
ar
X

iv
:1

80
8.

10
13

7v
1

 [
cs

.C
C

]
 3

0
A

ug
 2

01
8

Recognizing Generating Subgraphs in Graphs without

Cycles of Lengths 6 and 7

David Tankus

Department of Software Engineering

Sami Shamoon College of Engineering, Ashdod, ISRAEL

davidt@sce.ac.il

Abstract

Let B be an induced complete bipartite subgraph of G on vertex sets of bipartition
BX and BY . The subgraph B is generating if there exists an independent set S such
that each of S ∪ BX and S ∪ BY is a maximal independent set in the graph. If B is
generating, it produces the restriction w(BX) = w(BY).

Let w : V (G) −→ R be a weight function. We say that G is w-well-covered if all
maximal independent sets are of the same weight. The graph G is w-well-covered if and
only if w satisfies all restrictions produced by all generating subgraphs of G. Therefore,
generating subgraphs play an important role in characterizing weighted well-covered
graphs.

It is an NP-complete problem to decide whether a subgraph is generating, even
when the subgraph is isomorphic to K1,1 [1]. We present a polynomial algorithm for
recognizing generating subgraphs for graphs without cycles of lengths 6 and 7.

1 Introduction

1.1 Definitions and Notation

Throughout this paper G = (V,E) is a simple (i.e., a finite, undirected, loopless and without
multiple edges) graph with vertex set V = V (G) and edge set E = E(G).

Cycles of k vertices are denoted by Ck. When we say that G does not contain Ck for
some k ≥ 3, we mean that G does not admit subgraphs isomorphic to Ck. It is important
to mention that these subgraphs are not necessarily induced. Let G(Ĉi1 , .., Ĉik) denote the
family of all graphs which do not contain Ci1 ,...,Cik .

Let S ⊆ V be a non-empty set of vertices, and let i ∈ N. Then

Ni(S) = {v ∈ V | mins∈S d(v, s) = i}, Ni[S] = {v ∈ V | mins∈S d(v, s) ≤ i}

where d(x, y) is the minimal number of edges required to construct a path between x and y. If
i 6= j then Ni(S)∩Nj(S)=∅. We abbreviate N1(S) and N1[S] to N(S) and N [S], respectively.
If S = {v} for some v ∈ V , then Ni({v}), Ni[{v}], N({v}), and N [{v}], are abbreviated to
Ni(v), Ni[v], N(v), and N [v], respectively.

A set of vertices S ⊆ V is independent if for every x, y ∈ S, x and y are not adjacent.
It is clear that an empty set is independent. An independent set is called maximal if it is

1

http://arxiv.org/abs/1808.10137v1

not contained in another independent set. An independent set is maximum if the graph does
not contain an independent set with a higher cardinality. A graph is called well-covered if
every maximal independent set is maximum. The problem of finding a maximum cardinality
independent set in an input graph is NPC. However, if the input is restricted to well-covered
graphs, then a maximum cardinality independent set can be found polynomially using the
greedy algorithm.

Let T ⊆ V . Then S dominates T if T ⊆ N [S]. If S and T are both empty, then N(S) = ∅,
and S dominates T . If S is a maximal independent set of G, then it dominates the whole
graph.

Let w : V −→ R be a weight function defined on the vertices of G. For every set S ⊆ V ,
define w(S) = Σs∈Sw(s). Then G is w-well-covered if all maximal independent sets of G are
of the same weight. The set of weight functions w for which G is w-well-covered is a vector
space [2].

The recognition of well-covered graphs is known to be co-NP-complete. This was proved
independently in [4] and [12]. In [3] it is proven that the problem remains co-NP-complete
even when the input is restricted to K1,4-free graphs. However, the problem is polynomially
solvable for K1,3-free graphs [13, 14], for graphs with girth at least 5 [5], for graphs that
contain neither 4- nor 5-cycles [6], for graphs with a bounded maximal degree [2], and for
chordal graphs [11].

Recently, Levit and Tankus constructed a polynomial time algorithm for finding the vector
space of weight functions w such that the input graph G ∈ G(Ĉ4, Ĉ5, Ĉ6) is w-well-covered
[9]. They used the following notion. Let B be an induced complete bipartite subgraph of
G on vertex sets of bipartition BX and BY . Assume that there exists an independent set S
such that each of S ∪ BX and S ∪ BY is a maximal independent set of G. Then B is called
a generating subgraph of G, and it produces the restriction: w(BX) = w(BY). The set S

is called a witness that B is generating. A graph G is w-well-covered for a weight function
w : V (G) −→ R if and only if w satisfies all restrictions produced by all generating subgraphs
of G. Therefore, generating subgraphs play an important role in characterizing w-well-covered
graphs.

In the restricted case that the generating subgraph B is isomorphic to K1,1, call its vertices
x and y. In that case x and y are said to be related, xy is a relating edge, and w(x) = w(y) for
every weight function w such that G is w-well-covered. The witness of the related vertices x
and y is an independent set S, containing neither x nor y, such that both S∪{x} and S∪{y}
are maximal independent sets in the graph.

