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Water exchange reactions around ionic solutes are ubiquitous in aqueous solution-phase chemistry. However,
the extreme sensitivity of exchange rates to perturbations in the chemistry of an ionic solute is not well
understood. We examine water exchange around model ions within the language of dynamic facilitation
theory, typically used to describe glassy and other systems with collective, facilitated dynamics. Through the
development of a coarse-grained, kinetically-constrained lattice model of water exchange, we show that the
timescale for water exchange scales exponentially with the strength of the solute-solvent interactions.

I. INTRODUCTION

Changes in coordination structures, particularly of co-
ordinated water molecules, are fundamental reactions
of general importance in chemistry. Understanding the
molecular mechanisms underlying their chemical kinetics
is an important step in fully characterizing more com-
plex reactions of broad importance. For example, min-
eral dissolution and precipitation in aqueous solution in-
volves the coordination (and de-coordination) of metal
ions and their complexes by water molecules, and wa-
ter exchange has been suggested to be a rate-limiting
step in dilute solutions1–3. In biological settings, water
exchange reactions play an important role in the bind-
ing of ions to RNA4–9 and proteins6,7,10–12, influencing
rates of biological processes. Additionally, coordination
complexes involving mixtures of water and a cosolvent or
pure non-aqueous solvents have proved important to the
development of complex materials for catalysis13,14 and
energy storage15–17.

The exchange of a hydration water for another around
an ion (M) — the water exchange reaction — is one of the
(seemingly) simplest changes in coordination structure,

M(OH2)n + ∗OH2 −−⇀↽−− M(OH2)n−1
∗OH2 + OH2, (1)

where ∗OH2 is used to identify a distinct water molecule,
and the ion M has a coordination of n in water. The re-
actants and products are chemically identical in this pro-
cess, such that there is no net change in the free energy
driving this reaction. However, the kinetics governing
water exchange are quite complex. Typical timescales
for water exchange depend on the nature of the ion and
vary from picoseconds to hundreds of years18.

In this work, we examine the complex dynamics of wa-
ter exchange reactions within the framework of dynamic
facilitation (DF) theory, typically employed to describe
glassy systems19. To do so, we suggest that the coordi-
nation of a solute by a water molecule imposes a kinetic
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constraint on the dynamics of that molecule. We addi-
tionally suggest that these kinetic constraints are cou-
pled to the charge density of the solute, and, in general,
any solute-solvent interactions, such that strong solute-
solvent interactions ultimately lead to slow, collective
dynamics that are dominated by fluctuations, precisely
the realm of applicability of DF theory. We use com-
puter simulations to characterize water exchange around
a range of model ions within the DF theory framework,
illustrating that increased water exchange times corre-
spond to increased glassiness and collective behavior in
the ion hydration shell. Furthermore, by using DF the-
ory and developing kinetically constrained lattice models,
we predict that water exchange times scale exponentially
with the strength of water-solute interactions, in agree-
ment with recent empirical findings9.

II. SIMULATION DETAILS

We probe the dynamics of water exchange around clas-
sical (Lennard-Jones plus point charge) ion models using
GROMACS version 5.020. We do not consider the influ-
ence of changes in electronic structure21–25, bond break-
ing26, and nuclear quantum effects27, which may impact
water exchange kinetics. All simulations were performed
in the isothermal-isobaric (NPT) ensemble at a temper-
ature of T = 300 K and a pressure of 1 bar using the
canonical velocity rescaling thermostat of Bussi et al.28

and an Andersen barostat29, respectively. Water was
modeled using the extended simple point charge (SPC/E)
model30. We study several model ions to span a signifi-
cant range of water exchange times: (i) Ca2+, (ii) a model
Cobalt ion with a reduced charge of 1.4 (Co1.4+) in or-
der to make direct sampling of water exchange possible,
and (iii) an model potassium ion (K+). Co1.4+ was mod-
eled using the CM parameters developed by Merz and
coworkers31, and the LJ parameters of the ECCR model
were used for Ca2+, with a charge of +2, neglecting any
charge transfer between the ion and water32. K+ was
modeled using the parameters developed by Koneshan et
al.33,34. Short-ranged electrostatic and Lennard-Jones
(LJ) interactions were truncated at a distance of 1 nm.
The particle mesh Ewald method was used to evaluate

ar
X

iv
:1

81
0.

