Recognizing Generating Subgraphs in Graphs without Cycles of Lengths 6 and 7

David Tankus
Department of Software Engineering
Sami Shamoon College of Engineering, Ashdod, ISRAEL
davidt@sce.ac.il

Abstract

Let B be an induced complete bipartite subgraph of G on vertex sets of bipartition B_{X} and B_{Y}. The subgraph B is generating if there exists an independent set S such that each of $S \cup B_{X}$ and $S \cup B_{Y}$ is a maximal independent set in the graph. If B is generating, it produces the restriction $w\left(B_{X}\right)=w\left(B_{Y}\right)$.

Let $w: V(G) \longrightarrow \mathbb{R}$ be a weight function. We say that G is w-well-covered if all maximal independent sets are of the same weight. The graph G is w-well-covered if and only if w satisfies all restrictions produced by all generating subgraphs of G. Therefore, generating subgraphs play an important role in characterizing weighted well-covered graphs.

It is an NP-complete problem to decide whether a subgraph is generating, even when the subgraph is isomorphic to $K_{1,1}$ 1]. We present a polynomial algorithm for recognizing generating subgraphs for graphs without cycles of lengths 6 and 7 .

1 Introduction

1.1 Definitions and Notation

Throughout this paper $G=(V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V=V(G)$ and edge set $E=E(G)$.

Cycles of k vertices are denoted by C_{k}. When we say that G does not contain C_{k} for some $k \geq 3$, we mean that G does not admit subgraphs isomorphic to C_{k}. It is important to mention that these subgraphs are not necessarily induced. Let $\mathcal{G}\left(\widehat{C_{i_{1}}}, \ldots, \widehat{C_{i_{k}}}\right)$ denote the family of all graphs which do not contain $C_{i_{1}}, \ldots, C_{i_{k}}$.

Let $S \subseteq V$ be a non-empty set of vertices, and let $i \in \mathbb{N}$. Then

$$
N_{i}(S)=\left\{v \in V \mid \min _{s \in S} d(v, s)=i\right\}, N_{i}[S]=\left\{v \in V \mid \min _{s \in S} d(v, s) \leq i\right\}
$$

where $d(x, y)$ is the minimal number of edges required to construct a path between x and y. If $i \neq j$ then $N_{i}(S) \cap N_{j}(S)=\emptyset$. We abbreviate $N_{1}(S)$ and $N_{1}[S]$ to $N(S)$ and $N[S]$, respectively. If $S=\{v\}$ for some $v \in V$, then $N_{i}(\{v\}), N_{i}[\{v\}], N(\{v\})$, and $N[\{v\}]$, are abbreviated to $N_{i}(v), N_{i}[v], N(v)$, and $N[v]$, respectively.

A set of vertices $S \subseteq V$ is independent if for every $x, y \in S, x$ and y are not adjacent. It is clear that an empty set is independent. An independent set is called maximal if it is
not contained in another independent set. An independent set is maximum if the graph does not contain an independent set with a higher cardinality. A graph is called well-covered if every maximal independent set is maximum. The problem of finding a maximum cardinality independent set in an input graph is NPC. However, if the input is restricted to well-covered graphs, then a maximum cardinality independent set can be found polynomially using the greedy algorithm.

Let $T \subseteq V$. Then S dominates T if $T \subseteq N[S]$. If S and T are both empty, then $N(S)=\emptyset$, and S dominates T. If S is a maximal independent set of G, then it dominates the whole graph.

Let $w: V \longrightarrow \mathbb{R}$ be a weight function defined on the vertices of G. For every set $S \subseteq V$, define $w(S)=\Sigma_{s \in S} w(s)$. Then G is w-well-covered if all maximal independent sets of G are of the same weight. The set of weight functions w for which G is w-well-covered is a vector space [2].

The recognition of well-covered graphs is known to be co-NP-complete. This was proved independently in [4] and [12]. In [3] it is proven that the problem remains co-NP-complete even when the input is restricted to $K_{1,4}$-free graphs. However, the problem is polynomially solvable for $K_{1,3}$-free graphs [13, 14], for graphs with girth at least 5 [5], for graphs that contain neither 4- nor 5 -cycles [6], for graphs with a bounded maximal degree [2], and for chordal graphs [11.

Recently, Levit and Tankus constructed a polynomial time algorithm for finding the vector space of weight functions w such that the input graph $G \in \mathcal{G}\left(\widehat{C_{4}}, \widehat{C_{5}}, \widehat{C_{6}}\right)$ is w-well-covered 9. They used the following notion. Let B be an induced complete bipartite subgraph of G on vertex sets of bipartition B_{X} and B_{Y}. Assume that there exists an independent set S such that each of $S \cup B_{X}$ and $S \cup B_{Y}$ is a maximal independent set of G. Then B is called a generating subgraph of G, and it produces the restriction: $w\left(B_{X}\right)=w\left(B_{Y}\right)$. The set S is called a witness that B is generating. A graph G is w-well-covered for a weight function $w: V(G) \longrightarrow \mathbb{R}$ if and only if w satisfies all restrictions produced by all generating subgraphs of G. Therefore, generating subgraphs play an important role in characterizing w-well-covered graphs.

In the restricted case that the generating subgraph B is isomorphic to $K_{1,1}$, call its vertices x and y. In that case x and y are said to be related, $x y$ is a relating edge, and $w(x)=w(y)$ for every weight function w such that G is w-well-covered. The witness of the related vertices x and y is an independent set S, containing neither x nor y, such that both $S \cup\{x\}$ and $S \cup\{y\}$ are maximal independent sets in the graph.

