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Abstract 

Two-dimensional lateral heterojunctions are basic components for low-power and flexible 

optoelectronics. In contrast to monolayers, devices based on few-layer lateral heterostructures 

could offer superior performance due to their lower susceptibility to environmental conditions. 

Here, we report the controlled synthesis of multi-junction bilayer lateral heterostructures based on 

MoS2-WS2 and MoSe2-WSe2, where the hetero-junctions are created via sequential lateral edge-

epitaxy that happens simultaneously in both the first and the second layer. With respect to their 

monolayer counterparts, bilayer lateral heterostructures yield nearly one order of magnitude higher 

rectification currents. They also display a clear photovoltaic response, with short circuit currents 

~103 times larger than those extracted from the monolayers, in addition to room-temperature 

electroluminescence. The superior performance of bilayer heterostructures significantly expands 

the functionalities of 2D crystals. 

 

 The integration of distinct transition metal dichalcogenide (TMD) monolayers on the same substrate 

has seen tremendous progress in recent years via the use of chemical vapor deposition techniques 1-10. It 

is possible to grow wafer size high quality films 1,2 of these compounds, or even vertical 4 and lateral 

heterostructures composed of monolayers with distinct band gaps 3-10. To demonstrate the feasibility of 

various optoelectronic applications, ranging from highly performing sub-thermionic tunnel field-effect 

transistors 11 to photodetectors 12, to possible memory elements 13,14 was the underlying motivation behind 

these studies. More recently, we reported a rather simple chemical vapor deposition (CVD) method to 

create an undefined number of lateral heterojunctions with epitaxially grown monolayer domains of distinct 

binary TMD compounds and their ternary alloys 9. There is a large variety of reported device performances 
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for a given TMD material, this variability among reports could have its origin at different material qualities 

as well as the high sensitivity of monolayers to the environmental conditions. Substrate roughness and 

impurities, as well as gas adsorbates can introduce unwanted scattering mechanisms for the charge 

carriers that are detrimental to device performance. Monolayers are also very sensitive to humidity and 

aging. Encapsulation could minimize this problem improving device performance 15,16. Another alternative 

is to fabricate devices based on few-layers crystals that have shown superior performance when compared 

to their monolayer counterparts 17-20. In this sense, lateral heterostructures based on bilayers of TMDs 

materials are expected to be a more robust system, both in terms of chemical stability and a lower 

susceptibility to substrate quality or environmental conditions, while maintaining the potential for low-power 

and flexible optoelectronics offered by monolayers. Thicker lateral heterostructures also providing a longer 

photon vertical path through the junction, which should increase photon absorption and hence the 

probability of electron-hole pairs generation. Bilayers of TMD materials also present attractive and unique 

physical properties associated to their distinctive crystal symmetry; for instance, robust valley polarization 

and valley coherence 21, as well as the possibility of electrically tuning the valley magnetic moment 22. 

Despite the potential advantages mentioned above, there have been no reports on lateral heterostructures 

based on bilayer or few-layers TMDs, mostly because they represent a greater challenge from the synthesis 

point of view. In the present work we demonstrate the synthesis of multi-junction lateral heterostructures of 

bilayer TMD domains, which exhibit a significantly superior optoelectronic response when compared to 

monolayers.  

 The bilayer heterostructures were synthesized directly on a SiO2/Si substrate following our 

previously reported one-pot water-assisted chemical vapor deposition (CVD) approach 9 (for details see the 

methods section). Figures 1a, 1b and 1c, show optical images of bilayer MoS2-WS2 lateral heterostructures 

with one-, three- and seven-junctions, respectively. The sulfides-based heterostructures predominantly 

grew in truncated triangular shapes (supplementary information Fig. S1a). Figure 1d shows the schematic 

representation of a typical 2Hc type bilayer lateral heterostructure. The representative Raman spectra from 

WS2 and MoS2 individual domains are shown in Fig. 1e. The Raman peaks at 354 cm-1 (E2g mode), 420 

cm-1 (A1g mode) and 350 cm-1 (2LA(M)) are characteristic of WS2 23,24; while, the peaks at 383 cm-1 (E2g) 

and 407 cm-1 (A1g) correspond to MoS2 (Fig. 1e) 25.  The composite Raman intensity map in Fig. 1f clearly 

shows the spatial distribution of laterally connected domains of MoS2 (407 cm-1) and WS2 (350 cm-1) bilayers 

(see additional maps in supplementary information Fig. S1).  