01
23

5v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  3

 J
an

 2
01

9

mailto:rremsing@temple.edu
mailto:mike.klein@temple.edu


2

long-ranged electrostatic interactions35, with the inclu-
sion of a uniform neutralizing background potential to
cancel the net charge of the single ion in the system.
Equations of motion were integrated using a timestep
of 0.5 fs, saving configurations every 100 timesteps, em-
ploying the LINCS algorithm36 to fix the O-H bonds and
H-O-H angles of water. Trajectory lengths for Co1.4+,
Ca2+, and K+ systems were 1 µs, 711 ns, and 100 ns, re-
spectively. Unless otherwise noted, results are presented
for systems with 500 (Co1.4+ and K+) or 512 (Ca2+) wa-
ter molecules, which are large enough to minimize finite
size effects (see Supporting Information (SI)).

III. FACILITATED DYNAMICS OF WATER EXCHANGE

In order to quantify the kinetics of water exchange,
we must first define what we mean by the exchange of
a water molecule. Following previous work, we monitor
exchange through the indicator function hi(t), which is
equal to one if water i is in the hydration shell of an ion
and is equal to zero when it is not. A water molecule is
in the first coordination shell if the ion-water oxygen dis-
tance is less than rc, defined as the position of the free en-
ergy barrier in the solute-water oxygen potential of mean
force, βW (r) = − ln g(r), shown in Fig. 1a for the ions
under study, where g(r) is the water oxygen-ion pair dis-
tribution function, which are shown and discussed in the
SI, along with the ion coordination structure. The free
energy barriers increase following K+ < Ca2+ < Co1.4+,
and we therefore expect the water exchange times to fol-
low a similar trend.

Water exchange times are traditionally measured by
computing the time correlation function

C(t) =
〈δhi(0)δhi(t)〉
〈δh2

i (0)〉
, (2)

which is shown in Fig. 1b, where δhi(t) = hi(t)− 〈hi(t)〉
and implicit in the ensemble average is an average over
all water molecules. For tightly bound water molecules,
as is the case for Ca2+ and Co1.4+ model ions, the decay
of C(t) is exponential, yielding water exchange lifetimes
of roughly 200 ps for Ca2+ and 2000 ps for the reduced
charge Co1.4+ model, both of which are in good agree-
ment with earlier estimates for similar model ion param-
eters9. Note that water exchange dynamics can display
significant finite size effects, as discussed in the SIs for
Ca2+. For K+, C(t) decays exponentially only after an
initial transient period. This transient short-time dy-
namics physically arises from high-frequency recrossing
of the barrier at rc and is removed upon coarse-graining
in the time domain, as is typically done for glassy sys-
tems19,37,38. The coarse-grained C(t) for K+ decays ex-
ponentially with a time constant of roughly 10 ps, where
the coarse-graining is performed over a time window of
2 ps. Coarse-graining the correlation functions for Ca2+

and Co1.4+ on this time scale does not alter their behav-
ior.

(a)

(b)

FIG. 1. (a) Ion-water potentials of mean force (PMFs),
βW (r) = − ln g(r), for the three ions under study. Note that
the PMFs have been shifted vertically and horizontally to
place the free energy minimum at the origin. (b) The time
correlation function C(t) for water exchange around a reduced
charge model of a cobalt ion (Co1.4+), a calcium ion (Ca2+),

and a potassium ion (K+). For K+, C(t) is shown with (K̃+)
and without (dashed) coarse-graining in time over a window
of 2 ps. A similar coarse-graining does not impact C(t) for
the more highly charged ions.

Exponential decay of correlation functions is typically
indicative of uncorrelated dynamics, not collective, het-
erogeneous dynamics. However, we show below that the
dynamics of water exchange are facilitated and collec-
tive, despite the exponentially decaying C(t). Instead,
we suggest that this exponential decay arises from the
small phase space volume probed by these correlation
functions.

