
Stabilizer Circuits, Quadratic Forms, and Computing Matrix
Rank

Chaowen Guan
University at Buffalo (SUNY)

chaoweng@buffalo.edu

Kenneth W. Regan
University at Buffalo (SUNY)

regan@buffalo.edu

January 20, 2022

Abstract

We show that a form of strong simulation for n-qubit quantum stabilizer circuits C is com-
putable in O(s+nω) time, where ω is the exponent of matrix multiplication. Solution counting
for quadratic forms over F2 is also placed into O(nω) time. This improves previous O(n3)
bounds. Our methods in fact show an O(n2)-time reduction from matrix rank over F2 to
computing p = |〈0n|C |0n〉|2 (hence also to solution counting) and a converse reduction that
is O(s + n2) except for matrix multiplications used to decide whether p > 0. The current
best-known worst-case time for matrix rank is O(nω) over F2, indeed over any field, while ω is
currently upper-bounded by 2.3728 . . . Our methods draw on properties of classical quadratic
forms over Z4. We study possible distributions of Feynman paths in the circuits and prove that
the differences in +1 vs. −1 counts and +i vs. −i counts are always 0 or a power of 2. Further
properties of quantum graph states and connections to graph and matroid theory are discussed.

1 Introduction

Consider the following algorithm for computing the rank r of an n×n matrix A0 over the field F2:

1. Form the symmetric block matrix A =

[
0 A0

A>0 0

]
.

2. Form the quantum graph state circuit CA for the bipartite graph with adjacency matrix A.

3. Calculate p = the quantum probability that CA(02n) = 02n. The bipartite case assures p > 0.

4. Output r = log2(1/
√
p).

All steps except 3 take O(n2) time. Hence, for dense matrices, this is a linear-time reduction from
r to p. In the converse direction, we will show the following algorithm for computing the amplitude
〈0n|C |0n〉 for any n-qubit quantum stabilizer circuit C:

1. Convert C to a classical quadratic form qC over Z4 that retains all quantum properties of C.

2. Take the matrix A of qC over Z4 and associate a canonical n× n matrix B over F2 to it.

3. Compute the decomposition B = PLDL>P> over F2 where P is a permutation matrix, L is
lower-triangular, and D is block-diagonal with blocks that are either 1× 1 or 2× 2.

4. Take L−1 over F2 but compute D′ = L−1P>AP(L−1)> over Z4. (Note P> = P−1.) If any
diagonal 1 × 1 block of D has become 2 in D′, output 〈0n|C |0n〉 = 0. Else, 〈0n|C |0n〉 is
nonzero and is obtained by a simple O(n)-time recursion.

1

ar
X

iv
:1

90
4.

00
10

1v
2

 [
cs

.C
C

]
 5

 A
pr

 2
01

9

Here step 1 from [RCG18] takes time linear in the number s of quantum gates in C, which for
standard-basis inputs can be bounded above by O(n2/ log n) with O(n) quantum Hadamard gates
[AG04]. Step 3 is computable in O(nω) time by [DP18], where ω is the exponent of matrix mul-
tiplication and is at most n2.372865 [Sto10, Wil12, Gal14]. This is also the best known time for
computing n× n matrix rank over any field and for the particular inverses and products in step 4
as well (see [CKL13]). However, when 〈0n|C |0n〉 6= 0 we show that its absolute value is computable
quickly from r alone after step 2.

Graph-state circuits and the larger but equivalent class of stabilizer (aka. Clifford) circuits are
commonly quoted as simulatable in O(n2) time but this applies only with a bounded number of
single-qubit measurements [AG04, AB06] (see also [GM13, GMC14, GM15]). Computing the prob-
ability p = |〈0n|C |0n〉|2 is classed as a form of strong simulation by [JvdN14] and is representative
of the tasks designated STR(n) in [Koh17] for standard-basis inputs. The best times stated for com-
puting p in the above-cited papers are O(n3) for the general n-qubit case. Thus our results improve
the asymptotic running time as well as show a near-tight relationship to the task of computing ma-
trix rank that seems not to be noticed in these papers. They also improve the O(n3)-time algorithm
for solution counting of quadratic forms over Z2, as given in [EK90], to O(nω). (As is common in
the literature, we slur the distinction between ω as an infimum and as an upper bound—the latter
usage should properly say “in time nω+o(1)” or similar. Our machine model is implicitly a RAM
that can handle log n-sized words in unit time; for other models we can say the time bounds ignore
log factors.)

Theorem 1.1 (main). (a) Strong simulation of n-qubit stabilizer circuits of size s with h
Hadamard gates (or other nondeterministic single-qubit gates) on standard-basis inputs is
in time O(s+n+hω) where 2 ≤ ω < 2.3729. This works for amplitude as well as probability.

(b) Computing n × n matrix rank is linear-time equivalent to computing the probability p (for
circuits where h = Theta(n) and s = O(n2)) on the promise that p is positive, and equivalent
to computing p on the narrower promise that the graphs underlying the circuits are bipartite.

In view of the normal form of [AG04] and in practice, the restriction on h and s in (b) is highly
reasonable. The “promise” formulation of (b) is ignorable in the direction from the rank r to p,
but not from p to r. The sense of the latter direction is that if rank for dense matrices comes to
have a lesser time t(n) with n2 ≤ t(n) < nω than matrix multiplication, then computing p correctly
in cases where p > 0 will have exactly the same time t(n), whereas computing p in all cases might
remain in nω time. We do not have a reduction from matrix multiplication itself (over F2) to strong
simulation, hence our results do not imply an asymptotic equivalence between those. To be sure, we
note as a practical caveat that among the known sub-cubic algorithms for matrix multiplication,
only Strassen’s original one [Str69], which runs in time O(n2.81), is considered competitive for
problem sizes in the range of thousands of qubits that are addressed concretely in the above-cited
papers.

The connections used in our proof run through the real-time conversion of quantum circuits C
to “phase polynomials” qC over ZK for K = 2k, k ≥ 1 in [RC09, RCG18], which extended results
by [DHH+04] for k = 1, and the analysis of quadratic forms over Z4 by Schmidt [Sch09] drawing
on [Alb38, Bro72]. In the case of graph-state circuits and stabilizer circuits more generally, qC
becomes a classical quadratic form over Z4, as treated also in [CGW18]. Our approach is related
to ones involving Gauss sums [BvDR08, CCLL10, CGW18, Bk18] but exploits the availability of
normal forms. For bipartite A as above, it further devolves into a quadratic form q′C over F2 that
is alternating (as defined below) plus an ancillary vector v. A linear change in basis—which also

2

sends v to a vector w but leaves the probability computation unaffected—gives over Z4 the normal
form

q′C = y1y2 + y3y4 + · · ·+ y2g−1y2g +
n∑
j=1

2yjwk. (1)

Here the rank r must be even and g = r/2. This corresponds to block-diagonal matrices D with
g-many 2× 2 blocks as produced by [DP18], together with 1× 1 blocks coming from w. The 1× 1
blocks matter most for j > r. The matrix D′ over Z4 may no longer be block-diagonal but its
diagonal reveals w.

Provided the terms in w do not cause global cancellation, equation (1) will yield p from r in an
invertible manner, without needing to compute the change in basis. Let Nc(q) stand for the number
of arguments x ∈ {0, 1}n giving q(x) = c (mod 4) for c = 0, 1, 2, 3. Along the way to our main
theorem, we prove that for any classical quadratic form q over Z4, the differences |N0(q)−N2(q)|
and |N1(q)−N3(q)| are either zero or a power of 2. This resolves the effects of the “w” part of the
normal form (1) for the alternating case in particular. Sections 2 and 3 cover stabilizer circuits and
quadratic forms before sections 4 proves part (a) of Theorem 1.1 and the rank-to-strong-simulation
direction of part (b).

The other direction—which was the original goal—requires computing r plus information about
w. The datum needed is whether a Z4 vector corresponding to w has an entry of value 2, or equiv-
alently, whether the graph underlying C belongs to a family we call “net-zero” graphs. Section 5
analyzes a concept of “self-dual” quadratic forms yielded by the probability computation and re-
duces from the general to the alternating case—which effectively strips phase gates from the circuit
and self-loops from the graph—and finishes the proof of part (b) of Theorem 1.1.

A concluding section Section 6 discusses the “net-zero” graphs and observes that the amplitude
function a(G) = 〈0n|CG |0n〉 is a generalized Tutte invariant per [OW93, Nob06]. It then contrasts
the integral but non-classical quadratic forms which arise from adding the controlled-phase gate to
the stabilizer gates to form a universal gate set. Finally we raise possible implications of this work
for solution counting and for graph theory.

2 Quantum Stabilizer Circuits

A fundamental problem in quantum computing is whether all quantum circuits of s gates acting
on n qubits can be simulated in time polynomial in s and n. A quantum circuit C effects a unitary
linear transformation on CN where N = 2n. A fixed basis of CN is identified with {0, 1}n. The
circuit is a sequence of gates g, each of which effects a transformation Ug that acts on some k of
the qubits. The gate g can be represented by a 2k × 2k unitary gate matrix Mg and the subset Sg
of qubits acted on.

A salient subclass of quantum circuits that have a deterministic polynomial-time simulation are
stabilizer circuits. They can be generated by the following three gate matrices Mg:

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
Their extensions to act on CN by tensor product with the identity on the qubits outside Sg generate
the n-qubit Clifford group, so these are also called Clifford circuits. The original polynomial-time
algorithm by Gottesman and Knill [Got98] involved Gaussian elimination and so ran for all intents

3

and purposes in order-of n3 time. Aaronson and Gottesman [AG04] improved this to O(n2) time
with a tableau method and also showed that every stabilizer circuit has an equivalent one with
O(n2/ log n) gates. Anders and Briegel [AB06] improved the running time concretely and for
circuits of size s = o(n2) using a graph-state representation, as we will also do. Dehaene and De
Moor [DM03] described quantum states produced by stabilizer circuits via linear and quadratic
forms over F2 in ways simplified and extended by van den Nest [vdN09].

