1902.10983v2 [cs.DS] 25 Apr 2024

arXiv

"Humboldt-Universitiat zu Berlin, Berlin, Germany, Katrin.Casel@hu-berlin.de,

4Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken,

1

Graph and String Parameters: Connections Between
Pathwidth, Cutwidth and the Locality Number

Katrin Casel®, Joel D. Day?, Pamela Fleischmann?®, Tomasz Kociumaka*, Florin

Manea®, and Markus L. Schmid?

MLSchmid@MLSchmid.de

2Department of Computer Science, Loughborough University, Loughborough,

United Kingdom, J.Day@lboro.ac.uk
3Department of Computer Science, Kiel University, Kiel, Germany,
fpa@informatik.uni-kiel.de

Germany, tomasz.kociumaka@mpi-inf.mpg.de

SComputer Science Department, Universitit Gottingen, Gottingen, Germany,

florin.manea@informatik.uni-goettingen.de

Abstract

We investigate the locality number, a recently introduced structural parameter for strings
(with applications in pattern matching with variables), and its connection to two important
graph-parameters, cutwidth and pathwidth. These connections allow us to show that com-
puting the locality number is NP-hard, but fixed-parameter tractable, if parameterised by the
locality number or by the alphabet size, which has been formulated as open problems in the
literature. Moreover, the locality number can be approximated with ratio O(y/log(opt) log(n)).

An important aspect of our work — that is relevant in its own right and of independent
interest — is that we identify connections between the string parameter of the locality number
on the one hand, and the famous graph parameters of cutwidth and pathwidth, on the other
hand. These two parameters have been jointly investigated in the literature and are arguably
among the most central graph parameters that are based on “linearisations” of graphs. In this
way, we also identify a direct approximation preserving reduction from cutwidth to pathwidth,
which shows that any polynomial f(opt, |V|)-approximation algorithm for pathwidth yields a
polynomial 2f(2 opt, h)-approximation algorithm for cutwidth on multigraphs (where h is the
number of edges). In particular, this translates known approximation ratios for pathwidth into

new approximation ratios for cutwidth, namely O(1/log(opt) log(h)) and O(4/log(opt) opt) for
(multi) graphs with h edges.

Introduction

Graphs, on the one hand, and strings (we also use the term word), on the other, are two different
types of data objects and they have certain particularities. Graphs seem to be more popular in
fields like classical and parameterised algorithms and complexity (due to the fact that many natural
graph problems are intractable), while fields like formal languages, pattern matching, verification
or compression are more concerned with strings. Moreover, both the field of graph algorithms as
well as string algorithms are well established and provide rich toolboxes of algorithmic techniques,
but they differ in that the former is tailored to computationally hard problems (e.g., the approach
of treewidth and related parameters), while the latter focuses on providing efficient data-structures
for near-linear-time algorithms. Nevertheless, it is sometimes possible to bridge this divide, i.e., by
“flattening” a graph into a sequential form, or by “inflating” a string into a graph, to make use of

Marked word Marking Marking Marked word Marking Marking
sequence number sequence number
adabadbdaecbcb 0 adabadbdaecbcb 0
adabadbdaecbcb | b 4 adabadbdaecbcb | d 3
adabadbdaecbch | ¢ 3 adabadbdaecbcb | a 3
adabadbdaecbcb | e 3 adabadbdaecbcb | b 3
adabadbdaecbcb | d 4 adabadbdaecbcb | ¢ 2
adabadbdaecbcb | a 1 adabadbdaecbcb | e 1

Figure 1: An illustration of the marking sequence (b, c,e,d,a) with marking number of 4 for the
word 8 = adabadbdaecbcb (left side), and the marking sequence (4, a, b, ¢, e) with marking number
of 3 for the word § (right side).

respective algorithmic techniques otherwise not applicable. This paradigm shift may provide the
necessary leverage for new algorithmic approaches.

In this paper, we are concerned with certain structural parameters (and the problems of com-
puting them) for graphs and strings: the cutwidth cw(G) of a graph G (i.e., the maximum number
of “stacked” edges if the vertices of a graph are drawn on a straight line), the pathwidth pw(G) of
a graph G (i.e., the minimum width of a tree decomposition the tree structure of which is a path),
and the locality number loc(a) of a string « (explained in more detail in the next paragraph; formal
definitions follow in Section . By CuTwiDTH, PATHWIDTH and LOC, we denote the correspond-
ing decision problems (i. e., checking whether cw(G) < k, pw(G) < k, or loc(a) < k, respectively)
and with the prefix MIN, we refer to the minimisation variants (for which we are mainly interested
in approximation algorithms). The two former graph-parameters are very classical. Pathwidth is
a simple (yet still hard to compute) subvariant of treewidth, which measures how much a graph
resembles a path. The problems PATHWIDTH and MINPATHWIDTH are intensively studied (in
terms of exact, parameterised and approximation algorithms) and have numerous applications (see
the surveys and textbook [10} [37, [8]). CUTWIDTH is the best-known example of a whole class of
so-called graph layout problems (see the survey [18| [43] for detailed information), which are studied
since the 1970s and were originally motivated by questions of circuit layouts.

The locality number is rather new and we shall discuss it in more detail. A word is k-local
if there exists an order of its symbols such that, if we mark the symbols in the respective order
(which is called a marking sequence), at each stage there are at most &k contiguous blocks of marked
symbols in the word. This k is called the marking number of that marking sequence. The locality
number of a word is the smallest & for which that word is k-local, or, in other words, the minimum
marking number over all marking sequences. For example, the marking sequence o = (x,y,2)
marks o = xyxyzxz as follows (marked blocks are illustrated by overlines):

XYXYZXZ ~> XYXYZXZ ~> XyXyZXZ ~ XYyXyZXZ,

thus, the marking number of ¢ is 3. In fact, all marking sequences for a have a marking number
of 3, except (y,x,z), for which it is 2:

XYXYZXZ ~> XYXyZXZ ~> XYXyZXZ .

Thus, the locality number of « is loc(a) = 2. For the slightly more complicated word g =
adabadbdaecbcb, it can be verified that loc(8) = 3 (see Figure |l for an illustration of two marking
sequences for 8 with marking numbers 4 and 3, respectively).

The locality number has applications in pattern matching with variables [I5]. A pattern is
a word that consists of terminal symbols (e.g., a,b,c), treated as constants, and variables (e.g.,
X1,T2,T3,...). A pattern is mapped to a word by substituting the variables by strings of terminals.
For example, z1x1babzaze can be mapped to acacbabcc by the substitution (z1 — ac,z2 — c).
Deciding whether a given pattern matches (i.e., can be mapped to) a given word is one of the
most important problems that arise in the study of patterns with variables (note that the concept
of patterns with variables arises in several different domains like combinatorics on words (word
equations [33], unavoidable patterns [39]), pattern matching [I], language theory [2], learning the-
ory |2} 20, 42 146, [34], 23], database theory [7], as well as in practice, e.g., extended regular expres-
sions with backreferences [27, 28] [48] [29], used in programming languages like Perl, Java, Python,

etc.). Unfortunately, the matching problem is NP-complete [2] in general (it is also NP-complete
for strongly restricted variants [24, 22] and also intractable in the parameterised setting [25]); see
also [4I] for a survey. As demonstrated in [47], for the matching problem a paradigm shift as
sketched in the first paragraph above yields a very promising algorithmic approach. More pre-
cisely, any class of patterns with bounded treewidth (for suitable graph representations) can be
matched in polynomial-time. However, computing (and therefore algorithmically exploiting) the
treewidth of a pattern is difficult (see the discussion in [22 47]), which motivates more direct
string-parameters that bound the treewidth and are simple to compute (virtually all known struc-
tural parameters that lead to tractability [15] 22] [47) [49] are of this kind (the efficiently matchable
classes investigated in [I6] are one of the rare exceptions)). This also establishes an interesting
connection between ad-hoc string parameters and the more general (and much better studied)
graph parameter treewidth. The locality number is a simple parameter directly defined on strings,
it bounds the treewidth and the corresponding marking sequences can be seen as instructions for a
dynamic programming algorithm. However, compared to other “tractability-parameters”, it seems
to cover best the treewidth of a string, but whether it can be efficiently computed is unclear.

In this paper, we investigate the problem of computing the locality number (in the exact sense
as well as fixed-parameter algorithms and approximations) and, by doing so, we establish an inter-
esting connection to the graph parameters cutwidth and pathwidth with algorithmic implications
for approximating cutwidth. In the following, we first discuss related results in more detail and
then outline our respective contributions.

Note that a conference version of this paper has been published in ICALP 2019 [I3].

1.1 Known Results and Open Questions

For Loc, only exact exponential-time algorithms are known and whether it can be solved in
polynomial-time, or whether it is at least fixed-parameter tractable is mentioned as open problems
in [15]. Approximation algorithms have not yet been considered. Addressing these questions is the
main purpose of this paper.

PATHWIDTH and CUTWIDTH are NP-complete, but fixed-parameter tractable with respect to
the standard parameters pw(G) or cw(G), respectively (even with “linear” fpt-time g(k) O(n) [9, 1T}
51]). With respect to approximation, their minimisation variants have received a lot of attention,
mainly because they yield (like many other graph parameters) general algorithmic approaches
for numerous graph problems, i.e., a good linear arrangement or path-decomposition can often
be used for a dynamic programming (or even divide and conquer) algorithm. More generally
speaking, pathwidth and cutwidth are related to the more fundamental concepts of small balanced
vertex or edge separators for graphs (i.e., a small set of vertices (or edges, respectively) that, if
removed, divides the graph into two parts of roughly the same size. More precisely, pw(G) and
cw (@) are upper bounds for the smallest balanced vertex separator of G and the smallest balanced
edge separator of G, respectively (see [21] for further details and explanations of the algorithmic
relevance of balanced separators).

With respect to MINPATHWIDTH, there is an approximation algorithm with ratio O(log n+/log opt)
(see [21, Corollary 6.5]) and an approximation algorithm with ratio O(tw+/logtw), where tw is the
treewidth of the graph (see [30]).

For MINCUTWIDTH, there is an O(y/log(n)log(n)) approximation algorithm. This follows
from using the O(y/logn)-approximation for sparsest cut of [4] as described in the cutwidth
approximation of [38], Section 3.8], which adds a log(n)-factor.

1.2 Our Contributions

There are two natural approaches to represent a word « over alphabet ¥ as a graph G, = (Vu, Ea).
The first option is to represent o’s positions as vertices, i.e., V,, = {1,2,..., |a|}, and then somehow
use the edges to represent the actual symbols on these position. We present such a reduction to
relate the locality number of words with the pathwidth of graphs. More precisely, we transform a
word « into a graph such that |E,| = O(]a|?) and loc(a) < pw(G4) < 2loc().

The second option is to use a vertex per symbol that occurs in «, i.e., V, = ¥, and somehow
use the edges to encode where these symbols occur in the word. By such a reduction with |E,| =

O(|a]), we can relate the locality number of words with the cutwidth of graphs in the sense that
aw(G,) = 2loc(w).

Since these reductions are parameterised reductions and also approximation preserving, known
upper bounds for the problems of computing or approximating the pathwidth or cutwidth of
graphs carry over to the problem of computing or approximating the locality number of words.
More precisely, we can conclude that Loc is fixed-parameter tractable if parameterised by |X| or
by the locality number (answering the respective open problem from [I5]), and also that there is
a polynomial-time O(/log(opt) log(n))-approximation algorithm for MiNLoc.

In addition to these reductions, we can also show how an arbitrary multi-graph G = (V, E') and
an edge e € E can be represented by a word ag . over alphabet V, of length |E| and with cw(G) <
loc(ag,.) < cw(G) + 1. Moreover, there must be an edge e € E such that loc(ag) = cw(G). This
describes an (approximation preserving) Turing-reduction from CUTWIDTH to LocC which allows
us to conclude that Loc is NP-complete (which solves the other open problem from [15]).

Even though the reduction from MINLOC to MINPATHWIDTH yields an O(y/log(opt) log(n))-
approximation algorithm for MINLOC, it is also important to directly investigate whether obvious
greedy strategies for constructing marking sequences (e.g., always marking a symbol next that
leads to the smallest number of marked blocks) yield good approximation ratios. On the one hand,
if such strategies fail, we can rule them out as possible approximation algorithms for computing
the locality number, and, on the other hand, if such simple strategies work, then, due to the
reduction from MINCUTWIDTH to MINLOC, this might open a new angle to the approximation of
cutwidth. Unfortunately, we can formally show that many natural candidates for greedy strategies
fail to yield promising approximation algorithms (and are therefore also not helpful for cutwidth
approximation).

Expecting an improvement of cutwidth approximation — a heavily researched area — by trans-
lating the problem into a string problem and then investigating the approximability of this string
problem seems naive. This makes it even more surprising that linking cutwidth with pathwidth
via the locality number is in fact helpful for cutwidth approximation. More precisely, by plugging
together our reductions from MINCUTWIDTH to MINLOC and from MINLOC to MINPATHWIDTH,
we obtain a reduction which directly transfers approximation results from MINPATHWIDTH (e. g.,
the ones of [21], [30]; see the discussion of Section to MINCUTWIDTH. On the one hand, this
reduction yields new concrete approximation ratios for cutwidth (mentioned in more detail below),
but, on the other hand, it also shows that any future improvement of pathwidth approximation
directly carries over to cutwidth approximation (although there is a constant factor involved for
constant factor approximations of pathwidth)ﬂ

A reason why this direct reduction from cutwidth to pathwidth has been overlooked might be
that the literature on cutwidth and pathwidth approximation is focussed on more general approx-
imation techniques (i.e., vertex and edge separators), which then yield approximation algorithms
for these graph parameters. Another reason might be that this relation is less obvious on the
graph level and becomes more apparent if linked via the string parameter of locality, as in our
considerations. Nevertheless, since pathwidth and cutwidth are such crucial parameters for graph
algorithms, we also translate our locality based reduction into one from graphs to graphs directly.

We conclude this subsection by summarising the main results of this work:

e We present approximation preserving reductions from LOC to CUTWIDTH and PATHWIDTH,
and an approximation preserving reduction from CUTWIDTH to LocC.

e LocC is NP-complete, but fixed-parameter tractable if parameterised by |X| or by the locality
number.

e There is a polynomial-time O(4/log(opt) log(n))-approximation algorithm for MINLOC.
e Many obvious greedy strategies for MINLOC do not yield good approximation algorithms.
e We present an approximation preserving reduction from CUTWIDTH to PATHWIDTH.

e There is a polynomial-time O(+/log(opt) log(n))-approximation algorithm and a polynomial-
time O(4/log(opt) opt)-approximation algorithm for MINCUTWIDTH.

INote that both the pathwidth and the cutwidth is NP-hard to approximate to within a constant factor [52].

1.3 Organisation of the Paper

In Section we give basic definitions (including the central parameters of the locality number, the
cutwidth and the pathwidth). In the next Section 3] we discuss the concept of the locality number
with some examples and some word combinatorial considerations. The purpose of this section is to
develop a better understanding of this parameter for readers less familiar with string parameters
and combinatorics on words (the technical statements of this section are formally proven in the
appendix).

The main results are presented in Sections [[f] and [6} First, in Section [d] we present the
reductions from LOC to CUTWIDTH and vice versa, and we discuss the consequences of these
reductions. Then, in Section [5} we show how Loc can be reduced to PATHWIDTH, which yields
an approximation algorithm for computing the locality number; furthermore, we investigate the
performance of direct greedy strategies for approximating the locality number. Finally, since we
consider this of high importance independent of the locality number, we provide a direct reduction
from cutwidth to pathwidth in Section [6]

In Section [7} we conclude the paper by discussing some related topics and possible further
research questions.

2 Preliminaries

We now define basic concepts of complexity theory, some basics about string algorithms and the
locality number, the central graph parameters cutwidth and pathwidth, and the formal definitions
of the decision and minimisation problems to be investigated.

2.1 (Parameterised) Complexity Theory and Approximation Algorithms

We briefly summarise the fundamentals of parameterised complexity [26] [19] and approximation
algorithms [B].

A parameterised problem is a decision problem with instances (z, k), where x is the actual input
and k € N is the parameter. A parameterised problem P is fixed-parameter tractable if there is
an fpt-algorithm for it, i.e., one that solves P on input (z,k) in time f(k) - p(Jz|) for a recursive
function f and a polynomial p. In this case, we also say that the parameterised problem P can be
solved with fpt-running-time f(k) - p(|z|).

We use the O*(+) notation which hides multiplicative factors polynomial in ||.

A minimisation problem P is a triple (I, .S, m), where I is the set of instances, S is a function
that maps instances = € I to the set of feasible solutions for x, and m is the objective function
that maps pairs (z,y) with « € I and y € S(z) to a positive rational number. For every = € I,

we denote m*(z) = min{m(z,y): y € S(x)}. For x € I and y € S(x), the value R(x,y) = TRL(;/))
is the performance ratio of y with respect to x. An algorithm A is an approximation algorithm
for P with ratio r : N — Q (or an r-approximation algorithm, for short) if, for every = € I,
A(x) =y € S(x), and R(z,y) < r(|x]). We also let r be of the form Q x N — Q when the ratio r
depends on m*(x) and |x|; in this case, we write r(opt, |z|). We further assume that the function
r is monotonically non-decreasing. Unless stated otherwise, all approximation algorithms run in

polynomial time with respect to |z|.

2.2 Basic String Definitions and Locality

The set of strings (or words) over an alphabet X is denoted by X*, by |a| we denote the length
of a word «, alph(«) is the smallest alphabet X with o« € X*, and ¢ denotes the empty word with
le] = 0. A string 8 is called a factor of a if a = &/Ba”; if o =€ or & = ¢, then 8 is a prefiz or
a suffiz of «, respectively. For a position j, 1 < j < |a|, we refer to the symbol at position j of
a by the expression «afj], and «[j..j'] = aljlalj +1]...a[f'], 1 < j < j < |a|. For a word a and
z € alph(«), let ps,(a) = {i | 1 <i < |a|,afi] = 2} be the set of all positions where z occurs in «.
For a word a, let a® = ¢ and o*t! = aa’ for i > 0.

Let o be a word and let X = alph(a) = {z1,22,...,2,}. A marking sequence (over X) of «
is an enumeration, or ordering on the letters from X, and hence may be represented either as an

ordered list of the letters or, equivalently, as a bijection o : {1,2,...,|X|} — {1,2,...,|X|}. For
a marking sequence o = (Z,(1), Z(2); - - - Zo(m)), & Word « and every i with 1 <4 < m, by stage
i of o we denote the word a with exactly positions U;:1 PSs,) (o) marked. The marking number
7o () (of o with respect to «) is the maximum number of marked blocks in any stage i of . We
say that « is k-local if and only if, for some marking sequence o, we have m,(a) < k, and the
smallest k such that « is k-local is the locality number of «, denoted by loc(a). We say that a word
w is strictly k-local, if loc(a) = k. A marking sequence o with 7, (a) = loc(a) is optimal (for).
For illustration, see also the examples given in Section [T}

For a word «, the condensed form of a, denoted by cond(«), is obtained by replacing every
maximal factor 2* with 2 € alph(a) by z. For example, cond (2121 2oZoT021220) = T12Z0m129. A
word « is condensed if a = cond(«).

Observation 2.1. For a word o € X* and any marking sequence o over X, we have 7, (cond(«)) =
7o (a). Moreover, if « is condensed, then the maximum number of occurrences of any symbol in
a is bounded by 2loc(a) (see [I5] for details). In particular, this means that for condensed words
a € X*, we have that |a] = O(|X|loc(a)).