We characterize the facilitated nature of the dynamics
of water exchange by computing the probability distribu-
tions of exchange and persistence times, PX(t) and PP(t),
respectively, using the language of DF theory39,40. The
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(b) (c)

Ca2+

(d) K+Co1.4+

(a)

FIG. 2. (a) A portion of the I(t) trajectory for Co1.4+, highlighting individual persistence, tP, and exchange time periods,
tX, the averages of which are τP = 〈tP〉 and τX = 〈tX〉, respectively. (b-d) Distributions of the persistence and exchange times,
PP(t) and PX(t), respectively, for (b) Co1.4+, (c) Ca2+, and (d) K+.

exchange time is defined as the time between two suc-
cessive events. In contrast, the persistence time is the
time for the first event to occur, as measured from t = 0.
The distributions of exchange and persistence times are
related through

PP(t) ∼
∫ ∞
t

dt′PX(t′), (3)

within a normalization constant39.
We define an event as any change in the water coor-

dination shell between two successive timesteps, mathe-
matically determined by the indicator function

I(t) = Θ (∆H(t)− c) , (4)

where Θ(x) is the Heaviside step function, c is a con-

stant greater than zero, ∆H(t) =
∑N

i=1 ∆hi(t), and
∆hi(t) = |hi(t)− hi(t−∆t)|. The constant c sets the
threshhold for defining an event when the trajectory is
coarse-grained in time to avoid counting transient bar-
rier recrossing, and here we choose c = 0.9 without im-
pact on the qualitative findings. A representative portion
of an I(t) trajectory is shown in Fig. 2, with individual
exchange and persistence times highlighted. This trajec-
tory suggests that dynamics of water exchange are indeed

facilitated. One observes long periods of inactivity and
bursts of activity that are localized in time. This com-
plex dynamic structure is quantified by the exchange and
persistence time distributions.

For a Poisson process, the distribution of bound wa-
ter lifetimes is exponential, and the persistence and ex-
change time distributions coincide and are exponential39.
In the context of facilitated dynamics, a dynamical event
cannot occur unless a molecule is intersected by dynam-
ical excitations in spacetime, which become increasingly
sparse under conditions where the dynamics are slowed.
In supercooled liquids, the concentration of excitations is
typically controlled by the temperature. In the context
of water exchange, the relevant excitations are those that
permeate the spacetime of the hydration shell, and the
density of these excitations is expected to be inversely
related to the solute-solvent interaction strength, in ad-
dition to the temperature of the solution. In the limit
of high solute charge density, for example, the excita-
tions will be sparse, leading to persistence times that are
significantly decoupled from exchange times39,40. This
behavior is exemplified by the exchange and persistence
time distributions in Fig. 2.

As the solute charge density is increased, spacetime
excitations in the hydration shell become increasingly
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sparse, and there is a small number of dynamic path-
ways that enable hydration water to exchange. Conse-
quently, the exchange and persistence time distributions
become increasingly decoupled as the solute-solvent in-
teraction strength is increased, Fig. 2b-c. This illustrates
that strong solute-solvent interactions lead to facilitated
and collective water exchange processes. For weak solute-
solvent interactions (Fig. 2d), as is the case for K+, water
molecules in the hydration shell are not trapped by strong
solute-solvent interactions, and the barrier to water ex-
change is small (Fig. 1a). In this case, excitations perme-
ate the spacetime of the solute hydration shell, there is a
high density of dynamic pathways that enable water ex-
change to occur, and the exchange and persistence time
distributions coincide. We expect that solutes with net
repulsions, including effective repulsions leading to dry-
ing around large hydrophobic solutes41–45, will also lead
to PX(t) and PP(t) that coincide.

We also note that the exponential decay of C(t) shown
in Fig. 1b, which seems to contradict the signatures of
dynamic heterogeneity found here, is expected to arise
from the small spacetime volume in which the system is
kinetically constrained. We expect that a stretched expo-
nential decay of C(t) would be observed for large enough
solutes, as is found for strongly binding extended sur-
faces46–48. Similar finite size effects are well-documented
in configuration49–54 and trajectory19,55,56 space.

IV. KINETICALLY CONSTRAINED MODEL OF
SOLVENT EXCHANGE

We now show that the general DF phenomenology
of solvent exchange reactions can be captured within
the framework of kinetically constrained lattice models.
We illustrate this within the context of the Fredrickson-
Andersen (FA) model57, but our approach is general and
can be readily extended to other kinetically constrained
models, such as the East model58. In the FA model, each
lattice site is described by a binary variable ni = 0, 1,
typically interpreted as (0) immobile and (1) mobile, or
excited, sites. The energy of a FA model with N sites is

E = J
∑N

i=1 ni, where J is an energy scale. The resulting
thermodynamic properties of the FA model are trivial. In
particular, the concentration of excitations (mobile sites)

is cFA = 〈ni〉 = 1/(1 + e1/T̃ ), where T̃ = kBT/J . The
complex dynamics of the FA model arise from kinetic con-
straints imposed on the system. The kinetic constraints
dictate that a change in state of a site can only occur
if at least one of its neighboring sites is excited, with
excitations (0 → 1) occurring at a rate of cFA and de-
excitations (1→ 0) occurring at a rate of 1− cFA.