The decision problem whether an edge in an input graph is relating is NP-complete [1],
and it remains NP-complete even when the input is restricted to graphs without cycles of
lengths 4 and 5 [8] or to bipartite graphs [10]. Therefore, recognizing generating subgraphs
is also NP-complete in these cases. However, recognizing relating edges can be done in
polynomial time if the input is restricted to graphs without cycles of lengths 4 and 6 [8], and
to graphs without cycles of lengths 5 and 6 [9].

Recognizing generating subgraphs is NP-complete when the input is restricted to K1,4-
free graphs [10] or to graphs with girth at least 6 [10]. However, the problem is polynomial
solvable when the input is restricted to graphs without cycles of lengths 4, 6 and 7 [7], to
graphs without cycles of lengths 4, 5 and 6 [9], and to graphs without cycles of lengths 5, 6
and 7 [9].

2

1.2 Main Results

The subject of this paper is graphs without cycles of lengths 6 and 7. In Section 2 we define
extendable vertices, and present a polynomial algorithm for recognizing extendable vertices in
graphs without cycles of lengths 6 and 7.

Theorem 1.1 The following problem can be solved in polynomial time:
Input: A graph G ∈ G(Ĉ6, Ĉ7), and a vertex x ∈ V (G).
Question: Is x extendable?

In Section 3 we use Theorem 1.1 to prove Theorem 1.2.

Theorem 1.2 The following problem can be solved in polynomial time:
Input: A graph G ∈ G(Ĉ6, Ĉ7), and an edge xy ∈ E(G).
Question: Is xy a relating edge?

It is proved in [7] and [9] that recognizing generating subgraphs can be done polynomially

for G(Ĉ4, Ĉ6, Ĉ7), and G(Ĉ5, Ĉ6, Ĉ7).

Theorem 1.3 [7] The following problem can be solved in polynomial time:

Input: A graph G ∈ G(Ĉ4, Ĉ6, Ĉ7), and an induced complete bipartite subgraph B.
Question: Is B generating?

Theorem 1.4 [9] The following problem can be solved in polynomial time:

Input: A graph G ∈ G(Ĉ5, Ĉ6, Ĉ7), and an induced complete bipartite subgraph B.
Question: Is B generating?

Theorem 1.3 and Theorem 1.4 are instances of Theorem 1.5, which is the main result of
Section 4.

Theorem 1.5 The following problem can be solved in polynomial time:
Input: A graph G ∈ G(Ĉ6, Ĉ7), and an induced complete bipartite subgraph B.
Question: Is B generating?

A relating edge is a restricted case of a genereting subgraph. However, the complexity
of the algorithm for recognizing related edges, presented in Section 3, is O (|V | (|V |+ |E|)),
while the complexity of the algorithm which recognizes generating subgraphs in Section 4 is

O
(
|V |2 (|V |+ |E|)

)
.

2 Extendable Vertices

An extendable vertex is a vertex v ∈ V (G) such that there does not exist an independent set in
N2(v) which dominates N(v). This notion was first introduced in [5]. If v is not extendable,
a witness for non-extendability is a an independent set S ⊆ N2(v) such that N(v) ⊆ N [S].

The main result of this section is a polynomial time algorithm which solves the following
problem:
Input: A graph G ∈ G(Ĉ6, Ĉ7) and a vertex x ∈ V (G).
Question: Is x extendable?

3

2.1 Graphs Without Cycles of length 6

In this subsection G is a graph without cycles of length 6, and x is a vertex in the graph, i.e.
G ∈ G(Ĉ6) and x ∈ V (G).

Lemma 2.1 Let (a, b, c) be a path in G[N2(x)]. Then there exists a vertex, v, such that
{v} = N(x) ∩N(a) = N(x) ∩N(c).

Proof. Assume on the contrary that Lemma 2.1 does not hold. Then there exist two
distinct vertices, v1 and v2, such that v1 ∈ N(x) ∩ N(a) and v2 ∈ N(x) ∩ N(c). Therefore,
(x, v1, a, b, c, v2) is a cycle of length 6, which is a contradiction.

Lemma 2.2 Let P = (a1, ..., a2k+1), k ≥ 1, be a path (not necessarily simple) in G[N2(x)].
Then there exists a vertex, v, such that {v} = N(x) ∩N(a1) = N(x) ∩N(a2k+1).

Proof. By induction on k. If k = 1 then Lemma 2.2 is equivalent to Lemma 2.1.
Assume by induction that Lemma 2.2 holds for k. We prove that it holds also for k + 1.

Let P = (a1, ..., a2k+3) be a path in G[N2(x)]. By the induction hypothesis, there exists
a vertex, v, such that {v} = N(x) ∩ N(a1) = N(x) ∩ N(a2k+1). Considering the subpath
P ′ = (a2k+1, a2k+2, a2k+3), Lemma 2.1 implies that N(x) ∩ N(a2k+1) = N(x) ∩ N(a2k+3).
Therefore, {v} = N(x) ∩N(a1) = N(x) ∩N(a2k+3).