Observation [2.]] justifies that in the following, we are only concerned with condensed words
(and therefore words with at most 2loc(a) occurrences per symbol and total length of at most
| X |2 loc(e)). In particular, for any word o we can compute cond(c) in time O(|e|); thus algorithms
for computing the locality number (and the respective marking sequences) for condensed words
extend to algorithms for general words. For the sake of convenience, in the following we shall only
use the term word and keep in mind that we always talk about condensed words.

2.3 Basic Graph Definitions and Graph Parameters

Let G = (V, E) be a (multi)graph with the vertices V. = {v,...,v,}. A cut of G is a partition
(V1,Va) of V into two disjoint subsets Vi, Vo, V4 U Vy = V; the (multi)set of edges C(Vi,Va) =
{{z,y} € E | x € V1,y € Va} is called the cut-set or the (multi)set of edges crossing the cut, while
V1 and V; are called the sides of the cut. The size of this cut is the number of crossing edges, i.e.,
|C(V1,Va)|. A linear arrangement of the (multi)graph G is a sequence (vj,,vj,,-..,v;,), where
(J1,72+--+,Jn) is a permutation of (1,2,...,n). For a linear arrangement L = (vj,,v),,...,v;,),
let L(i) = {vj,,vj,,...,vj, }. Forevery i, 1 <i < n, we consider the cut (L(¢),V \ L(¢)) of G, and
denote the cut-set Cr (i) = C(L(¢), V \ L(7)) (for technical reasons, we also set Cr(0) = Cr(n) = 0).
We define the cutwidth of L by cw(L) = max{|Cr(i)] | 0 < i < n}. Finally, the cutwidth of
G is the minimum over all cutwidths of linear arrangements of G, i.e., cw(G) = min{cw(L) |
L is a linear arrangement for G}.

Let us discuss an example. To this end, let H = (V, E) with V = {u,v,w,2,y, 2z} and the
edges F are as illustrated in Figure|2| A possible linear arrangement for H is L = (u,v,w,z,y, 2)
with [Cr(1)| =3, |CL(2)| =5, |CL(3)| =5, |CL(4)| =2 and |CL(5)| = 2; thus, cw(L) = 5 (a cut
with maximum size is (L(3), V'\ L(3)), as illustrated by a vertical line in Figure[2). Another linear
arrangement is L' = (w,u,z,v,y, 2) with cw(L’) = 3 (see Figure [2)). Moreover, it can be verified
that cw(H) = 3.

A path decomposition (see [I1]) of a connected graph G = (V, E) is a tree decomposition whose
underlying tree is a path, i.e., a sequence Q = (By, By, ..., Bp) (of bags) with B; CV,0<i<m,
satisfying the following two properties:

e Cover property: for every {u,v} € E, there is an index 4, 0 < ¢ < m, with {u,v} C B;.

e (Connectivity property: for every v € V', there exist indices i, and j,, 0 < i, < j, < m, such
that {j | v € B;} = {i | iy, <4 < j,}. In other words, the bags that contain v occur on
consecutive positions in (By, ..., Bny).

The width of a path decomposition @ is w(Q) = max{|B;| | 0 <i < m} — 1, and the pathwidth of
a graph G is pw(G) = min{w(Q) | Q is a path decomposition of G}. A path decomposition is nice
if By = By, = 0 and, for every i, 1 < i < m, either B; = B;_1 U {v} or B; = B;_1 \ {v}, for some
v e V. We further use |Q| = Y., |Bil.

Q a@% OO
GRO

0S0:’0502050

Figure 2: A graph H and two possible linear arrangements with cuts of maximum size illustrated
by vertical lines.

SeESERSab ol sa

Figure 3: The path decomposition ({u,w,z},{u,v,x},{v,y,z}) for graph H (see Figure [2]) as a
pd-marking scheme. White vertices are open, grey vertices are active, and black vertices are
closed. In order to see that this is a pd-marking scheme, it is sufficient to observe that for every
edge there is a step in the pd-marking scheme where both incident vertices are grey (i.e., active).

For example, ({u,w,z},{u,v,z},{v,y,2}) is a width-2 path decomposition for the graph H
defined above (see also Figure ; as can be easily seen, pw(H) = 2.

In this paper, it shall be convenient to interpret path decompositions as marking schemes of
V in the following way. Every vertex from V can be marked as open, as active or as closed.
Initially, every vertex is open. Only open vertices can be set to active, only active vertices can
be set to closed, and in the end of the marking scheme, all vertices must be closed. In each step
of the marking scheme, we allow an arbitrary number of vertices to be set from open to active,
and an arbitrary number of vertices to be set from active to closed. Any such marking scheme
translates into a sequence @ = (By, B1,...,B,,) with B; CV, 0 < i < m, by letting B; contain
exactly the active vertices of step i of the marking scheme. Obviously, @ satisfies the connectivity
property (this is a direct consequence from the fact that every vertex is marked active at some
point and as soon as it is marked closed, it is never marked as active again). If @ also satisfies
the cover property, then @) is a path decomposition, and in this case we call the corresponding
marking scheme a pd-marking scheme. The width of a pd-marking scheme is then the maximum
number of vertices which are marked active at the same time minus one.

For example, the path decomposition ({u,w,z},{u,v,x},{v,y,z}) for graph H can be repre-
sented as a pd-marking scheme as illustrated in Figure |3| (for convenience, we omit the vertex
labels; see also Figure [2] for an illustration of H).

Both the locality number of a word and the pathwidth of a graph is defined via markings.
In order to avoid confusion, we therefore use different terminology to distinguish between these
two concepts (see also the terminology defined in Section : The markings for words are called
marking sequences, while the markings for graphs are called pd-marking schemes; the versions of a
word during a marking sequence are called the stages (of the marking sequence), while the different
marked version of a graph during a pd-marking scheme are called the steps (of the pd-marking
scheme).

2.4 Problem Definitions

We next formally define the computational problems of computing the parameters defined above.
By Loc, CutwiIDTH and PATHWIDTH, we denote the problems to check for a given word « or
graph G and integer k € N, whether loc(a) < k, cw(G) < k, and pw(G) < k, respectively. Note
that since we can assume that k& < |a| and k¥ < |G|, whether k is given in binary or unary has
no impact on the complexity. With the prefix MIN, we refer to the minimisation variants. More
precisely, MINLoc = (I, S, m), where I is the set of words, S(«) is the set of all marking sequences
for a and m(a,0) = 7,(a) (note that m*(a) = loc(a)); MINCUTWIDTH = (I, S, m), where I are
all multigraphs, S(G) is the set of linear arrangements of G, and m(G,L) = cw(L) (note that
m*(G) = cw(Q)); finally, MINPATHWIDTH = (I, S, m), where I are all graphs, S(G) is the set of
path decompositions of G, and m(G, Q) = w(Q) (note that m*(G) = pw(G)).

3 Examples and Word Combinatorial Considerations

In this section, we discuss some examples that illustrate the concepts of marking sequences and
the locality number, and we also discuss some word combinatorial properties related to the locality
number. Note that for illustration purposes, the example words considered in this section are not
necessarily condensed.

It is easy to see that 1-locality implies some sort of palindromic structure of a word. For
example, palindromes like the English words radar, refer and rotator are obviously 1-local, while
the palindrome abababa is obviously not 1-local. Moreover, also 1-local non-palindromes, like
the word blender, have some palindromic structure. More precisely, it can be shown that a word
w is 1-local if and only if w € {a;}*{as}* ... {an}* {an—1}*...{a1}*, such that {aj,as,...,a;} N
{@i+1,@i12,--.,an} = 0 for every 1 < i < n. An alternative equivalent point of view is that 1-local
words are necessarily of the form yay”, where a is 1-local with y ¢ alph(a). For further details,
we refer to [15], where the structure of 1-local and 2-local words is characterised.

Determining structural properties that lead to high locality is more challenging. The Finnish
word tutustuttu (perfect passive of tutustua—to meet) is 4-local, while

pneumonoultramicroscopicsilicovolcanoconiosis
is an (English) 8-local word, and
lentokonesuthkuturbiinimoottoriapumekaanikkoaliupseerioppilas

is a 10-local (Finnish) word. In general, in order to have a high locality number, a word needs
to contain many alternating occurrences of (at least) two letters. For instance, (z122)™ is n-local.
However, the number of occurrences of a letter alone is not always a good indicator of the locality of
a word. The German word Finzelelement (a basic component of a construction) has 5 occurrences
of e, but is only 3-local, as witnessed by marking sequence (I,m,e,i,n,z,t):

Einzelelement ~~ Einzelelement ~+ Einzelelement ~- Einzelelement ~-

Einzelelement ~+ Einzelelement ~+ Einzelelement ~+ Einzelelement

For this example marking sequence, it is worth noting that marking the many occurrences of
e joins several individual marked blocks into one marked block. This also intuitively explains the
correspondence between the locality number and the maximum number of occurrences per symbol
(in condensed words): if there are 2k occurrences of a symbol, then, by marking this symbol either
at least k new marked blocks are created, or at least k marked blocks must already exist before
marking this symbol (see Observation .

A repetitive structure often leads to high locality. For example, note that tutustuttu from
above is nearly a repetition. Regarding the question of how repetitions of a word affect its locality
number, we can show the following result (see the Appendix for a proof).

Lemma 3.1. Let w = u’ be the i-times repetition of u € X* and i € N. If u is strictly k-local then
loc(w) € {ik —i+1,ik}.

The well-known Zimin words [39] also have high locality numbers compared to their lengths.
These words are important in the domain of avoidability, as it was shown that a terminal-free
pattern is unavoidable (i.e., it occurs in every infinite word over a large enough finite alphabet)
if and only if it occurs in a Zimin word. The Zimin words Z;, for i € N, are inductively defined
by Z; = 21 and Z; 11 = Zyv;117Z;. Clearly, |Z;| = 2 — 1 for all i € N. Regarding the locality
of Z;, note that marking x5 leads to 2°~2 marked blocks; further, marking x; first and then the
remaining symbols in an arbitrary order only extends or joins marked blocks. Thus, we obtain a
sequence with marking number 2°=2. In fact, with respect to the locality of Zimin words, we can
show the following result (see the Appendix for a proof).

Lemma 3.2. loc(Z;) = % =272 fori € Nx,.

Notice that both Zimin words and 1-local words have an obvious palindromic structure. How-
ever, in the Zimin words, the letters occur multiple times, but not in large blocks, while in 1-local
words there are at most 2 blocks of each letter. With respect to palindromes, we can show the
following general result (see the Appendix for a proof).

R

Lemma 3.3. If w is a palindrome, with w = uau® or w = uu* (uf denotes the reversal of u),

and loc(u) = k, then loc(w) € {2k — 1,2k, 2k + 1}.

4 Locality and Cutwidth

In this section, we introduce polynomial-time reductions from the problem of computing the locality
number of a word to the problem of computing the cutwidth of a graph, and vice versa. This
establishes a close relationship between these two problems (and their corresponding parameters),
which lets us derive several upper and lower complexity bounds for Loc. We also discuss the
approximation-preserving properties of our reductions, which shall be important later on.

4.1 Reducing Locality Number to Cutwidth

First, we show a reduction from LoC to CUTWIDTH. For a word a and an integer k£ € N, we build a
multigraph H, , = (V, E') whose set of nodes V' = alph(a)) U{8$, #} consists of symbols occurring in
a and two additional characters $, # ¢ alph(«). The multiset of edges F is constructed as follows.
We scan through the word from left to right, and for every individual occurrence of a size-2 factor
xy (often called digrams in the literature on strings), we add an edge between vertices x and y.
Since the edges are undirected, this means that both an occurrence of ry and an occurrence of
yx will cause the addition of and edge {z,y}. Moreover, independent of o’s structure, we add 2k
edges between $ and #, one edge between $ and the first letter of o, and one edge between $ and
the last letter of a.

Let us clarify this reduction with an example. Let @ = abcbcdbada and k£ = 2. This means
that Hy , = (V, E) with V = {a,b,¢,d,$, #}. There are 2k = 4 edges between vertices § and #.
Moreover, two edges connect $ with the first and last letter of a, respectively, which, in this case,
is both the letter a, which means there are two edges between $ and a. The edges that actually
depend on «’s structure are obtained by scanning through « from left to right with a window of
size 2, and adding the respective edge for each size-2 factor that we see in this window. For our
example, we thus add an edge between a and b due to factor ab, then an edge between b and ¢
due to the factor bc, then another edge between b and ¢ due to the factor cb, and so on. This
results in the multigraph shown on the left of Figure [4]

We claim that loc(a) < k if and only if the smallest cutwidth of any linear arrangement of the
graph H, j is exactly 2k. Before formally proving this, let us discuss this on an intuitive level
with our example. It is not hard to see that any linear arrangement of H, ; with cutwidth 2k
must start with vertices #,$ or end with vertices $, # (this is due to the edges between # and $).
This means that any linear arrangement of H, ; with cutwidth 2k induces a marking sequence for
o. The optimal linear arrangement of H, ; with cutwidth 4 shown on the right side of Figure E|
thus induces the marking sequence (c,b,d,a). If we now carry out this marking sequence on «
and in parallel move through H, ;’s linear arrangement from left to right, we can see that the
vertices to the left of our current position correspond to marked symbols, the vertices to the right

Figure 4: The graph H, j for @ = abcbcdbada and k = 2; an optimal linear arrangement of H, j
with cutwidth 4 induces the optimal marking sequence (c,b,d, a) for a with marking number 2.

of our current position correspond to unmarked symbols, and there is exactly one crossing edge
per boundary between a marked and an unmarked block in « (in particular, all non-crossing edges
to the left and all non-crossing edges to the right correspond to size-2 factors that are completely
contained in a marked block or an unmarked block, respectively). This means that the cuts of the
linear arrangement have size twice the current number of marked blocks in the marked version of
«; thus, the size of any cut is at most 2k, where k is the marking number of the corresponding
marking sequence. Note, however, that we need the edges between $ and the first and last symbol
to also enforce two crossing edges per marked prefix or suffix, and the 2k edges between $ and #
force the cutwidth to be at least 2k. In particular, for our example, the linear arrangement has
a cutwidth of 4, while the corresponding marking sequence has a marking number of 2 (which is
optimal for «). We shall now provide a formal proof for our claim.

Lemma 4.1. The graph H, i satisfies cw(H,) = 2k if and only if loc(a) < k.

Proof. Suppose firstly that « is k-local, and let ¢ = (x1,x2,...,2,) be an optimal marking
sequence of . Consider the linear arrangement L = (x1,x2,...,2,,8,#). We observe that
[C({z1,22,..., 20,8}, {#})| = 2k and |C({z1,22,..., 20}, {8, #})| = 2. Now consider a cut
(K1, Ko) with Ky = {x1,%2,...,2;} and Ko = {®;41,...,Tn,$,#}) for 1 < i < n. Every edge
e € C(Ky,Ky) is of the form {z;,xzp} with j < i < h, or of the form {a[l],$} or {3, af|a|]}.
Consequently, every edge e € C(K7, K2) corresponds to a unique factor =,z or xpx; of a with
Jj < i < h and, after exactly the symbols x1,x2,...,z; are marked, x; is marked and x; is not,
or to a unique factor o[l] or af|«|] and, after exactly the symbols x1,xo,...,x; are marked, «[l]
or af|a|] is marked. Since there can be at most k& marked blocks in « after marking the sym-
bols z1,...,2;, there are at most 2k such factors, which means that |C(Ky, K3)| < 2k. Thus
cw(Hga ;) < 2k. Note that any linear arrangement must at some point separate the nodes $ and
#, meaning cw(H, 1) > 2k, so we get that cw(H,) = 2k.

Now suppose that the cutwidth of H, j is 2k and let L be an optimal linear arrangement
witnessing this fact. Firstly, we note that L must either start with # followed by $ (i.e., have
the form (#,8$,...)) or end with # preceded by $ (i.e., have the form (..., $,#). Otherwise,
since H, j is connected, every cut separating $ and # would be of size strictly greater than 2k.
Since a linear ordering and its mirror image have the same cutwidth, we may assume that the

optimal linear arrangement has the form L = (z,(1),%r2), ..., %r(n), 3, #) for some permutation 7
of {1,...,n}. Let o be the marking sequence (1), Zr(2),--.,%r(n)) of a induced by 7. Suppose,
for contradiction, that for some 4, with 1 < i < n, after marking x,(1,..., 2@, we have k' > k

marked blocks. Furthermore, let K1 = {x,(1),..., 2.} and Ko = {2;(i41),. .., Z,(n), $, #}. For
every marked block afs..t] that is not a prefix or a suffix of «, we have «a[s], a[t] € K; and afs —
1], a[t +1] € K3 and therefore {«[s — 1], a[s]}, {a]t], alt + 1]} € C(K7, K2). Moreover, for a marked
prefix afl..s], we have a[l],a[s] € K; and $,a[s + 1] € K3 and therefore {a[l],$}, {a[s], afs +
1]} € C(K1, K3). Analogously, the existence of a marked suffix aft..|a|] leads to {a[|a|], $}, {a]t —
1], a[t]} € C(K7, K3). Consequently, for each marked block, we have two unique edges in C(K1, K2),
which implies |C(K7, K3)| > 2k’ > 2k. This contradicts the assumption that L is a witness that
H,, i, has cutwidth 2k. Thus, o must be k-local.]

Next we formally state how upper complexity bounds for CUTWIDTH carry over to LOC via the
reduction above. In particular, we formulate this result to also cover fpt-algorithms with respect
to the standard parameters cw(G) and loc(ar). The maximum degree in a multigraph G is bounded
from above by 2 cw(G), so the number of nodes n and the number of edges h satisty h < n-cw(G).

10

Hence, we state the complexity in terms of n and cw(G) rather than with respect to h, which is
the actual input size (assuming connected graphs).

Lemma 4.2. If MINCUTWIDTH (resp. CUTWIDTH) can be solved in O(f(cw(G),n)) time for a
multigraph G with n vertices, then MINLOC (resp., Loc) can be solved in O(f(2loc(a),|X| + 2)
+ |a]) time for a word a over an alphabet 3.

Proof. We only show the claim for MINCUTWIDTH; the case of CUTWIDTH follows immediately
from Lemma Our goal is to compute loc(«) for the word «, i.e., the minimum k such that
a is k-local. By Lemma we get cw(Ha i) = 2k for k& > loc(a) and cw(Ha) > 2k for
k < loc(a). Consider the multigraph H, obtained by removing the vertices # and $ from H, ;
(the result does not depend on ¢ € N), and observe that 2loc(a) —4 < cw(H,) < 2loc(e). Indeed,
if ew(H,) < 2loc(ar) — 4, we add the two missing nodes # and $ (in this order) as a prefix to an
optimal linear arrangement for H, and get a linear arrangement of H, joc(a)—1 of width 2loc(a) -2,
a contradiction.

Hence, in order to determine loc(a), we proceed as follows: Compute ¢ = cw(H,) and iterate
over integers k, % <k< “74, in increasing order, checking if cw(H,) = 2k. The first value for
which this equality holds equals loc(«), and the marking sequence induced by the respective linear
arrangement of H, j is an optimal one for « (as proved in Lemma . O

Next, we formally state and prove the approximation preserving properties of this reduction.

Lemma 4.3. If there is an r(opt, h)-approximation algorithm for MINCUTWIDTH running in
O(f(h)) time for an input multigraph with h edges, then there is an (r(2 opt, |a|)+-L.) -approzimation

opt
algorithm for MINLOC running in O(f(|al) + ||) time on an input word c.