The decision problem whether an edge in an input graph is relating is NP-complete [1], and it remains NP-complete even when the input is restricted to graphs without cycles of lengths 4 and 5 [8] or to bipartite graphs [10]. Therefore, recognizing generating subgraphs is also NP-complete in these cases. However, recognizing relating edges can be done in polynomial time if the input is restricted to graphs without cycles of lengths 4 and 6 [8], and to graphs without cycles of lengths 5 and 6 [9].

Recognizing generating subgraphs is NP-complete when the input is restricted to $K_{1,4^{-}}$ free graphs [10] or to graphs with girth at least 6 [10]. However, the problem is polynomial solvable when the input is restricted to graphs without cycles of lengths 4,6 and 7 [7], to graphs without cycles of lengths 4,5 and 6 [9], and to graphs without cycles of lengths 5,6 and 7 [9].

1.2 Main Results

The subject of this paper is graphs without cycles of lengths 6 and 7. In Section 2 we define extendable vertices, and present a polynomial algorithm for recognizing extendable vertices in graphs without cycles of lengths 6 and 7 .

Theorem 1.1 The following problem can be solved in polynomial time:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$, and a vertex $x \in V(G)$.
Question: Is x extendable?
In Section 3 we use Theorem 1.1 to prove Theorem 1.2
Theorem 1.2 The following problem can be solved in polynomial time:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$, and an edge $x y \in E(G)$.
Question: Is xy a relating edge?
It is proved in [7] and [9] that recognizing generating subgraphs can be done polynomially for $\mathcal{G}\left(\widehat{C}_{4}, \widehat{C}_{6}, \widehat{C}_{7}\right)$, and $\mathcal{G}\left(\widehat{C}_{5}, \widehat{C}_{6}, \widehat{C}_{7}\right)$.

Theorem 1.3 [7] The following problem can be solved in polynomial time:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{4}, \widehat{C}_{6}, \widehat{C}_{7}\right)$, and an induced complete bipartite subgraph B. Question: Is B generating?

Theorem 1.4 [9] The following problem can be solved in polynomial time:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{5}, \widehat{C}_{6}, \widehat{C}_{7}\right)$, and an induced complete bipartite subgraph B.
Question: Is B generating?
Theorem 1.3 and Theorem 1.4 are instances of Theorem 1.5 which is the main result of Section 4.

Theorem 1.5 The following problem can be solved in polynomial time:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$, and an induced complete bipartite subgraph B.
Question: Is B generating?
A relating edge is a restricted case of a genereting subgraph. However, the complexity of the algorithm for recognizing related edges, presented in Section 3, is $O(|V|(|V|+|E|))$, while the complexity of the algorithm which recognizes generating subgraphs in Section 4 is $O\left(|V|^{2}(|V|+|E|)\right)$.

2 Extendable Vertices

An extendable vertex is a vertex $v \in V(G)$ such that there does not exist an independent set in $N_{2}(v)$ which dominates $N(v)$. This notion was first introduced in [5]. If v is not extendable, a witness for non-extendability is a an independent set $S \subseteq N_{2}(v)$ such that $N(v) \subseteq N[S]$.

The main result of this section is a polynomial time algorithm which solves the following problem:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and a vertex $x \in V(G)$.
Question: Is x extendable?

2.1 Graphs Without Cycles of length 6

In this subsection G is a graph without cycles of length 6 , and x is a vertex in the graph, i.e. $G \in \mathcal{G}\left(\widehat{C}_{6}\right)$ and $x \in V(G)$.

Lemma 2.1 Let (a, b, c) be a path in $G\left[N_{2}(x)\right]$. Then there exists a vertex, v, such that $\{v\}=N(x) \cap N(a)=N(x) \cap N(c)$.

Proof. Assume on the contrary that Lemma 2.1 does not hold. Then there exist two distinct vertices, v_{1} and v_{2}, such that $v_{1} \in N(x) \cap N(a)$ and $v_{2} \in N(x) \cap N(c)$. Therefore, $\left(x, v_{1}, a, b, c, v_{2}\right)$ is a cycle of length 6 , which is a contradiction.

Lemma 2.2 Let $P=\left(a_{1}, \ldots, a_{2 k+1}\right), k \geq 1$, be a path (not necessarily simple) in $G\left[N_{2}(x)\right]$. Then there exists a vertex, v, such that $\{v\}=N(x) \cap N\left(a_{1}\right)=N(x) \cap N\left(a_{2 k+1}\right)$.

Proof. By induction on k. If $k=1$ then Lemma 2.2 is equivalent to Lemma 2.1
Assume by induction that Lemma 2.2 holds for k. We prove that it holds also for $k+1$. Let $P=\left(a_{1}, \ldots, a_{2 k+3}\right)$ be a path in $G\left[N_{2}(x)\right]$. By the induction hypothesis, there exists a vertex, v, such that $\{v\}=N(x) \cap N\left(a_{1}\right)=N(x) \cap N\left(a_{2 k+1}\right)$. Considering the subpath $P^{\prime}=\left(a_{2 k+1}, a_{2 k+2}, a_{2 k+3}\right)$, Lemma 2.1 implies that $N(x) \cap N\left(a_{2 k+1}\right)=N(x) \cap N\left(a_{2 k+3}\right)$. Therefore, $\{v\}=N(x) \cap N\left(a_{1}\right)=N(x) \cap N\left(a_{2 k+3}\right)$.

