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Physical constraints on accuracy and persistence during breast cancer cell chemotaxis
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Directed cell motion in response to an external chemical gradient occurs in many biological phe-
nomena such as wound healing, angiogenesis, and cancer metastasis. Chemotaxis is often charac-
terized by the accuracy, persistence, and speed of cell motion, but whether any of these quantities
is physically constrained by the others is poorly understood. Using a combination of theory, simu-
lations, and 3D chemotaxis assays on single metastatic breast cancer cells, we investigate the links
among these different aspects of chemotactic performance. In particular, we observe in both exper-
iments and simulations that the chemotactic accuracy, but not the persistence or speed, increases
with the gradient strength. We use a random walk model to explain this result and to propose
that cells’ chemotactic accuracy and persistence are mutually constrained. Our results suggest
that key aspects of chemotactic performance are inherently limited regardless of how favorable the

environmental conditions are.

AUTHOR SUMMARY

One of the most ubiquitous and important cell behav-
iors is chemotaxis: the ability to move in the direction
of a chemical gradient. Due to its importance, key as-
pects of chemotaxis have been quantified for a variety
of cells, including the accuracy, persistence, and speed
of cell motion. However, whether these aspects are mu-
tually constrained is poorly understood. Can a cell be
accurate but not persistent, or vice versa? Here we use
theory, simulations, and experiments on cancer cells to
uncover mutual constraints on the properties of chemo-
taxis. Our results suggest that accuracy and persistence
are mutually constrained.

INTRODUCTION

Chemotaxis plays a crucial role in many biological
phenomena such as organism development, immune sys-
tem targeting, and cancer progression [IH4]. Specifically,
recent studies indicate that chemotaxis occurs during
metastasis in many different types of cancer [2 5HI]. At
the onset of metastasis, tumor cells invade the surround-
ing extracellular environment, and oftentimes chemical
signals in the environment can direct the migration of
invading tumor cells. Several recent experiments have
quantified chemotaxis of tumor cells in the presence of
different chemoattractants [3] and others have been de-
voted to the intracellular biochemical processes involved
in cell motion [I0]. Since the largest cause of death in
cancer patients is due to the metastasis, it is important
to understand and prevent the directed and chemotactic
behavior of invading tumor cells.
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Chemotaxis requires sensing, polarization, and motil-
ity [I1]. A cell’s ability to execute these interrelated as-
pects of chemotaxis determines its performance. High
chemotactic performance can be defined in terms of sev-
eral properties. Cell motion should be accurate: cells
should move in the actual gradient direction, not a dif-
ferent direction. Cell motion should be persistent: cells
should not waste effort moving in random directions be-
fore ultimately drifting in the correct direction. Cell mo-
tion should be fast: cells should arrive at their destination
in a timely manner.

Indeed, most studies of chemotaxis use one or more
of these measures to quantify chemotactic performance.
Accuracy is usually quantified by the so-called chemotac-
tic index (CI), most often defined in terms of the angle
made with the gradient direction [12HI5] (Fig [[A); al-
though occasionally it is defined in terms of the ratio of
distances traveled [I6] or number of motile cells [I7HIY]
in the presence vs. absence of the gradient. Directional
persistence [I0] (DP) is usually quantified by the ratio of
the magnitude of the cell’s displacement (in any direc-
tion) to the total distance traveled by the cell (Fig ;
sometimes called the McCutcheon index [20], length ra-
tio [21], or straightness index [22]), although recent work
has pointed out advantages of using the directional au-
tocorrelation time [21], 23]. Speed is usually quantified in
terms of instantaneous speed along the trajectory or net
speed over the entire assay.

However, the relationship among the accuracy, persis-
tence, and speed in chemotaxis, and whether one quan-
tity constrains the others, is not fully understood. Are
there cells that are accurate but not very persistent, or
persistent but not very accurate (Fig )? If not, is it be-
cause such motion is possible but not fit, or is it because
some aspect of cell motion fundamentally prohibits this
combination of chemotactic properties?

Here we focus on how a cell’s intrinsic migration mech-
anism as well as properties of the external environment
place constraints on its chemotactic performance. The
physics of diffusion places inherent limits on a cell’s abil-
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FIG. 1: Illustration of chemotaxis. (A) The cell’s dis-
placement makes an angle 6 with the gradient direction. The
chemotactic index (CI) is defined here as the ratio of the dis-
placement in the gradient direction to the total displacement.
The directional persistence (DP) is defined here as the ratio
of the total displacement to the total distance traveled. (B)
High CI values are indicative of cell movement in the gradient
direction, whereas high DP values are indicative of straight
cell movement in any direction.

ity to sense chemical gradients [24]. These limits, along
with the cell’s internal information processing and its
motility mechanism, determine the accuracy, persistence,
and speed of migration. Using a human breast cancer
cell line (MDA-MB-231) embedded within a 3D collagen
matrix inside a microfluidic device imposing a chemical
gradient, we are able to quantify the chemotactic per-
formance of invasive cancer cells in response to various
chemical concentration profiles. Results from chemotaxis
assays are then compared with simulations and theoret-
ical predictions in order to probe the physical limits of
cancer cells to chemotaxis.