In the water exchange reaction, the solute imposes ki-
netic constraints largely on the water molecules in its
coordination shell only, not the rest of the solvent. Thus,
we introduce a fixed solute site into the lattice model,
which, for simplicity, does not move or change state. In
order to mimic the water exchange reaction, we impose

(a)

(c)

(b)

(d)

FIG. 3. Distributions of exchange and persistence times,
PX(t) and PP(t), respectively, for the kinetically constrained
solvent exchange lattice model at solute nearest-neighbor ef-
fective temperatures of (a) T̃ ′ = 0.2, (b) T̃ ′ = 0.5, (c) T̃ ′ = 1,

and (d) T̃ ′ = 2. Time is in units of Monte Carlo sweeps.

the FA kinetic constraints only on the nearest neighbor
sites of the solute; the remaining lattice sites exhibit un-
constrained dynamics. The solute is considered to be an
immobile region; it does not facilitate the dynamics of its
neighbors.

Finally, we note that the kinetics of the ionic solva-
tion shell water molecules are altered by the nature of
the solute, through solute-solvent interactions. To mimic
this, we assign a different energy scale, J ′, to the near-
est neighbors of the solute in the lattice model, arising
physically from any solute-solvent interactions present.
Defining T̃ ′ = kBT/J

′, one can consider the dynamics of
these sites to evolve at an effective reduced temperature
T̃ ′, which is different than that of the rest of the system,
T̃ . In this context, T̃ ′ captures the effects of the solute
charge density and any other solute-solvent interactions
(e.g. LJ interactions). For example, lowering T̃ ′ is the
analog of increasing the charge density of the ion.

Here, we focus on the one-dimensional (1D) version
of this model. The thermodynamics of this model are
trivial and analogous to that of the FA and East models.
For S solutes, dispersed far apart (their solvation shells
are not shared), there will be 2S solute neighbors in a 1D
system. Omitting the (static) solutes from consideration,
the (solvent) partition function is readily evaluated as

Z = (1 + e−1/T̃ )N−2S(1 + e−1/T̃ ′
)2S . (5)

The concentration of excitations is obtained from the sum
of the excitation concentrations in the constrained and
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unconstrained regions,

c =

(
1− 2S

N

)
1

1 + e1/T̃
+

2S

N

1

1 + e1/T̃ ′

≡
(

1− 2S

N

)
cB +

2S

N
cNN. (6)

The first term in Eq. 6, cB, corresponds to the concentra-
tion of excitations in the unconstrained, bulk (B) region
of the system, i.e. the lattice sites that are not nearest
neighbors of a solute. Correspondingly, the second term
in Eq. 6 is the concentration of excitations in the regions
composed of lattice sites that are nearest neighbors (NN)
of a solute. Thus, Eq. 6 is equal to cFA when S = 0 or
T̃ ′ = T̃ . Equation 6 illustrates that the role of the ef-
fective temperature T̃ ′ is to alter the concentration of
excitations in the solute solvation shell. Indeed, our in-
terpretation of water exchange described in the previous
section yields a similar picture for the effects of solute-
solvent interactions, which are mimicked by T̃ ′.

The corresponding distributions of the exchange and
persistence times are decoupled for small T̃ ′ (strong
solute-solvent interactions), Fig. 3a-d, which were ob-

tained from 100 independent trajectories at each T̃ ′ us-
ing a 1D lattice with N = 50 and S = 1, evolving under
Metropolis dynamics. As T̃ ′ is increased, the exchange
and persistence time distributions become increasingly
similar. Physically, increasing T̃ ′ corresponds to weak-
ening the solute-solvent interactions, and even adding
solute-solvent repulsions (T̃ ′ > T̃ ), arising from direct
or effective repulsions that can lead to drying around
extended hydrophobic surfaces41,44,45. Both reduce the
kinetic constraints for water exchange and lead to over-
lapping distributions.