We seek even simpler and faster methods that lend themselves to further algorithmic properties,
such as quick update when changes are made to C in the sense of “dynamic algorithms.” We employ
the theory of classical quadratic forms over Z4 as developed by Schmidt [Sch09] and more recently
by Cai, Guo, and Williams [CGW18]. The quadratic forms are built using the real-time algorithm
of [RC09, RCG18] for computing what we call the additive partition polynomials qC for quantum
circuits C that meet a mild “balance” condition. Related works involving low-degree polynomials
and counting complexity include [BvDR08, BJS10, Mon17, KPS17].

The polynomial qC has variables x1, . . . , xn corresponding to binary input values, z1, . . . , zn for
the binary output values, and y1, . . . , yh representing nondeterminism from Hadamard (and possibly
other) gates. For any a, b ∈ {0, 1}n, letting qab denote q with those values substituted for the xi
and zj variables, we have for some R > 0:

〈b|C |a〉 =
1

R

∑
y∈{0,1}h

ωqab(y), (2)

where ω is a K-th root of unity such that all phases produced by the circuit are powers of ω.
Stabilizer circuits give K = 4 so that the powers in this exponential sum belong to Z4. Generally
R = 2h/2 but its value is reduced if some nondeterministic yj variables are forced to equal outputs.

The rules for calculating q are straightforward. Initially q = 0 and each qubit line i has its
current annotation ui defined by ui = xi. In general, let ui stand for the current annotation of line
i, and let y1, . . . , y`−1 be the nondeterministic variables allocated thus far.

• Hadamard gate on line i: Allocate a new variable y`, do q += 2uiy`, and reassign ui to be y`.

• Phase gate S on line i: q += ui, ui unchanged.

• CZ gate on lines i and j: q += 2uiuj , no other change.

• At the end of each qubit line i, we can identify zi with the variable last denoted by ui.

Since we are concerned only with 0, 1 as arguments, we can also do q += u2i in the case of S, thus
making all terms homogeneously quadratic. The conjugate polynomial q∗ does q∗ += 3u2i instead,
but does the same as q for H and CZ.

We mention some other Clifford gates and their rules for completeness. The first three (plus the
identity I) are the Pauli gates:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
• X: Change ui to 1− ui; no other change.

• Z: q += 2ui; same for q∗; no other change.

4

• Y: Treat via Y = iXZ and ignore the global scalar i.

• CNOT gate on lines i and j: Change the target uj to ui + uj − 2uiuj ; no other action.

Note that X = HZH, and similarly, CNOT = (I ⊗ H)CZ(I ⊗ H), so we could have composed the
previous rules for those gates. Changing the annotations ui and uj (in the respective cases),
however, avoids introducing new nondeterministic variables.

The annotation uj becomes quadratic in the case of CNOT, but the degree does not rise any
higher: In rules where ui is multiplied, the multiplier contains a factor 2 which cancels the 2uiuj
modulo 4. The last subtlety is what happens when an annotation that is not a single variable is
to be equated with a variable zj . If it has the form ui + uj − 2uiuj then we add to q the term
2w(ui + uj − 2uiuj − zj) = 2wui + 2wuj + 2wzj (mod 4) where w is a fresh variable. For binary
values from the standard basis, if zj does not equal the XOR of ui and uj then the added term
reduces to 2w. Because w appears nowhere else, assignments with w = 0 and those with w = 1
will globally cancel in (2). Thus only cases with zj = ui ⊕ uj contribute. This proves

Theorem 2.1 ([RCG18]). When C is a stabilizer circuit, the polynomial q in (2) becomes a
quadratic form over Z4 in which all terms involving two variables have coefficient 2.

Such forms are called classical, reflecting the historical definition of a quadratic form as given
by x>Ax for some integer n × n matrix A that is symmetric—so that all cross terms have even
coefficients. For Z4 they coincide with those called affine in [CLX14, CGW18]. For contrast, we
note the effect of using a controlled-phase gate:

CS =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .
If i, j are the qubit lines involved, the rule is to do q += uiuj and q∗ += 3uiuj . The CS gate is not
a Clifford gate and its inclusion creates a universal gate set. Nevertheless, (2) still holds, as does
the following:

Theorem 2.2 ([RCG18]). For any Clifford+CS circuit C, input x, outcome z, and letting V stand
for the set of unfixed variables overall,

Pr[C(x) = z] = 1
R2 [|{v, v′ ∈ {0, 1}|V | : qx,z(v) + q∗x,z(v

′) = 0}| (3)

− |{v, v′ ∈ {0, 1}|V | : qx,z(v) + q∗x,z(v
′) = 2}|], (4)

with R as in (2) and values modulo 4. Moreover, for any set Z of binary outcomes defined by fixing
a subset of the variables to a value z′, Pr[C(x) ∈ Z] is given by an analogous formula over pairs
v, v′ of assignments that agree on the remaining zj variables involving qx,z′ and q∗x,z′.

Using the “wj” variables as above to equate outputs makes R = 2h. As we will note in Lemma 5.1(d)
in section 5, it is unnecessary to put absolute-value bars on the difference in (3). There we will
symmetrize the roles of x and z and address the general topic of a “self-dual” (classical) quadratic
form. We further note the remarkably fine-cut “dichotomy” that although counting solutions to
q(v) = 0 over v ∈ Zr4 is in polynomial time for any quadratic form, counting them over v ∈ {0, 1}r is
#P-complete for a non-classical quadratic form [CLX14]. Classical quadratic forms are indifferent

5

between 0 and 2 as arguments, likewise 1 versus 3, because 22 = 0, 32 = 1, and 2 · 1 = 2 · 3 = 2
modulo 4, so counting solutions over Zr4 and over {0, 1}r is equivalent for them.

Let us bear in mind that since (2) computes all amplitudes, the polynomial q = qC includes all
information about the quantum behavior of the circuit C. Thus nothing is lost by manipulating
(only) qC . As an application, we deduce the known fact that graph-state circuits are entirely
representative of stabilizer circuits with O(s+ n) overhead. Such circuits consist of:

• An initial n-ary Walsh-Hadamard transform H⊗n, effected by placing one Hadamard gate at
the start of each qubit line.

• For every edge (i, j) in the given graph G, place a CZ gate between lines i and j. Order does
not matter because these operations commute.

• If G has a self-loop at node i, place an S gate there.

• A final H⊗n.

Proposition 2.3. There is a real-time procedure that given any n-qubit stabilizer circuit C with
h Hadamard gates and x, z ∈ {0, 1}n constructs a graph state circuit CG on h qubits such that
〈z|C |x〉 = 〈0h|CG |0h〉.

Proof. Build qC in real time as above and substitute for x and z. This leaves h variables yk from
the Hadamard gates plus any wj variables that were employed. Now define the graph G to have an
edge (i, j) for every term 2yiyj (or 2yiwj) in qC , and a self-loops at i for every term ay2i , a = 1, 2, 3.
Note that the coefficients a of the self-loop terms may arise from the substitutions for particular
binary values of x and z. The corresponding graph-state circuit has inputs x′, z′ of its own, but
those are zeroed in forming 〈0h|CG |0h〉. The leftover terms in qCG

are identical to those of qC after
the substitution.

If h = Θ(n) then the number of variables is linear in n. Our original aim was to use this
correspondence to be competitive with the above-cited O(n2) algorithms—and ones that improve
then the graph is sparse—in the concrete sense of better leading constants and simplified cases.
For those algorithms previously not known to have time better than O(n3) or similar, our practical
objective in what follows is not so much reducing the exponent to ω but rather to O(n2) time given
knowledge of the rank r, for contexts where r might be foreknown or well approximated.

3 Properties of Classical Quadratic Forms Over Z4

A classical quadratic form f in variables x = (x1, . . . , xn) is one induced by a symmetric n × n
integer matrix A as

f(x) = x>Ax. (5)

This makes every coefficient of a cross term xixj even, and over Z4 all nonzero cross terms have
coefficient 2. Such a form over Z4 treats arguments 0 and 2 the same, likewise 1 and 3, so we may
regard it as a function of {0, 1}n into Z4. Then we want to regard (5) as composed of matrix-vector
operations over F2 plus some extra calculation to get the answer in Z4 where 2, 3 as well as 0, 1
may be values.

First note that by the symmetry, every off-diagonal entry of A may without loss of generality
be 0 or 1. Next, define a binary vector v by vj = 1 if the j-th main-diagonal entry of A is 2 or 3,

6

else vj = 0. Finally define a binary matrix B from A by

B = A− 2diag(v). (6)

Then we have
f(x) = x>Bx + 2x> · v (7)

with calculation in Z4. The x>Bx calculation is now valid in F2, however. The quadratic form is
alternating if the main diagonal of B is all zero, else it is non-alternating. When B comes from or is
regarded as the adjacency matrix of a graph, alternating means the graph is simple and undirected
(as will hold in our reductions from rank using a simple bipartite graph) and non-alternating means
the graph is undirected but with one or more self-loops.

We note the general development of this decomposition and associated concepts by Schmidt
[Sch09] in a way not wedded to the standard basis. Since we fix 4 as the modulus throughout this
section, we follow [Sch09] in now using K to denote {0, 1} as a subset of Z4, defining an operation
⊕ on K by a ⊕ b := (a + b)2, and defining V as an n-dimensional vector space “over K” noting
that (K,⊕, ·) is the same as the field F2. Then classical quadratic forms are equivalently defined
as follows:

Definition 3.1 (see [Alb38, Sch09]). A symmetric bilinear form on V is a mapping B : V ×V → K
that satisfies

1. symmetry: B(x,y) = B(y,x);

2. bilinearity: B(αx⊕ βy, z) = αB(x, z)⊕ βB(y, z) for α, β ∈ K.