Lemma 2.3 Let A be a connected component of $G\left[N_{2}(x)\right]$ which contains an odd cycle. Then $|N(x) \cap N(V(A))|=1$.

Proof. Let a be a vertex belonging to an odd cycle on A. For every vertex b in A, there exists a path P_{b} in A with even number of edges connecting a and b. By Lemma 2.2, there exists a vertex, v, such that $\{v\}=N(x) \cap N(a)=N(x) \cap N(b)$. Hence, $\{v\}=N(x) \cap N(V(A))$.

Lemma 2.4 Let A be a bipartite connected component of $G\left[N_{2}(x)\right]$ with vertex sets of bipartition V_{1} and V_{2}. Then for each $1 \leq i \leq 2$, if $\left|V_{i}\right| \geq 2$ then $\left|N(x) \cap N\left(V_{i}\right)\right|=1$.

Proof. Let $1 \leq i \leq 2$ and $a \in V_{i}$. For every vertex $a \neq a^{\prime} \in V_{i}$, there exists a path in A with even number of edges connecting a and a^{\prime}. By Lemma 2.2 there exists a vertex, v, such that $\{v\}=N(x) \cap N(a)=N(x) \cap N\left(a^{\prime}\right)$. Therefore, $\{v\}=N(x) \cap N\left(V_{i}\right)$.

Lemma 2.5 Let A be a bipartite connected component of $G\left[N_{2}(x)\right]$ with vertex sets of bipartition V_{1} and V_{2}, such that $\min \left(\left|V_{1}\right|,\left|V_{2}\right|\right) \geq 2$. Then $|N(x) \cap N(V(A))|=1$.

Proof. A contains a path $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $a_{1} \in V_{1}$ and $a_{4} \in V_{2}$. By Lemma 2.4 for each $1 \leq i \leq 2$ there exists a vertex v_{i}, such that $\left\{v_{i}\right\}=N(x) \cap N\left(V_{i}\right)$. Assume on the contrary that $v_{1} \neq v_{2}$. The cycle $\left(a_{1}, a_{2}, v_{2}, a_{4}, a_{3}, v_{1}\right)$ is of length 6 , which is a contradiction. Therefore, $v_{1}=v_{2}$, and $|N(x) \cap N(V(A))|=1$.

Corollary 2.6 Let A be a connected component of $G\left[N_{2}(x)\right]$. Then at least one of the following options holds. (See Fig. 1.)

1. $|V(A)|=1$.
2. $|N(x) \cap N(V(A))|=1$.

Figure 1: Distinct types of connected components of $N_{2}(x) . A_{1}$ contains only one vertex. A_{4} contains an odd cycle, and therefore dominates only one vertex of $N(x) . A_{3}$ is bipartite with vertex sets of bipartition V_{1} and $V_{2},\left|V_{1}\right|=1,\left|V_{2}\right|>1$, and V_{2} dominates only one vertex of $N(x) . A_{2}$ is $K_{1,1}$.
3. A is $K_{1, r}$, for $r \geq 1$.

Proof. Assume that the first 2 options of Corollary 2.6 do not hold for A. By Lemma 2.3, A is bipartite. By Lemma 2.5, at least one of the vertex sets of bipartition of A contains only one vertex. The third option of Corollary 2.6 holds.

Let A^{*} be the set of all connected components A of $G\left[N_{2}(x)\right]$ such that there exists a vertex $a \in V(A)$ for which $N(x) \cap N(a)=N(x) \cap N(V(A))$. For example, in Fig. 11, A_{1} and A_{4} belong to A^{*}, while A_{2} and A_{3} do not. Define $H_{x}=G\left[N_{2}[x] \backslash N\left[V\left(A^{*}\right)\right]\right]$. Since $G \in \mathcal{G}\left(\widehat{C}_{6}\right)$ and H_{x} is an induced subgraph of G, also $H_{x} \in \mathcal{G}\left(\widehat{C}_{6}\right)$.

Corollary 2.7 In the graph H_{x} every connected component of $G\left[N_{2}(x)\right]$ is $K_{1, r}$ for $r \geq 1$.
Proof. Follows immediately from the construction of H_{x} and Corollary 2.6.
Lemma 2.8 The following conditions are equivalent.

1. x is not extendable in G.
2. x is not extendable in H_{x}.

Proof.

$1 \Longrightarrow 2$ Let $S \subseteq V(G)$ be an independent set in $N_{2}(x)$ which dominates $N(x)$. Let S^{\prime} be the set of all vertices of S which exist also in the graph H_{x}, i.e. $S^{\prime}=S \cap V\left(H_{x}\right)$. The set S^{\prime} is a witness that x is not extendable in H_{x}.
$2 \Longrightarrow 1$: Let $S^{\prime} \subseteq V\left(H_{x}\right)$ be a witness that x is not extendable in H_{x}. For every component A of A^{*}, choose a vertex $v_{A} \in V(A)$ such that $N(x) \cap N\left(v_{A}\right)=N(x) \cap N(V(A))$. Define $S=S^{\prime} \cup\left\{v_{A} \mid A \in A^{*}\right\}$. Then S is a witness that x is not extendable in G.