RESULTS
Quantifying accuracy, persistence, and speed

We measure accuracy using the chemotactic index (CI)
[12HI15]

CI = (cosb), (1)

where 60 is the angle the cell’s displacement makes with
the gradient direction (Fig[IJA), and the average is taken
over many cell trajectories. CI is bounded between —1
and 1. For chemotaxis in response to an attractant, as
in this study, CI generally falls between 0 and 1; whereas
in response to a repellent, CI usually falls between —1
and 0. CI = 1 represents perfectly accurate chemotaxis
in which cell displacement is parallel to the gradient di-
rection (Fig[IB, top two examples), and CI = 0 indicates
that the cells’ migration is unbiased (Fig , bottom two
examples). The facts that CI is bounded and dimension-
less make it easy to compare different values across differ-
ent experimental conditions, and get an intuitive picture
for the type of cell dynamics it represents.

We measure persistence using the directional persis-
tence (DP), defined as the ratio of the magnitude of the

cell’s displacement (in any direction) to the total distance
traveled [20-22] (Fig[TA),

DP = < |disp.1acement| > . @)
distance

Note that this ratio goes by several names [20-22], and
although the name we use here contains the word ‘chemo-
tactic,” the ratio is in fact independent of the gradient
direction. Indeed, DP measures the tendency of a cell
to move in a straight line, in any direction. DP is also
dimensionless and bounded between 0 and 1, and once
again intuitive sense can be made of either limit. If
DP = 1, then the cells are moving in perfectly straight
lines in any arbitrary direction (Fig , right two exam-
ples). In contrast, a low DP is representative of a cell
trajectory that starts and ends near the same location
on average (Fig , left two examples), with DP — 0 in
the limit of an infinitely long non-persistent trajectory.

An alternative measure of persistence is the direc-
tional autocorrelation time Tac = [ dt’ (cos(6i41—6;)),
where ¢’ is the time difference between two points in a
trajectory, and the average is taken over all starting times
t [21, 23]. The advantage of the autocorrelation time is
that, unlike the DP, it is largely independent of the mea-
surement frequency and total observation time. The dis-
advantage is that, unlike the DP, it is not dimensionless
or bounded. Although we use the DP here, we verify in
Fig S1 that the autocorrelation time varies monotonically
with the DP for our experimental assay.

We measure speed using the instantaneous speed along
the trajectory. That is, we take the distance traveled in
the measurement interval At (15 minutes in the experi-
ments, see below), divide it by the interval, and average
this quantity over all intervals that make up the trajec-
tory.

Breast cancer cells chemotax up TGF-j gradients

We begin by investigating the above properties of
chemotaxis in the context of metastasis, specifically the
epithelial-mesenchymal transition and subsequent inva-
sion of cancer cells. To this end, we perform experi-
ments using a triple-negative human breast cancer cell
line (MDA-MB-231). Invasion of tumor cells in vivo is
aided by external cues including soluble factors that are
thought to form gradients in the tumor microenviron-
ment [2, 5HI). Among these soluble factors, transforming
growth factor-g (TGF-$) is a key environmental cue for
the invasion process [2, 25H28]. Therefore, we use TGF-3
as the chemoattractant.

The in vivo tumor microenvironment is highly com-
plex. As a result, in vitro platforms have been devel-
oped and widely used to investigate the cancer response
to a specific cue. In this study, a microfluidic platform
is used to expose the TGF-f gradient to the cells in 3D
culture condition (Fig[2JA). The microfluidic device is de-
signed with three different channels, a center, source, and
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FIG. 2: Microfluidic device used as a chemotaxis plat-
form. (A) Cross-sectional view illustrating concentration
gradient formed by diffusion. (B) Illustration showing struc-
ture of the microfluidic channels. Center channel (green) is
filled with type I collagen mixture and MDA-MB-231 mixture,
source channel is filled with culture medium containing TGF-
B, and sink channel is filled with only culture medium. (C)
FITC-dextran fluorescence within the center channel. Blue
region indicates sink channel while red region indicates source
channel.

sink channel (Fig ) The center channel is filled with
a composition of MDA-MB-231 cells and type I collagen
while the medium is perfused through the side source and
sink channels. TGF- is applied only through the source
channel, not the sink channel, and therefore a graded
profile develops over time in the center channel by diffu-
sion. Consequently, the MDA-MB-231 cells surrounded
by type I collagen are exposed to a chemical gradient of
TGF-5.

To verify that a graded TGF-g profile is generated
in the center channel, we utilize 10kDa FITC-dextran,
whose hydrodynamic radius (2.3 nm) is similar to that of
TGF-f (approximately 2.4 nm [29]). The fluorescence in-
tensity is shown in Fig[2lC. The profile approaches steady
state within 3 hours, is approximately linear, and remains
roughly stationary for more than 12 hours. Therefore,
we record the MDA-MB-231 cells using time-lapse mi-
croscopy every 15 minutes from 3 to 12 hours after im-
posing the TGF-8. See Materials and methods for de-
tails.

