) depict a
typical trajectory of a particle in the normal liquid phase and glassy
phase, respectively. In the glassy state, particles become trapped in
a cage formed by their neighbors. The dashed red line indicates the
typical size of a cage, with a radius of approximately one particle
diameter d. Panel (c) shows the static structure factors S(k) for a
glass-forming system of hard spheres for several packing fractions
φ, calculated using the Percus-Yevick approximation. The main peak
position of S(k) corresponds to a wavenumber of approximately one
inverse particle diameter, k ≈ 2π/d. Within MCT, the glass tran-
sition for this system takes place at φc = 0.516 [23]. Panel (d)
shows typical intermediate scattering functions F (k, t) as a func-
tion of time for k ≈ 2π/d. As the temperature is decreased or the
packing fraction is increased, the system becomes more glassy and
F (k, t) decays more slowly.

fication, but a true divergence of this length scale–as expected
for typical critical phenomena–has not yet been observed [16].
A related puzzling phenomenon concerns the Stokes-Einstein
equation, which states that the viscosity (or relaxation time),
diffusion constant D, and temperature of a liquid are related
as Dη/T = constant. This ratio holds generally for normal
liquids, but in the supercooled regime the viscosity increase
tends to be stronger than the diffusion-constant decrease. This
breakdown of Stokes-Einstein behavior is widely believed to
be a manifestation of dynamic heterogeneity, but the funda-
mental origins of both phenomena remain poorly understood.

In this review, we focus on one of several theories that
seeks to describe the above complex phenomenology of glass-
forming materials, namely Mode-Coupling Theory (MCT)
[31, 32]. This theory was first put forward by Götze and
coworkers in the 1980s [23, 33], and continues to stand out
as the only framework of glassy dynamics that is based en-
tirely on first principles, starting from the exact microscopic
picture of a correlated liquid. We outline the key physical in-
gredients and sketch of the MCT derivation, its predictions,
successes, and failures, as well as recent improvements and
extensions of the theory. Part of this work is based on the
review by Reichman and Charbonneau [20] and by Szamel

FIG. 4. Illustration of dynamic heterogeneity in supercooled liquids.
The red-colored particles represent mobile particles that have moved
further than a certain distance ∆r during a time interval ∆t, while
blue-colored particles represent particles that have moved less than
this distance in the same time interval. In the normal liquid phase (a),
particle motion occurs rather homogeneously across the entire sam-
ple. Conversely, in a supercooled liquid (b), particle motion occurs
heterogeneously in clusters of collectively moving particles, and the
appearance of such mobile clusters fluctuates both in space and in
time. The figure is based on Ref. [24].

[34]; for a detailed discussion of the original theory, including
an extensive treatment of the involved mathematics, we refer
to the seminal work of Götze [31]. For an overview of the
many other existing theories of glass formation, see e.g. Refs.
[2, 18, 35].

II. DERIVATION OF THE MCT EQUATIONS

A. Preliminaries

As already noted in the introduction, MCT provides the
only first-principles route towards the description of glassy
behavior, making it a unique theory that does not rely on
any phenomenological assumptions. Explicitly, MCT aims to
predict the full microscopic relaxation dynamics of a glass-
forming material–as a function of time, wavenumber, tem-
perature, and density–, using only knowledge of static, time-
independent properties as input. Aside from constants such
as the system’s temperature and density, the main theory in-
put is the average microscopic structure of the material. The
simplest experimental measure of the latter is the static struc-
ture factor S(k), which can be obtained directly from scat-
tering experiments. This structure function is related to the
radial distribution function g(r) through a Fourier transform
[19, 36], and thus probes–in Fourier space–the likelihood of
finding a particle at a certain distance r ∼ 2π/k away from
any other particle (Fig. 3). Formally S(k) is also equivalent to
F (k, t = 0). It must be noted that MCT also admits more in-
tricate three-particle correlation functions as additional struc-
tural input, but–with the exception of network-forming flu-
ids [37, 38]–the sole knowledge of S(k) generally suffices.
Importantly, it is through these structural metrics that MCT
knows about the chemical composition of the material under
study. That is, the theory is able to distinguish between, say,
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FIG. 5. Sketch of the MCT equations. The theory seeks to predict the
full dynamics of the intermediate scattering function F (k, t) for all
possible wavevectors k and all times t. The exact F (k, t) dynamics
is governed by a memory function that, within standard MCT, is ap-
proximated as a product of two intermediate scattering functions that
probe density correlations at different wavevectors q and k− q. The
couplings among the different wavevectors {k,q,k− q} are deter-
mined by the so-called vertices, which depend explicitly on the static
structure factor. Hence, the static structure factor must be given as
input to the theory, and dynamical information is given as output.

a glass-forming fluid of silica or Lennard-Jones particles only
through their differences in (wavevector-dependent) structure.

In the standard formulation of MCT, the theory seeks to
predict the full dynamics of the intermediate scattering func-
tion F (k, t) of a given material, starting with the exact equa-
tion of motion for F (k, t). Below we sketch the derivation of
this equation, followed by a discussion of the various MCT
approximations made to solve it. Briefly, the derivation will
amount to an exact integro-differential equation for F (k, t)
[Eq. (10)] that is governed by an even more complicated time-
dependent correlation (’memory’) function. MCT makes the
ad hoc assumption that the latter memory function can be ap-
proximated as a product of F (k, t) functions, thus yielding
a closed, self-consistent equation (see Fig. 5). As described
in Sec. II C, the final MCT equation [Eq. (12)] is reminiscent
of a damped harmonic oscillator, but with a time-dependent
damping term that ultimately produces the dramatic dynamic
slowdown in supercooled liquids.

Let us first define our variables of interest, namely the col-
lective density modes,

ρ(r, t) =

N∑
j

δ(r− rj(t)), (1)

ρ(k, t) =

∫
dreikrρ(r, t)

=

N∑
j

eikrj(t),

where N denotes the total number of particles and rj(t) is the
position of particle j at time t. The real-space density ρ(r, t)
thus simply measures where all particles are located at a given
point in time, and ρ(k, t) is the corresponding Fourier trans-
form for wavevector k. The intermediate scattering function
F (k, t) probes the time-dependent correlations between these

collective density modes,

F (k, t) =
1

N
〈ρ(−k, 0)ρ(k, t)〉, (2)

where the brackets denote a canonical ensemble average. At
time t = 0, this correlation function reduces to the static struc-
ture factor,

S(k) =
1

N
〈ρ(−k, 0)ρ(k, 0)〉 ≡ F (k, 0), (3)

which thus contains information on the static density distri-
bution of the material, i.e., the average microscopic structure.
Note that in an isotropic material, such as a powder or a ’sim-
ple’ fluid, both S(k) and F (k, t) depend only on the magni-
tude of the wavector, k = |k|, but in e.g. the presence of an
external field the full wavevector dependence should be con-
sidered [39].