Lemma 2.9 Let A be a connected component of $G\left[N_{2}(x)\right]$ in H_{x}, and a, b two adjacent vertices in A. Then the following conditions hold.

1. $N(x) \cap N(V(A))=N(x) \cap N(\{a, b\})$
2. $(N(a) \backslash N(b)) \cap N(x) \neq \emptyset$
3. $(N(b) \backslash N(a)) \cap N(x) \neq \emptyset$
4. $N(a) \cap N(b) \cap N(x)=\emptyset$

Proof. If there exists a vertex $z \in V(A) \backslash\{a, b\}$, then there exists a path with two edges connecting z to one of a or b. By Lemma[2.1, $N(x) \cap N(z)=N(x) \cap N(a)$ or $N(x) \cap N(z)=$ $N(x) \cap N(b)$. Therefore, $N(x) \cap N(V(A))=N(x) \cap N(\{a, b\})$.

If one of Conditions 2 and 3 does not hold, then there exists a vertex $v_{A} \in\{a, b\} \subseteq V(A)$ such that $N(x) \cap N(V(A))=N(x) \cap N\left(v_{A}\right)$, which contradicts the construction of H_{x}. Therefore, Conditions 2 and 3 hold.

It follows from Conditions 2 and 3 that there exist vertices $v_{a} \in N(x) \cap(N(a) \backslash N(b))$ and $v_{b} \in N(x) \cap(N(b) \backslash N(a))$. If there existed a vertex $v \in N(a) \cap N(b) \cap N(x)$ then $\left(x, v_{a}, a, v, b, v_{b}\right)$ was a cycle of length 6 , which was a contradiction. Therefore, Condition 4 holds.

2.2 Graphs Without Cycles of Lengths 6 and 7

In this subsection $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right), x \in V(G), H_{x}=G\left[N_{2}[x] \backslash N\left[V\left(A^{*}\right)\right]\right]$, and A is a connected component of $N_{2}(x)$ in H_{x}. The vertices a and b are adjacent to each other, and belong to A.

Lemma 2.10 If $N(a) \cap N(x)=\left\{v_{1}, \ldots, v_{k}\right\}$ when $k>2$, then $N\left(\left\{v_{1}, \ldots, v_{k}\right\}\right) \cap N_{2}(x)=\{a\}$.
Proof. Corollary 2.7 implies that A is $K_{1, r}$, for $r \geq 1$. By Lemma 2.4 a is adjacent to all vertices of $V(A) \backslash\{a\}$. Assume on the contrary that Lemma 2.10 does not hold. There exists a vertex $a^{\prime} \in\left(N\left(v_{1}\right) \cap N_{2}(x)\right) \backslash\{a\}$. Lemma 2.9implies that $a^{\prime} \notin V(A)$. Let A^{\prime} be the connected component of $N_{2}(x)$ in H_{x} which contains a^{\prime}. There exists a vertex $a^{\prime \prime} \in V\left(A^{\prime}\right) \cap N\left(a^{\prime}\right)$.

Lemma 2.9 implies that there exists a vertex $v \in\left(N\left(a^{\prime \prime}\right) \backslash N\left(a^{\prime}\right)\right) \cap N(x)$. If $v \neq v_{2}$ then $\left(x, v, a^{\prime \prime}, a^{\prime}, v_{1}, a, v_{2}\right)$ is a cycle of length 7 . Otherwise, $\left(x, v_{2}, a^{\prime \prime}, a^{\prime}, v_{1}, a, v_{3}\right)$ is a cycle of length 7. (See Fig. 24) In both cases we obtained a contradiction. Therefore, Lemma 2.10 holds.

Lemma 2.11 If $N(a) \cap N(x)=\left\{v_{1}, v_{2}\right\}$ then one of the following two options holds.

- $N\left(\left\{v_{1}, v_{2}\right\}\right) \cap N_{2}(x)=\{a\}$.
- There exists exactly one connected component $A^{\prime} \neq A$ of $N_{2}(x)$ such that $\left\{v_{1}, v_{2}\right\}=$ $N\left(V\left(A^{\prime}\right)\right) \cap N(x)$. For every connected component $A \neq A^{\prime \prime} \neq A^{\prime}$ of $N_{2}(x)$, it holds that $\left\{v_{1}, v_{2}\right\} \cap N\left(V\left(A^{\prime \prime}\right)\right)=\emptyset$.

Proof. Clearly, A is $K_{1, r}$, for some $r \geq 1$, and a is adjacent to all vertices of $V(A) \backslash\{a\}$. By Lemma 2.9 there exists a vertex $v_{b} \in(N(b) \backslash N(a)) \cap N(x)$.

Assume that the first option of Lemma 2.11 does not hold. There exists a vertex $a^{\prime} \in$ $\left(N_{2}(x) \cap N\left(v_{1}\right)\right) \backslash\{a\}$. Lemma 2.9 implies that $a^{\prime} \notin V(A)$. Let A^{\prime} be the connected component of $N_{2}(x)$ which contains a^{\prime}, and let $a^{\prime \prime} \in N_{2}(x) \cap N\left(a^{\prime}\right)$.

Figure 2: Proofs of Lemmas 2.10 (left) and 2.11 (right). The dashed edges are not in the graph.