Proof. As already indicated in the proof of Lemma for k = loc(a), every linear arrangement
for H, naturally translates to a marking sequence for a. However, in an approximate linear
arrangement, the vertices # and $ do not have to be at the first (or last) positions. Still, the marking
sequence corresponding to the linear arrangement L can have not more than % + 1 marked
blocks, since only suffix and prefix can be marked blocks which correspond to only one instead of
two edges in a cut in H, ;. This observation remains valid if we do not include the extra vertices #
and $ in H, j in the reduction. Let H, be the graph obtained from H, j (for some k) by removing
the extra vertices # and $ (observe that this also removes the dependence on k). Removing vertices
only decreases the cutwidth, so Lemmaimplies that cw(H,) < 2m*(«). Let a be an instance of
MiNLoc and A an r(opt, h)-approximation for MINCUTWIDTH on multigraphs. The approximation
algorithm A run on H, returns a linear arrangement L = A(H,,) with cw(L) < r(opt, h) cw(H,).

Let o be the marking sequence corresponding to L, then R(«a, o) = ;{1((3)) < cw(%{)(c‘”éL) +1) =
cw(L)

iy + m*l(a) = R(H,,L) + % The performance ratio R(H,, L) is at most r(opt, h), where

m*(a
h = |a| is the number of edges iri H,. For the optimum value k = m*(«), the cutwidth of H,
is at least 2k — 2 and o has performance ratio at most (2 opt, |«|) (with respect to the optimum
value k for MINLoC). The approximation procedure builds the graph H, in O(]X|), runs A on
H, in O(f(|a])) and translates the linear arrangement into a marking sequence o in O(|X|). This
1

gives an (r(2opt, |al) + 5;)-approximation for MINLOC running time in O(f(|e) + |af). O

4.2 Reducing Cutwidth to Locality Number

We next describe a reduction from CUTWIDTH to Loc. To this end, let H = (V, E) be a connected
multigraph, where V is the set of nodes and E the multiset of edges (for technical reasons, we
assume |V] > 2). First, we construct the multigraph H' = (V, E’) obtained by duplicating every
edge in H. As such, each node in H’ has even degree, so we can fix some Eulerian cycle C (i.e.,
a cycle visiting each edge exactly once) in H', and, moreover, cw(H') = 2cw(H). For each edge
e € E', let ae be the word over V' that represents a traversal of the Eulerian path P obtained
from C by deleting e. It is not important on which endpoint of the deleted edge e we start the
traversal of the Eulerian path P (note that by introducing some order on V', we could easily make
this choice unique).

Let us again clarify this reduction with an example. Let H be the graph shown on the left
of Figure [5| (note that this is the same graph from Figure . By duplicating every edge in H,

11

OS0=0502020

Figure 5: A graph H and its multigraph H’ obtained by doubling the edges; the edge labels
describe a Eulerian cycle that starts and ends in 2. Deleting the edge (v,) in this cycle yields the
word Q(y,q) = Twurwurvuvyzvyzv, which has an optimal marking sequence (w,u,,v,y, z) with
marking number 3, and, thus, induces an optimal linear arrangement of H with cutwidth 3.

we obtain the graph H' shown in the middle of Figure [5| (the edge directions and labels are not
an explicit part of the reduction and shall serve illustrative purposes). A possible Eulerian cylce
of H' that starts in vertex x is illustrated by the edge labels and the edge directions, i.e., the
Eulerian cycle is (x, w, u, x,w, u, x,v,u,v,y, 2,0,y, z,v,x). Now splitting this cycle into a path by
deleting its last edge e = (v,) results in a Eulerian path that corresponds to the word o, ;) =
TWUTWUTVUVYZVYZDV.

The important property of the word «. is that for every edge {z,y} of H (except e), it contains
two distinct size-2 factors that are xy- or yz-factors (for example, the original edge {z, w} translates
into two zw-factors, while the original edge {u,v} translates into a vu-factor and a wwv-factor).
Consider the cuts of a fixed linear arrangement of H' from left to right and the marked versions of
a, with respect to the corresponding marking sequence. By construction, every boundary between
a currently marked block and an adjacent unmarked block corresponds to a crossing edge of the
current cut. This means that if there are ¢ marked blocks, then, depending on whether there is a
marked prefix or suffix, the current cut must have size at least 2(¢ — 1) and at most 2¢. On the
other hand, every crossing edge of the current cut (except e, if contained in the cut) is responsible
for a marked symbol next to an unmarked one. This means that if the size of the current cut is
2¢ (note that it must be even due to the duplication of edges), then there are ¢ marked blocks if
no prefix or suffix is marked, there are £ + 1 marked blocks if both a prefix and a suffix is marked,
and if a prefix is marked but no suffix is marked (or the other way around), then in the current
marked version there are 2¢ — 1 boundaries between marked and unmarked blocks, and therefore
the current cut contains 2¢— 1 edges different from e (the ones responsible for the 2¢ —1 boundaries
between marked and unmarked blocks), and the additional edge e, which is not represented by any
size-2 factor in a,. Consequently, if H' has a cutwidth of 2k (which means that H has a cutwidth
of k), then the locality number of «. is either k or k + 1.

If (vi,ve,...,v,) is a linear ordering for H with optimal cutwidth, then choosing any e that
is adjacent to v, will result in a word a, for which, if marked according to H’s optimal linear
arrangement, the situation that both a prefix and suffix is marked can only happen at the end
when all symbols are marked. This means that for such a choice of e, we have loc(a.) = cw(H).

With respect to our example, we note that in fact the optimal linear arrangement shown on
the right of Figure [5| has a cutwidth of 3, while the corresponding optimal marking sequence has a
marking number of 3 for the word ay, ;) (note that here the edge {v,x} is not adjacent to the first
or last vertex of the linear arrangement). We shall next provide a formal proof for these intuitive
observations.

Lemma 4.4. For any edge e in E’, the word o, satisfies cw(H) < loc(a.) < ew(H)+1. Moreover,
there is a vertex v € V such that loc(ae) = cw(H) for every edge e incident to v.

Proof. Let k = cw(H). Note that there is a natural bijection between the linear arrangements
of H' and the marking sequences of the word a, since they both are essentially permutations of
{1,2,...,n}, i.e., for a permutation 7 of {1,2,...,n}, we can interpret (x,(1y, r(2), - - - T7(n)) both
as the linear arrangement for H' and the a marking sequence of . induced by 7. In the following,

12

let 7 be a permutation of {1,2,...,n}, let i € {1,2,...,n — 1}, K1 = {Z-1), Tr2),---,Z,(;)} and
Ky = {2 (i41)s -+ Tr(n)}, and let C(K1, K3) = 2¢ (note that since every edge has been duplicated,
the size of every cut of H’ is even).

Consider o, after marking the letters x1,...,2,¢;). For every marked block afs..t] that is
not a prefix or a suffix of o, we have a[s],aft] € K; and «afs — 1],aft + 1] € Ko and therefore
{a[s—1], as]}, {aft], a[t+1]} € C(K7, K3). Moreover, for a marked prefix a[1..s], we have a[s] € K
and a[s+1] € K and therefore {a[s], a[s+1]} € C(K, K3). Analogously, the existence of a marked
suffix aft..|a|] leads to {aft — 1], aft]} € C(K7, K2).

Conversely, for every edge in C(K7, K3), with the exception of e (if e is in C(K7, K3) at all),
there is a unique length-2 factor a.[p..p + 1] of @, such that either a.[p] is marked and a.[p+ 1] is
unmarked, or vice-versa. Thus, if all marked blocks are internal, i.e., no marked block is a prefix
or a suffix, then there are exactly £ marked blocks. Also, if both a prefix and a suffix occurs as a
marked block, then we have £+ 1 marked blocks. Finally, if a prefix occurs as a marked block, but
no suffix, or vice-versa, then there are only ¢ marked blocks; note that in this case we must have
e € C(K1, Ks3). Since we consider all permutations, the arguments above are sufficient to conclude
that, in our setting, each a, has locality number either k£ or k + 1.

Furthermore, consider a linear ordering L = (z;,,...,x;,) of H which is optimal, i.e., | C1(7)| <
2k. Note that if either the first or last letter of c. is the last letter z;, to be marked according to
the marking sequence induced by the linear ordering (x;,,...,;,), the case that both a suffix and
prefix of a, are marked cannot be reached until ¢ = n and the entire word is marked. Consequently,
this would imply that a. has locality number k. For any permutation of the linear ordering
(xjy,...,xj,), this holds for o, where e is an edge adjacent to the node z;,, since the path P
obtained by removing such an edge e from C' must start or end with x;, . O

Again, we formally state and prove the approximation preserving properties of this reduction.

Lemma 4.5. If there is an r(opt, |a|)-approximation algorithm for MINLOC running in O(f(|al))
time on a word «, then there is an r(opt, h)-approzimation algorithm for MINCUTWIDTH running
in O(n(f(h) + h)) time on a multigraph with n vertices and h edges.

Proof. Let G = (V, E) be an instance of MINCUTWIDTH and A an r(opt, |a|)-approximation algo-
rithm for MINLocC. By Lemma[d.4] there exists a vertex v € V such that loc(c.) = cw(G) for any
edge e € E adjacent to v. The approximation algorithm A hence returns on input «, a marking
sequence o with 7, () < r(opt, |a]) cw(G).

In the proof of Lemma[4:4]it is further shown that any marking sequence o for . translates to a
linear arrangement L for G with cw(L) < 7, (). The performance ratio of this linear arrangement

is R(G, L) = 518 < feag < Rae,0),

The procedure which, for each vertex v € V, constructs . for some e € E adjacent to v
in O(h), runs A in O(f(|ae|)) = O(f(h)) and checks the resulting linear arrangement in O(h)
and returns the best linear arrangement among all v € V| yields an r(opt, h)-approximation for

MINCUTWIDTH on multigraphs in O(n(f(h) + h)). O

4.3 Consequences of the Reductions

In the following, we discuss the lower and upper complexity bounds that we obtain from the
reductions provided above. We first note that since CUTWIDTH is NP-complete, so is Loc. In
particular, note that this answers one of the main questions left open in [15].

Theorem 4.6. Loc is NP-complete (under Turing reductions), even if every symbol has at most
3 occurrences.

Proof. Lemma shows a polynomial time Turing reduction from CUTWIDTH to Loc. Indeed,
given a (multi)graph H we construct in linear time the multigraph H’ by duplicating its edges. H’
has an Eulerian cycle, so, using Hierholzer’s algorithm, we can compute such a cycle in linear time
[32]. Let C be the computed Eulerian cycle. For each edge e of C construct, in linear time, the word

a. as described before Lemma By Lemma we get that cw(H) = LQH/) = min{loc(a) |
e edge of C'}. This completes the reduction, and, thus, as CUTWIDTH is NP-hard (see, e.g., [18]),

we get that Loc is also NP-hard.

13

In order to show that the hardness holds even if every symbol has at most 3 occurrences, we
first observe that in the reduction from Section the number of occurrences of any symbol z in
the constructed word a, corresponds to the degree of the vertex x in the graph H. Hence, since
CuTwIDTH is NP-complete already for graphs with maximum degree 3 (see [40]), it follows that
Loc is NP-complete even if every symbol has at most 3 occurrences.

In order to show that LocC is in NP, let aw € ¥* be an arbitrary word and k£ € N. We can guess
a marking sequence o for « in polynomial time, and then check in polynomial time whether its
marking number 7, («) is less than or equal to k. O

Next, we formally state the positive fixed-parameter tractability results that LOC inherits from
CUTWIDTH via the reduction from Section (note that the fixed-parameter tractability of Loc
was left as open problem in [15]).

Theorem 4.7. LOC is fized-parameter tractable if parameterised by |X|. Moreover, it can be solved
in time and space O*(21¥1), or in O*(41*!) time and polynomial space.

Proof. In [12], the authors present algorithms for CUTWIDTH that run in O*(2") time and space,
or in O*(4™) time and polynomial space (where n is the number of vertices), and they also work
for multigraphs Hence, Lemma implies that Loc can be solved in O*(2/¥!) time and space,
or in O*(4/*!) time and polynomial space. O

Theorem 4.8. LoOC is fized-parameter tractable if parameterised by loc(c). Moreover, it can be
solved with linear fpt-running-time g(loc(a)) O(|X]).

Proof. The algorithm from [5I] solves CUTWIDTH with linear fpt-running-time g(cw(G))O(n)
(where n is the number of vertices). Hence, Lemma implies that Loc can be solved with
linear fpt-running-time g(loc(a)) O(|X]). O

The most natural parameters for LocC are the alphabet size |X| and the standard parameter
loc(ar) (recall that we have just seen that Loc is fixed-parameter tractable with respect to these
two parameters). However, for string problems it is also common to investigate the parameterised
complexity with respect to the maximum number of occurrences per symbols in the word « (we
denote this parameter by |a|maxocc). Theorem already demonstrated that Loc is not fixed-
parameter tractable with respect to |&|maxocc (unless P = NP). However, we only know that Loc
stays NP-hard if |&|maxocc s bounded by a constant k with k& > 3, and that the problem is trivial
if || maxocc 18 bounded by 1 (in this case, the locality number is always 1). The complexity of Loc
is open for the case where |a|maxocc < 2.

Open Problem 4.9. Can Loc be solved in polynomial time if |&|maxoce < 27

If, on the other hand, the maximum number of occurrences per symbol in « is large in terms

of a’s length, i.e., we have that |&|maxocc = Q(%), then LOC can be solved in polynomial
o] o]

time. Indeed, since |o|maxocc = %, we can conclude that 5= Q(W)’ which also means
that log(Ja|) = Q(|X]). Consequently, || = O(log(|a)), which means that LOC can be solved in
polynomial time by using the O*(2‘E|)-time algorithm mentioned in Theorem |4.7

We conclude this section by pointing out that Lemmas and imply some approximation
results for MINLoc. However, we shall discuss approximation issues in greater detail in Section [5]

5 Locality and Pathwidth

One of the main results of this section is a reduction from the problem of computing the locality
number of a word « to the probem of computing the pathwidth of a graph. This reduction, however,
does not technically provide a reduction from the decision problem LOC to PATHWIDTH, since the
constructed graph’s pathwidth ranges between loc(a) and 2loc(), and therefore the reduction
cannot be used to solve MINLOC exactly. The main purpose of this reduction is to carry over

2These algorithms actually support weighted graphs without any major modification and in the same complexity.
In this setting, parallel edges connecting two vertices are replaced by a single “super-edge” whose weight is the
number of parallel edges.

14

approximation results from MINPATHWIDTH to MINLOC (also recall that exact and fpt-algorithms
for MINLOC are obtained in Section [via a reduction to MINCUTWIDTH). Hence, in this section
we are mainly concerned with approximation algorithms.

Our strongest positive result about the approximation of the locality number will be derived
from the reduction mentioned above (see Section . However, we shall first investigate in Sec-
tion[5.1] the approximation performance of several obvious greedy strategies to compute the locality
number (with “greedy strategies”, we mean simple algorithmic strategies that build up a marking
sequence from left to right by choosing the next symbol to be marked by some simple greedy
rule). This is mainly motivated by two aspects. Firstly, ruling out simple strategies is a natural
initial step in the search for approximation algorithms for a new problem. Secondly, due to the
results of Section [} the investigated greedy strategies for computing the locality number can also
be interpreted as greedy strategies for computing the cutwidth of a graph. This may provide a
new angle to approximating the cutwidth of a graph, i.e., some greedy strategies may only become
apparent in the locality number point of view and are hard to see in the graph formulation of the
problem. It may seem naive to expect new approximation results for cutwidth in this way, but, as
mentioned in the introduction and as shall be discussed in detail in Section [6] approximating the
cutwidth via approximation of the locality number may be beneficial for cutwidth approximation
(although not by using simple greedy strategies, but the algorithm that follows from the reduction
to computing the pathwidth).

Before presenting the main results of this section, let us briefly discuss some inapproximability
results for MINLOC that directly follow from the reductions of Section [4] and known results about
cutwidth approximation. Firstly, it is known that, assuming the Small Set Expansion Conjecture
(denoted SSE; see [44]), there exists no constant-ratio approximation for MINCUTWIDTH (see [52]).
Consequently, approximating MINLOC within any constant factor is also SSE-hard. In particular,
we point out that stronger inapproximability results for MINCUTWIDTH are not known.

On certain graph classes, the SSE conjecture is equivalent to the Unique Games Conjecture
[35] (see [44l [45]), which, at its turn, was used to show that many approximation algorithms are
tight (see [36]) and is considered a major conjecture in inapproximability. However, some works
seem to provide evidence that could lead to a refutation of SSE; see [3, 6 [3T]. In this context, our
negative result of Section [5.1] can also be interpreted as a series of unconditional results which state
that multiple natural greedy strategies for computing the locality number (and their equivalents for
computing the cutwidth) do not provide low-ratio approximations of MINLOC (or MINCUTWIDTH,
respectively).

5.1 Greedy Strategies

Since a marking sequence is just a linear arrangement of the symbols of the input word, computing
marking sequences seems to be well tailored to greedy algorithms: until all symbols are marked,
we choose an unmarked symbol according to some greedy strategy and mark it. Unfortunately,
we can formally show that many natural candidates for greedy strategies fail to yield promising
approximation algorithms (and are therefore also not helpful for cutwidth approximation).

For a systematic investigation, we shall now define our basic greedy strategies:

FewOcc Among all unmarked symbols, choose one with a smallest number of occurrences.

ManyOcc Among all unmarked symbols, choose one with a largest number of occurrences.

FewBlocks Among all unmarked symbols, choose one that, after marking it, results in the
smallest total number of marked blocks.

LeftRight Among all unmarked symbols, choose the one with the leftmost occurrence.

These strategies are — except for LeftRight — nondeterministic, since there are in general several
valid choices of the next symbol to mark. However, we will show poor performances for these
strategies independent of the nondeterministic choices (i. e., the approximation ratio is bad for every
possible nondeterministic choices), which are stronger negative results. We make the convention
that all strategies — except, of course, LeftRight — can choose any symbol as the initially marked
symbol, which is justified by the fact that, in terms of running-time, we could afford to try out
every possible choice of the first symbol.

In the following, for every greedy strategy S and for every word «, let GREEDYg(«) be the

15

optimal marking number over all marking sequences that can be obtained by strategy .S. For every
word « let ¥g(a) = %&E;Q), and for every ¢ € N, let ¢5(¢) = max {¢g(a) | |a] = £}; the function
s : N — N is called the approzimation performance of strategy S. Our negative results will be
as follows. For every strategy S and for every £ € N, we show that there is a constant ¢ and a
length-¢ word «, such that loc(a)) = ¢, while GREEDYg(«x) = Q(¢). Note that this means that the
approximation performance ¥g(¢) of strategy S is linear.

We first investigate strategies FewOcc and FewBlocks. For every £ > 2, let

a= (2172 ... 2¢0)* 71 B172B223B5 . .. Br—170

where, for every i, 1 <i </l —1, 3 = (y2i_1y2:)*.
For example, if £ = 4, then we obtain o = (z129w324)%71 (y192) T2 (y3ys)*23(ysy6) 4. It can
be easily seen that |a| = 114 — 8 = O(¥).