B. Mori-Zwanzig projection formalism

In order to obtain an exact equation of motion for F (k, t),
we make use of the so-called Mori-Zwanzig projection for-
malism [40, 41]. The basic idea behind this formalism is to
divide the entire universe into two mutually orthogonal sub-
spaces: one containing the variables of interest, and one sim-
ply containing ’everything else’. The goal is to describe how
the dynamics of the relevant variables evolves over time, in
the presence of all other ’non-interesting’ variables. Here we
will focus mainly on molecular glass-forming fluids, in which
case the variables of interest are the collective density modes
of Eq. (1) and their associated current modes

j(k, t) ≡ ρ̇(k, t) = i

N∑
l=1

(k · ṙl)eikrl(t), (4)

where the dots denote time derivatives. Note that in gen-
eral there is no simple recipe for deciding which variables are
‘relevant’; typically we focus on quasi-conserved or ’slow’
variables that show some non-trivial time-dependence (un-
like strictly conserved variables that are constant), but which
do not fluctuate too fast either, so as not to be confused
with noise. From Eq. (4), it is easy to see that in the limit
k → 0, corresponding to very large length scales, the current
ρ̇(k, t) will vanish and consequently the macroscopic den-
sity is strictly conserved. On smaller length scales, however,
i.e., k > 0, the local density will fluctuate as particles move
around, and it is these fluctuations–and their time-dependent
correlations–that we seek to probe in F (k, t) and predict with
MCT.

For convenience we will organize the variables ρ(k, t) and
j(k, t) into a two-component vector A, which thus spans our
subspace of interest:

A(t) ≡
[
A1(t)
A2(t)

]
=

[
ρ(k, t)
j(k, t)

]
. (5)
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Importantly, in this notation, time-dependent correlation
functions may now be identified simply as scalar prod-
ucts between such vector elements, e.g., F (k, t) =
(1/N)〈A1(0)|A1(t)〉 = (1/N)〈A∗1(0)A1(t)〉, where we have
used the standard bra-ket notation with the asterisk represent-
ing the complex conjugate. We define the full matrix of all
possible scalar products as C(t), with matrix elements

Cαβ(t) ≡ 〈Aα(0)|Aβ(t)〉. (6)

Note that the first matrix elementC11(t) equalsNF (k, t), and
C21(t) = (N/i)(dF (k, t)/dt). Furthermore, in analogy to
ordinary projections in vector space, we can now use these
scalar products to define a projection operator PA as

PA =
∑
α,β

|Aα〉[C(0)−1]αβ〈Aβ | (7)

where the sums run over all possible matrix elements. The
projection of some vector X onto A is then given by PAX .
Such a projection essentially extracts all the ’slow’ or ’rele-
vant’ character (defined through A) from an arbitrary variable
X , leaving the remaining part ofX orthogonal toA. It is easy
to show that P2

A = PA and PAA = A, i.e., the projection
of A onto itself returns A. This projection formalism, intro-
duced by Zwanzig and Mori, thus establishes a link between
dynamic variables and standard vector algebra. Without any
loss of generality, it will enable us to separate the full dynam-
ical behavior of our system into two contributions: i) the dy-
namics evolving in the ’slow’ subspace spanned by A(0), and
ii) the dynamics due to all remaining ’fast’ variables, obtained
simply by projecting out all the slowA-character from the full
dynamics.

Let us now look explicitly at the time-dependent dynam-
ics of a glass-forming supercooled liquid. For classical fluids
that obeys Newton’s equation of motion, the time evolution of
A(t) can always be formally written as

A(t) = eiLtA(0), (8)

where L is the so-called Liouvillian operator. The definition
of L can be found in, e.g., Ref. [20], but here we will not be
concerned with its explicit form; it suffices to know that this
operator governs the full dynamics of our variables of inter-
est. Note that for colloidal glass-forming systems undergoing
Brownian rather than Newtonian motion, a similar equation
applies when considering only the density modes in A and
replacing the Liouvillian by the so-called Smoluchowski op-
erator [42].

While Eq. (8) is formally exact, it does not necessarily yield
any new physical insight into the complex time-dependent dy-
namics of supercooled liquids. Instead, we can rewrite this
equation through a somewhat lengthy derivation (involving
the insertion of the unit matrix operator 1 = PA+1−PA and
separating the time-evolution operator exp (iLt) into a ’slow’
component and its orthogonal part) in the following form [20]:

dA(t)

dt
= iΩ · (A)(t)−

∫ t

0

dsK(s) ·A(t− s) + f(t). (9)

For the matrix of correlation functions C(t) we similarly find

dC(t)

dt
= iΩ · C(t)−

∫ t

0

dsK(s) · C(t− s). (10)

Here, Ω is the so-called frequency matrix (the name will be-
come apparent later on), which captures the part of the time
derivative of A that remains in the slow subspace as time
evolves, K(s) is a time-dependent memory function, and f(t)
is the ’fast’ fluctuating force, which is defined as f(t) =

ei(1−PA)Lti(1− PA)LA(0). That is, f(t) is obtained by first
removing all the ’slow’ character from the time derivative of
A using the complementary projection operator (1−PA), and
is subsequently propagated in time in the ’fast’ subspace or-
thogonal to A. The memory function K(t) is given by the
time-autocorrelation function of this fluctuating force; physi-
cally,K(t) represents a dissipative term that ultimately breaks
the conservation of A. In other words, K(t) and f(t) embody
how our slow variable A–which at time t = 0 lives strictly
in the slow subspace–will gradually evolve under the influ-
ence of the rest of the universe, e.g. in the presence of ’fast’
variables such as thermal noise. Note that in arriving at Eq.
(10), we have used that 〈A(0)|f(t)〉 = 0 by construction. Im-
portantly, Eqs. (9) and (10), which are known as the gener-
alized Langevin equation and memory equation, respectively,
are both exact.