B is alternating if B(x,x) = 0 for all x ∈ V , else it is non-alternating. Let Λ = {λ1, · · · , λn} be
any basis for V over K. Then B is uniquely determined (relative to this basis) by the n×n matrix
B with entries bij = B(λi, λj). The rank of B is the rank of its matrix B.

Definition 3.2 (see [Bro72, Sch09]). A Z4-valued classical quadratic form is a mapping f : V → Z4

that satisfies:

1. f(αx) = α2f(x) for α ∈ K;

2. f(x⊕ y) = f(x) + f(y) + 2B(x,y), where B : V × V → K is a symmetric bilinear form.

Then f is alternating if the associated bilinear form B is alternating, non-alternating otherwise,
and its rank r is the rank of B.

Proposition 3.1 ([Sch09]). There is a vector v ∈ Kn such that for all x ∈ Kn over the basis Λ,

f(x) = x>Bx + 2x> · v.

The point of dropping down to F2 is to leverage the notions of matrix similarity over F2 and the
following theorem about changes of basis in V . Over F2 the appropriate definition of B and B′

being similar (from [Alb38]) is that there exists an invertible matrix Q such that B′ = Q>BQ.
This preserves the property that similar matrices have the same rank. The notions of alternating
and non-alternating are the same as given for the binary matrix B above, depending on whether
the main diagonal of B is all zero or not.

7

Theorem 3.2 ([Alb38]). Let A be a K-valued n× n symmetric matrix of rank r.

(a) If A is alternating, then A has even rank and is similar to a matrix that has zeros everywhere
except on the subdiagonal and the superdiagonal, which are 1010 · · · 10100 · · · 0 with r/2 ones.

(b) If A is non-alternating, then A is similar to a diagonal matrix, whose main diagonal is of
r-many ones.

With the representation of f(x) = x>B + 2x> · v, the paper [Sch09] uses this to define normal
forms with regard to Z4:

Corollary 3.3 ([Sch09]). Given a quadratic form f of rank r as above over the basis Λ, we can find
a basis M = (µ1, . . . , µn) for V over K, mapping x = (x1, . . . , xn) over Λ in V to y = (y1, . . . , yn)
such that:

(a) If f is alternating, then

f(y) = 2

r/2∑
j=1

y2j−1y2j + 2

n∑
i=1

wiyi,

for some w = (w1, · · · , wn) ∈ Kn.

(b) If f is non-alternating, then there is the equivalent linear form

f(y) =

r∑
j=1

yj + 2

n∑
i=1

wiyi,

for some w = (w1, · · · , wn) ∈ Kn.

Schmidt actually retains the symbols x and v in his statement but we have used y and w to indicate
the change of basis. Our analysis in the next section will, however, treat y as the standard basis,
so the generic symbols x1, . . . , xn will re-appear, and w1, . . . , wn will just be ordinary 0-1 values.
This switch will be echoed in the next section in that once we substitute for the input qubit values
xi and output values zj in the quadratic form qC from Section 2, the actual variables of qC left over
will be named y1, . . . , yh where h = O(n). But to emphasize that the counting lemmas preceding
the main results hold apart from the quantum context, we will revert to the standard symbols
x1, . . . , xn in their statements and proofs.

Now we reference [DP18] to note some facts about matrix decompositions related to the above
normal forms. Note that the inverse of a non-singular lower triangular matrix is lower triangular.

Lemma 3.4. (a) For every symmetric n× n matrix B over F2 there is a permutation matrix P
such that the symmetric matrix B′ = P>BP has the decomposition B′ = LDL>. Here L is
an n×n lower triangular matrix with unit diagonal and D is diagonal if B is non-alternating,
else D is block-diagonal as described in Theorem 3.2(a).

(b) The matrix D in (a) is permutation-equivalent to any matrix D′ fulfilling the corresponding
case of Theorem 3.2 when applied to B′ or to B.

(c) The matrix D in (a) is unique among LDU decompositions applied to B′.

8

(d) When D′ = L−1P>AP(L−1)> is computed over Z4 rather than F2, it may no longer be
diagonal or block-diagonal, but it represents the same quadratic form with arguments in V
and values Z4 in as in Corollary 3.3 over the new basis. In both the alternating and non-
alternating cases, the main diagonal of D′ equals the main diagonal of D plus 2w where w is
the vector in Corollary 3.3.

Proof. (a) This is known and noted in [DP18]. A key point from Gaussian elimination is that if
we alternate elementary matrices Li that do elimination in the ith column of the lower triangle
and swaps Pj,k of rows j and k, then we can rewrite Pj,kLi where j, k > i as L′iPj,k. The matrix
L′i is obtained by interchanging the entries in rows j and k of column i and those in positions j
and k on the main diagonal. (The latter is unnecessary when all diagonal entries are 1) and is still
lower-triangular. Since each L′i is still lower triangular and we can repeat the switch for further row
swaps, we obtain the lower-triangular matrix formally designated as L−1 as the product of the L′i
and the matrix designated as P> as the product of all swaps. Since B is symmetric, corresponding
events on the right give D = L−1P>BP(L−1)> of the diagonal or block-diagonal forms stated in
all of [Alb38, Sch09, DP18].

Part (b) follows simply because D and D′ have the same rank and the same block-diagonal
structure in the alternating case or diagonal structure in the non-alternating case). The proof of
(c), which is not strictly needed for our key point (d), is in the Appendix.

The point in (d) is that when computed over Z4, D′ = L−1P>AP(L−1)> represents the same
quadratic form f originally given by A in (5) but over the transformed basis that maps x to y.
Thus

f(y) = y>D′y = y>Dy + 2
n∑
i=1

yiwi. (8)

In the non-alternating case, this means any symmetric pairs d′j,k, d
′
k,j of off-diagonal elements of D′

must sum to 0 modulo 4, and likewise off-diagonal elements in the alternating case apart from the
block elements on the super-diagonal and sub-diagonal. The diagonal must satisfy d′j,j = dj,j + 2wj
(mod 4) in either case.

Put more simply, the decomposition in [DP18] is the same as that obtained in [Sch09] following
[Alb38, Bro72], so the normal forms for classical quadratic forms over Z4 in the latter papers
inherit the O(nω) time computability from [DP18] working over F2. For some examples, consider
the alternating form q(x1, x2, x3) = 2x1x2 + 2x1x3 + 2x2x3. It gives

A = B =

0 1 1
1 0 1
1 1 0

 ,
which is the adjacency matrix of the triangle graph. Gaussian elimination begins by swapping row
1 and row 2, then no more swaps are needed. So we have:

P = P1,2 =

0 1 0
1 0 0
0 0 1

 = P>, B′ = P>BP = B, and L−1 = L =

1 0 0
0 1 0
1 1 1

 .
This gives over F2,

D = LBL> =

1 0 0
0 1 0
1 1 1

 ·
0 1 1

1 0 1
1 1 0

 · L> =

0 1 1
1 0 1
0 0 0

 ·
1 0 1

0 1 1
0 0 1

 =

0 1 0
1 0 0
0 0 0

 .
9

But over Z4, we get

LA =

0 1 1
1 0 1
2 2 2

 , which times

1 0 1
0 1 1
0 0 1

 =

0 1 2
1 0 2
2 2 2

 = D′ ≡

0 1 0
1 0 0
0 0 2

 .
The presence of a 2 in the lower-right corner of D′, corresponding to a 1× 1 block in the diagonal
matrix D, signals a cancellation in the 0-1 assignments a ∈ Kn giving q(a) = 0 versus those giving
q(a) = 2. That is, N0(q)−N2(q) = 0. In section 6 we will call the simple triangle graph a “net-zero”
graph.

Now, however, let us define q′ = q + 2x21. This corresponds to adding a self-loop at node 1 to
the triangle graph. This goes into the vector v and does not change B or the decomposition. At
the end, however, we first get that over Z4, A′ = P>AP is no longer the same as A: it moves the
2 from the upper left corner to the center. Then we get

LA′ =

0 1 1
1 2 1
2 0 2

 , which times

1 0 1
0 1 1
0 0 1

 =

0 1 2
1 2 0
2 0 0

 = D′ ≡

0 1 0
1 2 0
0 0 0

 .
There is a 2 on the main diagonal but it is tucked within a 2× 2 block of D. Here in fact we have
N0(q

′) = 6 and N2(q
′) = 2.

An example of an alternating form q′′ with N2(q
′′) > N0(q

′′) is q′′ = 2x21 + 2x22 + 2x1x2, which
corresponds to a single edge with a self-loop at each end. Replacing each self-loop by a triangle
yields a 6-node simple undirected graph with N0 = 28 and N2 = 36. We will show that when
N0 6= N2 in the alternating case, the absolute difference is a simple function of the rank r of B over
F2.

4 Main Results

Given any n-qubit stabilizer circuit C of size s with h nondeterministic gates, we can obtain its
associated quadratic form qC in O(s) time via the process in Section 2. This form has variables
x = x1, . . . , xn for inputs, z = z1, . . . , zn for outputs, and y1, . . . , yh for nondeterministic variables
(wlog. all coming from h Hadamard gates). It may also have the variables called “wj” in Section 2,
but those are introduced only to equate the final annotation term on a qubit line j with the output
variable zj without thereby forcing a value restriction for nondeterministic variable(s) on that line,
and so preserve 2h/2 as the value of the magnitude divisor R in (2). We can either treat wj as
forced by zj without changing R, or avoid introducing wj by reducing R. Since the circuits are
allowed to have initial X gates on some lines, treating x = (0, · · · , 0) loses no generality. For any
output b = (b1, · · · , bm), the quadratic form then becomes

q(y,b) = (
∑

αiyi +
∑

2yiyj) +
∑

2yibj mod 4

= y>Ay + y>2∆y mod 4

in the y variables only. Here ∆ is a diagonal matrix with ∆i,i = bj . Because we will have h = Θ(n)
for the most part, we still refer to “n” to denote the number of variables in quadratic forms.