Lemma 2.3 Let A be a connected component of G[N2(x)] which contains an odd cycle. Then
|N(x) ∩N(V (A))| = 1.

Proof. Let a be a vertex belonging to an odd cycle on A. For every vertex b in A, there exists
a path Pb in A with even number of edges connecting a and b. By Lemma 2.2, there exists a
vertex, v, such that {v} = N(x) ∩N(a) = N(x) ∩N(b). Hence, {v} = N(x) ∩N(V (A)).

Lemma 2.4 Let A be a bipartite connected component of G[N2(x)] with vertex sets of bipar-
tition V1 and V2. Then for each 1 ≤ i ≤ 2, if |Vi| ≥ 2 then |N(x) ∩N(Vi)| = 1.

Proof. Let 1 ≤ i ≤ 2 and a ∈ Vi. For every vertex a 6= a′ ∈ Vi, there exists a path in A with
even number of edges connecting a and a′. By Lemma 2.2, there exists a vertex, v, such that
{v} = N(x) ∩N(a) = N(x) ∩N(a′). Therefore, {v} = N(x) ∩N(Vi).

Lemma 2.5 Let A be a bipartite connected component of G[N2(x)] with vertex sets of bipar-
tition V1 and V2, such that min(|V1|, |V2|) ≥ 2. Then |N(x) ∩N(V (A))| = 1.

Proof. A contains a path (a1, a2, a3, a4), where a1 ∈ V1 and a4 ∈ V2. By Lemma 2.4, for
each 1 ≤ i ≤ 2 there exists a vertex vi, such that {vi} = N(x) ∩ N(Vi). Assume on the
contrary that v1 6= v2. The cycle (a1, a2, v2, a4, a3, v1) is of length 6, which is a contradiction.
Therefore, v1 = v2, and |N(x) ∩N(V (A))| = 1.

Corollary 2.6 Let A be a connected component of G[N2(x)]. Then at least one of the fol-
lowing options holds. (See Fig. 1.)

1. |V (A)| = 1.

2. |N(x) ∩N(V (A))| = 1.

4

r

r r r
r r

r r
r
r

r r r r r r r r r
r r

x
❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

PPPPPPPPPPPPP

❍❍❍❍❍❍❍❍❍

❅
❅

❅
❅❅

�
�
�
��

✟✟✟✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏✏✏✏✏

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

❆
❆

❆
❆❆

✁
✁
✁
✁✁

◗
◗

◗
◗

◗
◗◗

�
�

�
��

❅
❅
❅
❅❅

❅
❅

❅
❅❅

❆
❆

❆
❆❆

✁
✁
✁
✁✁

❈
❈
❈
❈
❈
❈
❈
❈❈

✄
✄
✄
✄
✄
✄
✄
✄✄

✟✟✟✟✟

�
�
�
��

✁
✁
✁

✁✁

❆
❆
❆
❆❆ ❆

❆
❆

❆❆

❈
❈
❈
❈
❈
❈
❈
❈❈

❇
❇
❇
❇
❇
❇❇

✁
✁
✁

✁✁

❆
❆
❆
❆❆

❆
❆
❆
❆❆r r r

✓
✒

✏
✑

✓
✒

✏
✑

✬

✫

✩

✪

✬

✫

✩

✪
A1 A2

A3 A4

Figure 1: Distinct types of connected components of N2(x). A1 contains only one vertex. A4

contains an odd cycle, and therefore dominates only one vertex of N(x). A3 is bipartite with
vertex sets of bipartition V1 and V2, |V1| = 1, |V2| > 1, and V2 dominates only one vertex of
N(x). A2 is K1,1.

3. A is K1,r, for r ≥ 1.

Proof. Assume that the first 2 options of Corollary 2.6 do not hold for A. By Lemma 2.3, A
is bipartite. By Lemma 2.5, at least one of the vertex sets of bipartition of A contains only
one vertex. The third option of Corollary 2.6 holds.

Let A∗ be the set of all connected components A of G[N2(x)] such that there exists a
vertex a ∈ V (A) for which N(x) ∩ N(a) = N(x) ∩ N(V (A)). For example, in Fig. 1, A1

and A4 belong to A∗, while A2 and A3 do not. Define Hx = G[N2[x] \ N [V (A∗)]]. Since

G ∈ G(Ĉ6) and Hx is an induced subgraph of G, also Hx ∈ G(Ĉ6).

Corollary 2.7 In the graph Hx every connected component of G[N2(x)] is K1,r for r ≥ 1.

Proof. Follows immediately from the construction of Hx and Corollary 2.6.

Lemma 2.8 The following conditions are equivalent.

1. x is not extendable in G.

2. x is not extendable in Hx.

Proof.