C. Mode-Coupling Theory approximations

By Eq. (10), the difficulty of predicting the full time-
dependent dynamics of F (k, t) is now deferred to the the
question of how the memory functionK(t) evolves with time.
In general, there is no rigorous solution for this equation, and
hence approximations must be made. The main idea behind
MCT is to approximate K(t) in ’the simplest non-trivial way’
using a two-step approach:

1. Approximate the memory function as a four-point
density correlation function. First, using the density modes
as the main physical variables of interest, the fluctuating force
f(t) is projected onto a new basis of products of two density
modes, ρ(k1, t)ρ(k2, t), where k1 and k2 run over all possible
wavevectors relevant to our system. Physically, this projection
is motivated by the fact that for particles interacting through
an arbitrary pair potential, such products of densities emerge
naturally in the expression for the fluctuating force [20]. This
may seem rather counterintuitive at first, since the fluctuating
force is a fast variable while density modes are slow by defi-
nition, but it can be shown by Fourier transformation that, for
an n-body interaction potential, f(t) always contains products
of n density modes [43]. In the standard MCT formulation,
it is assumed that the pair densities dominate the fluctuating
force entirely, but higher-order generalizations with projec-
tions onto an n-density-mode basis have also been considered
[44, 45]. Mathematically, the projection onto pair densities
also corresponds to the first non-vanishing component in den-
sity space, i.e., ’the simplest non-vanishing term’, since a pro-
jection onto a single density mode would always give zero
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by construction [31]. Overall, this approximation brings the
memory function K(t), which is the time-correlation func-
tion of f(t), into the form of a four-point density correlation
function:

K(t) ∼
∑

k1,k2,k3,k4

(11)

〈ρ∗(k1, 0)ρ∗(k2, 0)ei[1−PA]Ltρ(k3, 0)ρ(k4, 0)〉,

with the time-propagation operator exp [i(1− PA)Lt] acting
in the fast subspace.

2. Factorize four-point correlation functions into two-
point correlation functions. Second, the (unknown) four-
point correlation functions in K(t) are further simplified by
factorizing them into a product of two two-point correlation
functions 〈ρ∗(k1, 0)ρ(k1, t)〉 and 〈ρ∗(k2, 0)ρ(k2, t)〉. At the
same time, the operator exp [i[1− PA]Lt] is replaced by the
normal operator exp [iLt], since the single density modes
ρ(k1, t) and ρ(k2, t), which start out in the slow subspace,
would otherwise give a zero contribution. It is important to
note that this factorization is an ad hoc approximation that is
not necessarily motivated by any physical insight; rather, it
merely serves to produce a ’simple’ memory function that is
not trivially zero. Nonetheless, it can be shown that the fac-
torization is exact for so-called Gaussian variables [46], but
density modes in general do not behave as such.

After the second approximation is made, we may then real-
ize that the factorized two-point density correlation functions
〈ρ∗(ki, 0)ρ(ki, t)〉 are, in fact, equal toNF (ki, t) by virtue of
Eq. (2). Thus, our full equation of motion for the intermedi-
ate scattering function F (k, t) is now governed by a memory
function containing precisely the same function, but for many
different wavenumbers. After explicitly working out all the
expressions for the frequency matrix Ω and the (approximate)
memory function K(t), and concentrating on the lower left
corner of the correlation matrix C22(t) in Eq. (10), we finally
arrive at the full MCT equation [20]:

d2F (k, t)

dt2
+
kBTk

2

mS(k)
F (k, t)+

∫ t

0

dsKMCT (s)
dF (k, t− s)

dt
= 0,

(12)
with the memory function given by

KMCT (t) =
ρkBT

16π3m

∫
dq|Vq,k−q|2F (q, t)F (|k− q|, t).

(13)
Here, kB is the Boltzmann constant, m is the particle mass, ρ
is the bulk density, and the factors

Vq,k−q = k−2[(k · q)c(q) + k · (k− q)c(|k− q|)] (14)

are referred to as vertices, with c(k) = ρ−1[1 − 1/S(k)]
denoting the direct correlation function [19]. These ver-
tices represent the strength of the coupling between differ-
ent density modes at wavevectors q and k− q. In arriv-
ing at this equation, we have also assumed that S(k) con-
tains all the relevant microscopic structural information (us-
ing the so-called convolution approximation [20, 21, 47]), but

in general the vertices may also contain higher-order, triplet-
density correlations [37, 48]. Equation (12) is a closed, self-
consistent equation, and is subject to the boundary conditions
F (k, 0)/S(k) = 0 and Ḟ (k, 0) = 0.

Let us briefly compare this MCT result with the equation
of motion for a one-dimensional damped harmonic oscilla-
tor: ẍ + ω2x + 2ζωẋ = 0, where ω is the frequency of
the undamped oscillator and ζ is the damping coefficient. It
can be seen that the MCT equation is rather similar, with
Ω22 = kBTk

2/[mS(k)] playing the role of ω2. Hence, the
Ω matrix is referred to as the frequency matrix. The damp-
ing coefficient, on the other hand, appears in the MCT equa-
tion in the form of the memory function KMCT (t) (note the
first derivative of F (k, t) in the integrand). Consequently, we
may interpret the memory function as a generalized, time-
dependent damping, which will ultimately cause the dynami-
cal slowdown in F (k, t) [21].

While analytic solutions of the MCT equation generally do
not exist, it is always possible to solve the equation numeri-
cally, namely by iteratively making an ansatz for F (k, t) for
all k, subsequently constructing the memory function, and up-
dating F (k, t) until convergence is reached. We also note that
for systems undergoing Brownian instead of Newtonian dy-
namics, in which case the Liouvillian should be replaced by
the Smoluchowski operator, MCT yields an identical equa-
tion (with kBT/m being replaced by the diffusion constant
D) [49]; however, the origin of this similarity is subtle and
rather non-trivial [50]. Moreover, it has also been shown that
this equation applies reasonably well to glass-forming poly-
mers [51], suggesting that MCT captures at least some degree
of universal dynamical behavior. Finally, we note that MCT-
based equations have also been formulated for, e.g., the stress
correlation function, the dynamics under shear deformation,
and microrheology studies, but these will not further be dis-
cussed in this review.

III. MODE-COUPLING THEORY PREDICTIONS

The microscopic MCT equation, Eq. (12), can be solved for
any glass-forming material at a given bulk density ρ and tem-
perature T once the corresponding static structure factor S(k)
is known. Thus, MCT predicts the full microscopic dynamics
given only time-independent information as input. In order to
describe the entire vitrification process from liquid to glass,
one typically measures S(k) for a series of temperatures or
densities, and performs a separate MCT calculation for every
relevant temperature and density. In this section, we summa-
rize the main successes and failures of such MCT predictions.