Finally, we also fix the outputs bj all to be 0. We denote by N = (N0, N1, N2, N3) the resulting
distribution of values of qC over the 2h assignments to y. Reviewing the discussion surrounding
Equation (2) in Section 2, we can abbreviate the numerator of the amplitude by

a0(N) = N0 −N2 + i(N1 −N3). (9)

10

We use the Nc and a0 notation generally for linear and quadratic forms f without reference to their
coming from a quantum circuit. Then a0 gives the value of the exponential sum

∑
x i
f(x).

Now the present the main lemmas that underlie the main theorems. Their proofs are in the
appendix.

Lemma 4.1. For any linear function f(x1, · · · , xn) =
∑n

i=1 aixi over Z4, |N0−N2| and |N1−N3|
are 0 or a power of 2.

Lemma 4.2. For any Z4-valued alternating quadratic form f : V → Z4 of rank r, there is a basis
of V over which f can be rewritten as

f(x) = 2

g∑
j=1

x2j−1x2j + 2

n∑
i=1

wixi

for some w = (w1, · · · , wn) ∈ Kn, and

N0 −N2 = 0 or (−1)k2n−g,

where 2g = r and k is the number of (w2j−1, w2j)-pairs in f such that (w2j−1, w2j) = (1, 1) for
j ∈ {1, · · · , g}. Also N1 = N3 = 0.

Lemma 4.3. For any Z4-valued non-alternating quadratic form f : V → Z4 of rank r, there is a
basis of V over which f can be rewritten as

f(x) =

r∑
j=1

xj + 2

n∑
i=1

wixi =

r∑
j=1

(1 + 2wj)xj + 2

n∑
i=r+1

wixi

for some w = (w1, · · · , wn). Define c to be the number of wi’s such that wi = 0 with i ∈ {r +
1, · · · , n} and d to be the number of pairs such that (1+2wj , 1+2wj′) = (1, 3) with j, j′ ∈ {1, · · · , r}.
Also let m = n− c− 2d and rewrite m = 4a+ b, and define η such that η = 0 if the rest m-many
coefficients are all 1’s but η = 1 if they are all 3’s. Then the differences N0−N2 and N1−N3 take
one of the following values:

• if b = 0, then N0 −N2 = (−1)a2(n+c)/2, N1 −N3 = 0;

• if b = 1, then N0 −N2 = (−1)a2(n+c−1)/2, N1 −N3 = (−1)a+η2(n+c−1)/2;

• if b = 2, then N0 −N2 = 0, N1 −N3 = (−1)a+η2(n+c)/2;

• if b = 3, then N0 −N2 = (−1)a+12(n+c−1)/2, N0 −N2 = (−1)a+η2(n+c−1)/2.

The connection between rank and solution counting is expressed by our main theorem about
quadratic forms after the normalization process in Lemmas 4.1 to 4.3 is applied:

Theorem 4.4. Given any normalized classical quadratic form f in n variables, we can compute
N0, N1, N2, N3 and hence a0(N) in time O(n). Furthermore, |a0(N)|2 is either 0 or 22n−r where r
is the rank of f .

This means that the bulk of the computing time for the whole process goes into the decomposition
in Lemma 3.4, which is used to compute the normal forms asserted in Corollary 3.3. After that,
the up-to-n2 denseness of the original form does not matter and the computation needs only O(n)
time.

11

Proof. We show this separately for the alternating and non-alternating cases. By Corollary 3.3, a
normalized alternating quadratic form is of the form

f(x) = 2

r/2∑
j=1

x2j−1x2j + 2
n∑
i=1

wixi (mod 4),

for some w = (w1, · · · , wn) ∈ Kn. It is easy to see that N1 − N3 is always zero since there is no
assignment to x = (x1, · · · , xn) that would give f(x) = 1 or 3. Lemma 4.2 gives out

N0 −N2 = 0 or (−1)k2n−g,

which can be done in time O(n). Hence if this is non-zero, then we have

a0(N) = (−1)k2n−g,

and
|a0(N)|2 = 22n−r.

Similarly, a normalized non-alternating quadratic form is written as

f(x) =
r∑
j=1

xj + 2
n∑
i=1

wixi =
r∑
j=1

(1 + 2wj)xj + 2
n∑

i=r+1

wixi (mod 4),

for some w = (w1, · · · , wn) ∈ {0, 1}n. Things become trivial if 2wi = 2 for some i ∈ {r+ 1, · · · , n}.
This makes N0 −N2 = N1 −N3 = 0.

Now assume N0 − N2 and N1 − N3 are not both zero at the same time. Then we can derive
from Lemma 4.3 that

a0(N) = N0 −N2 + i(N1 −N3)

takes one of the following values:

• if b = 0, then a0(N) = (−1)a2(n+c)/2;

• if b = 1, then a0(N) = (−1)a2(n+c−1)/2 + i(−1)a+η2(n+c−1)/2;

• if b = 2, then a0(N) = i(−1)a+η2(n+c)/2;;

• if b = 3, then a0(N) = (−1)a+12(n+c−1)/2 + i(−1)a+η2(n+c−1)/2,

where a, b and c are as defined in Lemma 4.3. Note that c = n− r. Together we have

|a0(N)|2 = 22n−r,

and again this can be computed in O(n) time.

Now we rejoin the process of evaluating the stabilizer circuit C. It will normalize qC to q′ in one
of the two forms in Corollary 3.3, which will give a matrix D′ such that q′(y) = y>D′y. With such
D′, the acceptance probability can be derived directly by Theorem 4.4. We repeat the statement
of our main theorem from section 1 but split (b) into two pieces, proving part (b1) here and part
(b2) in the next section.

12

Theorem 4.5 (Main Theorem). (a) Strong simulation of n-qubit stabilizer circuits C with h
nondeterministic single-qubit gates on standard-basis inputs (amplitude as well as the proba-
bility) is in time O(s+ n+ hω) where 2 ≤ ω < 2.3729.

(b1) Computing n×n matrix rank over F2 reduces in linear time to computing one instance of the
strong simulation probability |〈0n|C |0n〉|2.

(b2) Computing the strong simulation probability p = |〈0n|C |0n〉|2 reduces in linear time to com-
puting one instance of n× n matrix rank over F2 on the promise that p > 0.

Proof of (a) and (b1). (a) Let C be given, take A to be the matrix over Z4 of its classical quadratic
form qC , and take B be the associated symmetric matrix over F2. By Lemma 3.4 and the algorithm
of [DP18] there is a decomposition B = PLDL>P> over F2 that is computable in O(nω) time such
that D is diagonal (in the non-alternating case) or 2 × 2 block-diagonal (in the alternating case)
and equals the matrix D in Theorem 3.2. This also computes the rank r of B. Then compute
D′ = L−1P>AP(L−1)> over Z4 which again takes O(nω) time. By Lemma 3.4(d), D′ and D yield
the vector w in the normal form of Corollary 3.3 for qC . Then Theorem 4.4 yields not only the
probability p = |〈0n|C |0n〉|2 but also the entire distribution of phases as powers of i, and hence
yield the amplitude 〈0n|C |0n〉.

(b1) To compute the rank r of an n×n matrix over F2, make an equivalent symmetric matrix A
by the block-transpose trick in the introduction. Not only is A alternating but it is the adjacency
matrix of a bipartite graph G = (V, V ′, E). To see that the corresponding graph state circuit C
gives p = |〈0n|C |0n〉|2 > 0, consider any assignment a to the variables in V . This reduces qC
to a linear form 2`(x′) of the variables x′ corresponding to nodes of the other partition. If `(x′)
vanishes modulo 2, then all extensions of a to a′ on x′ contribute 0 modulo 4. Otherwise, 2`(x′) has
a nonzero term 2x′i for some i. Assignments a′ to x′ pair off with canceling contributions 0 and 2
according to the value a′i of x′i. Thus there are never more values of 2 than 0. Finally, the all-zero
assignment to x makes `(x′) vanish, so the difference between the numbers of 0 values and 2 values
is positive. Thus the normal form for qC with input and output 0n cannot have global cancellation,
so r is a simple function of p.

To get the converse simulation in (b2) we must consider the non-alternating case, which arises
when the stabilizer circuit C has an odd number of S or S∗ gates on some qubit line(s), and allow
for the possibility 〈0n|C |0n〉 = 0. The algorithm for amplitude in the non-alternating case needs
knowledge of individual entries in the normal form over Z4 besides the rank r of qC . We show that
for the probability computation p = |〈0n|C |0n〉|2 one can reduce to the alternating case—that is,
produce in O(s + h2) time an alternating quadratic form q′C of rank 2r such that p is a simple
function of r provided p > 0. This development leads us to a concept of “self-dual” quadratic forms
in order to complete the proof of (b2) in the next section.

5 Self-Dual Forms and Probability Reduction to Rank

To take stock, we have shown that strong simulation of stabilizer circuits (on input 0n) is in matrix-
multiplication time, which is currently the best-known time for computing matrix rank (over F2).
We have also reduced the rank computation to the simulation of the restricted class of circuits that
come from bipartite graphs. The issue now becomes whether there is a more-general equivalence of
strong simulation of stabilizer circuits C to computing the rank. We show a yes answer provided

13

the decision problem of telling whether the probability p = |〈0n|C |0n〉|2 is nonzero, for C having
no phase gates, is in O(n2) time.

To do so, we begin by abstracting the quadratic forms q + q∗ in Theorem 2.2 into a notion of
“self-duality.” We do not need to legislate the separate presence of input variables xi and output
variables zj . Our definition is at the level of the long literature of quadratic forms but we have not
found a reference for it.