1 =⇒ 2: Let S ⊆ V (G) be an independent set in N2(x) which dominates N(x). Let S′

be the set of all vertices of S which exist also in the graph Hx, i.e. S
′ = S ∩ V (Hx). The set

S′ is a witness that x is not extendable in Hx.
2 =⇒ 1: Let S′ ⊆ V (Hx) be a witness that x is not extendable in Hx. For every

component A of A∗, choose a vertex vA ∈ V (A) such that N(x)∩N(vA) = N(x)∩N(V (A)).
Define S = S′ ∪ {vA|A ∈ A∗}. Then S is a witness that x is not extendable in G.

5

Lemma 2.9 Let A be a connected component of G[N2(x)] in Hx, and a, b two adjacent
vertices in A. Then the following conditions hold.

1. N(x) ∩N(V (A)) = N(x) ∩N({a, b})

2. (N(a) \N(b)) ∩N(x) 6= ∅

3. (N(b) \N(a)) ∩N(x) 6= ∅

4. N(a) ∩N(b) ∩N(x) = ∅

Proof. If there exists a vertex z ∈ V (A) \ {a, b}, then there exists a path with two edges
connecting z to one of a or b. By Lemma 2.1, N(x)∩N(z) = N(x)∩N(a) or N(x)∩N(z) =
N(x) ∩N(b). Therefore, N(x) ∩N(V (A)) = N(x) ∩N({a, b}).

If one of Conditions 2 and 3 does not hold, then there exists a vertex vA ∈ {a, b} ⊆ V (A)
such that N(x) ∩ N(V (A)) = N(x) ∩ N(vA), which contradicts the construction of Hx.
Therefore, Conditions 2 and 3 hold.

It follows from Conditions 2 and 3 that there exist vertices va ∈ N(x) ∩ (N(a) \ N(b))
and vb ∈ N(x) ∩ (N(b) \ N(a)). If there existed a vertex v ∈ N(a) ∩ N(b) ∩ N(x) then
(x, va, a, v, b, vb) was a cycle of length 6, which was a contradiction. Therefore, Condition 4
holds.

2.2 Graphs Without Cycles of Lengths 6 and 7

In this subsection G ∈ G(Ĉ6, Ĉ7), x ∈ V (G), Hx = G[N2[x]\N [V (A∗)]], and A is a connected
component of N2(x) in Hx. The vertices a and b are adjacent to each other, and belong to A.

Lemma 2.10 If N(a) ∩N(x) = {v1, ..., vk} when k > 2, then N({v1, ..., vk})∩N2(x) = {a}.

Proof. Corollary 2.7 implies that A is K1,r, for r ≥ 1. By Lemma 2.4, a is adjacent to all
vertices of V (A)\{a}. Assume on the contrary that Lemma 2.10 does not hold. There exists a
vertex a′ ∈ (N(v1)∩N2(x))\{a}. Lemma 2.9 implies that a′ 6∈ V (A). Let A′ be the connected
component of N2(x) in Hx which contains a′. There exists a vertex a′′ ∈ V (A′) ∩N(a′).

Lemma 2.9 implies that there exists a vertex v ∈ (N(a′′) \ N(a′)) ∩ N(x). If v 6= v2
then (x, v, a′′, a′, v1, a, v2) is a cycle of length 7. Otherwise, (x, v2, a

′′, a′, v1, a, v3) is a cycle of
length 7. (See Fig. 2.) In both cases we obtained a contradiction. Therefore, Lemma 2.10
holds.

Lemma 2.11 If N(a) ∩N(x) = {v1, v2} then one of the following two options holds.

• N({v1, v2}) ∩N2(x) = {a}.

• There exists exactly one connected component A′ 6= A of N2(x) such that {v1, v2} =
N(V (A′))∩N(x). For every connected component A 6= A′′ 6= A′ of N2(x), it holds that
{v1, v2} ∩N(V (A′′)) = ∅.

Proof. Clearly, A is K1,r, for some r ≥ 1, and a is adjacent to all vertices of V (A) \ {a}. By
Lemma 2.9, there exists a vertex vb ∈ (N(b) \N(a)) ∩N(x).

Assume that the first option of Lemma 2.11 does not hold. There exists a vertex a′ ∈
(N2(x)∩N(v1))\{a}. Lemma 2.9 implies that a′ 6∈ V (A). Let A′ be the connected component
of N2(x) which contains a′, and let a′′ ∈ N2(x) ∩N(a′).

6

r
r r r r r

r r r rb a a′ a′′A A′

r✏✏✏✏

✓
✓✓

x

vb v3 v2 v1 v

❍❍❍❍❍❍❍❍

❅
❅

❅
❅

�
�
�
�

✟✟✟✟✟✟✟✟
✁
✁
✁
✁

✁
✁
✁
✁

❆
❆
❆
❆

◗
◗

◗
◗

◗◗

✑✑
✑✑

✑✑
✑✑

❆
❆

❆
❆

❆❆
❆❆

❆❆

r
r r r r

r r r r r rb a a′ a′′ z′ z′′A A′ A′′

x

vb v1 v2 v

❅
❅

❅
❅

�
�
�
�

✟✟✟✟✟✟✟✟
❅

❅
❅

❅

❅
❅

❅
❅

❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟

❅❅
❅❅

❅❅

❅❅
❅❅

❅❅

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

Figure 2: Proofs of Lemmas 2.10 (left) and 2.11 (right). The dashed edges are not in the
graph.