A. Successes

Despite the various approximations made in MCT, the the-
ory gives a remarkable set of accuracte predictions. Firstly,
MCT is indeed capable of predicting a glass transition, which
is non-trivial considering that the static structure factor S(k)–
the main theory input–changes only very weakly upon vitrifi-
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cation (Fig. 3c). As mentioned earlier, the relaxation time of
the predicted F (k, t) is used as an indicator for the glassiness:
at the glass transition, the relaxation time diverges and F (k, t)
fails to decay to zero on any time scale. The corresponding
non-ergodicity parameter f(k) is also often in good quantita-
tive agreement with the results of computer simulations and
experiments (see e.g. Refs. [52, 53]).

Mathematically, MCT’s ability to predict a glass follows
from the non-linearity of the equation (by virtue of the prod-
uct of two F (k, t) functions in the memory function), which
renders the theory very sensitive to any small change in struc-
tural input. This non-linearity leads to a feedback mecha-
nism that ultimately drives the dramatic dynamical slowdown:
upon cooling, S(k) will become slightly larger at certain
wavevectors, causing the vertices to increase as well. Conse-
quently, the memory function will become larger and produce
a stronger damping for F (k, t). The resulting slower inter-
mediate scattering function will further strengthen the mem-
ory function, slowing down the dynamics even more. This
non-linear feedback effect explains at least qualititatively why
the relaxation dynamics can change so dramatically upon only
small changes in the structure and temperature [21].

A related success of MCT is its prediction of the cage ef-
fect as a microscopic mechanism for vitrification (Figs. 3 and
6). Caging refers to the fact that, in a supercooled liquid, par-
ticles become trapped in local cages formed by their neigh-
boring particles, preventing them from moving around as in a
normal liquid. This is the molecular origin of the β-relaxation
regime, which is manifested as a plateau in F (k, t). As long as
the material is on the supercooled-liquid side of the transition,
the particles will eventually manage to escape their cages, but
at and below the glass transition, the cage effect keeps them
trapped indefinitely. The only motion in the glassy state then
corresponds to a vibrational or rattling motion of the parti-
cles within their confining cages. More mathematically, the
cage effect emerges from MCT by considering that the most
prominent change in S(k) upon supercooling occurs at the
main peak at wavenumber k0, corresponding to length scales
of approximately one particle diameter. As a consequence, the
first intermediate scattering function that falls out of equilib-
rium at the glass transition is F (k0, t), which in turn drives the
freezing on all other wavevectors. Notably, within MCT, the
dominant structural length scale governing vitrification thus
remains on the order of only one particle diameter, in stark
contrast with conventional critical phenomena that are usually
accompanied by diverging, macroscopic length scales. How-
ever, as will be described in Sec. IV C, recent work suggests
that a diverging length scale also emerges within an extended
(’inhomogeneous’) version of MCT that is related to the dy-
namic susceptibility χ4(t).

Regardless of the molecular details of the material, which
are contained in S(k), MCT also makes several general pre-
dictions for the relaxation dynamics [20, 21, 31, 33]. Firstly,
MCT predicts that close to the glass transition temperature
Tc, the relaxation time F (k, t) will always diverge as a power
law, τ ∼ (T −Tc)−γ . Such a functional form is often in good
agreement with experiments and simulations in the mildly su-
percooled regime (using γ as a fit parameter), but generally

FIG. 6. Typical MCT prediction for F (k, t) of a supercooled liquid
as a function of time, for a wavenumber k = k0 that corresponds
to the first peak of the static structure factor. At very short times,
particles undergo ballistic motion. At intermediate times, particles
become transiently trapped in cages (β-relaxation) and F (k, t) cor-
respondingly remains approximately constant. Only at sufficiently
long times will particles break free and full relaxation takes place
(α-relaxation).

breaks down closer to the experimental glass transition (see
e.g. Ref. [54]. We will return to this point in the next sub-
section. Furthermore, MCT predicts that the onset and decay
of the β-relaxation regime, i.e., the plateau in F (k, t) at in-
termediate times, are described by power laws of the form
F (k, t) ∼ f +At−a and f −Btb, respectively, where f is the
(constant) plateau height (Fig. 6). Sufficiently close to Tc, the
MCT exponents a and b are related as Γ(1−a)2/Γ(1−2a) =
Γ(1 + b)2/Γ(1 + 2b), where Γ denotes the Gamma function.
This is an entirely non-trivial and remarkable prediction that
is fully consistent with experiments and simulations. For the
α-relaxation regime, i.e., the final decay of F (k, t) on the liq-
uid side of the transition, MCT predicts a stretched exponen-
tial of the form exp(−t/τ)β , with 0 < β ≤ 1 (Fig. 6). This
is again in excellent agreement with experimental and simu-
lation data, and physically arises from the coupling of mul-
tiple density-mode relaxation channels over different length
scales, each relaxing on its own time scale. Another success
of MCT that has been verified experimentally is its predic-
tion of a time-temperature superposition principle, such that
F (k, t) = F̂ (k, t/τ(T )), where F̂ is a master function and
τ(T ) is the α-relaxation time.

Among the other celebrated results of MCT, we mention
here its qualitative prediction of complex reentrant effects in
the behavior of sticky hard spheres (particles with a hard re-
pulsive core and short-ranged attractions) [55] and ultrasoft
repulsive particles [56], which exhibit glass-fluid-glass and
fluid-glass-fluid phases upon a monotonic increase in attrac-
tion stength and density, respectively. In the case of sticky
hard spheres, MCT has also provided a qualitative explana-
tion for the existence of the two distinct glass phases in terms
of different dominant length scales [55]. Furthermore, the
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so-called schematic version of MCT [23, 33], which is ob-
tained by ignoring all wavevector dependence in Eq. (12), is
rigorously exact for certain classes of spin-glass models with
queched disorder (so-called p-spin spherical spin glasses),
pointing toward a possible deep connection between systems
with quenched and self-generated disorder. For a more ex-
tensive overview of MCT results, we refer the reader to Refs.
[21] and especially [31].