Lemma 5.1. ¢F6WOCC(O‘) 2 % and erwBlocks(OC) > 6771

Proof. We first observe that (x1,y1, Y2, T2, Y3, Y4, T3, Y5, Ys, - - -) 18 an optimal marking sequence
which shows that loc(ar) = 6. Next, we consider how the strategies FewOcc and FewBlocks can
mark c. If the first marked symbol is some x;, then FewOcc would next mark all remaining x;,
J # 1, in some order, since each symbols x; has fewer occurrences than any of the symbols y;, and
FewBlocks would next mark all remaining x;, j # i, since these can be marked in such an order
that per new marking we increase the number of new blocks only by one, while marking some
y; would increase the number of marked blocks by three. This leads to at least £ marked blocks.
If, on the other hand, some y2;_1 or yo; is marked first, then FewOcc marks some x; next and
then all remaining x;s as before, while FewBlocks would mark the remaining symbol of yo; 1 or ys;
(because this is the only choice that does not increase the number of marked blocks) and then all
x; in some order that produces a minimal number of new marked blocks. This results in at least
¢ — 1 marked blocks. Thus, ¥rewocc (@) > % and YrewBlocks (@) > %. O

Next, we consider the strategy ManyOcc. For every £ > 2, let

Y =T1X2 .. . TpT1Y1X2Y2X3Y3 .- - Yp—1T¢ -

For example, if £ = 5, then we obtain v = z129x3T4T521Y1T2Y223Y3T4Y4T5. 1t can be easily
seen that |y| =3¢ —1 = O(¥).

Lemma 5.2. wManyOcc(V) 2 %

Proof. We first observe that (z1,y1, %2, Y2, Z3,Ys, - . .) is an optimal marking sequence which shows
that loc(y) = 2. If ManyOcc marks some x; first, then it will mark all remaining x; next, since
each of these symbols have 2 occurrences. This results in ¢ marked blocks. If, on the other hand,
the first symbol is some y;, then again the symbols z; have the most occurrences and are therefore
marked next in some order. This leads to £ — 1 marked blocks. Thus, ¥manyocc () > K_Tl. O

Finally, we consider the strategy LeftRight. For every even number £ > 2, let
0= L1X2 ... XpL1XpXQLp—_1LX3XLY—2%‘gl‘ngl .
2 2

For example, if £ = 6, then we obtain § = r1T2T3T4T5T6T1Tex2T52324. 1t can be easily seen that

[0] =2¢ =0(¥).

Lemma 5.3. ’(/JLeftR,'ght((s) 2 ﬁ

Proof. We first observe that loc(d) = 2, which is witnessed by the marking sequence
(x17x£7x27x5717x31x€727 s 7m§7x§+1)

(note that this marking sequence maintains a marked prefix and one additional marked inter-
nal factor starting with xyzixe, which is alternately extended to both sides). Now assume that

the strategy LeftRight marks some symbol x;. If i < %, then it marks next all the symbol
T1see oy Ticdy Tigds e, Tt which results in % + 1 marked blocks. If, on the other hand, i > %, then
symbols x1,...,x ¢ are marked next, which leads to at least % marked blocks. Thus 9| eftright (6) >
£ O
I

16

In the following, we investigate another aspect of greedy strategies. Any symbol that is marked
next in a marking sequence can have isolated occurrences (i.e., occurrences that are not adja-
cent to any marked block) and block-extending occurrences (i.e., occurrences with at least one
adjacent marked symbol). Each isolated occurrence results in a new marked block, while each
block-extending occurrence just extends an already existing marked block, and potentially may
even combine two marked blocks and therefore may decrease the overall number of marked blocks.
Therefore, marking a symbol when it only has isolated occurrences causes the maximum number
of marked blocks that can ever be contributed by this symbol, and therefore this seems to be the
worst time to mark this symbol. Hence, in terms of a greedy strategy, it seems reasonable to only
mark symbols if they also have block-extending occurrence (obviously, this is not possible for the
initially marked symbol).

We call a marking sequence o for a word a block-extending, if every symbol that is marked
except the first one has at least one block-extending occurrence. This definition leads to the
general combinatorial question of whether every word has an optimal marking sequence that is
block-extending, or whether the seemingly bad choices of marking a symbol that has only isolated
occurrences (and that is not the first symbol) is necessary for optimal marking sequences. We
answer this question in the negative.

For every even number £ > 2, let 8 = x1yxoyzsy. .. Toy.

Proposition 5.4. loc(3) = % and, for every block-extending marking sequence o for B, we have
e (B) > £ —1.

Proof. For the sake of convenience, let / = 2k for some k > 1. Let o be any block-extending
marking sequence for a. If o marks y first, then we have 2k marked blocks and if some x;,
1 < ¢ < 2k, is marked first, then y is marked next, which leads to 2k — 1 marked blocks. Thus,
7o (8) > 2k — 1. On the other hand, we can proceed as follows. We first mark the k symbols
X9, X3, ...,Tp+1, which leads to k& marked blocks (and which is a marking sequence that is not
block extending). Then we mark y, which joins all the previously marked blocks into one marked
block and turns k—1 occurrences of y into new individual marked blocks (i. e., the k—2 occurrences
of y between the symbols z12, Tgys, - .., xor and the single occurrence of y after xox). Thus, there
are still £ marked blocks, and from now on marking the rest of the symbols only decreases the
number of marked blocks. Consequently, loc(8) < k. Moreover, after any marking sequence has
marked symbol y, there are 2k marked occurrences of symbol y. If these marked occurrences form
at least k marked blocks, the overall marking number of the marking sequence is at least k. If they
form at most k£ — 1 marked blocks, then at least k + 1 of the symbols z; must be marked as well,
and since these symbols were marked before marking y, they have formed at least k£ 4+ 1 marked
blocks before marking y. This means that the overall marking number is at least £+ 1. This shows
that loc(8) > k, and therefore loc(8) = k. O

This proposition points out that even simple words can have only optimal marking sequences
that are not block-extending. In terms of greedy strategies however, Proposition only shows
a lower bound of roughly 2 for the approximation ratio of any greedy algorithm that employs
some block-extending greedy strategy (since the lower bound applies to every marking sequence
that is block-extending). We note that the requirement of marking in a block-extending way
does not specify which one of the possible block-extending symbols should be marked; trying
out all of them is obviously too costly. In order to further investigate block-extending greedy
strategies, we therefore couple the block-extending requirement with other greedy strategies, e. g.,
for the strategies S € {FewOcc, ManyOcc, FewBlocks, LeftRight} from above, we denote by BE —S
the greedy strategy which only marks block-extending symbols (except the first one) and chooses
among possible block-extending symbols according to strategy S (note that these strategies are
still non-deterministic in the sense of how S is a non-deterministic strategy). More precisely, the
strategies BE —S are defined by replacing “unmarked symbols” by “unmarked symbols that have
at least one block-extending occurrence” in the descriptions of the basic strategies from above.

We observe that for S € {FewOcc, ManyOcc, FewBlocks, LeftRight} the strategy BE —S is not
covered by S, i.e., the set of marking sequences for a word that can be obtained by S is not
necessarily a superset of the marking sequences that satisfy BE —S. For example, an unmarked
symbol that has a maximum (or minimum) number of occurrences among all block-extending

17

symbols, might not have a maximum (or minimum, respectively) number of occurrences among
all unmarked symbols. Therefore, the lower bounds form Lemmas and do not carry
over automatically. Nevertheless, BE —S behaves more or less in the same way as .S on the witness
words «, v and § defined above, which yields the following.

Lemma 5.5. Let the words a, v and § be defined as above. Then
* Yge— Fewocc(at) > L,
® UBE_ FewBlocks(t) > L,
* YBE— Manyocc() = 5L,
o Ve LerRight(0) > £.

Proof. Optimal marking sequences for the words and the lengths of these words have been discussed
above, so it only remains to show that no BE —S with S € {FewOcc, ManyOcc, FewBlocks, LeftRight}
can produce better marking sequences.

We first discuss BE — FewOcc and BE — FewBlocks together. If the initially marked symbol is
some x;, then both BE — FewOcc and BE — FewBlocks would next mark all remaining x;, j # i. The
only difference to strategies FewOcc and FewBlocks is that BE — FewOcc and BE — FewBlocks must
mark these symbols such that always a block-extending symbol is marked next, i. e., we must mark
in such a way there are always at most 2 marked blocks in the prefix (z122...x¢)%. This leads to
at least ¢ marked blocks. If some ys;_1 or yo; is marked first, then BE — FewOcc marks x; or x;41
next (depending on whether y9;_1 or y; is marked first) and then all remaining x; as before, while
BE — FewBlocks would mark the remaining symbol of y2;_1 or y; and then all z;. This results in
at least £ — 1 marked blocks. Thus, g — Fewocc (@) > K_Tl and YBE — FewBlocks (@) > %.

Next, we consider BE — ManyOcc. It can be easily seen that no matter whether we initially
mark some x; or some y;, just like ManyOcc the strategy BE — ManyOcc will mark all remaining
x; next (these symbols have a maximum number of occurrences and two of them must be block-
extending). Thus, BE — ManyOcc necessarily produces ¢ or £ — 1 marked blocks, and therefore
¢BE— ManyOcc('—Y) > %

Finally, we consider BE — LeftRight. This strategy behaves similar to LeftRight, but we have
to argue a bit more carefully. Assume that x; is the first symbol marked by BE — LeftRight. If
1< é, then we mark next z;_1, then x;_5 and so on, until all z1, x9,...,z; are marked. Then the
symbols x; i1, Tit2,. .. ;e are marked, which leads to é + 1 marked blocks. If, on the other hand,

i = é—i—j with j > 1, then the next marked symbol will be Te iy Then, as before, we will mark

Te (1)1 TEL (jo1)-25- - until all z1, 2o, ..., Te (jo1) are marked, and then Te (G1yp1re L

are marked. This results in % marked blocks. Thus, ¥gg — LeftRight (0) > g. O

If we are concerned with block-extending greedy strategies, then it is natural to choose among
the block-extending symbols according to the number of their block-extending or isolated occur-
rences. This motivates the following two strategies:

BE-1 Among all block-extending symbols, choose one that has the most
block-extending occurrences.

BE-2 Among all block-extending symbols, choose one

for which #block-extending occ.

oo is maximal.

Unfortunately, the witness word « also shows poor approximation ratios for these strategies.
Lemma 5.6. vge1(a) > 51 and ¢pea(e) > 5.

Proof. Again, we first note that the optimal marking sequence for o and the length |a| have
already been discussed above. If we first mark a symbol z;, then, among all symbols extending a
marked block, i.e., symbols x;_1, z;11, y2,—1 and y9;+1, the symbols x;_; and z;,; each have 3
occurrences in total, two of which are block-extending, whereas the symbols yo; 1 and y9; 41 each
have 4 occurrences, only one of which is block-extending. Consequently, both BE-1 and BE-2 chose

18

m
(2) ‘@’@‘@ ©

Figure 6: The graph G, for @ = cabacabac; the three cliques are drawn with different edge-types.

either x;_; or ;411 next. This situation does not change until all x; are marked, which leads to
¢ marked blocks. If, on the other hand, some y9; 1 or yo; is marked first, then we mark next the
remaining symbol ys;_1 or yo; such that 3; is completely marked (this is due to the fact that this
symbol is the only block-extending one). Next, x; and x;1; are marked, in some order (again,
this is enforced by the fact that we can only mark block-extending symbols), which brings us back
to the situation described above which leads to the marking of all remaining z;, leading to ¢ — 1
marked blocks. Consequently, ¥gg.1(a) > E_Tl and Yge.a(a) > K_Tl. O

5.2 Reducing Locality Number to Pathwidth

In the following, we obtain an approximation algorithm for the locality number by reducing it to
the problem of computing the pathwidth of a graph. To this end, we first describe another way of
how a word can be represented by a graph. Recall that the reduction to cutwidth from Section []
also transforms words into graphs. The main difference is that the reduction from Section [4 turns
every symbol from the alphabet into an individual vertex of the graph (thus, producing a graph
with O(]X|) vertices), while the reduction to pathwidth will use a vertex per position of the word
a, i.e., |a| individual vertices. In the reduction from Section [4] the information of the actual
occurrences of the symbols in the word is encoded by the edges (in particular, the length || is
represented by the number of edges), while in the following reduction the alphabet is encoded by
connecting the vertices that correspond to positions of the same symbol to cliques in the graph
(in particular, the number of edges may range between |a| and |a|?). We proceed with a formal
definition and an example.

For a word «, the graph G, = (V,, E,) is defined by V,, = {1,2,...,|a|} and E, = {{i,i + 1} |
1<i<|al=1}yU{{i,j} | {i,j} C ps,(a) for some = € alph(c)}. Intuitively, G, is a length-|a|
path (due to the edges {{i,i+ 1} | 1 < i < |a| — 1}), and, additionally, we add edges such that
every set ps,(a), x € alph(a), is a clique.

Let us discuss a brief example. Let a = cabacabac be a word of length 9 over alphabet {a, b, c}.
The graph G, has therefore vertices {1,2,...,9}, which are connected into a path from vertex 1
to vertex 9. In addition, ps,(a) = {2,4,6,8} forms a clique, ps,(a) = {3,7} forms a clique, and
psy (@) = {1,5,9} forms a clique. See Figure[6] for an illustration.

We use G, as a unique graph representation for words and whenever we talk about a path
decomposition for «, we actually refer to a path decomposition of G,,. Recall that we consider path-
decompositions as certain marking schemes, which we called pd-marking schemes (see Section
and Figure . Since G, has the positions of « as its vertices, the pd-marking scheme behind a
path decomposition (and its respective terminology) directly translates to a marking scheme of the
positions of a.

A very similar reduction has been used in [47] in order to prove that certain structural re-
strictions of patterns with variables lead to polynomial-time cases of the corresponding matching
problem. The reduction from [47] is more general in the sense that it does not require the vertices
of ps, () to be a clique, but only requires that these vertices form a connected component (if we
do not count the “path-edges” {{i,i+ 1} |1 <14 <|a| —1}).

The main property of this reduction is that the pathwidth of G, ranges between loc(a)) and
2loc(a).

Lemma 5.7. Let o be a word with |a] > 2. Then loc(a) < pw(Gy) < 2loc(«). Further, given a
path decomposition Q for G, a marking sequence o for a with m,(a) < w(Q) can be constructed
in time O(|al).

19

We defer the somewhat technical proof of Lemma[5.7] to the end of this section, and first discuss
the consequences and some further properties of the reduction.

A rather simple observation is that the statement of Lemma[5.7]is in fact not true for words o
of size 1, since then loc(a) = 1 and pw(G,) = 0.

Intuitively speaking, every marked block in an optimal marking sequence for a accounts for one
unit of the quantity loc(«), while in an optimal path decomposition of G, any marked block is
represented by two active vertices (i.e., vertices that are in the current bag, see the terminology
introduced in Section [2.3). This explains why pw(G,) can be twice as large as loc(c); on the other
hand, that pw(G,,) can be strictly smaller than 2loc(«) is due to the fact that every marked block
of size 1 is actually represented by only 1 active vertex, instead of two. We can formally show
that there are rather simple example words « and f that reach the extremes of 2loc(a) = pw(G,,)
and loc(5) = pw(Gp), i.e., the bounds of are tight. The proof of the following proposition also
serves as an introduction to path-decompositions for the graph representation G, of words (and
our use of the terminology explained in Section , and therefore as a preparation for the proof
of Lemma [5.71

Proposition 5.8. Let a = (2172 ... 2pnTy_1...72) 2 with n > 3, and let B = (z122)".

have loc(a) = k and pw(G,) = 2k, and loc(8) = pw(Gg) = k.

Then we

Proof. We start with proving the first statement and first observe that loc(a) < k due to the
marking sequence z,,,T,_1,...,x1. In order to show pw(G,) > 2k, we first observe that, for every
i €12,...,n—1}, ps,.(a) is a clique of size 2k in G, which implies that every path-decomposition
Q (interpreted as a pd-marking scheme) for G, reaches a step where all 2k vertices of ps, («) are
active. Now let @ be a path-decomposition for G, (interpreted as a pd-marking scheme), let
i €{2,...,n — 1} be such that all ps, (a) are first set to active, i.e., when all vertices ps,, (a)
are active for the first time, then in every ps, (), j € {2,...,n — 1} \ {i}, there is at least one
open vertex (in particular, no vertex from any‘psgcj7 2 <j<mn-—1,is closed). Moreover, in the
following we consider the earliest point of), where all ps, («) are active.

If, at this point, there is some additional active vertex, then there are 2k 4+ 1 active vertices;
thus, in the following we assume that there are no other active vertices. If there is also no closed
vertex, then all other vertices are open, which means that every vertex from ps, (a) has at least
one adjacent open vertex and therefore we have to set an open vertex to active, before we can
set a vertex from ps, () to closed; this leads to at least 2k + 1 active vertices. It remains to
consider the case where there is some closed vertex j. This means that all vertices of ps,; ()
are closed, which implies that j € ps,, (a) Ups, (a). We first consider the case j € ps, (a).
Since every vertex from ps,, (a) is adjacent to some vertex from ps, (), we can conclude that all
vertices from ps, («) are active, i.e., i = 2. The assumption j € ps, (a) analogously leads to the
situation that i = n — 1. Consequently, all 2k vertices from ps, («) are active, either ps, («) are
all closed or ps, («) are all closed, and all other vertices are open. In both of these cases, every
vertex from ps, («) has at least one adjacent open vertex, which, as before, means that we have
to set an open vertex to active, before we can set a vertex from PSg, (a) to closed; this, as well,
leads to at least 2k + 1 active vertices. Consequently, w(Q) > 2k, and, with Lemma we can
conclude pw(Gy) = 2k.

With respect to the second statement, we first note that any marking sequence for 5 leads to
k marked blocks, which implies loc(8) = k. Moreover, a pd-marking scheme Q with w(Q) = k
can be easily constructed as follows. First, we set all positions of ps, (3) to active. Then we
set position 2 to active, position 1 to closed, position 4 to active, position 3 to closed and
so on, until all positions of ps, (3) are active and all positions of ps, (5) are closed. Finally,
the positions of ps,, (5) are set to closed. There are at most k + 1 positions active at the
same time; thus, w(Q) = k and therefore pw(Gg) < k. Together with Lemma this implies
loc(B) = pw(Gg) = k. O

As explained at the beginning of this section, the construction of a graph G, from a word «
does not reduce the decision problem LOC to PATHWIDTH (since pw(G,,) lies between loc(a) and
2loc()); its main purpose is to obtain approximation results, which is formally stated by the next
lemma.

20

Lemma 5.9. If MINPATHWIDTH admits an O(f(n))-time r(opt, n)-approxzimation algorithm, then
MiINLoc admits an O(f(|a]) + |a|?)-time 2r(2 opt, |a|)-approzimation algorithm.

Proof. Let a be an instance of MINLoC and A an r(opt, n)-approximation for MINPATHWIDTH.
By Lemma[5.7] it follows that pw(Ga) < 2m* ().

Let @ be the path decomposition computed by A on G, and o be the corresponding mark-
ing sequence constructed with Lemma With the inequality m*(a) > %pw(Ga), the per-

formance ratio of ¢ can be bounded by R(«,0) = ;"((‘;)) < mw(Q) < 2R(G4,Q). With
R(Gq, Q) < r(ecw(G4),n) from the approximation ratio of A, n = |a| from the construction of
G, and pw(G,) < 2m*(«a) from Lemma the claimed bound of 2r(2opt, |a|) on the approx-
imation ratio follows. The approximation procedure to compute o, creates G, in O(|a|?), runs
A in O(f(|a)) and translates the path-decomposition @ into ¢ in O(|a|), which takes an overall

running time in O(f(|a]) + |a|?). O

Consequently, approximation algorithms for MINPATHWIDTH carry over to MINLOC. For ex-
ample, the O(y/log(opt)log(n))-approximation algorithm for MINPATHWIDTH from [2I] implies
the following.