The average exchange and persistence times, τX and
τP, respectively, further support the decoupling of these
two processes as T̃ ′ is lowered, Fig. 4. For large values
of T̃ ′, τX and τP coincide. As T̃ ′ is lowered, cNN de-
creases, and τX and τP are increasingly decoupled. The
dynamics controlling exchange and persistence in the so-
lute nearest-neighbor lattice sites are facilitated by the
unconstrained dynamics of the surrounding (bulk) lat-
tice region, such that

τX ∼ c−1
NN (7)

and

τP ∼ c−1
NN, (8)

evidenced by the lines in Fig. 4. Importantly, the lin-
ear scaling of τX and τP with c−1

NN is independent of the
dimensionality of the system, which only couples to cB;
see the Appendix for details. Note that the scaling of τX
and τP with temperature, T , can be more complex due
to the coupling between the bulk and nearest-neighbor
sites, and this scaling also depends on the dimensionality
of the system (Appendix).

The data in Fig. 4 strongly suggests that the exchange
and persistence times scale linearly with c−1

NN = 1 +

0 500 1000
1/cNN

0

1000

2000

3000

4000

5000

τ

τX

τP

FIG. 4. Exchange and persistence times (τX and τP, respec-
tively) as a function of the inverse concentration of excitations
in the nearest-neighbor regions, 1/cNN. The dashed and solid
lines correspond to linear scaling of τX and τP, respectively,
with 1/cNN. Time is in units of Monte Carlo sweeps. Error
bars are smaller than the symbol size.

exp(J ′/kBT ). The energetic coupling J ′ captures the net
effect of solute-solvent interactions in the solvation shell,
such that the water exchange time scales exponentially
with the solute-solvent interaction energy. Indeed, Lee,
Thirumalai, and Hyeon have recently shown that water
exchange times scale exponentially with solute-solvent in-
teractions within the coordination shell, in addition to
an entropic contribution, in agreement with our predic-
tions9. The energy scale J ′ is model-dependent, and in
classical models typically arises from LJ and Coulomb
interactions, the latter of which ultimately depends on
the charge density of the ion.

The scaling with J ′ is simplified under conditions
where only the charge density of the ion is changing,
with remaining interaction potentials held fixed. In this
case, the difference in the energetic coupling between ions
arises from electrostatic interactions alone. Such a situ-
ation arises for trivalent lanthanides, for example, where
the major impact of filling the 4f orbitals is an increase
in the strength of solute-solvent electrostatic interactions
due to an increase in the charge density (decrease in size)
of the ion59. A Born theory-like model for a hydrated ion
would suggest that the electrostatic energy contribution
to J ′ behaves as J ′ ∝ Q2/R, where Q and R are the
charge and radius of the ionic solute, respectively60,61.
Figure 5 shows that the experimentally-determined wa-
ter exchange times around trivalent lanthanides follow
the expected exponential scaling, ln τ ∼ J ′ ∝ 1/R. Note
that we have limited our analysis to ions for which well-
defined exchange times have been determined59.

Our results are consistent with the system being
in close proximity to a phase transition in trajectory
space19,40,55. This is supported through the examina-
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FIG. 5. Experimentally determined water exchange times,
τ , for trivalent lanthanides59 (points) scale exponentially with
the inverse ionic radius, 1/R, which is shown as a proxy for
the ion-water interaction strength. Moving from left to right
on the plot, the ions move along the periodic table from Gd3+

to Yb3+. For this set of ions, the ion-water interactions are
mainly electrostatic in origin. The solid line is a linear fit to
the data points, indicating that ln τ ∼ J ′ ∝ 1/R.

2 0 2 4 6

(k−〈k〉)/
√
δk2

6

4

2

0

2

ln
P
(k

)

T̃
′
=2.0

T̃
′
=0.6

T̃
′
=0.4

FIG. 6. Probability distributions of the mobility, P (k), for

T̃ ′ = 2.0, T̃ ′ = 0.6, and T̃ ′ = 0.4 for the kinetically con-
strained model of water exchange, determined for ∆t = 100
Monte Carlo sweeps. Points correspond to simulation results
and the solid lines indicates a Gaussian distribution.