We prove that $N\left(a^{\prime \prime}\right) \cap N(x)=\left\{v_{2}\right\}$. Lemma 2.9 implies that there exists a vertex $v \in\left(N\left(a^{\prime \prime}\right) \cap N(x)\right) \backslash\left\{v_{1}\right\}$. Assume on the contrary that $v \neq v_{2}$. Then $\left(x, v, a^{\prime \prime}, a^{\prime}, v_{1}, a, v_{2}\right)$ is a cycle of length 7 , which is a contradiction. (See Fig. 2.) Therefore, $N\left(a^{\prime \prime}\right) \cap N(x)=\left\{v_{2}\right\}$.

We prove that $N\left(a^{\prime}\right) \cap N(x)=\left\{v_{1}\right\}$. By Lemma [2.9, $v_{2} \notin N\left(a^{\prime}\right)$. If there exists a vertex $v \in\left(N(x) \cap N\left(a^{\prime}\right)\right) \backslash\left\{v_{1}, v_{2}\right\}$ then $\left(x, v, a^{\prime}, v_{1}, a, v_{2}\right)$ is a cycle of length 6 , which is a contradiction. Therefore, $N\left(a^{\prime}\right) \cap N(x)=\left\{v_{1}\right\}$.

Lemma 2.9 implies that $N\left(V\left(A^{\prime}\right)\right) \cap N(x)=N\left(\left\{a^{\prime}, a^{\prime \prime}\right\}\right) \cap N(x)=\left\{v_{1}, v_{2}\right\}$. Assume on the contrary that there exits a connected component $A \neq A^{\prime \prime} \neq A^{\prime}$ of $N_{2}(x)$ with vertices z^{\prime} and $z^{\prime \prime}$, which are adjacent to v_{1} and v_{2}, respectively. Then $\left(z^{\prime}, v_{1}, a^{\prime}, a^{\prime \prime}, v_{2}, z^{\prime \prime}\right)$ is a cycle of length 6 , which is a contradiction. The second option of Lemma 2.11 holds.

Corollary 2.12 If $|N(a) \cap N(x)|=2$ then in the graph H_{x} every independent set of $N_{2}(x)$ which dominates $N(x)$, contains the vertex a.

Proof. Denote $N(a) \cap N(x)=\left\{v_{1}, v_{2}\right\}$. Let S be a maximal independent set of $N_{2}(x)$ which dominates $N(x)$. If $N\left(\left\{v_{1}, v_{2}\right\}\right) \cap N_{2}(x)=\{a\}$ then obviously $a \in S$.

If $N\left(\left\{v_{1}, v_{2}\right\}\right) \cap N_{2}(x) \neq\{a\}$ then, by Lemma 2.11, there exits only one component $A^{\prime} \neq A$ of $N_{2}(x)$ with vertices adjacent to $\left\{v_{1}, v_{2}\right\}$. However, no independent set in A^{\prime} dominates both v_{1} and v_{2}. Therefore, $a \in S$.

Corollary 2.13 If $|N(a) \cap N(x)|=|N(b) \cap N(x)|=2$ then in the graph H_{x} there does not exist an independent set of $N_{2}(x)$ which dominates $N(x)$.

Proof. Suppose on the contrary that H_{x} contains an independent set $S \subseteq N_{2}(x)$ which dominates $N(x)$. By Corollary 2.12, S contains both a and b, which contradicts the fact that S is independent.

Let $S^{*}=\left\{v \in V\left(H_{x}\right)\left|v \in N_{2}(x),|N(v) \cap N(x)|>1\right\}\right.$. By Corollary 2.12, every independent set in $N_{2}(x)$ which dominates $N(x)$ contains S^{*}. Therefore, if S^{*} is not independent then there does not exist an independent set in $N_{2}(x)$ which dominates $N(x)$. In this case x is extendable in H_{x} and, by Lemma 2.8, x is also extendable in G.

Define H_{x}^{*} to be the induced subgraph of H_{x} with vertex set $V\left(H_{x}^{*}\right)=V\left(H_{x}\right) \backslash N\left[S^{*}\right]$.
Lemma 2.14 Suppose S^{*} is independent. Then x is extendable in H_{x} if and only if it is extendable in H_{x}^{*}.

Proof. Let $S_{1} \subseteq V\left(H_{x}\right)$ be an independent set in $N_{2}(x)$ which dominates $N(x)$. Corollary 2.12 implies that $S^{*} \subseteq S_{1}$. Define $S_{2} \subseteq V\left(H_{x}^{*}\right)$ by $S_{2}=S_{1} \backslash S^{*}$. Then in the graph H_{x}^{*} the set S_{2} is independent, contained in $N_{2}(x)$, and dominates $N(x)$.

Let $S_{2} \subseteq V\left(H_{x}^{*}\right)$ be an independent set in $N_{2}(x)$ which dominates $N(x)$. Define $S_{1} \subseteq$ $V\left(H_{x}\right)$ by $S_{1}=S_{2} \cup S^{*}$. Then S_{1} is an independent set in $N_{2}(x)$ which dominates $N(x)$.

Theorem 2.15 The following problem can be solved in $O(|V|(|V|+|E|))$ time.
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and a vertex $x \in V(G)$.
Question: Is x extendable?
Proof. Let A be a connected component of $N_{2}(x)$ in the graph H_{x}^{*}. Then A is $K_{1, r}$ for some $r \geq 1$. Moreover, A is adjacent to exactly 2 vertices of $N(x)$, because otherwise the vertices of A were in $N\left[S^{*}\right]$, and not in $V\left(H_{x}^{*}\right)$. Every vertex set of bipartition of A dominates exactly one vertex of $N(x)$. In order to decide whether x is extendable in H_{x}^{*}, we define a flow network. We use the same technique as in Theorem 2.2 of [8].