First, we perform a control experiment with no TGF-4
to characterize the baseline of the MDA-MB-231 cell mi-
gratory behavior. Representative trajectories are shown
in Fig[BJA, and we see that there is no apparent preferred
direction. Indeed, as seen in Fig (black), the CI is
centered around zero, indicating no directional bias. No-
tably, the spread of the CI values is very broad, with
many data points falling near the endpoints —1 and 1.
This is a generic feature of the CI due to its definition
as a cosine: when the distribution of angles 6 is uniform,
the distribution of cos@ is skewed toward —1 and 1 be-
cause of the cosine’s nonlinear shape. Nonetheless, we
see that the median of the CI is very near zero as ex-
pected. The speed and DP are shown in Fig QD and E,
respectively (black). We see that the DP is significantly
above zero, indicating that even in the absence of any
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FIG. 3: Cell trajectories and chemotaxis metrics. Cell
trajectories of (A) control and (B) 50nM/mm TGF-3 gradi-
ent. Distribution of (C) chemotactic index, (D) speed, and
(E) directional persistence of each trajectory from both the
control (black) and the TGF-S gradient (red). Boundary
of box plots indicates quadrants with centerline as median.
Distributions are statistically compared using Mann-Whitney
test.

chemoattractant, cells exhibit persistent motion. This
result is consistent with previous works that showed that
cells cultured in 3D tend to have directionally persistent
movement unlike those in 2D [I0].

Next, we expose cells to a TGF-4 gradient of g = 50
nM/mm. Representative trajectories are shown in Fig
[BB, and we see a possible bias in the gradient direction.
Indeed, as seen in Fig[3[C (red), the CI is centered above
zero, indicating a directional bias, and the difference with
the control distribution is statistically significant (p value
< 0.05). We also see in Fig (red) that the speed
increases, although we will see below that the increase
is relatively small and that the trend is non necessar-
ily monotonic. Finally, we see in Fig (red) that the
DP decreases, although the difference with the control
is not statistically significant. These results suggest that
a TGF-f gradient causes a significant increase in direc-
tional bias (CI) but not necessarily a significant change
in cell speed or persistence (DP).

To confirm the trends suggested above, we evaluate
the response to four different TGF-/3 gradient strengths,
g =0, 1, 5, and 50 nM/mm, in three separate experi-
ments each (Fig —C; the trajectories for all experiments
and g values are shown in Fig S2). We see in Fig that,
consistent with Fig 3] the CI is zero for the control and
increases with gradient strength g. In fact, the CI ap-
pears to saturate beyond 5 nM/mm, such that its value
at 50 nM/mm is not significantly larger than its value at
5 nM/mm. We also see in Fig , consistent with Fig
the DP slightly decreases with the gradient strength
although the decrease is roughly within error bars. Fi-
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FIG. 4: Comparison of experiments with simulations.
Experimental (A) chemotactic index, (B) directional persis-
tence, and (C) speed for four different TGF-8 gradients,
g =0, 1, 5, and 50 nM/mm.(red) Data points indicate av-
erage and standard error of medians from three different ex-
periments. A, B, and C are plotted with log-scaled TGF-§
gradient. (D-F) Same for cellular Potts model (CPM) simu-
lations (blue). Error bars are standard error from 1000 trials.
Directional persistence from reduced polarization memory de-
cay rate(r) is represented in (E) (gray)

nally, we see in Fig [IC that the increase in the speed is
small, achieving a statistically significant difference with
the control only at the largest gradient strength, and that
the trend is not monotonic.

Minimum detectable gradient is shallow

A striking feature of Fig[dA is that the cells respond to
a gradient as shallow as ¢ = 5 nM/mm. To put this value
in perspective, we estimate both the relative concentra-
tion change and the absolute molecule number difference
across the cell body [4]. The microfluidic device is about
1 mm in the gradient direction, and therefore a cell in the
middle experiences a background concentration of about
¢ = 2.5 nM. Assuming the cell is on the order of a = 10
pm wide, the change in concentration across its body is
ga = 0.05 nM, for a relative change of ga/c = 2%. The
number of attractant molecules that would occupy half
the cell body is on the order of ca® = 1500. T'wo percent

4

of this is ga* = 30, meaning that cells experience about a
thirty-molecule difference between their two halves. The
same quantities are approximately ga/c = 1% and 6%,
and ga* = 60 and 300, for amoebae in cyclic adenosine
monophosphate gradients [I4] and epithelial cells in epi-
dermal growth factor gradients [30], respectively [4]. This
suggests that the response of MDA-MB-231 cells to TGF-
8 gradients is close to the physical detection limit for
single cells.

Simulations suggest sensing and persistence are
decoupled

To understand the experimental observation that the
CI increases with gradient strength, but the DP and
speed do not (Fig —C)7 we turn to computer simu-
lations. The cells in the experiments are executing 3D
migration through the collagen matrix (as opposed to
crawling on top of a 2D substrate). Nevertheless, the
imaging is acquired as a 2D projection of the 3D motion.
We do not expect this projection to introduce much error
into the analysis because the height of the microfluidic
device is less than 100 pm, whereas its width in the gra-
dient direction is about 1 mm, and its length is several
millimeters. Indeed, from the experimental trajectories
(Fig|3) we have estimated that if motility fluctuations in
the height direction are equivalent to those in the length
direction, then the error in the CI that we make by the
fact that we only observe a 2D projection of cell motion
is less than 1%. Consequently, for simplicity we use a 2D
rather than 3D simulation of chemotaxis of a cell through
an extracellular medium.

Specifically, we use the cellular Potts model (CPM)
[B1, 32], a lattice-based simulation that has been widely
used to model cell migration [33H35] (note that whereas
often the CPM is used to model collective migration, here
we use it for single-cell migration). In the CPM, a cell
is defined as a finite set of simply connected sites on a
regular square lattice (Fig [5). The cell adheres to the
surrounding collagen with an adhesion energy o and has a
basal area Aj from which it can fluctuate at an energetic
cost A. This gives the energy function

u=aL+ \MA— Ap)?, (3)

where L and A are the cell’s perimeter and area, respec-
tively.