tion of probability distributions of trajectory-based ob-
servables quantifying the amount of mobility in a trajec-
tory. We compute probability distributions of the time-
intensive mobility

k =
1

2S∆t

∆t∑
t=0

2S∑
i=1

ni(t), (9)

where 2S is the number of solute neighors (S = 1 here)
and ∆t is the observation time or trajectory length19,55.
At high T̃ ′, when the persistence and exchange times are
coupled and the dynamics are Poissonian, the distribu-
tion P (k) is Gaussian, indicating that the system is not
near a spacetime transition, Fig. 6. In contrast, at low
T̃ ′, when τP and τX are decoupled, P (k) is significantly
non-Gaussian and displays a fat tail at high mobilities,
with increasing non-Gaussian character as T̃ ′ is lowered.
This non-Gaussian character indicates the presence of an
underlying dynamic phase transition that leads to the
correlated and facilitated dynamics of water exchange.
Similar results have been found for analogous processes
involving water bound strongly to extended surfaces46.

V. CONCLUSIONS

We have demonstrated that water exchange reactions
exhibit facilitated dynamics and may be described
within the framework of dynamic facilitation theory.
Through the development of a kinetically constrained
model, we predict that water exchange times — the
inverse of the exchange rate — scale exponentially with
the strength of solute-water interactions, consistent with
the ultrasensitivity of water exchange times observed
experimentally and recent empirical findings9,18. We
conclude by noting that the kinetically constrained
models discussed here can be readily extended to study
solvent exchange in glassy matrices by imposing kinetic
constraints in both the solvent and solute nearest-
neighbor regions62, with different effective temperatures
in the two regions. Moreover, extensions to two- and
three-dimensional lattices will enable the investigation
of the phenomenology underlying directional solvent
exchange and solvent exchange at interfaces, which are of
importance in geochemical1,3,63–68 and electrochemical
processes13,46–48,66,68, for example, as well as solvent
transport through porous solids69. Further extension
to multi-site lattice models may also facilitate the
study of exchange dynamics involving ionic solutes and
polymeric solvents70,71. We hope that the connections
made here between water exchange reactions, kinetically
constrained models, and DF theory will further the
development of predictive theories for solvent exchange.
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Appendix A: Appendix: Scaling of Exchange Times with
Excitation Concentration

Following previous work39, we obtain a mean-field es-
timate for the behavior of τX by noting that the facilita-
tion function for one of the solute nearest neighbor sites
is given by fi = ni+1; the other is fi = ni−1. This is the
same facilitation function as the 1D East model, and we
focus on the first neighbor for simplicity.

We start by noting that the rate for the exchange 0→ 1

is given by k(+) = e−1/T̃ ′
fi, and the rate for the opposite

1→ 0 process is k(−) = fi. The mean exchange time for
the ni = 0 state is then

〈tX(0)〉 ≈ 1〈
k(+)

〉 =
e1/T̃ ′

cB
, (A1)

and that for the ni = 1 state is given by

〈tX(1)〉 ≈ 1〈
k(−)

〉 =
1

cB
, (A2)

where we have noted that 〈fi〉 = cB. The total mean
exchange time is then given by

τX ≡ 〈tX〉 ≈
1

2
[〈tX(0)〉+ 〈tX(1)〉] (A3)

=
1

2cNNcB
, (A4)

where we have used 1 + e1/T̃ ′
= 1/cNN.

For a general d-dimensional square lattice, the average
facilitation function is given by39

〈fi〉 = 1− (1− cB)ad, (A5)

where the product ad indicates the number of sites that
can facilitate a change in state. For the bulk FA and East
models, a = 2 and a = 1, respectively, independent of d.
However, due to the presence of the solute site, a = a(d)
is a function of d in our model for solvent exchange. For
example, a(1) = 1, a(2) = 2/3, and a(3) = 5/3 when
using the kinetic constraints of the FA model. We can
then carry out the above derivation using Eq. A5 to yield

τX ≈
1

2cNN [1− (1− cB)ad]
, (A6)

which illustrates that τX ∼ c−1
NN for all d, such that the

scaling with solute-solvent interactions is also indepen-
dent of d. Note that the temperature dependence of τX
is more complex because both cNN and cB depend on T .

The mean persistence time is related to the moments
of the exchange time through39

τP =

〈
t2X
〉

2 〈tX〉
. (A7)

Using the variance, this can be rewritten as

τP =
〈tX〉

2

[
1−

〈
δt2X
〉

〈tX〉2

]
∼ c−1

NN, (A8)

where δtX ≡ tX − 〈tX〉.
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