Let A_{1}, \ldots, A_{k} be the connected components of $N_{2}(x)$ in the graph H_{x}^{*}. Define a flow network $F_{x}=\left\{G_{F}=\left(V_{F}, E_{F}\right), s \in V_{F}, t \in V_{F}, c: E_{F} \longrightarrow \mathbb{R}\right\}$ as follows. (See Fig. 3.) Let $V_{F}=N_{1}(x) \cup N_{2}(x) \cup\left\{z_{1}, \ldots, z_{k}, s, t\right\}$, where $z_{1}, \ldots, z_{k}, s, t$ are new vertices, s and t are the source and sink of the network, respectively. The directed edges E_{F} are:

- the directed edges $s z_{i}$, for each $1 \leq i \leq k$;
- the directed edges $z_{i} a$, for each $1 \leq i \leq k$ and for each $a \in A_{i}$;
- all directed edges $v_{2} v_{1}$ such that $v_{2} \in N_{2}(x), v_{1} \in N(x)$ and $v_{1} v_{2} \in E\left(H_{x}^{*}\right)$;
- the directed edges $v s$, for each $v \in N(x)$;

Let $c \equiv 1$. Invoke any polynomial time algorithm for finding a maximum flow $f: E_{F} \longrightarrow \mathbb{R}$ in the network, for example Ford and Fulkerson's algorithm. The flow in a vertex $v \in V_{F}$ is defined by: $\Sigma_{(u, v) \in E_{F}} f(u, v)$.

Let S be the set of vertices in $N_{2}(x)$ in which there is a positive flow. It is easy to prove that S is independent, and every augmenting path in Ford and Fulkerson's algorithm increases by one each of $|f|,|S|$ and $|N(x) \cap N(S)|$. Therefore, $|f|=|S|=|N(x) \cap N(S)|$. Moreover, for every independent set S^{\prime} of $N_{2}(x)$, it holds that $|N(x) \cap N(S)| \geq\left|N(x) \cap N\left(S^{\prime}\right)\right|$. For more details see [8].

If S dominates $N(x)$ in H_{x}^{*} then obviously x is not extendable. Otherwise, there does not exist an independent set in $N_{2}(x)$ which dominates $N(x)$, and therefore x is extendable.

The following polynomial algorithm receives as its input a graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and a vertex $x \in V(G)$. If x is extendable, the algorithm returns \emptyset. Otherwise, the algorithm

Figure 3: An example of the construction of the flow network F_{x} (right) from H_{x}^{*} (left).
returns a witness that x is not extendable.

```
Algorithm 1: Decide whether \(x\) is extendable in \(G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)\).
    \(T \longleftarrow \emptyset\)
    Find the connected components of \(N_{2}(x)\)
    Find \(A^{*}\)
    for each \(A \in A^{*}\) do
        Choose \(v_{A} \in V(A)\) such that \(N\left(v_{A}\right) \cap N(x)=N(V(A)) \cap N(x)\)
        \(T \longleftarrow T \cup\left\{v_{A}\right\}\)
    Construct the graph \(H_{x}\).
    \(S^{*} \longleftarrow\left\{a \in V\left(H_{x}\right)\left|a \in N_{2}(x),|N(a) \cap N(x)|>1\right\}\right.\).
    if \(S^{*}\) is not independent then
        return \(\emptyset\).
    Construct the graph \(H_{x}^{*}\).
    Construct the flow network \(F_{x}\)
    Find a maximum flow \(f_{x}: E_{F} \longrightarrow \mathbb{R}\) in the network \(F_{x}\).
    Let \(S\) be the set of vertices in \(N_{2}(x)\) in which there is a positive flow.
    if \(S\) does not dominate \(N(x)\) in \(H_{x}^{*}\) then
        return \(\emptyset\).
    return \(T \cup S \cup S^{*}\).
```

Correctness of Algorithm Follows from previous lemmas.
Complexity analysis of Algorithm [1 Constructing the set T includes finding $N_{2}(x)$, the connected components of $G\left[N_{2}(x)\right]$, and the set A^{*}. This can be implemented in $O(|V|+|E|)$ time. Also finding the induced subgraphs H_{x} can be implemented in $O(|V|+|E|)$ time. Finding S_{x}^{*} and deciding whether it is independent can be done in $O(|V|+|E|)$ time, as well. This is also the complexity for constructing the induced subgraph H_{x}^{*}, and the flow network F_{x}.

One iteration of Ford and Fulkerson's algorithm can be implemented in $O(|V|+|E|)$ time. In each iteration the number of vertices in $N_{2}(x)$ with a positive flow increases by 1 . Therefore, the number of iterations can not exceed $|V|$, and Ford and Fulkerson's algorithm terminates in $O(|V|(|V|+|E|))$ time.

Deciding whether S_{x} dominates $N(x)$ can be done in $O(|V|+|E|)$ time. The total complexity of Algorithm \rceil is $O(|V|(|V|+|E|))$.

3 Relating Edges

In this section we present a polynomial algorithm for recognizing relating edges in graphs without cycles of lengths 6 and 7 .

Lemma 3.1 Let $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and $x y \in E(G)$. The following conditions are equivalent.