B. Failures

Even though MCT successfully predicts a glass transition,
its most notable failure is that the predicted glass transition
temperature Tc occurs at much higher temperatures than the
true experimental value Tg . Thus, the static structure factor
for which MCT predicts a glassy state corresponds in real-
ity to only a mildy supercooled liquid. In practice, the MCT
predictions are often rescaled such that Tc coincides with Tg
[53], but even with such a relative comparison, MCT generally
fails to accurate describe the dynamics in the deeply super-
cooled regime. This discrepancy is attributed to MCT’s lack
of ergodicity-restoring relaxation mechanisms that keep the
experimental system in the liquid phase well below Tc (Fig.
7). Such mechanisms are generally referred to as activated dy-
namics, and are commonly identified with particles ’hopping’
out of their local cages to resist freezing [57]. MCT fails to
account for such hopping motion and thus strongly overesti-
mates the degree of caging–a feature that is believed to arise
from its mean-field nature. In practice, the predicted MCT
transition at Tc is therefore interpreted as a crossover point
where the dynamics changes into an activated form [58]. In
Sec. IV, we will return to this point and address recent ef-
forts to incorporate activated dynamics directly into the the-
ory. We note that activated dynamics may also be incorporated
via, e.g., the Random First Order Transition Theory (RFOT),
which is a spin-glass-inspired framework that merges MCT
with thermodynamics-based concepts [59, 60]. A description
of RFOT falls outside the scope of the present work, but we
refer the interested reader to e.g. Refs. [58] and [61] for a re-
cent overview.

As mentioner earlier, MCT’s prediction of a power-law di-
vergence of the relaxation time also breaks down in most ex-
perimental and simulated glass-forming systems. More gener-
ally, the fact that MCT always yields a power law, regardless
of the molecular composition of the material, also implies that
MCT has essentially no notion of the concept of fragility. At
best, an MCT power law may correctly describe the relaxation
dynamics of fragile glass formers, but strong glass formers ex-
hibit a fundamentally different, Arrhenius-type growth of the
relaxation time. Indeed, an accurate (first-principles) predic-
tion of the fragility of a material on the sole basis of its micro-
scopic structure remains a major open challenge in the field
[18]. Nonetheless, we note that MCT can predict other prop-
erties of strong glass formers rather accurately, such as the
wavevector-dependent non-ergodicity parameter in the glassy
phase [37].

MCT is also generally unable to account for the break-

FIG. 7. Typical MCT prediction (purple curve) and simulation result
(blue curve) for the dynamical slowdown of a glass-forming material
as a function of the control parameter. MCT generally predicts that
the viscosity or relaxation time grows as a power law and diverges at
the glass transition temperature Tc or critical packing fraction φc. In
reality, a material tends to remain in the supercooled-liquid phase at
temperatures well below Tc (or packing fractions above φc), which
is attributed to so-called activated or hopping dynamics missing in
standard MCT. The figure is based on Ref. [57].

down of the Stokes-Einstein relation in the deeply supercooled
regime. This is again attributed to the inherent mean-field
character of the theory and the absence of activated hopping
dynamics [57]. Moreover, in its standard formulation, MCT
does not offer an explanation for the emergence of dynamic
heterogeneity, since MCT only predicts a single F (k, t) for a
given wavevector, density, and temperature, and hence does
not give access to correlations in the fluctuations of F (k, t).
However, as discussed in Sec. IV C, an extension of the theory
does allow for the calculation of a quantity related to the dy-
namic susceptibility χ4(t) and a corresponding growing (and
ultimately diverging) correlation length scale. Furthermore,
despite its mean-field character, it was recently shown that
MCT does not become exact in the mean-field limit of infi-
nite dimensions for a system composed of hard spheres [62–
64], making it difficult to rationalize the set of standard-MCT
approximations in a simple physical manner. Finally, since
MCT is a purely dynamical theory, it cannot make any state-
ments about thermodynamic properties such as the entropy.
The latter is believed to also play an important role in the
process of glass formation, and in particular may point to-
ward an underlying thermodynamic transition that in practice
is masked by the dynamic transition. Nonetheless, it is possi-
ble that MCT is implicitly aware of at least some changes in
thermodynamic properties through changes in the static struc-
ture factor [65, 66].

IV. GOING BEYOND STANDARD MODE-COUPLING
THEORY

Since standard MCT is not exact, as exemplified by the
drawbacks and failures discussed in the previous section, var-
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ious attempts have been made in the last few decades to im-
prove the theory’s predictive power for glassy dynamics. Be-
low we will summarize the most notable efforts to remedy at
least some of MCT’s problems, including the formulation of
’Extended’ MCT (EMCT) and ’Generalized’ MCT (GMCT)
to incorporate activated dynamics mechanisms, the potential
of GMCT to account for fragility and dynamic heterogene-
ity, and the formulation of ’Inhomogeneous’ MCT (IMCT)
to predict dynamic susceptibilities. Finally, we also briefly
discuss recent generalizations of MCT to a new class of soft
condensed-matter systems referred to as active matter. Such
active materials are composed of particles that can undergo
autonomous motion through the consumption of energy, and
are now emerging as a new paradigm to understand collec-
tive behavior seen in many living systems. The recent real-
ization that active particles can also vitrify into a glassy state
has spurred the formulation of various MCT frameworks for
active matter, the development of which will be reviewed in
Sec. IV D.

A. ’Extended’ Mode-Coupling Theory: incorporating
couplings to currents

The first attempts to remove the spurious MCT transition
at Tc were proposed by Das and Mazenko in 1986 [67] and
by Götze and Sjögren in 1987 [68], only a few years af-
ter the original formulation of standard MCT [23, 33]. Das
and Mazenko employed a field-theoretic description, com-
monly referred to as fluctuating nonlinear hydrodynamics,
while Götze and Sjögren used a projection-based formalism
to improve the theory in the temperature regime near and be-
low Tc. Both approaches amount to a perturbative treatment
of nonlinear couplings to certain current modes that are ne-
glected in the standard formulation of MCT, and which cut
off the sharp MCT transition such that the strict divergence of
the relaxation time at Tc is removed. This ’rounding off’ of the
MCT transition was interpreted as a mechanism for activated
or hopping dynamics that would keep the material ergodic,
i.e., in the supercooled liquid phase, below Tc. The 2004 re-
view by Das [32] provides an extensive overview of this line
of EMCT research.

However, more recent theoretical studies have argued on
general physical grounds that the invoked couplings to cur-
rents in EMCT cannot provide a satisfactory explanation of
activated dynamics, since these couplings should always be-
come negligible close to a glass transition [69]. Moreover,
Andreanov et al. [70] suggested that the fluctuating non-
linear hydrodynamics approach employs an incorrect treat-
ment of time-reversal symmetry. Another argument that casts
doubt on the general applicability of EMCT is the fact that
experimental and numerical simulation studies have unam-
biguously established that materials obeying Newtonian and
Brownian (stochastic) dynamics exhibit the same deviations
from standard-MCT behavior, despite their differences in mi-
croscopic dynamical details. This suggests that the physi-
cal mechanisms governing activated behavior below Tc have
a universal origin in both molecular (Newtonian) fluids and

colloidal (Brownian) systems. Since the current modes in-
troduced in EMCT cannot be properly defined in Brownian
systems [34], the proposed EMCT mechanism may thus only
apply to materials undergoing Newtonian dynamics. Hence,
it appears likely that EMCT cannot offer a rigorous, universal
remedy for the lack of ergodicity-restoring activated dynamics
within the standard MCT framework.