Definition 5.1. Let π be a permutation of the variable set V such that π2 = 1 (that is, an
involution). Let f(v) be a quadratic form in reduced form as a sum of terms over ZK . Then f is
self-dual provided:

• Whenever f has the term av2i , vi is not fixed by π and f also has the term (K − a)π(vi)
2.

• Whenever f has the term bvivj, at least one of the variables is not fixed by Π and f also has
the term (K − b)π(vi)π(vj).

If f had av2i with vi fixed by π then f would also have (K − a)v2i so the terms would cancel, and
similarly if bvivj were fixed by π. The polynomials q(v) + q∗(v′) in Theorem 3 meet this definition
even before the substitution of values for xi and zj variables since those are considered fixed by
the permutation sending v to v′. The definition allows b to be odd in bvivj but classical forms with
K = 4 only allow b = 2. They can have terms of the form v2i + 3(v′i)

2 or 3v2i + (v′i)
2, but our first

results will eliminate them.
We can fix any partition of the set V of non-fixed variables into U and U ′, writing u′ = π(u) for

u ∈ U . Also, given a Boolean assignment a, let a′ = π(a).

Lemma 5.1. Given any self-dual quadratic form f over Z4:

(a) The form obtained by identifying any u, u′ pair is self-dual.

(b) For all Boolean assignments a, f(a) + f(a′) = 0 (mod 4). Hence it follows that the numbers
of 1 values and 3 values are equal, so their contributions cancel.

(c) Values of 1 and 3 exist only when f has terms 3u+ u′ or u+ 3u′ where u is in U , and when
they happen, exactly half the values are 1 and 3. Hence it suffices to count the number of
zeroes of f.

Proof. Part (a) is immediate. Note that if f has terms 3u2 + u′2 or 2xu + 2xu′ with x fixed this
makes them cancel. But 2uv+2u′v′ becomes 2uv+2uv′ which is not yet trivial. This also compares
to point 3 of Lemma 3.1 in [CGW18]. Part (b) follows individually for each term t plus t′ = π(t).
For (c), let T be the set of u ∈ U such that f has 3u2 + u′2 or u2 + 3u′2. Then an assignment a
makes f(a) odd iff it sets an odd number of pairs (u, u′) with u ∈ T to different values, and so
exactly half the assignments do so. On the other assignments, those terms contribute 0 (mod 4)
so those terms do not affect the calculation.

Now we derive a combinatorial lemma that effectively eliminates the terms with odd coefficients.
Let T0 ⊆ U collect the variables u such that u2+3u′2 is a term, and T1 ⊆ U those for which 3u2+u′2

is a term. Now define

S = {a : V → {0, 1} : a(u) 6= a(u′) for an even number of u ∈ T0 ∪ T1, a(u) = 1}.

14

Then S is a linear subspace of F|V |2 . Assignments a outside S make f(a) have value 1 or 3 and hence
contribute to a global cancellation by Theorem 5.1(c). We will now replace f by an alternating
form f ′ that preserves the cancellation outside S and gives the same distribution of 0 and 2 values
inside S. Let t collect the terms in f with odd coefficients and define a quadratic form f ′ as follows:

1. For every pair (u, v) with u, v both in T0 or both in T1, r has the term-pair 2uv + 2u′v′.

2. For every pair (u, v) with u ∈ T0 and v ∈ T1 or vice-versa, r has the term-pair 2uv′ + 2u′v.

3. Finally choose any variable u ∈ T and substitute 2u by twice the sum of all the other variables
in T into f − t+ r. The result is f ′.

We remark that in the second step, r introduces terms that “cross the partition” from U to U ′.
The self-dual forms qC + q∗C arising from Theorem 2.2 have a canonical partition with no crossing
edges. The import here is that the presence of terms that cross the partition does not affect
the analysis—they will just become edges in a larger graph. Except for the element crossing the
partition, r represents exclusive-or-ing by a clique of edges between pairs of nodes in T0 ∪ T1. This
also accounts for our current statement of the reduction time having a +n2 term that is not reduced
when the size s is o(n2).

The final form f ′ in the third step need not even be self-dual. For an example, consider f =
3u + u′ + 3v + v′, which has no cross-terms. Then T = T1 = {u, v}. So r = 2uv + 2u′v′. The
subspace S is defined by u+u′+v+v′ = 0 (mod 2). Because f − t+ r = r only has even terms, we
can substitute 2u+ 2u′ + 2v + 2v′ = 0 (mod 4). Choosing 2v as the term to substitute for makes

f ′ = u(2u+ 2u′ + 2v′) + 2u′v′ = 2u2 + 2uu′ + 2uv′ + 2u′v′.

This is not self-dual because of the absence of terms 2u′2, 2u′v, and 2uv, plus it has a term of
the form 2uu′, which even if it were allowed in Definition 5.1 would be canceled in the process of
forming q + q∗. It is, however, alternating and equivalent to f restricted to S pointwise, not just
in distribution. That is, for any assignment a to (u, u′, v′), letting a′(v) = a(u) + a(u′) + a(v′) (and
a′(u) = a(u), a′(u′) = a(u′), a′(v′) = a(v′)), we get f ′(a) = f(a′). Now we prove this in general.

Lemma 5.2. The classical alternating quadratic form f ′ equals f restricted to S, hence N0(f
′)−

N2(f
′) = N0(f)−N2(f).

Proof. The substitution step 3 is valid because f − t + r only has even coefficients. Hence we
need only show that f − t + r agrees with f on S. For any assignment a : V → {0, 1}, define D
to be the set of variables in u T such that a(u′) = 1 − a(u). Pick any u ∈ D, for instance the
lexicographically first variable in D . Then define a′ to be the assignment with a′(u) = 1 − a(u)
and a′(u′) = 1 − a(u′) = 1 − a′(u). Going from a to a′ changes the form t by +2 modulo 4. The
only term-pairs in r that change are (2uv+2u′v′) or (2uv′+2u′v) for v ∈ D and those change by 2.
Hence if d = |D| is even, there is a matching change by 2, so f ′(a)− f ′(a′) = f(a)− f(a′). Define
the closure of a under such “flip” operations by F (a).

For the d-even case, it remains to give some a0 ∈ F (a) such that t(a0) = r(a0). Take a0(u) = 1,
a0(u

′) = 0 for u ∈ T0 ∩D and a0(u) = 0, a0(u
′) = 1 for u ∈ T1 ∩D. Then t(a0) ≡ d (mod 4). To

get the contribution from r(a0), set k = |T0 ∩D| and consider:

• For every v, w ∈ T \D, r has the term-pair 2vw+ 2v′w′ or 2vw′ + 2v′w where a0(v) = a0(v
′)

and a0(w) = a0(w
′). Each of these pairs contributes a multiple of 4, so the net from these

terms is 0.

15

• For every pair (v, w) with v ∈ D and w ∈ T \ D, the term-pair equals 0 if a0(w) = 0 and
2(v + v′) = 2 otherwise. The net for any w with a0(w) = 1 is 2d, which is 0 if d is even.

• For every pair with v, w ∈ D, the contribution is always 2: Either v and w are both in T0
or both in T1 and the term pair is 2vw + 2v′w′ or they have one in each and the pair is
2vw′ + 2v′w. Hence the total contribution is 2

(
d
2

)
= d2 − d.

The final point is that when d is even, d2 vanishes so the net from r(a0) is −d modulo 4, which
equals d modulo 4 from t. This finishes the proof that for all assignments a ∈ S, r(a) = t(a).

Proof of Theorem 4.5(b2). Given an n-qubit stabilizer circuit C of size s with h nondeterministic
gates, we can obtain the self-dual classical quadratic form f = qC + q∗C in O(s) time by the
process in Theorem 2.2. Then Lemma 5.2 converts f to the equivalent alternating quadratic form
f ′ in time O(s + h2). The alternating case of Theorem 4.4 then gives a simple relation from
p = |〈0n|C |0n〉|2 = 1

R |N0(f
′)−N2(f

′)| to rank unless p = 0.

If C has at most k qubit lines with odd numbers of phase gates, where k = O(
√
s), then the time

is O(s). The most immediate scope for improvement is to reduce the overhead from the quadratic
size of r—perhaps sacrificing the exact agreement between f ′ and f for distributional equivalence.

6 Conclusions

We have improved the asymptotic running time for strong simulation of n-qubit stabilizer circuits
(with typical size and nondeterminism) from O(n3) to O(nω). We have also shown a linear time
reduction from matrix rank over F2 to strong simulation. One interpretation of the latter is:

The time gap between weak and strong simulation for stabilizer circuits cannot
be closed unless n× n matrix rank over F2 is computable in O(n2) time.

The direction from the quantum simulation to matrix rank comes close to establishing a complete
equivalence of them, especially for the simulation probability p. Via analysis of “self-dual” forms
we have reduced the probability computation to the alternating case, in which by Lemma 4.2 and
Theorem 4.4 we get a simple expression whose absolute value depends only on the rank and whether
p = 0. That puts focus on the complexity of deciding whether p, or equivalently the amplitude
a = 〈0n|C |0n〉, is zero, specifically in the alternating case where a is always real.

The alternating case comes down to graph-state circuits CG and can be framed in terms apart
from quantum computing. Consider black/white two-colorings (not necessarily proper) of the n
vertices of G, and count the number of edges whose two nodes are both colored black. Call those
B-B edges. Define c0 to be the count of colorings that make an even number of B-B edges and
c1 = 2n − c0 to be the count of colorings that make an odd number of B-B edges. The following is
called a(G) for “amplitude” and divides by 2n not 2n/2 because CG has 2n Hadamard gates.

a(G) =
c0 − c1

2n
.

Definition 6.1. Call an undirected graph G net-zero if a = 0, net-positive if a > 0, and net-
negative if a < 0.

The following proposition collects some basic facts:

16

Proposition 6.1. (a) Every odd cycle graph is net-zero.

(b) Every bipartite graph is net-positive.

(c) A graph is net-zero if and only if one of its connected components is net-zero.