Theorem 5.10. There is an O(y/log(opt) log(n))-approzimation algorithm for MINLOC.

Another consequence that is worth mentioning is due to the fact that an optimal path de-
composition can be computed faster than O*(2™). More precisely, it is shown in [50] that for
computing path decompositions, there is an exact algorithm with running time O*((1.9657)™), and
even an additive approximation algorithm with running time O*((1.89)™). Consequently, there
is a 2-approximation algorithm for MINLOC with running time O*((1.9657)™) and an asymptotic
2-approximation algorithm with running time O*((1.89)™) for MINLoC.

Many existing algorithms constructing path decompositions are of theoretical interest only,
and this disadvantage carries over to the possible algorithms computing the locality number or
cutwidth (see Section @ based on them. However, the reduction of is also applicable in a
purely practical scenario, since any kind of practical algorithm constructing path decompositions
can be used to compute marking sequences (the additional tasks of building G, and the transla-
tion of a path decomposition for it back to a marking sequence are computationally simple). This
observation is particularly interesting since developing practical algorithms constructing tree and
path decompositions of small width is a vibrant research area. See, e.g., the work [I4] and the ref-
erences therein for practical algorithms constructing path decompositions; also note that designing
exact and heuristic algorithms for constructing tree decompositions was part of the “PACE 2017
Parameterized Algorithms and Computational Experiments Challenge” [17].

As mentioned several times already, our reductions to and from the problem of computing
the locality number also establish the locality number for words as a (somewhat unexpected) link
between the graph parameters cutwidth and pathwidth. We shall discuss in more detail in Section []
the consequences of this connection. Next, we conclude this section by providing a formal proof of
Lemma 5.7, which is the main result of this section.

5.3 Proof of Lemma [5.7]

In order to prove Lemmal[5.7] we shall prove the two claims pw(G,) < 2loc(a) and loc(ar) < pw(Gq)
separately. Recall that for any word «, by G, we denote the graph constructed as described in
Section

We first prove pw(G,) < 2loc(a). Intuitively speaking, we will translate the stages of a marking
sequence o for « into steps of a pd-marking scheme for G, in a natural way: each marked block
afs..t] is represented by letting the border positions s and ¢ be active, the internal position
s+1,s+2,...,t—1 closed, and all other positions open. In particular, this means that each stage
of the marking sequence with k£ marked blocks is represented by at most 2k active positions in the
corresponding step of the pd-marking scheme (note that marked blocks of size 1 are represented by
only one active position). The difficulty will be to show that in the process of transforming one
such step of the pd-marking scheme into the next one, we do not produce more than 27, (a) + 1
active positions. This is non-trivial, since due to the cover-property of the pd-marking scheme,

21

we must first set all positions to active that correspond to occurrences of the next symbol to be
marked by o before we can set them from active to closed.

Lemma 5.11. Let o be a word. Then pw(Gq) < 2 loc(c).

Proof. We first observe that there is a natural correspondence between any marked version of «
and a step of a marking scheme of G, (recall the terminology introduced in the last paragraph of
Section . More precisely, every marked block «[s..t] can be represented by having the border
positions s and t of G, marked as active, and all internal positions j with s +1 < j <t -1
marked as closed. All other positions that are unmarked in « are open in G,. Note that s = ¢
means that the marked block is represented by only one active position and no closed positions,
and that £ = s + 1 means that the marked block is represented by two active positions and no
closed positions. Hence, each of a’s marked blocks of size 1 is represented by only one active
position, while each marked block of size at least 2 is represented by two active positions.

In this way, a marking sequence o = (z1, o, ..., T,) for a with 7, («) = k translates into steps
D1,D2, .-, Pm (i. €., p; represents stage i of o as described above) of a marking scheme for G,. By
our observation from above, it is obvious that at each step p; there are at most 2k; active vertices,
where k; is the number of marked blocks at stage ¢ of . It now remains to show how the steps
p1,P2,--.,Pm representing o’s stages can be transformed into a pd-marking scheme of G,. More
precisely, we have to describe how we can obtain step p;41 from step p;, how we can reach step p;
from @’s initial step (i.e., where all positions are open), and how to transform step p,, into the
final step of @ where all positions are closed. Moreover, this should be done in such a way that
the marking scheme is a pd-marking scheme, and such that at most 2k + 1 positions are active
in each step.

We can reach step p; from @’s initial step by just setting all positions of ps, (a) to active
(note that |ps,, ()| = k1 < k), and the final step of) can be obtained from step p,, by setting the
only active positions 1 and |a| to closed (note that at stage m of o the whole word is one marked
block, so, by definition of step p,,, only positions 1 and |a| are active, while all other positions
are closed). Obviously, the maximum number of active positions for these steps is bounded by
max{k,2} < k.

Let s be arbitrary with 1 < s < m — 1. We now describe how step psy1 can be obtained from
step ps. Intuitively speaking, we first set all positions from ps,_ — () that extend already marked
blocks to active (note that this includes positions that join two already marked blocks). We have
to set each of these positions to active one after the other, and whenever some active position
becomes an internal position of a marked block, then it must be set to closed so that we do not
get too many active positions. However, we only set internal active positions to closed if they
are not from ps, (@), since due to the fact that ps, (a) is a clique in G, we must reach a
point where all positions from PSy. i1 (o) are active at the same time. After this is done, we mark
the remaining positions ps, , () that create new marked blocks of size 1. Let us now formally
describe this marking scheme.

We call every j € ps,__, (a) extending, if marking position j extends an already marked block,
and we call it isolated, if marking position j creates a new marked block of size 1. First, we set
all extending positions j € ps, . (a) to active (in some order), but every time we do this, we
perform the following update operation before setting the next position to active: every active
position from {1,2,...,|a[} \ ps,_,, (@) that is an internal position of some marked block is set to
closed. As soon as all extending positions are active, we set all isolated j € PSy, ., (@) to active.

We have now reached the following situation (which we denote by step p.):

e All positions of ps, ., («) are active.
e All border positions of marked blocks of stage s + 1 of o are active.

e All internal positions of marked blocks of stage s + 1 of o are closed, except possibly some
of the positions from ps, («) that have now become internal positions of marked blocks.

We can now transform step py into step psi1 by setting all active positions from ps, (a) to
closed that are internal positions of marked blocks. This only decreases the number of active
positions.

22

Ts+1 Ts+1 Ts+1 Ts+1 Ts4+1 Ls+1
1 6 10 16 19 21
step ps

extend blocks O-O-O-@-O-0-0-@-0-O-0-O0-00@0-0O-0O0000
join blocks ~ O-O-0-€0-@-0- 00000000 O0O0O0O0OO00
step s OO0 0000000000000 O00000
step ps+1 O-O-0-0-00- 00000000 00000000

Figure 7: An illustration of how step p, is transformed into step psy1 (for simplicity, the edges
that connect the sets ps, (a) into cliques are omitted). As in Figure [3| white vertices are open,
grey vertices are active, and black vertices are closed. The upper most graph represents step
ps. As indicated above, we have ps, (a) = {1,6,10,16, 19,21}; positions 6, 10,16, 19 are extending
and 1,21 are isolated. If we first set the extending positions to active that do not join marked
blocks, i.e., positions 16 and 19, then we obtain the situation represented by the second graph.
Note that after setting 16 to active, we have to immediately set 15 to closed, whereas position
19 does not trigger such an action. Next, we set all remaining extending positions 6 and 10 to
active, which yields the third graph. Immediately after setting 6 to active, we have to set both
5 and 7 to closed, and immediately after setting 10 to active, we have to set 9 to closed. Now
it only remains to set the isolated positions 1 and 21 to active, which yields the second to last
graph corresponding to step p.. Finally, in order to reach step ps1, we set all active positions
from ps, (a) to closed that are internal positions, which sets 6 and 10 to closed.

This completes the definition of the marking scheme. Figure[7]contains an example of how step
Ps+1 is obtained from step ps. In this example, we first set extending positions to active that do
not join marked blocks, and then we set the remaining extending positions to active. This is done
for illustrational reasons (recall that we have not restricted the order in which we set extending
positions to active).

Next, we observe that this marking scheme is a pd-marking scheme. To this end, we observe
that every edge {j,7 + 1} with 1 < j < |a| — 1 is covered, since for every edge {j,j + 1}, we either
set j from open to active while j + 1 is already active, or the other way around. Moreover, all
positions from PS,, (a) are active at step p;-; thus, the cover property is also satisfied with respect
to these edges.

Finally, we have to show that in this pd-marking scheme, the maximum number of active
positions is bounded by 2k + 1. This is obviously true at step p;. Now let s with 1 < s < |a| — 1
be arbitrary. Since the total number of active positions at step ps and ps41 are bounded by
2k, we only have to show that the maximum number of active positions in the marking scheme
transforming p, into psy1 is bounded by 2k + 1. Let us assume that at stage s and s + 1 of o,
there are ks (ks+1, respectively) marked blocks, and exactly kg1 (kst+1,1, respectively) blocks have
size 1; note that this means that at step ps there are ks 1 + 2(ks — ks.1) active positions.

In the first phase of the marking scheme, i.e., the phase where we only set extending positions
to active, the following different situations can arise, whenever we set some position j to active
(see Figure [7| for an illustration):

1. j extends a marked block of size 1, but does not join two blocks: The number of active
positions increases by 1.
This is due to the fact that by setting j to active, we do not create any internal active
positions that could be set to closed.

2. j extends a marked block of size at least 2, but does not join two blocks: The number of
active positions increases by 1 and then decreases by 1.
Assume that the block of size 2 is extended to the right. Then j7 — 1 must be active and,

23

since the block has size at least 2, 7 — 2 cannot be open. Moreover, since j — 1 is a neighbour
of j it cannot be an element from ps, (). This means that j — 1 is set to closed.

3. j joins two marked blocks of size 2: the number of active positions increases by 1 and then
decreases by 2.
We can argue similarly as in the previous case. Positions j — 1 and j + 1 must be active
and, since the blocks have size at least 2, neither j — 2 nor j + 2 can be open. Moreover,
since both j — 1 and j 4+ 1 are neighbours of j they cannot be elements from ps («). This
means that j — 1 and j + 1 are set to closed.

Ts41

4. j joins a marked block of size 1 and a block of size 2: the number of active positions increases
by 1 and then decreases by 1.
Without loss of generality, assume that the block of size 2 is to the left of the block of size
1. Then j — 1 must be active and, since the block has size at least 2, j — 2 cannot be open.
Moreover, since j — 1 is a neighbour of j it cannot be an element from ps,,_ — (). This means
that j — 1 is set to closed.

5. j joins two blocks of size 1: the number of active positions increases by 1.
This is due to the fact that by setting j to active, we do not create any internal active
positions that could be set to closed.

We note that only operations of Type [I] and [5|increase the overall number of active positions.
In the worst case, we apply all these operations first, before performing the other operations that
potentially decrease the number of active positions. Let us define £, to be the number of active
positions at step ps, and ks 1 to be the number of marked blocks of size 1 at stage s. Since any
original marked block of size 1 can be responsible for at most one operation of Type 1| or |5 (after
such an operation, the block is not of size 1 anymore), the maximum number of active positions
after the first phase of the marking is at most 5+ ks 1 +1 (we have to count “41” since also in the
operations that do not increase the overall number of active positions, we always have to first set
a position to active and then, in a new step of the marking scheme, we can set another position
to closed). Since at step ps every marked block of size at least 2 is represented by two active
positions, and every marked block of size 1 is represented by only one active position, we have
by = 2(ks—ks1)+ks1 = 2ks—ks 1, and therefore ls+ks1+1 = 2k —ks1+ks1+1 = 2ks+1 < 2k+1.
This means that the number of active positions is bounded by 2k + 1 until we reach the situation
where we first set an isolated position to active.

When we start setting isolated positions to active, we increase the number of active positions
until we have reached step p,. Hence, we have to bound the total number of active positions at
step p..

For the following reasoning, let us assume that in going from stage s to stage s + 1 in o, we
mark all occurrences of z511 one after the other (instead of all of them in parallel). Each of these
individual markings can either create a new marked block of size 1, or join an existing marked block
with another existing marked block, or just extend a marked block (possibly of size 1) without
joining any marked blocks. Let us assume that creating a marked block of size 1 happens ¢ times,
and joining two marked blocks happens ¢ times (how often we extend marked blocks without joining
is not important).

We first count the number of active positions at step p’, that correspond to border positions
of marked blocks. For each marked block of size at least 2 there are 2 such active positions,
while for each block of size 1 there is only 1 such active position. Consequently, there are
2(ksy1 — kst11) + ks+11 = 2kst1 — kst1,1 such border positions, where kg1 1 is the number of
marked blocks of size 1. Since ¢ < ksi1,1, we have 2k, 1 — kgy11 < 2ks41 — g border positions.
In addition to these border positions, we also have a number of active positions that are internal
positions of marked blocks. However, each such internal active position results from joining
two blocks, which means that we have r such positions. Hence, we have at most 2ks;41 — g+ r
active positions. Since stage s + 1 of o is obtained from stage s by creating g new blocks and
joining 7 marked blocks (and extending some blocks), we have ks11 = ks + g — 7. Consequently,
2ksi1 —q+r=ker1+ks+q—r—q+r = ksi1+ ks < 2k. This means that the maximum number
of active positions in the marking scheme that transforms step ps into step psi1 is bounded by
2k + 1.

24

Consequently, we have described a pd-marking scheme for G, that has always at most 2k + 1
active positions, which means that pw(G,) < 2k. O

Next, we take care of the other inequality loc(a) < pw(Gy). On an intuitive level, the proof will
proceed as follows. Any pd-marking scheme @Q for G, induces a linear order on {z1,xa,...,Zm}
(and therefore a marking sequence o), since it is forced to go through individual steps where all
positions of the cliques ps, (a) with 1 < i < m are active at the same time. It is our goal to
prove that there are at least m,(«) + 1 fl position in the pd-marking scheme @, since this implies
that loc(a) < 7, (a) < w(@Q).

The marking sequence g has a stage s in which the maximum of 7, («) marked blocks is reached
for the first time. In the corresponding step ps of the pd-marking scheme (i. e., the step where the
positions of 7, («) are all active for the first time), we obviously cannot assume that the marked
blocks are represented in the way of the proof of Lemma (i.e., border positions are active,
internal positions are closed, and all other positions are open). However, by carefully analysing
step ps, we can identify at least 7, () active positions (for this, we need the property that @ is
a pd-marking scheme for G, and that a maximum number of marked blocks is reached at stage s
of o). If now there is one additional active position, then there are 7, () + 1 active positions
and we are done. This is the easy part of the proof, and the the more difficult part is the case
where we do not have an additional active position, i.e., the identified 7, () active positions
are the only active positions. This property, however, can be shown to impose some structural
constraints with respect to step p, of the pd-marking sequence and stage s of the marking sequence.
In particular, by some more technical combinatorial observations and exhaustive case distinctions,
we are able to prove that we will necessarily get 7,(a) + 1 active positions in the next step of
the pd-marking sequence, or we can prove that the marking sequence o can be changed into a
better marking sequence ¢’ with 7,/ (o) = 7,(«) — 1. This latter property means that we have
loc(a) < () — 1 < w(Q).

Lemma 5.12. Let o be a word with |o| > 2. Then, given any path-decomposition Q for G,
a marking sequence o for a with loc(o) < w(Q) can be constructed in O(|a|). In particular,
loc(a) < pw(Gy,).-

Proof. Let Q = (Bo, B1, By, ..., By|q|) be an arbitrary nice path-decomposition for G, which we
interpret as a pd-marking scheme (see the last paragraph of Section . For every i, 1 <1i < m,
ps,,(a) is a clique in Gg; thus, there must be a step p; of this pd-marking sequence in which
all positions of ps, (a) are active for the first time. Without loss of generality, we assume that
p1 <p2 <...<pm. Next, let 0 = (21, 22,...,2,) be the marking sequence for o that marks the
symbols 21,3, ..., 2, in the same order as their occurrences ps, (a) are all together active for
the first time in the pd-marking scheme. Thus o can be constructed from @ in time O(|a|). We
now prove that for k = 7, («) one of the following cases holds:

e There is a step of) with at least k+ 1 active positions. In this case, we have loc(a) < k <

w(Q).

e There is a step of Q with at least k active positions and a marking sequence o’ with
7o (@) = k — 1. In this case, we have loc(a) < k — 1 = w(Q).

Since the path decomposition is arbitrary, this implies that loc(a) < w(@) for every path decom-
position @, and therefore also loc(a) < pw(Gy,).

Let s, 1 < s < m, be chosen such that the maximum number of marked blocks is reached for
the first time at stage s of o, i.e., after marking symbol x4, we obtain k marked blocks for the
first time. As defined above, ps is the step of Q) where all positions of ps, (a) are active for the
first time. We now represent the pd-marking scheme at step ps; and the marked version of « at
stage s of o as a single marked word & over the alphabet {o,a,c}. More precisely, for every 4
with 1 <4 < |al, a[i] = o if position i is open at step ps, @[i| = a if position ¢ is active at step
ps and afi] = c if position i is closed at step py of the pd-marking scheme. This fully describes
step ps of the pd-marking scheme. Moreover, we represent the marked version of « at stage s of
o by marking the symbols of & in the same way, i.e., for every ¢ with 1 < i < |a], the symbol
ali] is marked if «fi] is marked at stage s of o (i.e., a[i] € {z1,22,...,2,}), and &[i] is unmarked

25

otherwise. We shall also consider a’s factorisation according to its marked and unmarked blocks,
i.e., we consider the factorisation

a = Pop iz - pBr

where the factors 8;, 0 < i < k, correspond to the unmarked blocks of @, and u;, 1 < i < k,
correspond to the marked blocks of a. Next, we establish some simple properties of @ and its
factorisation.

1. If afi] = ¢ for some i, 1 < ¢ < |a|, then position ¢ is closed at step ps of the pd-marking
scheme, which means that the situation where all positions of ps,;(«) have been active at
the same time must have occurred already. This means that «[i] € {z1, 2z2,...,zs}. Hence,
position ¢ is marked and therefore in some marked block. Consequently, all of &’s occurrences
of ¢ occur in marked blocks p;, i.e., Bo, B € {a,0}*, B; € {a,0}" and p; € {a,c}T for every
¢ with 1 <¢ < k (note that the factors p; cannot contain occurrences of o by definition of o
(i.e., an z; is marked by o not before all positions ps, («) are active)).

2. For every i, 1 <i < k—1, if the last symbol of the marked block u; is ¢, then the first symbol
of the unmarked block §; must be a (or 8; = €, which can happen for i = k), since otherwise
B;’s first symbol must be o (see Point , which leads to the contradiction that at step ps of
the pd-marking scheme there is a closed position adjacent to an open position (this violates
the cover property of path decompositions). Analogously, it follows that if the first symbol
of the marked block p; is ¢, then the first symbol of the unmarked block £;_1 must be a (or
Bi—1 = €, which can happen for i = 1).

3. For every i with 1 < ¢ < |a| such that afi] = x5, position ¢ must be contained in some marked
block of @ (since z is marked at stage s of), and (by definition of o) position i must be
active at step ps of the pd-marking scheme, i.e., afi] = a. Moreover, there must be at least
one such ¢ with 1 <4 < |a such that «fi] = z.