Cell motion is a consequence of minimizing the energy
u subject to thermal noise and a bias term w that incor-
porates the response to the gradient [33]. Specifically, for
a lattice with S total sites, one update step occurs in a
fixed time 7 and consists of S attempts to copy a random
site’s label (cell or non-cell) to a randomly chosen neigh-
boring site. Each attempt is accepted with probability

D {e(A“w) Au—w>0

4
1 Au—w <0, )
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FIG. 5: Cellular Potts model (CPM) simulation. Snap-
shot shows cell (gray) migrating towards increasing chemical
concentration over time (white trajectory). Inset: Cell motil-
ity occurs through addition and removal of lattice sites. p,
cell polarization vector; «, cell-collagen adhesion energy; §L,
change in perimeter; 6 A, change in area.

where Aw is the change in energy associated with the
attempt. The bias term is defined as

w=AZ- P, (5)

where AZ is the change in the cell’s center of mass caused
by the attempt, and p'is the cell’s polarization vector (Fig
inset, black arrow), described below. The dot product
acts to bias cell motion because movement parallel to the
polarization vector results in a more positive w, and thus
a higher acceptance probability (Eq. E[)

The polarization vector is updated every time step 7
according to

—

A
=F = 1=+ nAd, + ). (6)

The first term in Eq. [6] represents exponential decay of 7
at a rate r. Thus, r—! characterizes the polarization vec-
tor’s memory timescale. The second term causes align-
ment of p'with Az, according to a strength 7, where Az,
is a unit vector pointing in the direction of the displace-
ment of the center of mass in the previous time step 7.
Thus, this term promotes persistence because it aligns p’
in the cell’s previous direction of motion. The third term
causes alignment of p with ¢ according to a strength e,
where ¢ contains the gradient sensing information, as de-
fined below. Thus, this term promotes bias of motion in
the gradient direction.

The sensing vector ¢ is an abstract representation of
the cell’s internal gradient sensing network and is defined
as

7= ((ni = n)fs), (7)

where the average is taken over all lattice sites ¢ that
comprise the cell, and receptor saturation is incorporated
as described below. The unit vector 7; points from the
cell’s center of mass to site i, the integer n; represents
the number of TGF-£ molecules detected by receptors
at site ¢, and 7 is the average of n; over all sites. The
integer n; is the minimum of two quantities: (i) the num-
ber of TGF-f receptors at site 4, which is sampled from
a Poisson distribution whose mean is the total recep-
tor number N divided by the number of sites; and (ii)
the number of TGF-8 molecules in the vicinity of site
i, which is sampled from a Poisson distribution whose
mean is (c+ gz;)¢3, where £ is the lattice spacing, and z;
is the position of site ¢ along the gradient direction. Tak-
ing the minimum incorporates receptor saturation, since
each site cannot detect more attractant molecules than
its number of receptors. The subtraction in Eq. [7] makes
¢ a representation of adaptive gradient sensing: if recep-
tors on one side of the cell detect molecule numbers that
are higher than those on the other side, then ¢ will point
in that direction. Adaptive sensing has been observed in
the TGF-8 pathway [36] in the form of fold-change de-
tection [37] (for shallow gradients, subtraction as in Eq.
[7is similar to taking a ratio as in fold-change detection
[30)).

The simulation is performed at a fixed background con-
centration ¢ and gradient g for a total time T'. The posi-
tion of the cell’s center of mass is recorded at time inter-
vals At, from which we compute the CI, DP, and speed.

The parameter values used in the simulation are listed
in Table [l and are set in the following way. The val-
ues T' =9 h, At = 15 min, ¢ = 2.5 nM, and g = 5
nM/mm are taken from the experiments. We estimate
Ag = 400 pm? from the experiments, and we take £ = 2
pm, such that a cell typically comprises Ag/¢? = 100 lat-
tice sites. We find that realistic cell motion is sensitive
to a: when « is too small the cell is diffuse and uncon-
nected, whereas when « is too large the cell does not
move because the cost of perturbing the perimeter is too
large. The crossover occurs around « ~ ¢~! as expected,
and therefore we set a on this order, to a = 2 pym~1.
In contrast, we find that cell motion is not sensitive to
A (apart from A = 0 for which the cell evaporates), and
therefore we set A = 0.01 pm~* corresponding to typical
area fluctuations of A\=1/2/4y = 2.5%. In order for our
Poisson sampling procedure to be valid, the time step 7
must be much larger than the timescale £2/D for an at-
tractant molecule or receptor to diffuse with coefficient
D across a lattice site. Taking D ~ 10 pm?/s, we find
7> 0.4 s. At the other end, we must have 7 < At = 900
s for meaningful data collection. We find that within
these bounds, results are not sensitive to 7, and there-
fore we set 7 on the larger end at 7 = 100 s to reduce
computational run time.