We prove that N(a′′) ∩ N(x) = {v2}. Lemma 2.9 implies that there exists a vertex
v ∈ (N(a′′)∩N(x))\ {v1}. Assume on the contrary that v 6= v2. Then (x, v, a′′, a′, v1, a, v2) is
a cycle of length 7, which is a contradiction. (See Fig. 2.) Therefore, N(a′′) ∩N(x) = {v2}.

We prove that N(a′) ∩ N(x) = {v1}. By Lemma 2.9, v2 6∈ N(a′). If there exists a
vertex v ∈ (N(x) ∩N(a′)) \ {v1, v2} then (x, v, a′, v1, a, v2) is a cycle of length 6, which is a
contradiction. Therefore, N(a′) ∩N(x) = {v1}.

Lemma 2.9 implies that N(V (A′)) ∩ N(x) = N({a′, a′′}) ∩ N(x) = {v1, v2}. Assume on
the contrary that there exits a connected component A 6= A′′ 6= A′ of N2(x) with vertices z′

and z′′, which are adjacent to v1 and v2, respectively. Then (z′, v1, a
′, a′′, v2, z

′′) is a cycle of
length 6, which is a contradiction. The second option of Lemma 2.11 holds.

Corollary 2.12 If |N(a) ∩N(x)| = 2 then in the graph Hx every independent set of N2(x)
which dominates N(x), contains the vertex a.

Proof. Denote N(a)∩N(x) = {v1, v2}. Let S be a maximal independent set of N2(x) which
dominates N(x). If N({v1, v2}) ∩N2(x) = {a} then obviously a ∈ S.

If N({v1, v2})∩N2(x) 6= {a} then, by Lemma 2.11, there exits only one component A′ 6= A

of N2(x) with vertices adjacent to {v1, v2}. However, no independent set in A′ dominates both
v1 and v2. Therefore, a ∈ S.

Corollary 2.13 If |N(a) ∩N(x)| = |N(b) ∩N(x)| = 2 then in the graph Hx there does not
exist an independent set of N2(x) which dominates N(x).

Proof. Suppose on the contrary that Hx contains an independent set S ⊆ N2(x) which
dominates N(x). By Corollary 2.12, S contains both a and b, which contradicts the fact that
S is independent.

Let S∗ = {v ∈ V (Hx) | v ∈ N2(x), |N(v) ∩ N(x)| > 1}. By Corollary 2.12, every inde-
pendent set in N2(x) which dominates N(x) contains S∗. Therefore, if S∗ is not independent
then there does not exist an independent set in N2(x) which dominates N(x). In this case x

is extendable in Hx and, by Lemma 2.8, x is also extendable in G.
Define H∗

x to be the induced subgraph of Hx with vertex set V (H∗

x) = V (Hx) \N [S∗].

Lemma 2.14 Suppose S∗ is independent. Then x is extendable in Hx if and only if it is
extendable in H∗

x.

7

Proof. Let S1 ⊆ V (Hx) be an independent set in N2(x) which dominates N(x). Corollary
2.12 implies that S∗ ⊆ S1. Define S2 ⊆ V (H∗

x) by S2 = S1 \ S∗. Then in the graph H∗

x the
set S2 is independent, contained in N2(x), and dominates N(x).

Let S2 ⊆ V (H∗

x) be an independent set in N2(x) which dominates N(x). Define S1 ⊆
V (Hx) by S1 = S2 ∪ S∗. Then S1 is an independent set in N2(x) which dominates N(x).

Theorem 2.15 The following problem can be solved in O (|V | (|V |+ |E|)) time.

Input: A graph G ∈ G(Ĉ6, Ĉ7) and a vertex x ∈ V (G).
Question: Is x extendable?

Proof. Let A be a connected component of N2(x) in the graph H∗

x . Then A is K1,r for
some r ≥ 1. Moreover, A is adjacent to exactly 2 vertices of N(x), because otherwise the
vertices of A were in N [S∗], and not in V (H∗

x). Every vertex set of bipartition of A dominates
exactly one vertex of N(x). In order to decide whether x is extendable in H∗

x , we define a
flow network. We use the same technique as in Theorem 2.2 of [8].