1. The edge $x y$ is relating.
2. There exist an independent set, $S_{x} \subseteq N_{2}(x) \backslash N(y)$, which dominates $N(x) \cap N_{2}(y)$, and an independent set, $S_{y} \subseteq N_{2}(y) \backslash N(x)$, which dominates $N(y) \cap N_{2}(x)$.

Proof. $1 \Longrightarrow$ 2: Let S be a witness that $x y$ is relating. Define $S_{x}=S \cap N_{2}(x)$ and $S_{y}=S \cap N_{2}(y)$. Clearly, S_{x} dominates $N(x) \cap N_{2}(y)$ and S_{y} dominates $N(y) \cap N_{2}(x)$.
$2 \Longrightarrow 1$: Let $x^{\prime \prime} \in S_{x}$ and $y^{\prime \prime} \in S_{y}$. There exist vertices $x^{\prime} \in N(x) \cap N\left(x^{\prime \prime}\right)$ and $y^{\prime} \in N(y) \cap N\left(y^{\prime \prime}\right)$. If $x^{\prime \prime}$ and $y^{\prime \prime}$ were adjacent then ($\left.x^{\prime \prime}, x^{\prime}, x, y, y^{\prime}, y^{\prime \prime}\right)$ was a cycle of length 6 . Therefore, $S_{x} \cup S_{y}$ is independent. Let S be a maximal independent set of $G[V(G) \backslash N[\{x, y\}]]$ which contains $S_{x} \cup S_{y}$. Then S is a witness that $x y$ is relating.

Theorem 3.2 The following problem can be solved in $O(|V|(|V|+|E|))$ time. Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and an edge $x y \in E(G)$. Question: Is xy relating?
Proof. The following polynomial algorithm receives as its input a graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and an edge $x y \in E(G)$. If $x y$ is relating, the algorithm returns an independent set in $N_{2}(\{x, y\})$
which dominates $N(x) \Delta N(y)$. Otherwise, \emptyset is returned.

```
Algorithm 2: Decide whether the edge \(x y\) in the graph \(G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)\) is relating.
    \(A \longleftarrow \emptyset\)
    \(B \longleftarrow \emptyset\)
    if \(N(x) \cap N_{2}(y) \neq \emptyset\) then
        \(A \longleftarrow \operatorname{Alg} 1\left(G\left[\left(N_{2}(x) \cap N_{3}(y)\right) \cup\left(N(x) \cap N_{2}(y)\right) \cup\{x\}\right], x\right)\)
        if \(A=\emptyset\) then
            return \(\emptyset\)
    if \(N(y) \cap N_{2}(x) \neq \emptyset\) then
        \(B \longleftarrow \operatorname{Alg} 1\left(G\left[\left(N_{2}(y) \cap N_{3}(x)\right) \cup\left(N(y) \cap N_{2}(x)\right) \cup\{y\}\right], y\right)\)
        if \(B=\emptyset\) then
            return \(\emptyset\)
    return \(A \cup B\).
```

Correctness of Algorithm 2\% Follows from Lemma 3.1.
Complexity analysis of Algorithm 2 The algorithm invokes Algorithm 1 at most twice. Therefore, the complexity of Algorithm 2 is equal to the complexity of Algorithm 1 i.e. $O(|V|(|V|+|E|))$.

4 Generating Subgraphs

In this section we present a polynomial algorithm for recognizing generating subgraphs in $\mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$. Through this section $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$, and B is an induced complete bipartite subgraph of G.

Lemma 4.1 Let a and b be two distinct vertices in $V(B)$. Let $a^{\prime} \in N(a) \backslash V(B)$ and $b^{\prime} \in$ $N(b) \backslash V(B)$ such that $a^{\prime} \neq b^{\prime}$. Let $a^{\prime \prime} \in N_{2}(a) \cap N\left(a^{\prime}\right)$ and $b^{\prime \prime} \in N_{2}(b) \cap N\left(b^{\prime}\right)$. Then $a^{\prime \prime}$ and $b^{\prime \prime}$ are not adjacent.

Proof. If a and b are adjacent, the lemma holds, or otherwise ($a^{\prime \prime}, a^{\prime}, a, b, b^{\prime}, b^{\prime \prime}$) is a cycle of length 6.

If a and b are not neighbors, there exists a vertex $c \in V(B) \cap N(a) \cap N(b)$. If $a^{\prime \prime} \in N\left(b^{\prime \prime}\right)$ then $\left(a^{\prime \prime}, a^{\prime}, a, c, b, b^{\prime}, b^{\prime \prime}\right)$ is a cycle of length 7 , which is a contradiction.

For every vertex $b \in V(B)$, define $G_{b}=G\left[\left(N_{2}(b) \cap N_{2}(V(B))\right) \cup(N(b) \cap N(V(B))) \cup\{b\}\right]$. Since $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and G_{b} is an induced subgraph of G, also $G_{b} \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$.

Corollary 4.2 Let a and b be two distinct vertices in $V(B)$. Let $S_{a} \subseteq V\left(G_{a}\right) \cap N_{2}(a)$ and $S_{b} \subseteq V\left(G_{b}\right) \cap N_{2}(b)$ be two independent sets. Then $S_{a} \cup S_{b}$ is an independent set in G.

Lemma 4.3 The following conditions are equivalent.

1. The subgraph B is generating in G.
2. The vertex b is not extendable in G_{b}, for every $b \in V(B)$.

Proof.