With Point [3] there is some j with 1 < j < || such that «[j] = x5, and some r with 1 <r < k
such that j is a position of the marked block u, of @. Next, for every i with 1 <1 < k, we define
a position ¢; with aft;] = a that either lies in ¢;, or is the first position of §;, or the last position
of B;,_1. First, we set t, = j. For every i, 1 < ¢ < r, we let ¢; be some position of u; that is
an occurrence of a if one exists. If, on the other hand, u; has no occurrences of a, then, due to
Point [1} p;’s last symbol is ¢, and, by Point [2] this means that §;’s first symbol is a, so we let ¢; be
Bi’s first position. Analogously, for every ¢ with r < i < k, we let t; be some position of u; that is
an occurrence of a if one exists, and if p; has no occurrences of a, then its first symbol is ¢, which
means that §;_1’s last symbol is a, so we let ¢; be 8;_1’s last position.

Since every t; with 1 <14 < ris in p;5;[1], every ¢; with » <4 < k is in B;_1[|5;|]ui, and ¢, is in
L, these positions ¢; are in fact k distinct positions that are active at step ps of the pd-marking
scheme.

Now, if there is at least one additional active position, then there are at least £ + 1 active
positions at step ps, i.e., we have arrived at the first of the two cases mentioned above. In order
to conclude the proof, we assume now that the active positions ¢;, 1 <14 < k, are the only active
positions at step ps of the pd-marking scheme, and we will show that this either leads again to the
first case, but with respect to some other step of the pd-marking scheme, or to the second case
mentioned above, i.e., there is a marking sequence o’ with 7,/ (a) =k — 1.

First, we divide @ into the part left of u,, the factor u, and the part right of pu,, i.e., we
consider the factorisation @ = @ip.Qs, where we call @1 = Bop1Bips ... Br—1 the left side and
we call Ay = Brptra1Bri1 .. kB the right side. By our assumption that the positions ¢; with
1 < i < k are the only occurrences of a in @, and the Points [I] to [3] from above, we can conclude
several facts about the form of the left and the right side. In the following, we shall only analyse
the left side; all the following arguments apply analogously to the right side as well.

Each position ¢, with 1 < ¢ < r is either inside py, or it is the leftmost position of 5,. If
it is the leftmost position of B, then there is no occurrence of a in py, which means that the
leftmost symbol in g must be c, and therefore, the rightmost symbol of 5,_; must be an a (note
that 8,1 € {a,0}" (see Point [1) and it is not possible that a symbols o occurs next to a symbol

26

c). However, this rightmost position must be the position ¢,_; and is therefore also the leftmost
position of B,_1. In particular, this means that 81 = a and p,_; € {c}*. This inductively
proceeds to the left and therefore also means that Sy = €. Therefore, if ¢ with 1 < £ < r is
maximal such that ¢, is not inside g, then we have the following situation:

ap=p1_a flio_a ...fip—1_a ftpao? periBoyipiesa - Br_opir—18r—1,
B1 B2 Be—1 Be

where p; € {c} for every i with 1 < i < ¢, and g; > 0. Moreover, since £ is maximal, all y;
with £ +1 <4 < r — 1 contain an active position, which means that 3; € {o}T for every i with
{+1 <1 <r—1. However, this directly implies that y; = a with {+2 <¢ <r—1and g1 =c9?a
for some go > 0 with the property that at most one of g; and g» can be positive. More precisely,
we have the following situation:

a; = a a ...ly_1 a a0l c9a a ...B_9 a _
1 H1 M2 He—1 He ﬂe+1 Br—2 Br-1, (T)
B1 B2 Be—1 Be Het1 Het2 Hr—1

where 3; € {o}T for every i with £ +1 <4 <r —1, u; € {c}T for every i with 1 < i < ¢, and
91,92 > 0 with 0 € {¢g1, 92}

If, on the other hand, no such ¢, 1 < ¢ < r, exists, then all the active positions t; are in y,; for
every 4 with 1 < ¢ <r — 1. In particular, this means that 3; € {o}T for every ¢ with 1 <7 <7 —1,
which forces all u;, 2 <4 <r —1, to start and end with an active position, while y; must have a
rightmost active position, but a leftmost active position only if 3y # €. Thus,

ap=pfocdapfi a ...Br2_a By, (%)
M1 H2 Hr—1

where 3; € {o}T for every i with 1 <i <7 —1,¢ >0, and g > 0 implies 3y = ¢.
As mentioned above, these observations also apply to the right side a» in an analogous way.
Next, we turn to the marked block p,- in between the left and right side of @. Since pu, contains
exactly one occurrence of a, we can factorise it into pu, = 11 avs, where vy, 19 € {c}*. We now
consider four individual cases that arise from whether or not vy or v5 are empty. For each of these
cases, we can use the observations from above in order to further determine the structure of the
left or right side of a.

Claim (1) If 14 # ¢, then we have

Q1 = prapza...tpr_1a.

Proof: If vy # €, then v4[1] = ¢, which implies that 5,_1[|3-—1|] = a and therefore 3,_1 = a.
This means that for £ = r—1, we have the case described in , i. e., where t; is the rightmost
active position that is not in u, and, since 8, = a, we also have the case gy = 0. This directly
implies the statement claimed above. O

Claim (2) If v3 # €, then we have

Qo = aflpt] @by .- -
Proof: Analogous to [Claim (1) O
Claim (3) If v; = e, then we have one of the following two cases:

(a) For some ¢ with 1 < ¢ <r —1,

Ay — g1 ~92
a1 = a a ... _ a ao C a a ... _ a —
1= 2 fe—1 He Bet1 Br—2 Br-1,

B1 B2 Be—1 Be Mot Ho+2 Hr—1

where 3; € {o}T for every i with £+ 1 < i < r —1, u; € {c}T for every i with
1<i</{, and g1,g92 > 0 with 0 € {g1,92}. Note that this is exactly the case described
in Equation [f}

27

(b) al = ﬂo c? a,ﬁl a .. ~6r—2 a ,/87’—13
H1 M2 Hr—1
where 3; € {o}™ for every i with 1 <i<r—1,¢g >0, and g > 0 implies 3y = . Note
that this is exactly the case described in Equation [

Proof: If there is some ¢/, 1 < ¢’ < r — 1, such that ¢, is not in pe, then we can consider a
maximal ¢ with this property and can conclude that we have the case described in , which

is exactly the statement of [Claim (3)al If, on the other hand, no such ¢ exists, then we
have the case described in (&), which is exactly the statement of [Claim (3)b O

Claim (4) If v2 = ¢, then we have one of the following two cases:

(a) For some ¢ with r < ¢ < k,

Vo — g1 ~92
g = a . a ... —14ac (] a a a ... a
2 = fr Bry1 Be-1 Heq1 Heto ke s
Mgl M2 e Be Be+1 Bet2 Br—1

where 3; € {o}* for every i with r <i <¢—1, u; € {c}T for every i with £+1 < i <k,
and ¢1,¢92 > 0 with 0 € {g1,¢2}-

(b) a2 =p6r_a Bry1_a ...ac’fy,

Hr41 Hr+2 H1
where 3; € {o}T for every i withr <i<k—1, g >0, and g > 0 implies 8 = ¢.

Proof: Analogous to [Claim (3)| O
In order to conclude the proof, we need some preliminary observations and definitions.

Observation (x): Let ¢ be arbitrary with 1 < i < |«|. Position ¢ is marked at stage

s of o (and therefore in some marked block of @) if and only if «[i] € {x1,x2,...,zs}.
If afi] = x5, then position ¢ must be active at step ps (and therefore afi] = a). If
ali] € {x1,23,...,25_1}, then position ¢ must be active or closed at step ps (and

therefore afi] € {a,c}).

Let ¢ with 1 <4 < || be some position that is active at step p, of the pd-marking scheme. We
say that ¢ is blocked if it is unmarked in @ or if o € {@[i — 1], &[i +1]}. The idea of this definition is
that if 7 is blocked, then it cannot be set from active to closed in the next step of the pd-marking
scheme. Indeed, if 7 is not marked, then a[i] € {zs41, Ts42,...,Zm} (see Observation (x)), and, by
assumption, for symbols @ € {xsy1,Ts42,...,Zm} we have not yet reached the situation that all
positions from ps,(a) are active at the same time); thus, none of the corresponding positions can
be set to closed in the next step. Moreover, if o € {a[i — 1], @[¢ + 1]}, then the active position 4
is adjacent to an open position and therefore cannot be set to closed in the next step.

We next show the following claim:

Claim (x*): Every position on the left side and on the right side that is active at
step ps of the pd-marking scheme is blocked.

Proof: Due to[Claim (1)[to|Claim (4)| we know that every position ¢ that is active in step
ps of the pd-marking scheme and corresponds to a marked occurrence of a on the left side, satisfies
ali + 1] = o. Moreover, every position ¢ that is active in step ps of the pd-marking scheme and

corresponds to a marked occurrence of a on the right side, satisfies a[i — 1] = o. Consequently,
every position on the left and right side that is active at step ps; of the pd-marking scheme is
blocked. O

We are now ready to finally conclude this proof. To this end, we analyse all possible cases of
how p, may look like, and we show that for each case we either obtain a contradiction, or there is a
step of @ with at least k41 active positions, or there is a marking sequence o’ with 7,/ (a) = k—1
(see the two cases mentioned at the beginning of this proof).

First, we note that if ¢, is blocked, then, due to Claim (%), every position that is active at
step ps of the pd-marking scheme is blocked. Thus, an open position will be set to active in the

28

next step of the pd-marking scheme, which means that there are k + 1 active positions in the
next step of the pd-marking scheme.

If ¢, is not blocked, then, since ¢, is marked in @&, we must have &[t,. — 1] # o and alt, + 1] # o.
We consider four cases that arise from whether 14y or v are empty.

e v; = ¢ and 1 # e: Since v; = €, position ¢, is a right neighbour of 8,_;. If the last symbol
of B,_1 is an occurrence of o, then ¢, is blocked, which is a contradiction to our assumption
that ¢, is not blocked. Therefore, the last symbol of §,._1 is an occurrence of a, which,
according to is only possible if we have the situation described in [Claim (3)al
with £ = 7 — 1 and g; = 0. Indeed, if [Claim (3)D] applies or if [Claim (38)a] applies with
¢ <r—1,then f,_; € {o}", and if |Claim (3)a applies with g; > 0, then £,_; = ao?.
IClaim (2)|implies that there is no marked position in the right side of & that is also active
at step ps of the pd-marking scheme. Furthermore, since we have With {=r—1,
there is also no marked position in the left side of @ that is also active at step ps of the
pd-marking scheme. Consequently, Observation () implies that ¢, is the only position with
ali] = zs. Since x4 is marked in stage s of o, V5 corresponds to a non-empty factor of « that
is marked at stage s — 1 of o, and position ¢, — 1 is not marked in stage s — 1 of o, we know
that marking x5 in stage s just extends the marked block that corresponds to 5. Hence, at
stage s — 1 there were k marked blocks, which is a contradiction to the assumption that s is
the first stage of o where we reach the maximum of k£ marked blocks.

e 1 # € and vy = e: This case leads to a contradiction analogously to the previous case.

o 11 # ¢ and v # e Due to |Claim (1)| and [Claim (2)] there is no marked position in
the right or left side of @ that is also active at step ps of the pd-marking scheme. Hence,
Observation (x) again implies that ¢, is the only position with a[i] = 5. Since x4 is marked
in stage s of o, and since both 17 and v correspond to non-empty factors of a that are
marked at stage s — 1 of o, we know that marking = in stage s joins two marked blocks and
changes no other marked block. Hence, at stage s — 1 there were k + 1 marked blocks, which
is a contradiction.

e v; = ¢ and vy = &: Since ¢, is not blocked and fS,_1alt.|8, is a factor of @, we know that
neither the last symbol of 8,._1 nor the first symbol of 3, can be occurrences of open. Just
like in the first and second case, [Claim (3)|and |Claim (4)|imply that this is only possible
if with respect to the left side, we have the situation described in|Claim (3)a|with £ =r —1
and g; = 0, and with respect to the right side, we have the situation described in
with £ = r and go = 0. This means that we have the following situation

a= a a ...Up_1 a a a a ...[p_1_a .
H1 H2 Hr—1 Hr41 Hk—1 Mk
B1 B2 Br—1 Br Br Bri1 Br—1

Hence, t, is the only active position that is marked in @, which means that ¢, is the only
position with a[i] = 2. In particular, ¢, is the only position that is unmarked in stage s — 1
and marked in stage s of ¢. This implies that in stage s — 1 of o there are exactly k — 1
marked blocks (i.e., the factors p; with 1 < j < k and j # r) and, by our assumption that
stage s is the first stage with & marked blocks, we also know that in stages 1,2,...,s — 1
the maximum number of marked blocks is K — 1. Moreover, at stage s — 1, every unmarked
position except t, (i.e., all the positions corresponding to the occurrences of a, except the
occurrence aft,] = a) is a neighbour of some marked block. Consequently, we can change o
into a marking sequence ¢’ as follows. The marking sequence ¢’ simulates o up to stage s — 1.
As observed above, so far the maximum number of marked blocks is k& — 1. Then, instead of
marking z,, o’ marks all other unmarked symbols in some order. In each of the corresponding
stages of the marking sequence, marking the next symbol leaves the number of marked blocks
unchanged, or decreases it (this can be easily seen by consulting the factorisation illustrated
above). Finally, symbol z is marked as the last symbol. Thus, ¢’ is a marking sequence for
a with 7o/ (o) = k — 1. O

29

6 A New Relationship Between Pathwidth and Cutwidth

We observe that the reduction from MINCUTWIDTH to MINLOC from Section [l combined
with the reduction from MINLOC to MINPATHWIDTH from Section [5.2] gives a reduction from
MINCUTWIDTH to MINPATHWIDTH. Moreover, this reduction is approximation preserving; thus,
it carries over approximations for MINPATHWIDTH (e.g., |21} B0]) to MINCUTWIDTH, and yields
new results for MINCUTWIDTH.

Pathwidth and cutwidth are classical graph parameters that play an important role for graph al-
gorithms, independent from our application for computing the locality number. Therefore, it is the
main purpose of this section to translate the reduction from MINCUTWIDTH to MINPATHWIDTH
that takes MINLOC as an intermediate step into a direct reduction from MINCUTWIDTH to
MINPATHWIDTH. Such a reduction is of course implicitly hidden in the reductions of Sections [4.1]
and [5.2] but we believe that explaining the connection in a more explicit way will be helpful for
researchers that are mainly interested in the graph parameters cutwidth and pathwidth.

The relationship between cutwidth and pathwidth revealed by this direct reduction is best
illustrated via a third graph parameter that we call second order cutwidth. To the best of our
knowledge, this parameter has not explicitly been studied before.

Let L = (v1,v2,...,vy,) be a linear arrangement of a (multi)graph G = (V, E). For the classical
cutwidth, we consider the maximum number of edges that span over a gap between a vertex v;
and v;11. For the second order cutwidth on the other hand, we consider the maximum number of
edges that span over a vertex v; or that are adjacent to v;, i.e., all edges {vg, ve} with k <4 < ¢
(note that this is equivalent to considering the maximum number of edges that span over the gap
between v;_; and v; or over the gap between v; and v;11). Let us now formally define the second
order cutwidth.

For every i € {1,2,...,n}, we define I'y, ; = {{vg,ve} € E | k < i < {}. The second order
cutwidth of the linear arrangement L is defined by cwa(L) = max{|T'z;| | 1 < ¢ < n}, and the
second order cutwidth of G is defined by cwy(G) = min{cwy(L) | L is a linear arrangement for G}.
Since 'z, ; = Cr(i—1)UCL () for every i € {1,2,...,n}, we can also define the second order cutwidth
in terms of the sets Cr, i.e., cwa(L) = max{|Cr(i — 1) UCL(i)] | 1 <i < n}.

For example, the linear arrangement L on the top of Figure [2| has a second order cutwidth of 6,
which, e.g., is witnessed by I'r 3, since I'y 3 = {{u, w}, {u, 2}, {v, 2}, {v,y}, {v, 2}, {w,xz}}. Note
that I'y 3 = C(2) UCL(3). On the other hand, the linear arrangement L’ on the bottom has a
second order cutwidth of 4 (witnessed by |T'z: 2| = 4).

To understand the relationship between this parameter and cutwidth, we first show the follow-
ing.

Lemma 6.1. Let G = (V, E) be a connected graph with at least three vertices, then cw(G) +1 <
awa(G) < 2ew(@G). Further, given a linear arrangement L for G, a linear arrangement L' for G
with cws (L) — 1 > ew(L') can be computed in O(|E|).

Proof. Simply by definition, we see that

ewo(L) =max{T'y; |1 <i<n}=max{|Cr(i —1)UCL()| |1 <i<n}
<max{|Cr(i—1)|+|Cr(i)] |1 <i<n}<2cw(Ll),

for any linear arrangement L for G. This directly gives the second inequality.

For the first inequality, observe that by definition cw(L) < cwq(L) for any linear arrangement
L. Let L = (v1,va,...,v,) be a linear arrangement of minimum second order cutwidth, and
assume cw(L) = cwy(L) (otherwise L’ := L shows the claim). We show how to construct a linear
arrangement L’ of strictly smaller cutwidth than L in polynomial time, by iterative rearrangements.
To this end, we define Iq. (L) = {v; | |CL(t)] = cwa(G)} and let I}, . (L) be the subset of 1,4 (L)
of degree one vertices, i.e., Lnag(L) = {vr € Lnae(L) | [N(v)| = 1}. We now stepwise rearrange
L and use I, and I}, . to track progress, never increasing the second order cutwidth of the
arrangement. Our goal is a linear arrangement L’ with cwq(L') = cwa(G) where 0, (L) = 0;
note that this implies the desired cw(L’) < cws(G) — 1. Until we have reached this goal, we have
a linear arrangement L with cw(L) = cwq(L) implying Cr,(t) = I'r; for each t € Inq.(L). Since
I'pe={{vk, v} € E|k<t</{}and Cr(t) = {{vk,ve} € E | k <t < ¢}, this also means that v,
has no neighbour in {vq,...,v;—1}. Hence, I14,(L) is an independent set.

30

We change L into a linear arrangement L’ as follows. Let vy € 1,54, (L) be arbitrary, and let vy
be the neighbour of v; in G with the smallest index in L. We move v; directly to the right of the
node vy, i.e., we define L’ := (V1,...,0t—1,Vt41, .-+, 00,Vt, Vps1,--.,Upn). We also define Ip,q. (L)
and I}, (L) analogously as for L. By this definition, v; has position ¢ and v, has position £ — 1
in the new linear arrangement L’.

By the choice of ¢, the cut of vy, with respect to L is the same as the cut of v; with respect to
L' ie, Cr/(f) = Cr(¢). Among all other vertices, only vy can have a larger cut in L’ compared
to L, since all other cuts either stay the same (the ones strictly to the right of v; in L), or do
not contain the edges of v; anymore (the ones strictly to the left of vy in L’). The only difference
between the cuts Cr,(£) and Cr. (¢ — 1) are edges involving v;. More precisely, all edges {vt, u} with
u € N(v) \ {ve} are in Cp(¢) (since the vertices N(vt) \ {v¢} are to the right of vy in L), while
{vt,ve} is not in Cp(€) (since vy is to the left of vy in L). In L', we have the opposite situation,
i.e., none of the edges {vg,u} with u € N(v;) \ {ve} is in Cp/ (€ — 1), while {vg, v} is in Cp (€ —1).

Summarizing, we see that all first or second order cuts for vertices V'\ {vs, v¢} can only decrease
from L to L'. In particular — which we will denote as property (f) for future reference — we observe
that Cr.(¢) =Cr(¢), and Cr (¢ — 1) = Cr(€) U{vg, ve} \ {{ve, vu | w € N(vp) \ {ve}}.