Let A1, ..., Ak be the connected components of N2(x) in the graph H∗

x . Define a flow
network Fx = {GF = (VF , EF), s ∈ VF , t ∈ VF , c : EF −→ R} as follows. (See Fig. 3.) Let
VF = N1(x) ∪ N2(x) ∪ {z1, ..., zk, s, t}, where z1, ..., zk, s, t are new vertices, s and t are the
source and sink of the network, respectively. The directed edges EF are:

• the directed edges szi, for each 1 ≤ i ≤ k;

• the directed edges zia, for each 1 ≤ i ≤ k and for each a ∈ Ai;

• all directed edges v2v1 such that v2 ∈ N2(x), v1 ∈ N(x) and v1v2 ∈ E(H∗

x);

• the directed edges vs, for each v ∈ N(x);

Let c ≡ 1. Invoke any polynomial time algorithm for finding a maximum flow f : EF −→ R

in the network, for example Ford and Fulkerson’s algorithm. The flow in a vertex v ∈ VF is
defined by: Σ(u,v)∈EF

f(u, v).
Let S be the set of vertices in N2(x) in which there is a positive flow. It is easy to prove

that S is independent, and every augmenting path in Ford and Fulkerson’s algorithm increases
by one each of |f |, |S| and |N(x) ∩N(S)|. Therefore, |f | = |S| = |N(x) ∩N(S)|. Moreover,
for every independent set S′ of N2(x), it holds that |N(x) ∩ N(S)| ≥ |N(x) ∩ N(S′)|. For
more details see [8].

If S dominates N(x) in H∗

x then obviously x is not extendable. Otherwise, there does not
exist an independent set in N2(x) which dominates N(x), and therefore x is extendable.

The following polynomial algorithm receives as its input a graph G ∈ G(Ĉ6, Ĉ7) and a
vertex x ∈ V (G). If x is extendable, the algorithm returns ∅. Otherwise, the algorithm

8

r

r
r
r
r
r

r

r

r

r

r

r

r

r

x
�

�
�

��

✁
✁

✁
✁

✁
✁

✁
✁✁

❅
❅

❅
❅❅

❆
❆

❆
❆

❆
❆

❆
❆❆

�
�
�
��

�
�
�
��

✚
✚
✚
✚
✚✚

✧✧✧✧✧✧✧✧

✂
✂
✂
✂✂

✡
✡
✡
✡✡

rr

❍❍❍❍❍

✟✟✟✟✟

❏
❏
❏
❏
❏
❏❏

❍❍❍❍❍

PPPPPPP
❆
❆
❆
❆❆

r

r

r
r
r
r
r

r

r

r

r

r

r

r

r

t✲

�
�
�
��✒

✁
✁
✁
✁
✁
✁
✁
✁✁✕

❅
❅
❅
❅❅❘

❆
❆
❆
❆
❆
❆
❆
❆❆❯

�
�
�
��✒

�
�
�
��✒

✚
✚
✚
✚
✚✚❃

✧✧✧✧✧✧✧✧

rr

❍❍❍❍❍❥

✟✟✟✟✟✯
✲

✲
❏
❏
❏
❏
❏
❏❏❫

❍❍❍❍❍❥

PPPPPPPq

r

r

r

r

r

✟✟✟✟✟✯

✟✟✟✟✟✯

✟✟✟✟✟✯

✟✟✟✟✟✯

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥

❏
❏❏❫

❩
❩
❩⑦

�
��✒

r��
��✒

❅
❅
❅❅❘

✂
✂
✂
✂
✂
✂
✂
✂
✂✂✍

❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

s

A1

A2

A3

A4

z1

z2

z3

z4

❅❅
��

Figure 3: An example of the construction of the flow network Fx (right) from H∗

x (left).

returns a witness that x is not extendable.

Algorithm 1: Decide whether x is extendable in G ∈ G(Ĉ6, Ĉ7) .

1 T ←− ∅
2 Find the connected components of N2(x)
3 Find A∗

4 for each A ∈ A∗ do

5 Choose vA ∈ V (A) such that N(vA) ∩N(x) = N(V (A)) ∩N(x)
6 T ←− T ∪ {vA}

7 Construct the graph Hx.
8 S∗ ←− {a ∈ V (Hx) | a ∈ N2(x), |N(a) ∩N(x)| > 1}.
9 if S∗ is not independent then

10 return ∅.

11 Construct the graph H∗

x .
12 Construct the flow network Fx

13 Find a maximum flow fx : EF −→ R in the network Fx.
14 Let S be the set of vertices in N2(x) in which there is a positive flow.
15 if S does not dominate N(x) in H∗

x then

16 return ∅.

17 return T ∪ S ∪ S∗.

9

Correctness of Algorithm 1: Follows from previous lemmas.
Complexity analysis of Algorithm 1: Constructing the set T includes finding N2(x), the

connected components of G[N2(x)], and the set A∗. This can be implemented in O(|V |+ |E|)
time. Also finding the induced subgraphs Hx can be implemented in O(|V | + |E|) time.
Finding S∗

x and deciding whether it is independent can be done in O(|V |+ |E|) time, as well.
This is also the complexity for constructing the induced subgraph H∗

x , and the flow network
Fx.

One iteration of Ford and Fulkerson’s algorithm can be implemented in O (|V |+ |E|) time.
In each iteration the number of vertices inN2(x) with a positive flow increases by 1. Therefore,
the number of iterations can not exceed |V |, and Ford and Fulkerson’s algorithm terminates
in O (|V | (|V |+ |E|)) time.

Deciding whether Sx dominates N(x) can be done in O(|V |+ |E|) time. The total com-
plexity of Algorithm 1 is O (|V | (|V |+ |E|)).