The parameters N, 7, and € are calibrated from the
experimental data in Fig [fJA-C. Specifically, N sets the
gradient value above which the CI saturates (see Fig[4A)
because if the gradient is large but N is small, the cell



Parameter Value Reason ‘
Total time T 9h Experiments
Recording interval At 15 min Experiments
Background concentration ¢ 2.5 nM Experiments
Concentration gradient g 5 nM/mm | Experiments
Relaxed cell area Ag 400 /unZ Experiments
Lattice spacing ¢ 2 pm ~100 sites per cell
Cell-environment contact energy o2 pm™* an~L1

Area deviation energy A 0.01 pm™* AV2 < A

Simulation time 7 100 s /D <7 < At
Total receptor number N 10,000 CI saturation
Bias strength e 56 Calibrated via CI
Persistence strength n 107 Calibrated via DP

1

Polarization memory decay rate r 0.0l s™1 |r~ 7~

TABLE I: Table of parameters and values used in cellular
Potts model (CPM) simulations. See text for more detailed
reasoning behind values.

quickly migrates into a region in which there are more
attractant molecules than receptors at all lattice sites,
and gradient detection is not possible. We find that N =
10,000, which is a reasonable value for the number of
TGF-f receptors per cell [38] B9], places the saturation
level at roughly ¢ = 50 nM/mm as in the experiments
(Fig ) We set € = 56 yum~! and 7 = 107 pm~! to
calibrate their cognate observables, CI and DP, respec-
tively, to the corresponding experimental values at g = 5
nM/mm (Fig D and E).

The final parameter is the memory timescale of the
polarization vector, 7~!. As seen in Fig (gray), we
find that the behavior of the DP depends sensitively on
this timescale. When r~! is large, the DP increases with
gradient strength. In contrast, when r—! is small (in-
deed, equal to the smallest timescale in the system, 7),
the DP does not increase with gradient strength, and in
fact slightly decreases (Fig[dJE, blue). Because the latter
behavior is consistent with the experiments (Fig[dB), we
set ! = 7. We conclude that the memory timescale
of MDA-MB-231 cells is very short when responding to
TGF-$ gradients.

We validate the simulation in two ways, using the
speed. First, we find that the magnitude of the speed
in the simulations is on the same order as the speed in
the experiments (Fig and F), i.e., tens of microns per
hour. Second, we find that the speed shows little depen-
dence on the gradient strength in both the simulations
and the experiments: it slightly increases in Fig [4JC and
slightly decreases in Fig [dF. Considering that the speed
is not calibrated directly in our simulations, these con-
sistencies validate the CPM as a reasonable description
of the cell migration in the experiments.

Our finding that the cell’s memory timescale ! takes
its minimum value allows for the following interpreta-
tion: the parameter r couples the persistence term and
the sensory term in the CPM (Eq. @ Thus, when the

memory timescale »~! is long, biased motion must be
also persistent and vice versa. In contrast, when the
memory timescale r~! is short, it is possible for bias to
increase without increasing persistence. Therefore, the
simulations suggest that the reason that CI but not DP
increases with gradient strength in the experiments, is
that the drivers of sensory bias and migratory persis-
tence in the cell’s internal network are decoupled from
one another.

Theoretical model reveals performance constraints

Our finding that bias and persistence are decoupled
in the simulations allows us to appeal to a much more
simplified theoretical model in order to understand and
predict global constraints on chemotaxis performance.
Specifically, we consider the biased persistence random
walk (BPRW) model [40] 4], in which bias and persis-
tence enter as explicitly independent terms controlled by
separate parameters. The BPRW has been shown to be
sufficient to capture random and directional, but not pe-
riodic, behaviors of 3D cell migration [42]. Because we
do not observe periodic back-and-forth motion of cells in
our experiments, we propose that the BPRW is sufficient
to investigate chemotactic constraints here.

As in the simulations, we consider the BPRW model
in 2D. In the BPRW model, a cell is idealized as a single
point. Its trajectory consists of M steps whose lengths
are drawn from an exponential distribution. We take
M = T/At = 36 as in the experiments. The probability
of a step making an angle § with respect to the gradient
direction is

eP cos(0—0")
2rlo(p) ’
—_————

persistence

P(0]0") = bcos O+

bias

(8)

where 0’ is the angle corresponding to the previous step.
The first term incorporates the bias, with strength b. It is
maximal when the step points in the gradient direction
(0 = 0) and therefore promotes bias in that direction.
It integrates to zero over its range (—m < 6 < m) be-
cause the bias term only reshapes the distribution with-
out adding or subtracting net probability. The second
term incorporates the persistence, with strength p. It is
a von Mises distribution (similar to a Gaussian distribu-
tion, but normalized over the finite range —7 < 6 < 7)
whose sharpness grows with p. It is maximal at the previ-
ous angle 6’ and therefore promotes persistence. The nor-
malization factor Iy is the zeroth-order modified Bessel
function of the first kind.

The requirement that P(6]6’) be non-negative over the
entire range of # mutually constrains b and p. However,
apart from this constraint, b and p can take any positive
value. We sample many pairs of b and p, reject those that
violate the constraint, and compute the CI and DP from a
trajectory generated by each remaining pair. The results
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FIG. 6: Comparison of theory with experiments and
simulations. Colored circles show CI and DP for all values
of bias parameter (color) and persistence parameter (size) for
biased persistent random walk (BPRW) theory. Black lines
show analytic approximations of the bounding curves. Red
and cyan squares show experimental and simulation data, re-
spectively, from Fig Magenta numerals and arrows show
“forbidden” regions and qualitative trends, respectively, dis-
cussed in text.

are shown in Fig 6] (colored circles). We see in Fig|[6] that
the BPRW model exists in a highly restricted ‘crescent’
shape within CI-DP space. As expected, the CI increases
with the bias parameter b (color of circles, from blue to
red). The top corner corresponds to maximal bias and
no persistence; indeed, when p = 0 the persistence term
in Eq. 8| reduces to (27)~!, and non-negativity requires
b < (2m)~! ~ 0.16, which is consistent with the upper
limit of the color bar. Also as expected, the DP increases
with the persistence parameter p (size of circles, from
small to large), although only in the lower portion where
the CI is low.