Towards proving cwy(L') = cwy(G) we only have to check the second order cuts of v, and
vy Since {v,ve} € T'pyg, (f) implies ' g1 C I'pe. Further, I'pip = Cp (0 — 1) UCL (€) =
Cr(6) U {{ve,ve}} CTp . Thus cwy(L) = cwa(G) shows the claimed second order width of L'.

For the progress of reducing I,q.(L’), first note that vy ¢ ILyna.(L); recall that vy € Ipyar(L)
and I, (L) is an independent set. This implies that |Cr/ (¢)] = |Cr(¢)| < cwa(G) — 1, so vy ¢
Inax(L'). Further, for all vertices except vy, the cut values did not increase from L to L', so
D (L) € (I () \ {00}) U {u} and I, (1) € (10 (E)\ {0} U {or}.

We now consider two cases depending on whether or not |Cr: (¢ — 1)| is strictly smaller than
CL(D)] +1.

Case 1, |Cpr, (¢ — 1)] < |CL(¢)] 4+ 1: Since |Cr ()| < cwa(G) — 1 (as observed above), this means
that |Cpr/ (€ — 1)| < ewa(G). Hence, v¢ & Lnas (L), which implies that |Lnar(L)] < [Lnae (L) — 1.

Case 2, |Cp/(£—1)| =|Cr(£)|+1: By (t) this is only possible if N(v;)\{v¢} = 0, which means that
vy € I}, (L). Since G is a connected graph with at least three vertices, vy has at least one neighbour

other than vy, which means that vy ¢ I} . (L"). Consequently, |} (L")| < |I}..(L)| — 1.
Thus, we have created a linear arrangement L’ with cwy(L') = cwy(G) such that either

| Lnaz (L) < | Imaz (L)| ot [Imaz(L')| = |Lnax(L)| and |1}, . (L")| < |I},..(L)|. Tterative application
of this rearrangement converges to the desired linear arrangement L’ with cwa(L') = cwy(G) and
Iz (L") = 0.

Computing Cr,(7) for each 1 < i < n and with this also the set Ip,q, (L) can be done in O(|E|).
With this information, we only have to check the neighbourhood of the vertex that is moved for
each rearrangement. Further, we only move vertices in I,,,4,, S0 each vertex is moved at most once.
Thus, all rearrangements needed to create L’ from L can be done in O(|E]). O

Armed with this relationship, we now give the direct reduction from problem MINCUTWIDTH
to problem MINPATHWIDTH that will in fact satisfy cwa(G) — 1 < pw(G’) < cwy(G), effectively
linking cutwidth and pathwidth with the help of Lemma/|6.1] This reduction is surprisingly simple.
Let G = (V, E) be a simple graphﬂ We translate every original node u € V into a clique K(u) =
{uy | v € N(u)}, and we translate every original edge {u,v} into an edge {u,,v,}. Hence, we
replace each vertex u by a clique of size |N(u)|, and these cliques are connected according to the
original graph. More formally, G is transformed into the graph G" = (V', E') with V' = (J,,c\, K(u)
and B’ = {{uy,v,} | {u,v} € E}U{{vy,vw} | u,w € N(v),u # w}. See Figure[§|for an illustration.

We proceed by showing the second inequality for our goal cws(G) — 1 < pw(G’) < cwq(G).

Lemma 6.2. Let G be a graph with at least one edge, then pw(G') < cws(G).

Proof. Consider a graph G = (V, E) and let L = (vq,...,v,) be an optimal linear arrangement for
the second order cutwidth of G. Every node w,, of G’ is either a left node or a right node according
to whether u occurs to the left or to the right of w in the linear arrangement L. More formally,

3We discuss the case of multi-graphs later on.

31

Figure 8: A graph G (left side) and the corresponding graph G’ obtained by the reduction (right
side). Note that vertex v of degree 4 becomes a clique {v,, vy, vy, v,}, where v, is connected to u,
(which is a vertex of the 3-clique representing degree-3 vertex u), v, is connected to y, and so on.

a vertex u,, of G’ is a left node, if u = v; and w = vy with j < ¢; the term right node is defined
analogously. Obviously, u,, is a right node if and only if w,, is a left node.

To prove the claimed bound on the pathwidth of G, we construct a path decomposition for G’
of width at most cws(G) in the form of a pd-marking scheme.

Intuitively, the pd-marking scheme is as follows. Let us first recall that, for every i € {1,2,...,n},
I'p; = {{vk,ve} € E |k <i</{} and that cwz(G) is the maximum over the cardinalities of these
sets. For every ¢ = 1,2,...,n, we produce a step ¢ of the marking scheme, where every edge

{u,v} € I'r; is represented by having the right node of {u,,v,} € E’ set to active (and these are
the only active vertices) and the left node set to closed. Moreover, for all edges {u,v} € E such
that u,v € {vy,v9,...,v;_1}, both u, and v, are closed, and all other vertices are open. This
means that the number of active vertices corresponds to [I'z;|. In order to conclude the prove,
it suffices to show that (1) we can obtain step 7 + 1 from step ¢ with at most |I'z ;41| + 1 vertices
being active at the same time, and (2) that the cover property is satisfied. Both claims follow
from how we obtain step ¢ + 1 from i: Let v := v;11. We first set all active right nodes from
K(vi—1) to closed, then we set all open left nodes v, € K(v) to active (now all vertices from
K(v) are active at the same time as required by the cover property), then for every such left node
vy € KK(V), we set the right node u, to active and then v, to closed (this is done one by one, to
get at most one |I'f, ;41| + 1 active vertices). Now we have reached step ¢ + 1. Let us now define
the pd-marking scheme more formally and prove its correctness.
For every v = vy, vs,...,v,, we perform the following steps.

e Step 1(v): Set all open left nodes from IC(v) to active.

e Step 2(v): For every left node v, € K(v), set the right node u, € K(u) from open to active,
and then set v, from active to closed.

e Step 3(v): Set all active right nodes from K(v) to closed.

Note that in our intuitive explanation above, Step 3(v) is the first operation that we have to do
in order to get from step i to step ¢ + 1. More precisely, after finishing Step 2(v) we have reached
the situation that has been called step i above. It is simpler to state the Steps 1(v), 2(v) and 3(v)
in this way, since these are exactly the operations that are with respect to the clique K(v;).

By induction, it can be easily seen that after Step 1(v) all vertices from K(v) are active (i.e.,
before Step 1(v), only the left nodes are still open), after Step 2(v) all right nodes from IC(v) are
still active, but all left nodes from K(v) are closed, and after Step 3(v) all vertices of KC(v) are
closed.

Let us now prove that the marking scheme described above is a valid pd-marking scheme. Our
considerations already show that we set every vertex v € V' from open to active and then from
active to closed. Now let {p,,7s} be an arbitrary edge of G'. If py,7s € K(v) for some v € V,
then both p, and r, are active after Step 1(v). If there is no v € V with p,,rs € K(v), then, by
definition of G', p, = uy, and ry = w,, with {u,w} € E. Let us assume that u,, is a left node, which
means that w, is a right node. After Step 1(u), the vertex u,, is active. Then, in Step 2(u), we
set w,, € K(w) to active, before setting u,, to closed. Thus, both u, and w, are active at the
same time. The case where w,, is a left node and u,, is a right node can be handled analogously.
Consequently, the above defined marking scheme is a valid pd-marking scheme, i. e., it describes a
valid path decomposition of G'.

32

It remains to estimate the width of the path decomposition, i. e., the maximal number of vertices
that are active at the same time. We formulate the invariant: for every ¢ € {1,2,...,n}, as soon
as Step 2(v;) is done, every active vertex u,, is a right node such that {u, w} € I'r, ;.

First, we note that the invariant holds after Step 2(v1), since then the set of active vertices
is {wy, | w € N(v1)} (which are all right vertices) and I', 1 = {{v1,w} | w € N(v1)}. Let us now
assume that the invariant holds for some i € {1,2,...,n — 1}.

Let u,, be a vertex that is active after Step 2(v;y1). If u, was already active immediately
after Step 2(v;), then u,, is a right node and {u,w} € I'r, ;. Moreover, u,, ¢ K(v;), since then it
would have been set to closed in Step 3(v;). This means that {u,w} € I'y, ;41. If, on the other
hand, u,, was not already active immediately after Step 2(v;), then it has been set to active in
Step 2(vi+1) (note that all vertices set to active in Step 1(v;41) are set to closed in Step 2(v;41)).
This means that it is a right node and that {u,w} is in I'z, ;4. Hence, as soon as Step 2(v;41) is
done, every active vertex u,, is a right node such that {u,w} € I'g ;41.

By induction, this proves the invariant.

Let us now estimate the maximum number of active vertices in the entire pd-marking scheme.
For every i € {1,2,...,n}, the number of active vertices after Step 2(v;) is bounded by |T' ;|
(due to the invariant). It can be easily seen that carrying out Steps 3(v;), 1(vi+1) and 2(vit1)
produces a maximum of |I'z ;11| + 1 active vertices. More precisely, after setting some active
right nodes from K(v;) to closed in Step 3(v;), we set a number p of left nodes to active in
Step 1(v;11), which are then all set to closed in Step 2(v;+1), and instead we set p right nodes to
active (which then each account for one of the active vertices immediately after Step 2(v;41)).
However, a left node u,, is set to closed immediately after the corresponding right node w,, is set
to active; thus, we only need one additional active vertex, i.e., both u,, and w, are active at
the same time. Consequently, the maximum number of active vertices of the entire pd-marking
scheme is max{|T'z ;| | 1 <4 < n} + 1, which means that its width equals cwa(L). O

We now give the second part of the relationship between pathwidth and the second order
cutwidth. Note that we also state this result constructively, to later use it for transferring approx-
imations.

Lemma 6.3. Let G = (V, E) be a graph with at least one edge, then pw(G') > cwy(G)—1. Further,
given a path decomposition Q for G', a linear arrangement L for G with cwa(L) < w(Q) + 1 can
be constructed in O(|Q)).

Proof. Let Q be a path decomposition for G’, which we consider in the form of a pd-marking
scheme with p steps. For every v € V| let ¢(v) € {1,2,...,p} be minimal such that all vertices
from K(v) are active at step ¢(v) (since KC(v) is a clique, such a ¢(v) must exist). Note that
o(v) # ¢(v') for every v,v" € V with v # v’ (since from one step to the next at most one vertex
is changed). Let L = (v1,vs,...,v,) be the linear arrangement of G induced by the indices ¢(v),
i.e., for every i,j € {1,2,...,n}, ¢(v;) < ¢(v;) if and only if i < j. We note that L can be created
from Q in time O(|Q]).

We will show that w(Q) > cwa(L) — 1 (since @ is an arbitrary path decomposition, this proves
the statement of the lemma). To this end, we will show that for every i € {1,...,n} and every
edge {u,w} € T'p; = {{vg,ve} € E| k < i <{}, the vertex u,, or w, is active at step ¢(v;) of Q.
Since the number of active vertices at any step of @ is bounded by w(Q) + 1, this implies that
Tz <w(Q)+ 1, which directly implies that cwa(L) < w(@) + 1.

Let i € {1,...,n} and let {u,w} € 'y ;. For every z € V', let I, C {1,2,...,p} be the set of
all steps of @ in which z is active. By definition, the sets I, are intervals over {1,2,...,p}, and
we know that ¢(u) < ¢(v;) < ¢(w). Since I,,,, contains ¢(u), I, contains ¢p(w), and I,,, N1, #
(since there has to be a step where both u,, and w, are active), we conclude that {¢(u), ¢(u) +
1,...,¢6(w)} C I, UI,,. Thus, we also have that ¢(v;) € I,,,, U I,,,. This means that u,, or w,
is active at step ¢(v;) of Q. O

As we want to transfer approximations for MINPATHWIDTH to MINCUTWIDTH also for multi-
graphs, we briefly explain how all results of this section easily generalize to this setting. The rela-
tionship of second order cutwidth and cutwidth remains exactly the same; the proof of Lemma [6.1]
generalizes to multigraphs with the only adjustment that I . (L) is defined as the set of vertices

33

in I,a.(L) that have exactly one neighbour (that can be connected by multiple edges, so in this
sense not of degree one).

For the connection to pathwidth, we can extend the reduction described before Lemma to
multigraphs in a straightforward way. Let G be a multigraph and let {u,v} be an edge of G with
some multiplicity ¢ (i.e., in G there are t parallel edges going from u to v). While in the simple
graph case an edge {u,v} of G was translated into the single edge {u,,v,} of G', we will now use
t simple edges {u!,v%}, 1 < i < t, in order to represent the multiplicity ¢ of the multi-edge of

G. Hence, we represent a single vertex v of G with N(v) = {uy,ua,...,ux} by several vertices
K) = {vg,,..., 0l o0, ... ,vf2 vl oo otk), where the ¢y, ¢, ...t are the multiplicities
of the edges between v and its neighbours uy,us, ..., u;. Analogously to the simple graph case,

we connect all the vertices of K(v) into a clique.

We can now prove Lemma[6.2]for the case of multi-graphs in a similar way as for simple graphs.
For a given multi-graph G, we apply the reduction from above, which yields a simple graph G’
(recall that the multiplicities are represented by individual vertices in the cliques K(v) with v € V).
Then, we fix again an optimal linear arrangement L = (vy,...,v,) for the second order cutwidth
of G. We call a node u!, a left node if u occurs to the left of w with respect to L, and right nodes
are defined analogously. Now, we can define a pd-marking scheme in the same way as in the proof
of Lemma i.e., for every v = vy, vg,...,v,, we perform the Steps 1(v), 2(v) and 3(v). Since
also in the adapted reduction we have the cliques K(v), both Step 1(v) (i.e., set all open left nodes
from KC(v) to active) and Step 3(v) (i.e., set all active right nodes from K(v) to closed) apply
verbatim in the same way, while Step 2(v) reads as follows: For every left node v% € K(v), set the
right node u! € K(u) from open to active, and then set v!, from active to closed. The proof
that this gives a path decomposition of width at most cws(G) then is completely analogous.

The same holds for the proof of Lemma [6.3

We are now ready to state the main result of this section, i.e., how pathwidth approximation
carries over to cutwidth approximation.

Lemma 6.4. If there is an r(opt, |V|)-approzimation algorithm for MINPATHWIDTH with running-
time O(f(|V])), then there is also an 2r(2 opt, h)-approzimation algorithm for MINCUTWIDTH on
multigraphs with running time O(f(h) + h? +n), where n is the number of vertices and h is the
number of edges.

Proof. Let G = (V, E) be an instance of MINCUTWIDTH and let .4 be an r(pw(G’), |V'|)-approximation
for MINPATHWIDTH Lemmal[6.2combined with Lemmal6.1]shows that pw(G’) < cwz(G) < 2cw(G).
Further, Lemmashows that any path-decomposition P of width k for G’ can be translated into

a linear arrangement L for G with cwa(L) < k+1 in O(|P|). By Lemma[6.1] we can compute then
from L a linear arrangement L’ with cw(L') < cwy(L) — 1 < k in O(h).

The relative error of L’ can thus be bounded by R(G,L) = i‘\”l\',((g)) < i\‘:{v("g))) = 2R(G", P).
The algorithm which builds G’ from G in O(n + h), runs A on G’ in O(f(h)) and creates a
linear arrangement L' in O(h + |P|) has a performance ratio 2r(pw(G’),|V]) < 2r(2cw(G),h)

and an overall running time in O(f(h) + h) (note that O(|P|) € O(f(h)), since A builds P in
O(f(IV(GI)) = O(f (h)))- O

For example, if we apply this lemma with respect to the O(log n+/log opt)-approximation algo-
rithm of [21], we obtain an O(4/log(opt) log(h))-approximation algorithm for MINCUTWIDTH on
multigraphs with h edges, and if we apply it with respect to the O(twy/log tw)-approximation algo-
rithm of [30], we obtain an O(4/log(opt) opt)-approximation algorithm. Note that the second result
holds since an O(tw+/log tw)-approximation algorithm for pathwidth is also an O(opt v/log opt)-
approximation algorithm for pathwidth. Unfortunately, our reduction blows up the treewidth, so
it does not give a translation to a ratio that depends only on the treewidth.

To the best knowledge of the authors, these are new approximations ratios for cutwidth that
have not previously been reported in the literature, and that are better or incomparable to existing
ones. Hence, let us state this result more prominently.

Corollary 6.5. There is a (polynomial-time) O(y/log(opt)log(h))-approzimation algorithm and
an O(y/log(opt) opt)-approzimation algorithm for MINCUTWIDTH on multigraphs with h edges.

34

7 Conclusions

In this work, we have answered several open questions about the string parameter of the locality
number. Our main tool was to relate the locality number to the graph parameters cutwidth
and pathwidth via suitable reductions. As an additional result, our reductions also pointed out
an interesting relationship between these classical graph parameters and the locality number for
strings, with implications for approximating these parameters.

While our focus is on theoretical results in form of lower and upper complexity bounds, we
stress here that the reductions may also be of practical interest, since they allow to transform any
practical pathwidth or cutwidth algorithm into a practical algorithm for computing the locality
number (or to transform a practical pathwidth algorithm into a practical algorithm for computing
the cutwidth). This seems particularly interesting, since, as pointed out at the end of Section
practical algorithms for constructing path decompositions of small width is a vibrant research area
of practical algorithm engineering.

References

[1] Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algorithms,
5(3):514-523, 2007. |doi:10.1016/7.jda.2006.10.001.

[2] Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and System
Sciences, 21(1):46-62, 1980. doi:10.1016/0022-0000(80)90041-0.

[3] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. Journal of the ACM, 62(5):42:1-42:25, 2015. |doi:10.1145/2775105.

[4] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM, 56(2):5:1-5:37, 2009. ldoi:10.1145/1502793.
1502794.

[6] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gambosi, Marco
Protasi, and Viggo Kann. Complexity and approzimation: combinatorial optimization prob-
lems and their approximability properties. Springer, 1999.|doi:10.1007/978-3-642-58412-1.

[6] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In Rafail Ostrovsky, editor, 52nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2011, pages 472-481. IEEE, 2011. doi:10.1109/
focs.2011.95.

[7] Pablo Barceld, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages for
path queries over graph-structured data. ACM Transactions on Database Systems, 37(4):1-46,
2012. |doi:10.1145/2389241.2389250.

[8] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1-21, 1993.
URL: http://www.inf.u-szeged.hu/actacybernetica/edb/volilinl_2/pdf/Bodlaender_
1993_ActaCybernetica.pdfl

[9] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(5):1305-1317, 1996. doi:10.1137/
s0097539793251219.

[10] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1-45, 1998. |[doi:10.1016/S0304-3975(97)00228-4.

[11] Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Déniel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond, volume 7370 of LNCS, pages 196—227, 2012. |doi:
10.1007/978-3-642-30891-8_12.

35

https://doi.org/10.1016/j.jda.2006.10.001
https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1145/2775105
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1109/focs.2011.95
https://doi.org/10.1109/focs.2011.95
https://doi.org/10.1145/2389241.2389250
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf
https://doi.org/10.1137/s0097539793251219
https://doi.org/10.1137/s0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/978-3-642-30891-8_12
https://doi.org/10.1007/978-3-642-30891-8_12

[12]

[17]

[18]

[19]

Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.
Thilikos. A note on exact algorithms for vertex ordering problems on graphs. Theory of
Computing Systems, 50(3):420-432, 2012. doi:10.1007/s00224-011-9312-0.