3 Relating Edges

In this section we present a polynomial algorithm for recognizing relating edges in graphs
without cycles of lengths 6 and 7.

Lemma 3.1 Let G ∈ G(Ĉ6, Ĉ7) and xy ∈ E(G). The following conditions are equivalent.

1. The edge xy is relating.

2. There exist an independent set, Sx ⊆ N2(x)\N(y), which dominates N(x)∩N2(y), and
an independent set, Sy ⊆ N2(y) \N(x), which dominates N(y) ∩N2(x).

Proof. 1 =⇒ 2: Let S be a witness that xy is relating. Define Sx = S ∩ N2(x) and
Sy = S ∩N2(y). Clearly, Sx dominates N(x) ∩N2(y) and Sy dominates N(y) ∩N2(x).

2 =⇒ 1: Let x′′ ∈ Sx and y′′ ∈ Sy. There exist vertices x′ ∈ N(x) ∩ N(x′′) and
y′ ∈ N(y)∩N(y′′). If x′′ and y′′ were adjacent then (x′′, x′, x, y, y′, y′′) was a cycle of length 6.
Therefore, Sx∪Sy is independent. Let S be a maximal independent set of G[V (G)\N [{x, y}]]
which contains Sx ∪ Sy. Then S is a witness that xy is relating.

Theorem 3.2 The following problem can be solved in O (|V | (|V |+ |E|)) time.

Input: A graph G ∈ G(Ĉ6, Ĉ7) and an edge xy ∈ E(G).
Question: Is xy relating?

Proof. The following polynomial algorithm receives as its input a graph G ∈ G(Ĉ6, Ĉ7) and
an edge xy ∈ E(G). If xy is relating, the algorithm returns an independent set in N2({x, y})

10

which dominates N(x)∆N(y). Otherwise, ∅ is returned.

Algorithm 2: Decide whether the edge xy in the graph G ∈ G(Ĉ6, Ĉ7) is relating.

1 A←− ∅
2 B ←− ∅
3 if N(x) ∩N2(y) 6= ∅ then
4 A←− Alg1(G[(N2(x) ∩N3(y)) ∪ (N(x) ∩N2(y)) ∪ {x}], x)
5 if A = ∅ then
6 return ∅

7 if N(y) ∩N2(x) 6= ∅ then
8 B ←− Alg1(G[(N2(y) ∩N3(x)) ∪ (N(y) ∩N2(x)) ∪ {y}], y)
9 if B = ∅ then

10 return ∅

11 return A ∪B.

Correctness of Algorithm 2: Follows from Lemma 3.1.
Complexity analysis of Algorithm 2: The algorithm invokes Algorithm 1 at most twice.

Therefore, the complexity of Algorithm 2 is equal to the complexity of Algorithm 1, i.e.
O (|V | (|V |+ |E|)).

4 Generating Subgraphs

In this section we present a polynomial algorithm for recognizing generating subgraphs in
G(Ĉ6, Ĉ7). Through this section G ∈ G(Ĉ6, Ĉ7), and B is an induced complete bipartite
subgraph of G.

Lemma 4.1 Let a and b be two distinct vertices in V (B). Let a′ ∈ N(a) \ V (B) and b′ ∈
N(b) \ V (B) such that a′ 6= b′. Let a′′ ∈ N2(a) ∩N(a′) and b′′ ∈ N2(b) ∩N(b′). Then a′′ and
b′′ are not adjacent.

Proof. If a and b are adjacent, the lemma holds, or otherwise (a′′, a′, a, b, b′, b′′) is a cycle of
length 6.

If a and b are not neighbors, there exists a vertex c ∈ V (B) ∩N(a)∩N(b). If a′′ ∈ N(b′′)
then (a′′, a′, a, c, b, b′, b′′) is a cycle of length 7, which is a contradiction.

For every vertex b ∈ V (B), define Gb = G[(N2(b)∩N2(V (B)))∪ (N(b)∩N(V (B)))∪{b}].

Since G ∈ G(Ĉ6, Ĉ7) and Gb is an induced subgraph of G, also Gb ∈ G(Ĉ6, Ĉ7).

Corollary 4.2 Let a and b be two distinct vertices in V (B). Let Sa ⊆ V (Ga) ∩ N2(a) and
Sb ⊆ V (Gb) ∩N2(b) be two independent sets. Then Sa ∪ Sb is an independent set in G.

Lemma 4.3 The following conditions are equivalent.

1. The subgraph B is generating in G.

2. The vertex b is not extendable in Gb, for every b ∈ V (B).

11

Proof.

1 =⇒ 2: Let S be a witness that B is a generating subgraph of G. For every b ∈ V (B)
define Sb = S ∩ V (Gb). Then Sb is a witness that b is not extendable in Gb.

2 =⇒ 1: For every b ∈ V (B), let Sb be a witness that b is not extendable in Gb. Define
S =

⋃
b∈V (B) Sb. By Corollary 4.2, S is independent. The set S is a witness that B is a

generating subgraph of G.

Theorem 4.4 The following problem can be solved in O
(
|V |2 (|V |+ |E|)

)
time.