The crescent shape of the allowed CI and DP val-
ues in Fig [6] can be understood quantitatively because
several moments of the BPRW are known analytically
[41]. Specifically, the mean squared displacement and
the mean displacement in the gradient direction are, in
units of the mean step length,

(r?) = ﬁ {ZQMQ +2 (1 —22% — zQefM) M
+2 (2z2 - 1) (1 - e*”f)
+ 222 (1—e—M)2}, 9)
<m>=ﬁ(z\2—1+e—“), (10)

respectively, where M = M(1 — ¢) and z = x/(1 —
¢), with x = [* df beos’§ = 7b and ¢ =

[T dé [2nIy(p)]teP P cos ¢ = Ii(p)/Io(p). We ap-

proximate the CI and DP in terms of these moments,

CI:<x>z<x>z () , (11)

v/ Ar) (r?)
_ () V)
DP = o~ Yot (12)

and evaluate these expressions in specific limits to ap-
proximate the edges of the shape. In the limit b = 0,
Eq. reduces to CI = 0 (bottom black line in Fig

In the limit p = 0, Egs. and are functions
of only b and M, and b can be eliminated to yield
DP = [1 + M(1 — CI?)/2]/2 (left black line in Fig [6),
where we have used the approximation M > 1 (see Mate-
rials and methods). Note here that when CI = 0 we have
DP ~ (M/2)~"/2 for large M, which makes sense because
for a simple random walk (p = b = 0) the displacement
goes like M'/2 while the distance goes like M, such that
DP ~ M~'/2. Finally, the right edge corresponds to the
maximal value of p for a given b, for which we compute
the approximation curve parametrically (right black line
in Fig@; see Materials and methods). We see in Fig@that
these approximate expressions slightly underestimate the
CI and overestimate the DP, but otherwise capture the
crescent shape well. The under- and overestimation are
due to the approximation (r) ~ 4/(r?) in Egs. and
because 02 = (r?) — (r)2 > 0 for any statistical quantity,
we have 1/(r?) > (r), making Eq. |11| an underestimate
and Eq. [I2] an overestimate.

The crescent shape can also be understood intuitively.
First, we see that the DP cannot be smaller than a mini-
mum value (region I in Fig@. This is because the trajec-
tory length M is finite, and as discussed above, the DP
only vanishes for infinitely long trajectories. If M were
to increase, the crescent would extend further toward DP
= 0. Second, we see that the top of the crescent bends
away from the CI — 1, DP — 0 corner (region II in Fig
@. In other words, it is not possible to have high bias
without any persistence. This is because if the bias is
strong, then cells will track the gradient very well. Con-
sequently, they will move in nearly straight lines in the
gradient direction, and straight movement corresponds to
high persistence. This is a bias-induced persistence, dis-
tinct from the bias-independent persistence in the lower-
right corner of the crescent. Finally, we see that the bend-
ing shape of the crescent implies that no solutions exist
at large DP and intermediate CI (region III in Fig |§[) In
other words, it is not possible to have high persistence
with partial bias. This is because, as mentioned above,
persistence is induced either (i) directly, as a result of a
large persistence parameter p which is independent of the
bias, in which case the CI is low; or (ii) indirectly, as a
result of a large bias parameter b, in which case the CI is
high. Neither of these mechanisms permits intermediate
bias, and therefore high persistence can be accompanied
only by low or high directionality. Together, these fea-
tures of the crescent shape imply that specific modes of
chemotaxis are prohibited under our simple model, as
indicated by the regions I, I, and TII.



Finally, the crescent shape provides a qualitative ratio-
nale for the data from the simulations and experiments,
which are overlaid in the cyan and red squares in Fig
[6] respectively. Specifically, the shape of the crescent is
such that if a cell has a low CI and intermediate DP (bot-
tom right corner of the crescent) and its CI increases, its
DP must decrease (solid magenta arrow in Fig @ In
contrast, a simultaneous increase in CI and DP from this
starting position is not possible according to the model
(dashed magenta arrow in Fig |§[) We see that the data
are qualitatively consistent with this predicted trend, as
an increase in the CI corresponds to a decrease in the
DP in both the experiments and the simulations (Fig
|§|, squares). There is quantitative disagreement, in the
sense that the data do not quite overlap with the cres-
cent, but this is a reflection of the extreme simplicity of
the BPRW model. Nonetheless, the qualitative features
of the BPRW model are sufficient to explain the way in
which accuracy and persistence are mutually constrained
during the chemotaxis response of these cells.