(d) If G is net-zero, then the graph G′ obtained by attaching a new node v only to one existing
node u, then attaching a second new node w only to v, is also net-zero.

Proof. Part (a) follows because every coloring has an even number of B-W edges. Hence the number
of monochrome edges is odd, and so complementing the coloring flips the parity between B-B and
W-W edges. Part (b) was part of the proof of Theorem 4.5(b1). Part (c) is intuitive from how the
quantum state is a tensor product over the connected components, so the events of all-0 output
on each component are independent. The proof of (d) is that whether u is colored black or white,
exactly one of the four colorings of v and w creates one more B-B edge. Thus |〈0n+2|CG′ |0n+2〉|2
is directly proportional to |〈0n|CG |0n〉|2.

The smallest net-zero graph is the triangle graph. The graph made by attaching a second
triangle is net-zero, as is the graph made by attaching a triangle to any of the latter’s four outer
edges. As observed at the end of section 3, the six-node graph consisting of two triangles connected
by an edge is net-negative. Here are the connected net-zero graphs of 3, 4, and 5 nodes:

The concept extends to graphs with multiple edges and self-loops. An isolated self-loop is net-zero,
while an edge with two self-loops is net-negative. This includes the quadratic forms produced by
Lemma 5.2 and we conclude:

Corollary 6.2. If net-zero graphs of n nodes with self-loops allowed are recognizable in O(n2) time
then computing |〈0n|C |0n〉| for stabilizer circuits C (of O(n2) size with O(n) nondeterminism) is
O(N)-time equivalent to computing n× n matrix rank, where N = n2.

The concept further extends to graphs with circles, which are isolated loops without a vertex and
contribute a multiplicative −1, and more generally to graphical 2-polymatroids with rank function
fG(A) defined for any set A ⊆ E to be the total number of vertices touched by edges in A. Then
a(fG) becomes a generalized Tutte invariant (see [OW93, Nob06]) with parameters

(r, s, t; a, b, c, d;m,n) = (1/2,−1, 0; 1,−1, 1,−1/2; 1,−1/2).

This gives

a(G) =

(
−1

2

)n/2
S(fG;−

√
2i,
√

2i), where S(f ;x, y) =
∑
A⊆E

xf(E)−f(A)y2|A|−f(A),

by the main theorem of [OW93]. This in turn further simplifies to

a(G) =
∑
A⊆E

(−2)|A|

2fG(A)
.

17

Noble [Nob06] shows that computing S(fG;x, y) is #P-hard for any constant rational x, y whenever
xy 6= 1. The complex irrational point (−

√
2i,
√

2i) has xy = 2 but evades his proof because having
y2 = −2 makes a denominator vanish. Other connections between quantum graph states and
matroids have been shown by Sarvepalli [Sar14], and there is scope for further development along
these lines.

We have shown tight connections to the fundamental problems of counting solutions to quadratic
forms f over F2 and Z4. For F2 we get that 2f is an alternating form over Z4 with the same solution
count over {0, 1}n, so the near-equivalence to matrix rank applies. In any event we have reduced
the Z2 case to matrix multiplication in a way that improves the O(n3) running time stated in
[EK90] to O(nω). For binary solution counting of non-alternating classical quadratic forms over
Z4, we obtain O(nω) runtime via methods that multiply matrices as well as compute rank.

When the non-Clifford gate CS is added to create a universal set, the quadratic forms over Z4

have terms xy or 3xy. They are no longer classical and the connection to F2 exploited by [Sch09]
no longer applies. No such connection can apply, nor any extension of the algorithm in [DP18]
a-fortiori, unless BQP = P. There is also the sharp dichotomy theorem of [CLX14] that solution
counting for these forms over all of Zn4 is in polynomial time, but over {0, 1}n it is #P-complete.
This extends to affine versus non-affine forms over ZnK , K = 2k. Deeper understanding of why
the dichotomy operates may illuminate exactly which elements of quantum computations create
hardness for classical emulation (for this, see [Bac17, Bac18]).

Nevertheless, perhaps these techniques can apply to heuristic or approximative methods on
general quantum circuits. The polynomial translation in [RCG18] applies to quantum circuits of
all common gate types. There are questions about analyzing circuits that are “mostly Clifford”
or those from the Clifford plus T libraries that try to minimize the latter gates, of which we
mention[BG16, MFIB18, BBC+19]. For example, are there reasonably-tight bounds for the numbers
of the non-Clifford gates required to compute certain functions that can be obtained efficiently by
algebraic means, without resort to exhaustive search?

A direction for improving the present results is to sharpen the times for sparse cases—reflecting
for instance the analysis for bounded degree in section VI of [AB06] and the results for rank in
[CKL13]. Our Lemma 5.2 introduces a dense clique of edges even for sparse graphs; perhaps there is
a more economical reduction to the alternating case. We have left unused one further manipulation
of a classical quadratic form f that is most simply described in terms of the associated graphs G.
Subdivide each edge e = (u, v) by a new node se and add a second new node re connected only to
se. Finally replace 2uv in the form by 2use+2rese+2vse, and for each u of odd degree (on non-self
edges), add 2u2. The resulting form f ′ is equivalent to f on the linear subspace S of assignments
that make re = u+ v (mod 2) for each edge e and is equivalent to a linear form on that subspace.
The drawback is adding upwards of n2-many nodes, but it preserves sparseness of the edge set.

A closer look into Lemma 4.2 and Lemma 4.3 suggests that the probability of a specific output or
the distribution over the entire output set can serve as a metric to test whether two given quantum
stabilizer circuits are (not) equivalent. Let hi0, h

i
1 be two corresponding h0, h1 differences for circuit

Ci/quadratic form fi(x). Then we can define the following two concepts accordingly.

Definition 6.2. Given two quantum circuits C1 and C2, we call C1 and C2 are weakly equivalent,

denoted by C1
w
≈ C2 if

|〈z|C1 |a〉|2 = |〈z|C2 |x〉|2

for a fixed input a and all possible output z.

18

Definition 6.3. Given two quantum circuits C1 and C2, we call C1 and C2 are strongly equivalent,

denoted by C1
s
≈ C2 if for all possible output z, the amplitudes of C1 and C2 are the same, that is,

|Nj(Q1(a,y,b))| = |Nj(Q2(a,y,b))|

for a fixed input a and all possible output b.

Now consider C1
s
≈ C2 for two given stabilizer circuits. The corresponding Q1(x,y, z) and

Q2(x,y, z) will be of the forms as stated in Section 4. Without loss of generality, assume 0. Note
that the resulting Q1(y, z) and Q2(y, z) can be associated with two graphs. Each graph has two
sets of nodes y and z. The nodes in y can be connected by edges in any way, while there is no
edge between nodes among z and each node is connected by exactly one node from y without
overlapping node. Hence, this should be a strict class among graphs and this gives out another

interesting question, does C1
s
≈ C2 implies that their associated graphs are isomorphic? If this

is true, we will have, C1
s
≈ C2 if and only if their associated graphs are isomorphic. Note that

C1
s
≈ C2 says |Ni(Q1)| = |Nj(Q2)| for all possible outputs, which are exponentially many. We ask:

• If |Nj(Q1)| = |Nj(Q2)| for all possible outputs, does Q1(y,b)
F2∼ Q2(y,b) for all possible b?

• For the case where C1
w
≈ C2, can we pose a similar question, but in terms of rank?

Acknowledgments We thank Scott Aaronson, Graham Farr, Richard Lipton, and Virginia Vas-
silevska Williams for helpful information and discussions.

References

[AB06] S. Anders and H. Briegel. Fast simulation of stabilizer circuits using a graph state
representation. Phys. Rev. A, 73(022334), 2006.

[AG04] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev.
A, 70(052328), 2004.

[Alb38] A. Albert. Symmetric and alternate matrices in an arbitrary field, I. Trans. Amer.
Math. Soc., 43:386–436, 1938.

[Bac17] M. Backens. A new holant dichotomy inspired by quantum computation. In Proc. 44th
Annual International Conference on Automata, Languages, and Programming, Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, 2017.

[Bac18] M. Backens. A complete dichotomy for complex-valued Holantc. In Proc. 45th Annual
International Conference on Automata, Languages, and Programming, volume 107 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:14, 2018.

[BBC+19] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard. Simulation
of quantum circuits by low-rank stabilizer decompositions. In Proceedings of QIP’19,
also https://arxiv.org/abs/1808.00128, 2019.

[BG16] S. Bravyi and D. Gosset. Improved classical simulation of quantum circuits dominated
by Clifford gates. Physical Review Letters, 116, 2016.

19

[BJS10] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of com-
muting quantum computations implies collapse of the polynomial hierarchy.
http://arxiv.org/abs/1005.1407, May 2010.

[Bk18] K. Bu and D. koh. Classical simulation of quantum circuits by half Gauss sums.
https://arxiv.org/abs/1812.00224, December 2018.

[Bro72] Edgar H Brown. Generalizations of the Kervaire invariant. Annals of Mathematics,
95:368–383, 1972.

[BvDR08] D. Bacon, W. van Dam, and A. Russell. Analyzing algebraic quantum circuits using
exponential sums. http://www.cs.ucsb.edu/ vandam/LeastAction.pdf, November 2008.

[CCLL10] J.-Y. Cai, X. Chen, R. Lipton, and P. Lu. On tractable exponential sums. In Proceedings
of the 2010 Frontiers in Algorithms Workshop, volume 6213 of Lect. Notes in Comp.
Sci., pages 48–59. Springer Verlag, 2010.

[CGW18] Jin-Yi Cai, Heng Guo, and Tyson Williams. Clifford gates in the holant frameqwork.
Theoretical Computer Science, 75:163–171, 2018.

[CKL13] H.Y. Cheung, T.C. Kwok, and L.C. Lau. Fast matrix rank algorithms and applications.
J. Assn. Comp. Mach., 60:1–25, 2013.