Input: A graph G ∈ G(Ĉ6, Ĉ7) and an induced bipartite subgraph B.
Question: Is B generating?

Proof. The following algorithm receives as its input a graph G ∈ G(Ĉ6, Ĉ7) and an induced
complete bipartite subgraph, B. The algorithm returns a witness that B is generating, if
exists, and ∅ otherwise.

Algorithm 3: Decide whether the subgraph B of G ∈ G(Ĉ6, Ĉ7) is generating.

1 for each b ∈ V (B) do
2 Sb ←− Alg1(Gb, b)
3 if Sb = ∅ and |V (B)| > 1 then

4 return ∅

5 S ←−
⋃

b∈V (B) Sb.

6 Extract S to a maximal independent set, S∗, of G \N [V (B)].
7 return S∗.

Correctness of Algorithm 3: Follows from Lemma 4.3.
Complexity analysis of Algorithm 3: The complexity of Algorithm 1 is O (|V | (|V |+ |E|)),

and it is invoked at most O(|V |) times. Therefore, the total complexity of Algorithm 3 is

O
(
|V |2 (|V |+ |E|)

)
.

5 Conclusions and Future Work

We presented a polynomial algorithm for recognizing generating subgraphs in G(Ĉ6, Ĉ7). How-

ever, we did not find a polynomial algorithm which receives G ∈ G(Ĉ6, Ĉ7) as its input, and
finds WCW (G), the vector space of all weight functions w such that G is w-well-covered.
Checking all induced complete bipartite subgraphs is obviously not a polynomial algorithm,
since the number of checked subgraphs can be exponential. Nevertheless, we conjecture the
following.

Conjecture 5.1 The following problem can be solved in polynomial time.
Input: A graph G ∈ G(Ĉ6, Ĉ7).
Output: WCW (G).

It is known that recognizing relating edges is a polynomial task for G(Ĉ4, Ĉ6) [8], and for

G(Ĉ5, Ĉ6) [9]. We proved that also for G(Ĉ6, Ĉ7) the problem is polynomial. However, in
most parts of the proof, the only forbidden cycles were of length 6. Hence, we conjecture that
all three theorems are instances of the following.

12

Conjecture 5.2 The following problem is polynomial solvable:
Input: A graph G ∈ G(Ĉ6) and an edge xy ∈ E(G).
Question: Is xy relating?

References

[1] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, The structure of well-covered graphs with
no cycles of length 4, Discrete Mathematics 307 (2007) 2235 – 2245.

[2] Y. Caro, N. Ellingham, G. F. Ramey, Local structure when all maximal independent sets
have equal weight, SIAM Journal on Discrete Mathematics 11 (1998) 644-654.

[3] Y. Caro, A. Sebő, M. Tarsi, Recognizing greedy structures, Journal of Algorithms 20

(1996) 137-156.

[4] V. Chvatal, P. J. Slater, A note on well-covered graphs, Quo vadis, Graph Theory Ann
Discr Math 55, North Holland, Amsterdam, 1993, 179-182.

[5] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered graphs of
girth 5 or greater, Journal of Combinatorial Theory Ser. B. 57 (1993) 44-68.

[6] A. Finbow, B. Hartnell, R. Nowakowski A characterization of well-covered graphs that
contain neither 4- nor 5-cycles, Journal of Graph Theory 18 (1994) 713-721.

[7] V. E. Levit, D. Tankus Weighted well-covered graphs without C4, C5, C6, C7, Discrete
Applied Mathematics 159 (2011) 354-359.

[8] V. E. Levit, D. Tankus, On relating edges in graphs without cycles of length 4, Journal
of Discrete Algorithms 26 (2014) 28-33.

[9] V. E. Levit, D. Tankus, Well-covered graphs without cycles of lengths 4, 5 and 6, Discrete
Applied Mathematics 186 (2015) 158-167.

[10] V. E. Levit, D. Tankus, Complexity Results for Generating Subgraphs, Algorithmica 80

(2018) 2384-2399.

[11] E. Prisner, J. Topp and P. D. Vestergaard, Well-covered simplicial, chordal and circular
arc graphs, Journal of Graph Theory 21 (1996), 113–119.

[12] R. S. Sankaranarayana, L. K. Stewart, Complexity results for well-covered graphs, Net-
works 22 (1992), 247–262.

[13] D. Tankus, M. Tarsi, Well-covered claw-free graphs, Journal of Combinatorial Theory
Ser. B. 66 (1996) 293-302.

[14] D. Tankus, M. Tarsi, The structure of well-covered graphs and the complexity of their
recognition problems, Journal of Combinatorial Theory Ser. B. 69 (1997) 230-233.

13

	1 Introduction
	1.1 Definitions and Notation
	1.2 Main Results

	2 Extendable Vertices
	2.1 Graphs Without Cycles of length 6
	2.2 Graphs Without Cycles of Lengths 6 and 7

	3 Relating Edges
	4 Generating Subgraphs
	5 Conclusions and Future Work