$1 \Longrightarrow 2$: Let S be a witness that B is a generating subgraph of G. For every $b \in V(B)$ define $S_{b}=S \cap V\left(G_{b}\right)$. Then S_{b} is a witness that b is not extendable in G_{b}.
$2 \Longrightarrow 1$: For every $b \in V(B)$, let S_{b} be a witness that b is not extendable in G_{b}. Define $S=\bigcup_{b \in V(B)} S_{b}$. By Corollary 4.2 S is independent. The set S is a witness that B is a generating subgraph of G.

Theorem 4.4 The following problem can be solved in $O\left(|V|^{2}(|V|+|E|)\right)$ time.
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and an induced bipartite subgraph B.
Question: Is B generating?
Proof. The following algorithm receives as its input a graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ and an induced complete bipartite subgraph, B. The algorithm returns a witness that B is generating, if exists, and \emptyset otherwise.

```
Algorithm 3: Decide whether the subgraph \(B\) of \(G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)\) is generating.
    for each \(b \in V(B)\) do
        \(S_{b} \longleftarrow \operatorname{Alg} 1\left(G_{b}, b\right)\)
        if \(S_{b}=\emptyset\) and \(|V(B)|>1\) then
            return \(\emptyset\)
    \(S \longleftarrow \bigcup_{b \in V(B)} S_{b}\).
    Extract \(S\) to a maximal independent set, \(S^{*}\), of \(G \backslash N[V(B)]\).
    return \(S^{*}\).
```

Correctness of Algorithm 3. Follows from Lemma 4.3,
Complexity analysis of Algorithm 3 The complexity of Algorithm 1 is $O(|V|(|V|+|E|))$, and it is invoked at most $O(|V|)$ times. Therefore, the total complexity of Algorithm 3 is $O\left(|V|^{2}(|V|+|E|)\right)$.

5 Conclusions and Future Work

We presented a polynomial algorithm for recognizing generating subgraphs in $\mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$. However, we did not find a polynomial algorithm which receives $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ as its input, and finds $W C W(G)$, the vector space of all weight functions w such that G is w-well-covered. Checking all induced complete bipartite subgraphs is obviously not a polynomial algorithm, since the number of checked subgraphs can be exponential. Nevertheless, we conjecture the following.

Conjecture 5.1 The following problem can be solved in polynomial time.
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$.
Output: $W C W(G)$.
It is known that recognizing relating edges is a polynomial task for $\mathcal{G}\left(\widehat{C}_{4}, \widehat{C}_{6}\right)$ [8], and for $\mathcal{G}\left(\widehat{C}_{5}, \widehat{C}_{6}\right)$ 9. We proved that also for $\mathcal{G}\left(\widehat{C}_{6}, \widehat{C}_{7}\right)$ the problem is polynomial. However, in most parts of the proof, the only forbidden cycles were of length 6 . Hence, we conjecture that all three theorems are instances of the following.

Conjecture 5.2 The following problem is polynomial solvable:
Input: A graph $G \in \mathcal{G}\left(\widehat{C}_{6}\right)$ and an edge $x y \in E(G)$.
Question: Is xy relating?

References

[1] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, The structure of well-covered graphs with no cycles of length 4, Discrete Mathematics 307 (2007) 2235 - 2245.
[2] Y. Caro, N. Ellingham, G. F. Ramey, Local structure when all maximal independent sets have equal weight, SIAM Journal on Discrete Mathematics 11 (1998) 644-654.
[3] Y. Caro, A. Sebő, M. Tarsi, Recognizing greedy structures, Journal of Algorithms 20 (1996) 137-156.
[4] V. Chvatal, P. J. Slater, A note on well-covered graphs, Quo vadis, Graph Theory Ann Discr Math 55, North Holland, Amsterdam, 1993, 179-182.
[5] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, Journal of Combinatorial Theory Ser. B. 57 (1993) 44-68.
[6] A. Finbow, B. Hartnell, R. Nowakowski A characterization of well-covered graphs that contain neither 4- nor 5-cycles, Journal of Graph Theory 18 (1994) 713-721.
[7] V. E. Levit, D. Tankus Weighted well-covered graphs without $C_{4}, C_{5}, C_{6}, C_{7}$, Discrete Applied Mathematics 159 (2011) 354-359.
[8] V. E. Levit, D. Tankus, On relating edges in graphs without cycles of length 4, Journal of Discrete Algorithms 26 (2014) 28-33.
[9] V. E. Levit, D. Tankus, Well-covered graphs without cycles of lengths 4, 5 and 6, Discrete Applied Mathematics 186 (2015) 158-167.
[10] V. E. Levit, D. Tankus, Complexity Results for Generating Subgraphs, Algorithmica 80 (2018) 2384-2399.
[11] E. Prisner, J. Topp and P. D. Vestergaard, Well-covered simplicial, chordal and circular arc graphs, Journal of Graph Theory 21 (1996), 113-119.
[12] R. S. Sankaranarayana, L. K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992), 247-262.
[13] D. Tankus, M. Tarsi, Well-covered claw-free graphs, Journal of Combinatorial Theory Ser. B. 66 (1996) 293-302.
[14] D. Tankus, M. Tarsi, The structure of well-covered graphs and the complexity of their recognition problems, Journal of Combinatorial Theory Ser. B. 69 (1997) 230-233.