B. ’Generalized’ Mode-Coupling Theory: towards an exact
equation for the memory function

An alternative route to rigorously improve MCT was put
forward by Szamel in 2003 [71]. This approach, referred to
as Generalized MCT or GMCT, seeks to systematically avoid
the second main approximation of standard MCT, i.e., the un-
controlled factorization of the four-point density correlations
appearing in the memory function. To this end, a new and
formally exact equation of motion is developed for the four-
point correlation functions themselves (again by applying the
Mori-Zwanzig projection formalism of Sec. II B, this time us-
ing the basis of pair densities ρ(k1, t)ρ(k2, t) as the ’relevant’
variables). The new equation is governed by another mem-
ory function that, to leading order, is controlled by six-point
density correlation functions, which in turn are dominated by
eight-point correlations, etc. Hence, by repeatedly develop-
ing a new equation of motion for the new memory function, a
hierarchy of coupled equations emerges, in which the uncon-
trolled factorization approximation may be applied at an arbi-
trary level to close the set of equations. This GMCT scheme
thus allows, in principle, for a systematic delay of the closure
approximation and, notably, remains based entirely on first
principles (see Fig. 8).

Szamel [71] and Wu and Cao [72] showed that GMCT hi-
erarchies factorized at the level of six- and eight-point corre-
lation functions, respectively, indeed bring the predicted glass
transition density systematically closer to the empirical value
for a system of colloidal hard spheres. More recent work [73]
also established that the full time-dependent microscopic dy-
namics for a quasi-hard-sphere glass former is systematically
improved by GMCT. In fact, fit-parameter-free third-order
GMCT calculations could achieve full quantitative agreement
for F (k, t) up to the moderately supercooled regime, at den-
sities where standard MCT would already predict a spuri-
ous glass transition [73]. Furthermore, within a simplified
schematic (wavevector-independent) GMCT model, Mayer et
al. [74] showed analytically that the sharp MCT glass transi-
tion can be completely removed when avoiding the closure
approximation altogether, i.e., when applying infinite-order
GMCT. Even though all GMCT studies to date still rely on
several approximations–including the neglect of ’projected’
dynamics in the memory functions (Sec. II C) and the fac-
torization of all static correlation functions into products of
S(k)’s–, the good agreement so far with computer simulations
and experiments, as well as the apparent convergent behavior
of the hierarchy [75], suggest that GMCT offers a promising
first-principles path towards systematic MCT improvement.
In particular, it appears that higher-order GMCT captures at
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least some aspects of activated dynamics to keep the material
ergodic at temperatures below Tc, consistent with empirical
observations. Importantly, we note that GMCT is applicable
to both Newtonian and Brownian systems, and therefore also
holds the potential to offer a more universal picture of glassy
dynamics.

In addition to accounting for some kind of ergodicity-
restoring processes below Tc, GMCT might also provide a
suitable framework to describe fragility. The work of Mayer et
al. [74] revealed that, within their particular schematic model,
infinite-order GMCT predicts an exponential growth of the re-
laxation time, fundamentally distinct from the fragile power-
law behavior of standard MCT. In later studies, we demon-
strated that other schematic GMCT models may also give
rise to other functional forms of relaxation-time growth, rang-
ing from fragile super-Arrhenius to strong (sub-)Arrhenius
behavior, depending on the choice of schematic parameters
[76]. Although these simplified GMCT models inherently
lack any wavevector dependence, and therefore cannot make
detailed predictions for any structural glass former with a re-
alistic S(k), they suggest that higher-order GMCT has at least
the mathematical flexibility to account for different fragilities.
This is notably different from standard MCT, which is mathe-
matically only capable of predicting power-law growth close
to the transition. It remains to be tested whether the fully mi-
croscopic (wavevector-dependent) version of GMCT will in-
deed be able to account for different degrees of fragility, given
solely the static structure factors S(k) (and possibly higher-
order static correlation functions) of strong and fragile mate-
rials as input. It might be tempting to assume that, with in-
creasing closure level, the GMCT predictions should become
more accurate, but let us reiterate that the current formulation
of GMCT still relies on several approximations, and it is still
unclear how the remaining assumptions ultimately affect the
dynamics.

Finally, we note that by construction, higher-order GMCT
also makes microscopic predictions for the (approximate) dy-
namics of unfactorized four-point density correlations [73].
Although these functions are not exactly equivalent to the dy-
namic susceptibility χ4(t), they should nonetheless be able to
provide insight into dynamic heterogeneities, since they es-
sentially describe particle correlations over two points in time
and at least two points in space. Hence, GMCT may also of-
fer a suitable starting point to study dynamic heterogeneity, as
well as the breakdown of the Stokes-Einstein relation in super-
cooled liquids, from a strictly first-principles perspective. We
expect this avenue of research to be explored in the coming
years.

C. ’Inhomogeneous’ Mode-Coupling Theory: a measure for
dynamic heterogeneity

As noted earlier, standard MCT seeks to describe the ’aver-
age’ F (k, t) for a given set of wavevectors and system param-
eters, but does not give immediate access to the fluctuations of
F (k, t) that are encoded in the dynamic susceptibility χ4(t)
[30]. Hence, standard MCT cannot make direct predictions

FIG. 8. (a) Graphical illustration of the GMCT hierarchy. GMCT
seeks to systematically avoid the uncontrolled MCT factorization ap-
proximation by developing a new, and formally exact, equation of
motion for the unknown memory function. This equation in turn is
governed by a new memory function, which is controlled by another
memory function, etc. Standard MCT corresponds to the lowest-
order (self-consistent) closure of this hierarchy. (b) Microscopic
GMCT predictions for F (k, t) [73] compared to numerical data ob-
tained from computer simulations [53] for a system of quasi-hard
spheres at packing fraction φ = 0.570 and wavenumber kd = 7.4.
These results indicate that the GMCT hierarchy apparently converges
and that the theory becomes more quantitatively accurate as the clo-
sure level is increased. The figure is adapted from Ref. [73] with
permission.

about dynamically heterogeneous behavior, which is gener-
ally revealed as a growing peak in χ4(t). There is, however,
an indirect way to extract a dynamic susceptibility from MCT
by incorporating an external field into the theory–a framework
referred to as Inhomogeneous MCT or IMCT. The idea of
IMCT is to measure the dynamic response of the intermedi-
ate scattering function F (k, t) to changes in the external field;
this response amounts to a three-point dynamic density cor-
relation function χ3(t). The IMCT study of Biroli et al. [39]
argues that the induced fluctuations by the external field are
intimately related to the spontaneous fluctuations described
by χ4(t), and hence the susceptibility χ3(t) should behave in
a similar manner as the four-point function χ4(t).