[CLX14] J.-Y. Cai, P. Lu, and M. Xia. The complexity of complex weighted Boolean #CSP. J.
Comp. Sys. Sci., 80:217–236, 2014.

[DHH+04] C. Dawson, H. Haselgrove, A. Hines, D. Mortimer, M. Nielsen, and T. Osborne. Quan-
tum computing and polynomial equations over the finite field Z2. Quantum Information
and Computation, 5:102–112, 2004.

[DM03] J. Dehaene and B.L.R. De Moor. The Clifford group, stabilizer states, and linear and
quadratic operations over GF(2). Phys. Rev. A, 68:042318, 2003.

[DP18] J.-G. Dumas and C. Pernet. Symmetric indefinite triangular factorization revealing the
rank profile matrix. In Proc. 43rd International Symposium on Symbolic and Algebraic
Computation, pages 151–158, 2018. Also https://arxiv.org/abs/1802.10453.

[EK90] A. Ehrenfeucht and M. Karpinski. The computational complexity of (XOR, AND)-
counting problems. Technical Report TR-90-032, Mathematical Sciences Research In-
stitute, University of California at Berkeley, 1990.

[Gal14] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), 2014.

[GM13] H. Garca and I.L. Markov. Quipu: High-performance simulation of quantum circuits
using stabilizer frames. In Proceedings of ICCD 2013, pages 404–410, 2013.

[GM15] H. Garca and I.L. Markov. Simulation of quantum circuits via stabilizer
frames. IEEE Trans. Computers, 64:2323–2336, 2015. Updated 12/2017 at
https://arxiv.org/abs/1712.03554.

[GMC14] H. Garca, I.L. Markov, and A.W. Cross. On the geometry of stabilizer states. Quantum
Information and Computation, 14:683–720, 2014.

20

[Got98] D. Gottesman. The Heisenberg representation of quantum computers.
http://arxiv.org/abs/quant-ph/9807006, 1998.

[JvdN14] R. Jozsa and M. van den Nest. Classical simulation complexity of extended Clifford
circuits. Quantum Information and Computation, 14:633–648, 2014.

[Koh17] D. Koh. Further extensions of Clifford circuits and their classical simulation complexi-
ties. Quantum information and computation, 17:262–282, 2017.

[KPS17] D.E. Koh, M.D. Penney, and R.W. Spekkens. Computing quopit Clifford circuit ampli-
tudes by the sum-over-paths technique. https://arxiv.org/pdf/1702.03316, 2017.

[MFIB18] I. Markov, A. Fatima, S. Isakov, and S. Boixo. Quantum supremacy is both closer and
farther than it appears. https://arxiv.org/pdf/1807.10749, 2018.

[Mon17] A. Montanaro. Quantum circuits and low-degree polynomials over F2. Journal of
Physics A, 50, 2017.

[Nob06] S. Noble. Evaluating the rank generating function of a graphic 2-polymatroid. Combi-
natorics, Probability and Computing, 15:449–461, 2006.

[OW93] J. Oxley and G. Whittle. A characterization of Tutte invariants of 2-polymatroids. J.
Comb. Thy. Ser. B, 59:210–244, 1993.

[RC09] K. Regan and A. Chakrabarti. Quantum circuits, polynomials, and entanglement mea-
sures, 2009. Draft.

[RCG18] K. Regan, A. Chakrabarti, and C. Guan. Algebraic and logical emulations of quantum
circuits. Transactions on Computational Science, 10,730:41–76, 2018.

[Sar14] P. Sarvepalli. Quantum codes and symplectic matroids. In Proceedings of the 2014 IEEE
International Symposium on Information Theory; also https://arxiv.org/abs/1104.1171,
2014.

[Sch09] Kai-Uwe Schmidt. Z4-valued quadratic forms and quaternary sequence families. IEEE
Transactions on Information Theory, 55:5803–5810, 2009.

[Sto10] A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of
Edinburgh, 2010.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[vdN09] M. van den Nest. Classical simulation of quantum computation, the Gottesman-Knill
theorem, and slightly beyond, 2009. arXiv:0811.0898.

[Wil12] V.V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. 44th
Annual ACM Symposium on the Theory of Computing, pages 887–898, 2012.

21

A Appendix: Other Results and Proofs

Proof for Lemma 3.4(c). Suppose B′ = LDU = MEV where LM are lower triangular and
U,V are upper triangular, not even caring that U = L> and V = M> but just that they are
invertible.

First consider the non-alternating case where D and E are diagonal but not necessarily of full
rank. They must have the same rank r. Then M−1 is also lower triangular, so that C = M−1LD is
lower triangular, and U−1 is upper triangular, so that EVU−1 is upper triangular. C = MLD =
EVU−1, and the only way a lower-triangular matrix can equal an upper-triangular matrix is when
both are diagonal. So C is diagonal, and we need only argue that C = D (= E). This follows
because they have the same rank and for any i such that D[i, i] = 0, also C[i, i] = 0.

In the alternating case, M−1L is lower triangular but its product C with D can also have a
non-zero diagonal above the main diagonal. The product EVU−1 is upper-triangular except for
the diagonal below the main. Hence C must be tri-diagonal. Every off-diagonal nonzero element of
C equals a diagonal element of M−1L multiplied by the corresponding off-diagonal entry of D and
also equals a diagonal element of VU−1 multiplying the corresponding entry of E. By invertibility
over F2 the diagonal entries are all 1, so we have proved that D and E agree on all off-diagonal
entries. The proof that they agree with each other (but not necessarily with C) in their 1×1 blocks
on the diagonal is similar to that for the alternating case.

Proof for Lemma 4.1. The given f(x1, · · · , xn) will fall into one of the following cases:

(a) If some aj = 0, it is safe to drop this j-th variable xj since
∑n

i=1 ai ·xi mod 4 =
∑n

i=1,i 6=j ai ·xi
mod 4. Define N ′0, N

′
1, N

′
2, N

′
3 with respect to x′ = (x1, · · · , xj−1, xj+1, · · · , xn). We can see

that Ni = 2N ′i for i = 0, 1, 2, 3;

(b) If some aj = 2, then for any x0 = (x1, · · · , xj−1, 0, xj+1, · · · , xn), it can be paired with x1

such that f(x1) = f(x1, · · · , xj−1, 1, xj+1, · · · , xn) = f(x0) + 2 mod 4. That is, if f(x0) = 0,
then f(x1) = 2, and vice versa. Same analysis goes to N1 and N3. Hence, the two differences
are zero in this case;

(c) If some aj = 1 and some ak = 3 (without loss of generality, assume j ≤ k), then for any
x10 = (x1, · · · , xj−1, 1, xj+1, · · · , xk−1, 0, xk+1, · · · , xn) and f(x10) =

∑n
i=1,i 6=j,i6=k ai · xi + 1

mod 4, we have f(x01) =
∑n

i=1,i 6=j,i6=k ai · xi + 3 mod 4, which will cancel in the differences.

While for x00 = (x1, · · · , xj−1, 0, xj+1, · · · , xk−1, 0, xk+1, · · · , xn) and f(x00) =∑n
i=1,i 6=j,i6=k ai · xi mod 4, f(x11) =

∑n
i=1,i 6=j,i6=k ai · xi + 4 mod 4 = f(x00). Hence, by

dropping both j-th and k-th variables (similar to case 1) and defining N ′i with respect to
x′ = (x1, · · · , xj−1, xj+1, · · · , xk−1, xk+1, · · · , xn), Ni = 2N ′i for i = 0, 1, 2, 3;

(d) If all xj ’s are 1, then for i = 0, 1, 2, 3, we have

Ni =
∑
m≥0

(
n

4m+ i

)
.

Then Lemma A.1 gives that both differences are powers of 2.

(e) If all xj ’s are 3, then

N0 =
∑
m≥0

(
n

4m

)
, N2 =

∑
m≥0

(
n

4m+ 2

)
,

22

N1 =
∑
m≥0

(
n

4m+ 3

)
, N3 =

∑
m≥0

(
n

4m+ 1

)
.

Then it can be reduced to case 4 and hence both differences are powers of 2.

Note that the above procedures can be applied to a given f(x) recursively. Overall, the statement
holds.

Lemma A.1. ∑
r≥0

(
n

4r

)
−
∑
r≥0

(
n

4r + 2

)
∑
r≥0

(
n

4r + 1

)
−
∑
r≥0

(
n

4r + 3

)
are either 0 or a power-of-2.

Proof.It is known that with ω be the d-th root of unity,

∑
r≥0

(
n

dr + c

)
=

1

d

d−1∑
j=0

ω−jc(1 + ωj)n

where 0 ≤ c < d. By simple substitutions with d = 4 and a = 0, 1, 2, 3, we get

g0 =
∑
r≥0

(
n

4r

)
−
∑
r≥0

(
n

4r + 2

)
=

1

2
(1 + ωn)(1 + ω3)n,

g1 =
∑
r≥0

(
n

4r + 1

)
−
∑
r≥0

(
n

4r + 3

)
=

1

2
ω−1(ωn − 1)(1 + ω3)n.

Rewrite n = 4a + b with a, b ∈ Z and 0 ≤ b < 4. Let g0 =
∑

r≥0
(
n
4r

)
−
∑

r≥0
(

n
4r+2

)
and

g1 =
∑

r≥0
(

n
4r+1

)
−
∑

r≥0
(

n
4r+3

)
. It is easy to verify that (1 +ω3)4 = −4 and hence we can rewrite

g0 =
1

2
(−4)a(1 + ωb)(1 + ω3)b,

g1 =
1

2
(−4)aω3(ωb − 1)(1 + ω3)b.

Now we can analysis them case by case.