DISCUSSION

By integrating experiments with theory and simula-
tions, we have investigated mutual constraints on the ac-
curacy (CI), persistence (DP), and speed of cancer cell
motion in response to a chemical attractant. We have
found that while the CI of breast cancer cells increases
with the strength of a TGF-f3 gradient, the speed does
not show a strong trend, and the DP slightly decreases.
The simulations suggest that the decrease in DP is due to
a decoupling between sensing and persistence in the mi-
gration dynamics. The theory confirms that the decrease
in DP is due to a mutual constraint on accuracy and per-
sistence for this type of decoupled dynamics, and more
generally, it suggests that entire regions of the accuracy—
persistence space are prohibited.

The present results provide some insights into TGF-
induced migration mechanisms. Multiple signaling path-
ways induced by TGF-g affect the dynamics of actin
polymerization regulating cell migratory behaviors|27,
43-H45].  Among these, phosphatidylinositol 3-kinase
(PI3K) and the small GTPase-Racl signaling have been
reported to promote actin organization of breast can-
cer cells in response to TGF-5 [45] 46]. PI3K and the
Rho-family GTPase networks (including Racl, RhoA and
Cdc42) have been widely studied in chemotaxis, which
regulates cell polarity and directional sensing [47H50].
The PI3K activity, thus, can possibly explain the present
chemotactic responses of the breast cancer cells to TGF-
B gradient. Recent studies have shown that PI3K is rel-
evant to the accuracy of the cell movement in shallow
chemoattractants, whereas it does not induce the orien-
tation of cell movement in steep gradients; rather, PI3K
contributes the motility enhancement [51] 52]. These re-
sults can be correlated with the cell motility trend in
the present experimental results. In addition, the PI3K

signaling pathway has been reported not to mediate the
persistence of cell protrusions which could be directly
related to the DP [47, 48]. The directional persistence
could be more relevant to the polarity stability which is
hardly controlled by chemotaxis [47] as presented in the
present results. In TGF- molecular cascades, activation
of SMAD proteins could also affect the actin dynamics.
Since SMAD-cascades include negative feedback inhibit-
ing Rho activity[43] 44], it may affect the cell responses
highly promoted in CI but not in speed. However, the
underlying molecular mechanisms need further research.

Our finding that sensing and persistence are largely
decoupled in the migration dynamics is related to the
view that directional sensing and polarity are separate
but connected modules in chemotaxis [I1]. Indeed, CI,
DP, and speed in our study play the roles of the direc-
tional sensing, polarity, and motility modules, respec-
tively, that have been shown to reproduce many of the
observed behaviors of chemotaxing cells. Moreover, sev-
eral of the the molecular signaling pathways discussed
above, including those involving PI3K and Rho family
GTPases, have been proposed as the potential networks
corresponding to these modules [IT].

Several predictions arise from our work that would be
interesting to test in future experiments. First, our sim-
ulation scheme assumes that the saturation of the CI
with gradient strength (Fig[A) is due to limited receptor
numbers. However, alternative explanations exist that
are independent of the receptors, such as the fact that it
is more difficult to detect a concentration difference on
top of a large concentration background than on top of a
small concentration background due to intrinsic fluctua-
tions in molecule number [30, 53]. An interesting conse-
quence of our mechanism of receptor saturation is that,
at very large gradients (beyond those of Fig [{A), the CI
would actually decrease because all receptors would be
bound. It would be interesting to test this prediction in
future experiments.

Second, our work suggests that not all quadrants of
the accuracy—persistence plane are possible for cells to
achieve (Fig @ It would be interesting to measure the
CI and DP of other cell types, in other chemical or me-
chanical environments, to see if the crescent shape seen
in Fig [0] is a universal restriction, or if not, what new
features of chemotaxis are therefore not captured by the
modeling. In this respect, the work here can be seen as
a null model, deviations from which would indicate new
and unique types of cell motion.

MATERIALS AND METHODS
Cell culture and reagents

Human breast adenocarcinoma cells (MDA-MB-
231) were cultured in Dulbeccos Modified Eagle
Medium/Hams F-12 (Advanced DMEM/F-12, Lifetech-
nologies, CA, USA) supplemented by 5% v /v fetal bovin



serum (FBS), 2 mM L-glutamine (L-glu), and 100 pg ml*
penicillin/streptomycin(P/S) for less than 15 passages.
MDA-MB-231 cells were regularly harvested by 0.05%
trypsin and 0.53mM EDTA (Lifetechnologies, CA, USA)
when grown up to around 80% confluency in 75 cm? T-
flasks at 37 °C with 5% CO» incubation. Harvested cells
were used for experiments or sub-cultured.

Cell-matrix composition was prepared in the microflu-
idic device. For the composition, MDA-MB-231 cells
were mixed with 2 mg/ml of type I collagen (Corning
Inc., NY, USA) mixture prepared with 10X PBS, NaOH,
HEPE solution, FBS, Glu, P/S, and cell-culture level dis-
tilled water after centrifuged with 1000 rpm for 3 min-
utes. The cell mixture was filled in center-channel of the
microfluidic devices and incubated in at 37 °C with 5%
COg. The cells in the collagen matrix were initially cul-
tured in basic medium (DMEM /F12 supplemented by 5%
v/v FBS, 2 mM L-glu, and 100 ug ml~* p/s) for 24 hours.
Then the cells were exposed by reduced serum medium
for another 24 hours, which was advanced DMEM /F12
containing 1% v/v FBS, 2 mM L-glu, and 100 pug ml~!
p/s [64]. After 24 hour-serum starvations, cells were ex-
posed by a gradient of transforming growth factor beta-1
(TGF-p1, Invitrogen, CA, USA).