Biroli et al. found that χ3(t) grows upon approaching the
dynamical MCT transition, and in fact diverges at the critical
temperature Tc. Furthermore, a correlation length ξ could be
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defined–a measure, perhaps, for the size of cooperatively re-
arranging particles in the supercooled regime–, that grows as
ξ ∼ |T − Tc|−ν with a critical exponent of ν = 1/4. No-
tably, IMCT also predicts that this length scale governs both
the α- and β-relaxation regimes. This suggests that the tra-
ditional picture of caging in the β-regime, commonly inter-
preted as the rattling of particles in local cages formed by their
nearest neighbors (see III A), is actually more subtle; rather,
IMCT implies that these cages become more and more collec-
tive as the MCT transition is approached. However, it should
be noted that the predictions of IMCT are not generally in
quantitative agreement with empirical results. For example,
numerical simulations for a model glass former composed
of Lennard-Jones particles indicate a growth of ξ (extracted
from the numerical χ4(t)) with a fitted exponent of ν ≈ 0.5,
and suggest that the length scale predicted by IMCT does not
necessarily describe the true size of the correlated spatial do-
mains relevant in real glass-forming materials [77]. On the
other hand, simulations for another model glass former (the
so-called Gaussian core model, which is believed to behave
more as a mean-field system) have revealed that the predicted
IMCT scaling of χ3(t) is in good quantitative agreement with
the numerical χ4(t) [78], implying that IMCT constitutes at
least in some sense a suitable mean-field framework for glassy
dynamics. The question to what extent, and under which con-
ditions, IMCT can offer an accurate description of dynamic
heterogeneity, and how the IMCT predictions relate to, e.g.,
the four-point dynamic correlations emerging from GMCT,
still remains to be established.

D. Mode-Coupling Theories for active matter

We end this review with a very recent development in the
field, namely the study of active matter. Active materials
consist of particles that can convert energy into autonomous
motion, rendering them out of thermodynamic equilibrium at
the single-particle level [79]. Such particle activity can lead
to rich self-organizing behavior, as exemplified in nature by,
e.g., the collective motion of living cells and the flocking of
birds. During the last decade, numerous synthetic active sys-
tems have also become available [80], spurring the develop-
ment of theoretical approaches to describe the emergent be-
havior in these non-equilibrium materials. In particular, it
was found that dense active matter can also exhibit proper-
ties of supercooled liquids and vitrifying colloidal suspen-
sions [6, 8, 11, 81–90], including slow structural relaxation,
dynamic heterogeneity, varying degrees of fragility, and the
ultimate formation of a kinetically arrested, amorphous solid
state.

Here we briefly discuss recent extensions of standard MCT
to describe the glassy dynamics in active materials. Since
many synthetic active particles are composed of colloids un-
dergoing active Brownian motion, all active versions of MCT
to date are based on the Smoluchowski formalism for Brown-
ian systems, rather than the Newtonian description for molec-
ular fluids discussed in Sec. II. We note, however, that contin-
uum descriptions of active matter, such as those for active liq-

uid crystals, are usually derived from Newtonian-based fluid
mechanics [79].

The first MCT approach to active glasses was presented by
Farage and Brader in 2014 [91]. In this work, they consid-
ered so-called active Brownian particles (ABPs) that move
with a constant self-propulsion speed in a random direction,
subject to translational and rotational Brownian motion. The
authors assumed that a single, non-interacting ABP behaves
effectively as a passive colloid, but with a higher effective dif-
fusion constant. This approximation was subsequently used
to derive an effective Smoluchowski operator for the collec-
tive dynamics of a dense ensemble of active particles. In
essence, this effective-diffusion approach amounts to the re-
moval of explicit rotational degrees of freedom. The result-
ing MCT approach yields a modified version of Eq. (12), in
which both the frequency term and the memory function ac-
quire an activity-dependent prefactor. The main outcome of
this MCT study is that the addition of particle activity can
soften (i.e., decrease the non-ergodicity parameter) and even-
tually melt a passive glass, and shift the glass transition toward
higher densities, These findings are also in qualitative agree-
ment with computer simulations of a similar active material
composed of self-propelling Brownian hard particles [82, 83].
The MCT approach of Farage and Brader was later also ex-
tended by Ding et al. [92] to mixtures of active and passive
particles.

A different and more extensive active-matter study was per-
formed by Szamel and co-workers [85, 93]. Here, the authors
modeled active particles by an Ornstein-Uhlenbeck stochastic
process, characterized by an effective temperature that quan-
tifies the strength of the active forces, and a persistence time
that describes the duration of persistent self-propelled motion.
In this model, particle motion is thus described as a persistent
random walk. Within their framework, the self-propulsion
is first integrated out before applying the projection-operator
method and MCT-like approximation; this approach essen-
tially assumes that particle positions evolve on a time scale
much larger than the time scale needed for reorientation of the
activity direction, somewhat akin to the effective-diffusion as-
sumption of Farage and Brader [91]. An important difference
between the active MCT of Szamel et al. and previous MCT
studies is that not only the static structure factor–i.e., static
correlations between particle positions–should be given as in-
put to the theory, but also static correlations between particle
velocities. Contrary to the behavior of ABPs, it was found
that the incorporation of activity can both enhance and sup-
press glass formation: for small persistence times, the active
fluid relaxes faster than a passive system at the same effec-
tive temperature, but for large persistent times the active ma-
terial becomes more glass-like compared to the passive ref-
erence system. This non-monotonic dependence of the re-
laxation time was observed both in the MCT analysis and in
computer simulations, and was attributed to the competition
between increasing velocity correlations (which speed up the
dynamics) and increasing structural correlations (which slow
down the dynamics) [85]. For sufficiently large persistence
times, it was found that the fitted MCT glass transition tem-
perature increases monotonically with increasing persistence
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time, suggesting that–at least within this active-matter model–
vitrification occurs more easily as the material becomes more
active. An MCT-based scaling analysis for this type of active-
matter system was later performed by Nandi and Gov [94].