Katrin Casel, Joel D. Day, Pamela Fleischmann, Tomasz Kociumaka, Florin Manea, and
Markus L. Schmid. Graph and string parameters: Connections between pathwidth, cutwidth
and the locality number. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 109:1-109:16, 2019. doi:
10.4230/LIPIcs.ICALP.2019.109.

David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental evaluation of a branch-
and-bound algorithm for computing pathwidth and directed pathwidth. ACM Journal of
Ezperimental Algorithmics, 21(1):1.3:1-1.3:23, 2016. doi:10.1145/2851494.

Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local patterns. In
Satya V. Lokam and R. Ramanujam, editors, Foundations of Software Technology and The-
oretical Computer Science, FSTTCS 2017, volume 93 of LIPIcs, pages 24:1-24:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.24.

Joel D. Day, Pamela Fleischmann, Florin Manea, Dirk Nowotka, and Markus L. Schmid. On
matching generalised repetitive patterns. In Mizuho Hoshi and Shinnosuke Seki, editors, De-
velopments in Language Theory, DLT 2018, volume 11088 of LNCS, pages 269—281. Springer,
2018. |doi:10.1007/978-3-319-98654-8_22.

Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration. In
Daniel Lokshtanov and Naomi Nishimura, editors, Parameterized and Ezact Computation,
IPEC 2017, volume 89 of LIPIcs, pages 30:1-30:12. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2017. |doi:10.4230/LIPIcs.IPEC.2017.30.

Josep Diaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM Computing
Surveys, 34(3):3137356, 2002. doi:10.1145/568522.568523.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas Zeug-
mann. Learning one-variable pattern languages very efficiently on average, in parallel, and
by asking queries. Theoretical Computer Science, 261(1):119-156, 2001. doi:10.1016/
s0304-3975(00)00136-5.

Uriel Feige, MohammadTaghi HajiAghayi, and James R. Lee. Improved approximation algo-
rithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629-657,
2008. doi:10.1137/05064299x.

Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching with
variables: Fast algorithms and new hardness results. In Ernst W. Mayr and Nicolas Ollinger,
editors, Symposium on Theoretical Aspects of Computer Science, STACS 2015, volume 30
of LIPIcs, pages 302-315. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015. |doi:
10.4230/LIPIcs.STACS.2015.302.

Henning Fernau, Florin Manea, Robert Mercag, and Markus L. Schmid. Revisiting Shinohara’s
algorithm for computing descriptive patterns. Theoretical Computer Science, 733:44-54, 2018.
doi:10.1016/j.tcs.2018.04.035.

Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Information and Computation, 242:287-305, 2015. |[doi:10.1016/j.1ic.
2015.03.006.

36

https://doi.org/10.1007/s00224-011-9312-0
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.1145/2851494
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://doi.org/10.1007/978-3-319-98654-8_22
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.1145/568522.568523
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/s0304-3975(00)00136-5
https://doi.org/10.1016/s0304-3975(00)00136-5
https://doi.org/10.1137/05064299x
https://doi.org/10.4230/LIPIcs.STACS.2015.302
https://doi.org/10.4230/LIPIcs.STACS.2015.302
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2015.03.006

[25]

[39]

[40]

Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complexity
of string morphism problems. Theory of Computing Systems, 59(1):24-51, 2016. doi:10.
1007/s00224-015-9635-3.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. |doi:
10.1007/3-540-29953-X.

Dominik D. Freydenberger. Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems, 53(2):159-193, 2013. doi:10.1007/s00224-012-9389-0.

Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. Journal of Computer and System Sciences, 2019. doi:10.1016/j.jcss.
2019.04.001.

Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, 3rd edition,
2006.

Carla Groenland, Gwenagl Joret, Wojciech Nadara, and Bartosz Walczak. Approximating
pathwidth for graphs of small treewidth. ACM Trans. Algorithms, 19(2):16:1-16:19, 2023.
doi:10.1145/3576044.

Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with PSD
objectives. In Rafail Ostrovsky, editor, 52nd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2011, pages 482-491. IEEE, 2011. doi:10.1109/F0CS.2011.36/

Carl Hierholzer and Christian Wiener. Uber die Moglichkeit, einen Linienzug ohne Wieder-
holung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30-32, 1873.
doi:10.1007/bf01442866.

Juhani Karhumaki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of languages
and relations by word equations. Journal of the ACM, 47(3):483-505, 2000. doi:10.1145/
337244 .337255.

Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable pattern
languages from examples. In Ronald L. Rivest, David Haussler, and Manfred K. Warmuth,
editors, Computational Learning Theory, COLT 1989, pages 57-71. Morgan Kaufmann, 1989.
d0i:10.1016/b978-0-08-094829-4.50007-6.

Subhash Khot. On the power of unique 2-prover 1-round games. In John H. Reif, editor, 34th
Annual ACM Symposium on Theory of Computing, STOC 2002, pages 767-775. ACM, 2002.
doi:10.1145/509907.510017.

Subhash Khot. On the unique games conjecture (invited survey). In Computational Complez-
ity, CCC 2010, pages 99-121. IEEE, 2010. |doi:10.1109/CCC.2010.19.

Ton Kloks, editor. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994. doi:10.1007/BFb0045375.

Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, 46(6):787-832, 1999. doi:
10.1145/331524.331526

M. Lothaire, editor. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
doi:10.1017/cbo9781107326019.

Fillia Makedon, Christos H. Papadimitriou, and Ivan Hal Sudborough. Topological band-
width. SIAM Journal on Algebraic and Discrete Methods, 6(3):418-444, 1985. |doi:10.1137/
0606044.

37

https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.1016/j.jcss.2019.04.001
https://doi.org/10.1016/j.jcss.2019.04.001
https://doi.org/10.1145/3576044
https://doi.org/10.1109/FOCS.2011.36
https://doi.org/10.1007/bf01442866
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/337244.337255
https://doi.org/10.1016/b978-0-08-094829-4.50007-6
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1017/cbo9781107326019
https://doi.org/10.1137/0606044
https://doi.org/10.1137/0606044

[41] Florin Manea and Markus L. Schmid. Matching patterns with variables. In Combinatorics on
Words - 12th International Conference, WORDS 2019, Loughborough, UK, September 9-13,
2019, Proceedings, pages 1-27, 2019. [doi:10.1007/978-3-030-28796-2_1.

[42] Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397(1-3):150-165,
2008. |doi:10.1016/j.tcs.2008.02.028.

[43] Jordi Petit. Addenda to the survey of layout problems. Bulletin of the EATCS, 105:177-201,
2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/98l

[44] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Leonard J. Schulman, editor, 42nd ACM Symposium on Theory of Computing, STOC 2010,
pages 755-764. ACM, 2010. doi:10.1145/1806689.1806792.

[45] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion
problems. In Computational Complexity, CCC 2012, pages 64—-73. IEEE, 2012. doi:10.1109/
CCC.2012.43.

[46] Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science, 397(1—
3):166-193, 2008. doi:10.1016/j.tcs.2008.02.029.

[47] Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Information
and Computation, 239:87-99, 2014. doi:10.1016/j.1ic.2014.08.010.

[48] Markus L. Schmid. Characterising REGEX languages by regular languages equipped with
factor-referencing. Information and Computation, 249:1-17, 2016. |doi:10.1016/j.ic.2016.
02.003.

[49] Takeshi Shinohara. Polynomial time inference of pattern languages and its application. In 7th
IBM Symposium on Mathematical Foundations of Computer Science, pages 191-209, 1982.

[50] Karol Suchan and Yngve Villanger. Computing pathwidth faster than 2". In Jianer Chen
and Fedor V. Fomin, editors, Parameterized and Ezxact Computation, IWPEC 2009, volume
5917 of LNCS, pages 324-335. Springer, 2009. |[doi:10.1007/978-3-642-11269-0_27.

[61] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. Journal of Algorithms, 56(1):1-24, 2005. doi:10.1016/j.jalgor.
2004.12.001.

[52] Yu (Ledell) Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of treewidth
and related problems. J. Artif. Intell. Res., 49:569-600, 2014. URL: https://doi.org/10.
1613/jair.4030, doi:10.1613/JAIR.4030.

A Additional Word-Combinatorial Considerations

In this section, we give the details that have been omitted in Section

A.1 The Locality of the Zimin Words
Lemma A.1. loc(Z;) = % =272 fori € N>o.

Proof. Clearly, x1 and zjxox1 are 1-local. Consider a fixed ¢ € N and the marking sequence
(z2,21,Y1,Y2, .-, Yi—2) for i > 3 and {y1,...,yi—2} = {z3,...,2;}. Notice that for all j € N, z;
occurs 2°77 times in Z;. Thus by marking x», there are 2°~2 marked blocks. Since all occurrences
of z1 are adjacent to occurrences of xo, marking x; does not change the number of marked blocks.
As marking the remaining variables only leads to the merging of some pairs of consecutive blocks
into one, we never have more than 2°=2 marked blocks.

In the following we will show the converse. More precisely, we show that if a sequence is optimal
for Z; then it starts with zo,z1. Let us note first that, for 2 < p < r, between two consecutive

38

https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1016/j.tcs.2008.02.028
http://eatcs.org/beatcs/index.php/beatcs/article/view/98
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1109/CCC.2012.43
https://doi.org/10.1109/CCC.2012.43
https://doi.org/10.1016/j.tcs.2008.02.029
https://doi.org/10.1016/j.ic.2014.08.010
https://doi.org/10.1016/j.ic.2016.02.003
https://doi.org/10.1016/j.ic.2016.02.003
https://doi.org/10.1007/978-3-642-11269-0_27
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/JAIR.4030

occurrences of x, in Z; there is one occurrence of x,,. More precisely, each occurrence of a variable
Zp, With p > 2, is directly between two occurrences of 1. Also, notice that x; has 2¢=J occurrences
in Z;. Now, if z; is marked before xo, because Z; starts with x125 and ends with xzsxq, it is
immediate that after the marking of x; we will have at least 2¢~2 + 1 marked blocks in the word
(separated by the 2¢~2 unmarked occurrences of z3). This is, thus, a marking sequence that is
not optimal. So z2 is marked before z; in an optimal sequence. Assume that there exists z;,
with j7 > 2, which is also marked before z; in an optimal sequence. Let w be a word such that
Z; = x1wxq. There are 2°~1 —2 occurrences of 1 in w, and w starts with ze2; and ends with z; xs.
As each two consecutive (marked) occurrences of the letters x5 and x; are separated by unmarked
occurrences of x1 we have that, just before marking x1, there are at least min{2¢~1 —1,2i=2 4 2¢=J}
marked blocks in w (and the same number in Z;). This again shows that this is not an optimal
marking sequence. So, before x; is marked, only x5 should be marked. This concludes the proof
of our claim, and of the proposition. O

A.2 The Locality of (Condensed) Palindromes and Repetitions.

We use the following notation. Given a marking sequence o, let off be the marking sequence
obtained by reversing o (i.e. 0%(i) = o(|X| —i + 1) for 1 <i < |X]).

By loc(cond(w)) = loc(w), it is enough to show our results for condensed words. Since there
are no condensed palindromes of even length, only palindromes of odd length are of interest when
determining the locality number. A word w is called strictly k-local if for every optimal marking
sequence of w there is a stage when exactly k factors are marked. For a letter a € alph(w), we denote
by |w|, the number of occurrences of a in w. For simplicity of notations, let [n] :={1,2,...,n}.

Let w; € (X U X)* be the marked version of w at stage i € [|alph(w)]|] for a given marking
sequence o.

Lemma A.2. Define the morphism f: X UX — {0,1} by

)0 ifreX,
f(x)_{l ifzcX.

If w is a palindrome and o a marking sequence for w then f(w;) is a palindrome for all i €
[alph(w)]].

Proof. Let w = uzu’® be a palindrome with v € X* and z € X UX and |w| = n € N. Moreover
let o be a marking sequence for w and i € [| alph(w)|]. Since w is a palindrome, w[j] = w[n — j].
This implies w;[j], w;[n — j] are both either in X or in X. Thus either are both mapped to 0 or to
1. Consequently f(w;) is a palindrome. O

Recall the definition of border priority markable from [I5]. A strictly k-local word w = avb €
X X*X is called border priority markable if there exists a marking sequence o of w such that in
every stage i € [|a(w)|] of o where k blocks are marked, a and b are marked as well. Analogously
right-border priority markable and left-border priority markable are defined: A strictly k-local
word w = avb € X X* X is called right-border priority markable (rbpm) if if there exists a marking
sequence o of w such that in every stage ¢ € [|a(w)|] of o where k blocks are marked, b is marked
as well - respectively, for left-border priority markable, a is marked as well.

Remark A.3. If w € X* is right-border priority markable, then u is left-border priority mark-
able.

Lemma A.4. Let w = vau® be an odd-length condensed palindrome with u € X* and a € X. Let
u be strictly k-local witnessed by the marking sequence o.

o Ifu is rbpm then loc(w) = 2k — 1,
e if u is not rbpm and a & alph(u) then loc(w) = 2k,

e if u is not rbpm and a € alph(u) and for all optimal marking sequences for u there exists a
stage i € [| alph(u)|] such that a is marked, k blocks are marked, and u[|u|] is unmarked then
loc(w) =2k + 1, and

39

e clse loc(w) = 2k.

Proof. Let o be an optimal marking sequence of u. If a € alph(u) then o is a marking sequence for
w. Marking w w.r.t. o leads to m,(w) < 2k + 1 since there are at most maximal k blocks marked
each in v and v, and additionally the single a in the middle. If a ¢ alph(u) then o’ = cU{(|u|+1,a}
is a marking sequence for w with 7,/ (w) < 2k, since by marking w.r.t. ¢ maximal k blocks are
marked by o each in v and u® and afterwards on marking a two blocks are joined. Thus in any
case loc(w) < 2k + 1.
case 1. Consider u to be rbpm. Thus in every stage ¢ € [| alph(u)|] where k blocks are marked,
u[|u|] is marked. This implies that 7, (w) < 2k — 1 or 7,/ (w) < 2k — 1 with ¢’ defined as above.
Supposition: loc(w) =: £ <2k —1
Let o be an optimal marking sequence for w. Then g is also a marking sequence for u and thus
7, (u) > k. By loc(u) = k there exists a stage ¢ € [| alph(w)|] of p such that k blocks are marked
in u, or more precisely |cond(f(u;))[1 = k. On the other hand | cond(f(w;))|1 < ¢. Since u is
2k—1

rbpm u[|u] is marked. If z is not marked, |cond(f(u;))l1 < § < 251 =k — %, If z is marked,

|cond(f(us))|1 < 552 < 2622 = k — 1. This is in both cases a contradiction to | cond(f(u;))|; = k-
case 2. Consider now that v is not rbpm. Thus there exists a stage i € [|alph(u)|] in which &
blocks are marked but u[|u|] is unmarked. If a is not in alph(u) marking a before stage i leads to
2k + 1 blocks for the largest such i. Considering ¢’ then at the beginning u and u” are completely
marked and in the end two blocks are joined by marking a. This leads to loc(w) < 2k.
Supposition: loc(w) < 2k

As described, a needs to be marked after the last stage where in u k blocks are marked without
u[|u|] being marked. But this sums up to & blocks marked in u and k blocks marked in uf, hence
overall 2k blocks. This concludes the case a ¢ alph(u).

Consider a € alph(u) and assume that a is marked by ¢ when k blocks are marked in v and u[|ul]
is unmarked. Thus 7, (w) = 2k + 1.

Supposition: loc(w) =: ¢ <2k +1

Let p be an optimal marking sequence for w.

Additional supposition: p not optimal for u

Then there exists a stage i € [alph(w)] such that |cond(f(u;))|1 = k + 1. If a is unmarked in this
stage, | cond(f(w;))|1 = 2k + 2 > ¢ which contradicts the first supposition. If a is marked in this
stage | cond(f(w;))]1 = 2k + 1 which contradicts the first supposition.

Thus, p is optimal for u. By assumption there exists a stage ¢ € [| alph(u)|] such that a is marked,
k blocks are marked, and u[|u|] is unmarked. This implies since cond(f(w;)) is a palindrome that
at most Z’Tl blocks are marked in uw. Thus, k& < K’Tl < % =k.

case 3. In the remaining case u is not rbpm, a € alph(u), and there exists an optimal marking
sequence for u such that in every stage a is unmarked or less than k blocks are marked or u||ul] is
marked. Let o be such a marking sequence. Then 7, (w) = 2k.

Supposition: loc(w) =: £ < 2k

Let © be an optimal marking sequence for w. Since u is not rbpm there exists a stage i €
[lalph(u)|] such that |cond(f(w;))|1 = k and u[|u|] is unmarked. If a were unmarked in stage 1,
k =|cond(f(u;))l1 < & < k and if a were marked in stage i, k = |cond(f(u;))|1 < 5t < 2L =
k — % Thus 2k + 1 < ¢ < 2k would hold. O

Lemma A.5. Let w = u® be the i-times repetition for u € X* and i € N. If u is strictly k-local
then

{iki+1, if u is bpm,

loc(w) = < . .

ik, otherwise.

Proof. Let o be a marking sequence with 7, = loc(u) = k. Since alph(u) = alph(u?) for alli € N, o
is also a marking sequence for w. If u is not bpm, there exists a stage during the marking in which
k blocks are marked by o and at least one of u[1] or u[|u|] is unmarked. Thus marking w according
to the sequence o leads to 7, (w) = k. If w is bpm, in any stage in which k blocks are marked, u[1]
and u[|u|] are marked and thus in w, while being marked according to o, the last marked block of
an occurrence of u and the first marked block of the next occurrence of u coincide, as soon as the
prefix of length |u| of w contains k marked blocks. So, we get 7, (w) = ik —i + 1.

40

For proving loc(w) = ik or loc(w) = ik — ¢ + 1 respectively, consider firstly ¢ = 2. Assume
first that w is bpm. Suppose loc(w) = £ < 2k — 1. Let ¢’ be the marking sequence witnessing
loc(w) = £. Since w is strictly k-local, there exists a stage in marking w by ¢’ in which u has k
marked blocks. The second u has exactly as many marked blocks as the first one, so also k. In
the best case, in w the last marked block of the first u and the first marked block of the second
u are connected. Anyway, the number of marked blocks of w is, in that case, exactly 2k — 1. A
contradiction to the assumption loc(w) = ¢ < 2k — 1. If w is not bpm, then, once again, there
exists a stage in marking w by ¢’ in which u has k& marked blocks. The second u has also exactly
k marked block. But, in this case, in w the last marked block of the first u and the first marked
block of the second u do not touch (as either the last letter of w or its first letter are not marked).
So w has 2k marked blocks, a contradiction.

This reasoning can be trivially extended for i > 2. O

41

	Introduction
	Known Results and Open Questions
	Our Contributions
	Organisation of the Paper

	Preliminaries
	(Parameterised) Complexity Theory and Approximation Algorithms
	Basic String Definitions and Locality
	Basic Graph Definitions and Graph Parameters
	Problem Definitions

	Examples and Word Combinatorial Considerations
	Locality and Cutwidth
	Reducing Locality Number to Cutwidth
	Reducing Cutwidth to Locality Number
	Consequences of the Reductions

	Locality and Pathwidth
	Greedy Strategies
	Reducing Locality Number to Pathwidth
	Proof of Lemma 5.7

	A New Relationship Between Pathwidth and Cutwidth
	Conclusions
	Additional Word-Combinatorial Considerations
	The Locality of the Zimin Words
	The Locality of (Condensed) Palindromes and Repetitions.