1. b = 0: g0 = (−4)a and g1 = 0;

2. b = 1: g0 = (−4)a and g1 = (−4)a;

3. b = 2: g0 = 0 and g1 = 2 · (−4)a;

4. b = 3: g0 = (−2)(−4)a and g1 = 2 · (−4)a.

Proof for Lemma 4.2. Since f is alternating, by Corollary 3.3 and Theorem 3.2, f has even rank
r and

f(x) = 2

r/2∑
j=1

x2j−1x2j + 2

n∑
i=1

wixi,

23

for some basis for V over K and for some w = (w1, · · · , wn) ∈ Kn. Let r = 2g for some g ∈ Z and
we can further rewrite it as

f(x) = 2

g∑
j=1

(x2j−1 + w2j)(x2j + w2j−1) + 2
n∑

i=r+1

wixi − 2

g∑
j=1

w2j−1w2j

Without loss of generality, we first look at the variable pair (x1, x2) and its coefficient pair (w1, w2).
Denote

f ′(x) = 2

g∑
j=2

(x2j−1 + w2j)(x2j + w2j−1) + 2
n∑

i=r+1

wixi − 2

g∑
j=2

w2j−1w2j ,

and write
f(x) = f ′(x) + 2(x1 + w2)(x2 + w1) + 2w1w2.

Note that f ′(x) only depends on (x3, · · · , xn), that is, f ′(x) = f(x3, · · · , xn). There are only four
cases to consider for h(x1, x2) = 2(x1 + w2)(x2 + w1):

• (w1, w2) = (0, 0): h(x1, x2) = 2x1x2, and h(0, 0) = 0, h(0, 1) = 0, h(1, 0) = 0, h(1, 1) = 2;

• (w1, w2) = (1, 0): h(x1, x2) = 2x1(1 +x2), and h(0, 0) = 0, h(0, 1) = 0, h(1, 0) = 2, h(1, 1) = 0;

• (w1, w2) = (0, 1): h(x1, x2) = 2(1 +x1)x2, and h(0, 0) = 0, h(0, 1) = 2, h(1, 0) = 0, h(1, 1) = 0;

• (w1, w2) = (1, 1): h(x1, x2) = 2(1 + x1)(1 + x2), and h(0, 0) = 2, h(0, 1) = 0, h(1, 0) =
0, h(1, 1) = 0.

Define Q00
i = {x ∈ V |f(x) = i mod 4 and x1 = 0, x2 = 0} and similarly Q01

i , Q
10
i , Q

11
i . Then we

have Qi = Q00
i ∪Q01

i ∪Q10
i ∪Q11

i . Also define S00
i = {x ∈ V |f ′(x) = i mod 4 and x1 = 0, x2 = 0}

and analogously S01
i , S

10
i , S

11
i .

Note that f ′(x) only depends on (x3, · · · , xn). Let S′i = {(x3, · · · , xn)|f ′(x3, · · · , xn) = i}, and
we have |S′i| = |S00

i | = |S01
i | = |S10

i | = |S11
i |. Now analyze the above four cases separately:

• (w1, w2) = (0, 0): we have
f(x) = f ′(x) + 2x1x2,

If x00 ∈ Q00
i , then f(x00) = f ′(x00) = i, same for Q01

i , Q
10
i , while if x11 ∈ Q11

i , then f(x11) =
f ′(x11) + 2 and hence f ′(x11) = i+ 2. Now for some c ∈ {0, 1},

Nc −Nc+2 = |Q00
c |+ |Q01

c |+ |Q10
c |+ |Q11

c | − (|Q00
c+2|+ |Q01

c+2|+ |Q10
c+2|+ |Q11

c+2|)
= |S00

c |+ |S01
c |+ |S10

c |+ |S11
c+2| − (|S00

c+2|+ |S01
c+2|+ |S10

c+2|+ |S11
c |)

= 3|S′c|+ |S′c+2| − (3|S′c+2|+ |S′c|)
= 2(|S′c| − |S′c+2|).

• (w1, w2) = (1, 0): by the similar analysis, |Qc| − |Qc+2| = 2(|S′c| − |S′c+2|).

• (w1, w2) = (0, 1): |Qc| − |Qc+2| = 2(|S′c| − |S′c+2|).

• (w1, w2) = (1, 1): |Qc| − |Qc+2| = −2(|S′c| − |S′c+2|).

24

Hence, we can reduce the counting of |Qc|− |Qc+2| over (x1, · · · , xn) to the counting of |S′c|− |S′c+2|
over (x3, · · · , xn), and gradually after g-many such reduction, we can derive

|Qc| − |Qc+2| = (−1)m2g(|Q′c| − |Q′c+2|),

where Q′c = {(xr+1, · · · , xn)|2
∑n

i=r+1wixi = c} and m is the number of (w2j−1, w2j) pairs in f(x)
such that (w2j−1, w2j) = (1, 1), hence 2w2j−1w2j = 2.

Now it is left to argue that
∣∣|Q′c| − |Q′c+2|

∣∣ is either zero or a power of 2. Let q(x) =
∑n

i=r+1 2wixi.
Since wi ∈ {0, 1}, q(x) is linear with coefficient from {0, 2}. Then we can reduce it to the 1st and
2nd cases in Lemma 4.1. In the 2nd case, it gives that |Q′c| − |Q′c+2| = 0 if wi = 1 for some
i ∈ {r + 1, · · · , n}. Now assume non-zero case. Then we have wi = 0 for all i ∈ {r + 1, · · · , n},
which gives

|Q′c| − |Q′c+2| = (−1)m2g2n−r = (−1)m2n−g,

and hence it completes the proof.

Proof for Lemma 4.3. Since f is non-alternating, by Corollary 3.3, there exists a basis for V
over K, determining the coordinates (x1, · · · , xn), such that

f(x) =

r∑
j=1

xj + 2

n∑
i=1

wixi,

for some w = (w1, · · · , wn) ∈ Kn. By rearranging, we have

f(x) =
r∑
j=1

(1 + 2wj)xj + 2
n∑

i=r+1

wixi =
r∑
j=1

w′jxj + 2
n∑

i=r+1

wixi,

where w′j = 1 + 2wj . Note that w′j can only be 1 or 3. Then we can reduce it to the 2nd, 3rd, 4th
and 5th cases in Lemma 4.1.

The 2nd case gives the trivial case where both N0 − N2 and N1 − N3 are zero. Now assume
non-zero case. Then we have w′i, wi ∈ {0, 1, 3}.

Define c to be the number of wi’s such that wi = 0 with i ∈ {r + 1, · · · , n} and d to be the
number of pairs such that (1+2wj , 1+2wj′) = (1, 3) with j, j′ ∈ {1, · · · , r}. Also let m = n−c−2d
and rewrite m = 4a+ b, and define η such that η = 0 if the rest m-many coefficients are all 1’s but
η = 1 if they are all 3’s. Then the differences N0−N2 and N1−N3 are taking one of the following
values:

• if b = 0, then N0 −N2 = (−1)a2(n+c)/2, N1 −N3 = 0;

• if b = 1, then N0 −N2 = (−1)a2(n+c−1)/2, N1 −N3 = (−1)a+η2(n+c−1)/2;

• if b = 2, then N0 −N2 = 0, N1 −N3 = (−1)a+η2(n+c)/2;;

• if b = 3, then N0 −N2 = (−1)a+12(n+c−1)/2, N0 −N2 = (−1)a+η2(n+c−1)/2. 2

Note that Lemmas 4.1, 4.2, and 4.3 and the proof method of Theorem 4.4 apply to more general
input a and output b as well, so that we have the following supplementary result:

Theorem A.2. Given a stabilizer circuit C and its quadratic form qC(y, z), assume we know Q,D1

and D2 with entries in F2 such that y>Q>AQy = y>(D1 + 2D2)y where

25

• if qC is alternating, D2 is a diagonal matrix with entries in {0, 1} and D1 = M1 ⊕ · · · ⊕Mg

has even rank r = 2g over F2;

• if qC is non-alternating, D1 and D2 are both diagonal matrices with entries in {0, 1}.

Then we can compute |〈b|C |0〉|2 for any output vector b to the circuit in O(en) time where n = |y|
and e is the number of ones in y.

Proof. Assume Q = (Qi,j) with Qi,j ∈ F2 and take any output vector b. Then qC(y,b) = y>Ay +
y>∆y and we have

y>Q>AQy + y>Q>∆Qy = y>(D1 + 2D2)y +
∑
i

2y>Eiy

= y>D1y + y>2(D2 +
∑
i

Ei)y

where Ei is a diagonal matrix diag(Qi,1, · · · , Qi,n) for i such that ∆i,i = 1 and D1 varies depending
on whether it is alternating or non-alternating. Then each Ei = diag(Qi,1, · · · , Qi,n) can be obtained
in O(n) time given the matrix Q.

We also know that in both the alternating and non-alternating cases, the output probability
|〈b|C |0〉|2 is determined by the rank of D1 if |〈b|C |0〉|2 6= 0. Now we will show that with the
knowledge of such Q, we can tell |〈b|C |0〉|2 = 0 in O(en) time.

First suppose qC(y, z) is alternating and n = |y|, then for output b we can rewrite

y>D1y + y>2(D2 +
∑
i

Ei)y =

g∑
j=1

2y2j−1y2j +

n∑
i=1

2wiyi mod 4,

where wi ∈ {0, 1}. Once we finish updating the above equation (which takes O(en) time), we can
by Lemma 4.2, get the value 〈b|C|0〉 and identify if | 〈b|C|0〉 |2 = 0 which happens when wi = 0
for some i ∈ {r + 1, · · · , n}. Analogously, this also can be done in O(en) time by Lemma 4.3 for
non-alternating cases.

26

	1 Introduction
	2 Quantum Stabilizer Circuits
	3 Properties of Classical Quadratic Forms Over Z4
	4 Main Results
	5 Self-Dual Forms and Probability Reduction to Rank
	6 Conclusions
	A Appendix: Other Results and Proofs