Feng and Hou [95] subsequently studied a quasi-
equilibrium thermal version of the active Ornstein-Uhlenbeck
model of Szamel and co-workers, which additionally accounts
for thermal translational noise. Their MCT derivation differs
from the approach taken by Szamel [93], however: it is valid
only for sufficiently small persistence times (since it relies on
a perturbative expansion), and does not require explicit veloc-
ity correlation functions to be given as input. Rather, their
active-MCT dynamics is governed by an averaged diffusion
constant D̄ and a non-trivial steady-state structure function
S2(k), which both depend on the effective temperature and
density of the system, as well as on the persistence time of
the active particles. The coefficient D̄ and S2(k) should both
be given as additional input to the theory in order to predict
F (k, t). It was found that the critical density at which the
glass transition takes place shifts to larger values with increas-
ing magnitude of the self-propulsion force or effective temper-
ature, and that the critical effective glass temperature increases
with the persistence time. In the limit of a vanishing persis-
tence time, the theory naturally yields the expected result for
a simple passive Brownian system [95].

Very recently, Liluashvili, Ónody, and Voigtmann [96] for-
mulated the first MCT for ABPs in which both the transla-
tional and rotational degrees of freedom are treated on an
equal footing. That is, rather than seeking to reduce the ac-
tive material to a near-equilibrium system, the rotational de-
grees of freedom governing the reorientation of the active
forces are now explicitly coupled to the translational motion.
This approach thus avoids the effective-diffusion assumption
(which in principle may be valid only at low densities and suf-
ficiently long times), and the resulting dynamics now also de-
pends non-trivially on the rotational diffusion constant. The
only required material-dependent input for this active MCT
is the passive-equilibrium static structure factor. An impor-
tant outcome of this study is the three-dimensional fluid-glass
phase diagram for hard ABPs as a function of packing frac-
tion, self-propulsion speed, and rotational diffusion constant.
It was shown that this surface cannot be collapsed onto a sin-
gle line in the two-dimensional plane, highlighting the impor-
tance of treating the rotational degrees of freedom explicitly.
Indeed, depending on the density of the active material, sep-
arate regimes could be identified that are dominated either
by translational or reorientational motion. As in the study
of Farage and Brader [91], and in agreement with computer
simulations [82, 83], it was also found that activity generally
makes hard-sphere systems more fluid-like and consequently
shifts the glass transition to higher packing fractions. No-
tably, this active fluidization effect grows monotonously with
increasing persistence time or inverse rotational diffusion con-
stant, in contrast with the findings of Szamel and co-workers
[85]. This difference is attributed to the absence of thermal
Brownian noise in the model of Szamel et al.: in the limit
of infinitely large persistence (vanishing rotational diffusion),
active particles can block themselves and produce a glassy

state, while the finite thermal diffusive motion in ABPs will
make such blocking ineffective [96].

V. CONCLUSIONS AND OUTLOOK

This review has sought to provide a brief overview of the
main phenomenology of glassy dynamics, and of its theoret-
ical description using Mode-Coupling Theory–currently the
only theory of the glass transition that is based entirely on
first principles. We have focused mainly on the behavior of
the density correlation function F (k, t) as a probe of the mi-
croscopic dynamics associated with vitrification. In the nor-
mal liquid phase, this correlation function rapidly decays to
zero, but at the glass transition it fails to decay on any prac-
tical time scale, marking the onset of rigidity and provid-
ing an order parameter for the transition. Upon approach-
ing the glass transition temperature, several complex features
become visible in the dynamics, such as a transient plateau
and stretched exponential behavior in F (k, t), a breakdown
of the Stokes-Einstein relation, and the emergence of dynami-
cal heterogeneity–the latter being associated with increasingly
large fluctuations in F (k, t). Remarkably, during the process
of glass formation, the microscopic structure of the material,
as probed by e.g. the radial distribution function g(r) or static
structure factor S(k), undergoes only very minor changes,
yet the viscosity and dynamic relaxation time increase by
many orders of magnitude. It is this seemingly paradoxical
discrepancy between structure and dynamics that makes the
glass transition a notoriously difficult problem in theoretical
physics.

MCT offers a first-principles-based framework to account
for at least some aspects of glassy dynamics. Its starting point
is the exact equation of motion for F (k, t); through a series of
(partly uncontrolled) approximations, MCT subsequently pro-
vides a self-consistent equation for F (k, t) that can be solved
numerically using only the static structure factor as input. As
such, the theory makes a set of detailed predictions for the full
microscopic relaxation dynamics of a glass-forming material
as a function of time, wavevector, temperature, and density,
on the sole basis of simple structural information. Among
its notable successes is the qualitative prediction of a glass
transition, a physically intuitive picture for glass formation in
terms of the cage effect, and the correct prediction of sev-
eral highly non-trivial scaling behaviors in F (k, t). However,
MCT is generally not quantitatively accurate, and cannot ac-
count properly for the concept of fragility, the violation of the
Stokes-Einstein relation, and the emergence of dynamic het-
erogeneity.

The shortcomings of MCT might be remedied using (first-
principles-based) extensions of the theory, such as General-
ized MCT and Inhomogeneous MCT. The first studies in this
direction show that GMCT can indeed offer a more quantita-
tive description of the F (k, t) dynamics and can potentially
describe fragility, while IMCT offers a framework to qualita-
tively account for dynamic heterogeneity. However, GMCT
still relies on several approximations such as the neglect of
certain wavevector-dependent density correlations, and IMCT
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provides–just like standard MCT–only a mean-field descrip-
tion of glassy dynamics. Hence, more work will be needed
to establish how successful these theoretical approaches are
in ultimately achieving a fully correct first-principles descrip-
tion of glassy dynamics.

A more recent addition to the palette of Mode-Coupling
theories involves the study of non-equilibrium active matter.
In the last few years, several MCT frameworks have been de-
veloped to describe glassy dynamics in active materials that
are composed of self-propelled particles. Not only can these
theories offer new insight into the behavior of dense assem-
blies of synthetic active colloids, but they might also shed new
light on glassy and jamming phenomena in living cell tissues.
Similar to how standard MCT has shaped our understanding
of passive glass-forming materials over the last few decades,
it can be expected that active MCT will also contribute to our
understanding of disordered active and living materials from
a statistical-physics-based and purely first-principles perspec-

tive.
In conclusion, despite the fact that Mode-Coupling Theory

is not exact, it does provide a suitable–and in some cases re-
markably accurate–foundation for the study of glassy dynam-
ics in amorphous materials. The theory also offers ample op-
portunity for new research aimed towards a complete and ul-
timately rigorously exact description of the glass transition,
as well as for the study of emergent new classes of materials
such as active matter. We expect future work to be directed
toward these exciting avenues of research.
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