Microfluidic device for chemical gradient

The microfluidic device was designed to generate a lin-
ear gradient of soluble factors (Fig. The device is com-
posed of three channels which are 100 pm in thickness as
described previously [55]. A center channel that is 1 mm
wide aims to culture tumor cells with ECM components.
The center channel is connected to two side channels.
The 300 pm-wide side channels are connected to large
reservoirs at the end ports including culture medium.
Since the side channels are in contact with the top and
bottom sides of the center channel, the growth factor
gradient can be generated by diffusing the soluble factor
from one of the side channels, a source channel, to the
other, a sink channel. Assuming there is neither pres-
sure difference nor flow between the side channels, the
concentration of a given factor can be described by the
chemical species conservation equation as follows:

0 C;
ot

= Dl . VCZ' (13)

Once the concentration profile in the center chan-
nel reaches steady state, the linear profile persists for
a while and can therefore be approximated by assum-
ing the boundary conditions of concentration at the side
channels are constants. To verify the diffusion behavior,
the gradient formation was examined by using 10k Da
FITC-fluorescence conjugated dextran (FITC-dextran).
FITC-dextran solution was applied in the source chan-
nel while the sink channel was filled with normal culture
medium. The FITC-dextran concentration profile was

evaluated by the FITC fluorescent intensity in the center
channel. To disregard the effect of photo-bleaching on
the results, the intensity was normalized by the intensity
of the source channel. The normalized intensity was rea-
sonably considered since the fluorescence intensity of the
source channel consistently remained as maximum due
to the large reservoirs. The FITC dextran intensity pro-
file (Fig ) showed that the linear profile was developed
within 3 hours after applying the source and continued
for more than 9 hours.

Characterization of cell migration with time-lapse
microscopy

Cell behaviors were captured every 15 minutes for
9 hours using an inverted microscope (Olympus IX71,
Japan) equipped with a stage top incubator as described
previously [56H58], so that the microfluidic platform
could be maintained at 37 °C in a 5% COs, environment
during imaging. The time-lapse imaging was started
3 hours after applying TGF-f81 solution in the source
channel to have sufficient adjusting time. To analyze
each cell behavior, a cell area in the bright field images
were defined by a contrast difference between the cells
and a background, and the images were converted to
monochrome images by using ImageJ. Cell trajectories
were demonstrated by tracking centroids of the cell area.
In tracking the cell movements, cells undergoing division
were excluded to avoid extra influences to affect cell po-
larity [59]. Moreover, stationary cells due to the presence
of the matrix were excluded [26], [59HGT]. The stationary
cells were defined as the cells that moved less than their
diameter. A migration trajectory was defined by con-
necting the centroids of a cell from each time point.

Statistical analysis of experiments

In examining the chemotactic characteristics of each
group, more than 40 cell trajectories were evaluated per a
group. A data point in Fig[3IC-E indicates each metric of
a cell trajectory showing distribution characteristics with
a box plot. The box plot includes boundaries as quad-
rants and a center as a median. The distribution of each
metric was statistically analyzed by using Mann-Whitney
U-test. This non-parametric method was used since the
distribution was not consistently normal (the CI is a func-
tion of cosine). The significant change on the population
lies on the biased distribution of each cell parameter when
the p value < 0.05. Furthermore, the experiments were
repeated at least 3 times and reported with means of
medians + standard estimated error (S.E.M.) in Fig[A-
C. To evaluate physical limits on each metric, the data
points were compared each other using a student t-test.
The statistical significance between comparisons were ex-
amined when the p value < 0.05.



Mathematical approximations

In the limit p = 0, Egs. [9] and [I0] become

2:5)M +2(32% — 1), (14)

(r*y = 22M?* +2(1 —
2 = 2(M 1), (15)

()

where z = 7b, and we have neglected the exponential
terms in the limit M > 1. Defining the small parameter
e = 1/M, these expressions become

(r?y = 22M*(1 + ce), (16)
(x)? = 22M>*(1 — 2¢) (17)
to first order in €, where ¢ = 2(272 — 2). Inserting these
expressions into Eqgs. [IT] and [12] we obtain
CI* = 1—(c+2), (18)
DP? = 22(1 + ce) (19)

to first order in €. Because z and ¢ are both functions
only of b, we eliminate b from Egs. [I§ and [I9] to obtain

1—DP?

CI?=1—2¢ 52 (20)
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to first order in e. This expression is equivalent to that
given below Eq.[12| and provides the left black line in Fig

The right black line in Fig[6] corresponds to the maxi-
mal value of p for a given b that keeps Eq. [§|non-negative.
Non-negativity requires that the sum of the minimal val-
ues of each term in Eq. [§]is zero: —b+e~?/[21Iy(p)] = 0.
With this expression for b in terms of p, Egs. [I1] and
become functions of only p and M. Therefore, by varying
p, we compute the right black line parametrically.
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tion function for all trajectories in control experiment (no TGF-f); Tac is the integral under the curve. Plot of Tac vs. DP for

control (gray), and 50 nM/mm TGF-3 gradient condition (left blue triangle), as well as several other experimental conditions.
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FIG. 8: Cell trajectories for all values of TGF-( gradient strength, and all three experimental replicates.
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