The photoluminescence (PL) spectrum from 2L-WS2 bilayer domains (Fig. 1g) consists of one 

major peak located at  645 nm accompanying a minor broad peak at  720 nm. The peak at 645 nm 

corresponds to direct excitonic emission at the K and K’ points of the Brillouin zone. Whereas the peak at 

720 nm arises from indirect electronic transition. Even though the electronic bands in WS2 evolve from a 

direct to an indirect band gap semiconductor as the number of layers increases 26, bilayer WS2 still displays 

a relatively strong direct band gap emission that dominates its PL spectrum. For the 2L-MoS2 bilayer 

domains (Fig. 1g) the typical PL spectrum presents two major peaks around 680 nm and 606 nm, 
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corresponding to the A and B excitonic transitions, respectively 27. The PL spectrum at the WS2→MoS2 

hetero-interface (Fig. 1g) consists of a superposition of PL peaks from both MoS2 and WS2 domains that 

are simultaneously excited by the laser probe. The absence of alloy-related peaks at intermediate energies 

suggests the presence of a chemically sharp WS2→MoS2 interface. The PL intensity map as well as the 

peak position map (in Figs. 1h and 1i, respectively) are in agreement with the Raman map in Fig. 1f, 

(additional maps in supplementary information Fig. S1d). The normalized PL contour plot of a line-scan 

across three-junctions (Fig. 1j) better visualizes the abrupt modulation of the band gap. Notice that the 

transition of the PL signal for WS2→MoS2 interfaces is sharper when compared to MoS2→WS2 interfaces, 

the latter might present a small degree of alloying at the junction. The existence of hetero-junctions with 

different composition profile (sharp or smooth) is intrinsically related to the distinct kinetics of the chemical 

reactions of Mo- and W-based compounds during the gas switching time. We previously observed a similar 

trend in monolayer lateral heterostructures, for a detailed discussion on the growth mechanisms we refer 

the reader to our previous report in ref. 9. 

The atomic structure and the local chemical distribution near the bilayer lateral heterojunctions 

were studied by atomic resolution Z-contrast imaging and by Electron Energy Loss Spectroscopy (EELS) 

in an aberration-corrected Scanning Transmission Electron Microscope (STEM). Figure 1k shows a low 

magnification, high-angle annular dark field (HAADF) STEM image of a heterostructure section, the 2L-

WS2 domain appears in bright contrast while the 2L-MoS2 domain is darker. An atomically-sharp bilayer 

lateral heterojunction is shown in Fig. 1l, where the atoms appear brighter in the WS2 domain due to the 

higher Z-number. The crystal structure in both domains (2L-WS2 and 2L-MoS2) display a hexagonal 

arrangement (Fig. 1l) that is consistent with the 2Hc polytype 28, space-group 𝑃63/𝑚𝑚𝑐. In the 2Hc polytype 

each transition metal atom, in one layer, is vertically aligned with two chalcogen atoms located in the 

neighboring layer, and vice versa (see schematic in Fig. 1m and its corresponding intensity profile). Lower 

magnification Z-contrast images from a bilayer lateral heterojunction (Fig. 1n) as well as elemental EELS 

maps of the Mo-L and W-L edges (Fig. 1o) also indicate a clear difference in the chemical composition of 

each domain, which is consistent with the PL and Raman maps discussed above. Figures 1p and 1q show 

a thickness transition at the outermost edge of the heterostructure, from bilayer 2Hc WS2 to monolayer 1H 

WS2, and its corresponding scattered electron intensity profile along the [112̅0] direction. The distinct 

symmetry of the atomic contrast between the bilayers and the monolayers, as observed in the STEM 

images, facilitates their identification.  

Similar to the sulfides, bilayer lateral heterostructures of selenium based TMDs (2L-MoSe2 – 2L-

WSe2) were also synthesized using the water assisted CVD method 9. Figure 2a displays a three-junction 

heterostructure with faceted hexagonal geometry; the 2L-MoSe2 domains appear in a reddish brown color, 

while 2L-WSe2 domains are pink (see additional optical images in supplementary information Figs. S2 and 

S3). Representative Raman spectra for bilayer (2L) and monolayer WSe2 and MoSe2 domains are shown 

in Figs. 2b and 2c, respectively ( and supporting information Fig. S4). For the bilayer WSe2 the A1g phonon 

mode (at 250.5 cm-1) is blue shifted by 1 cm-1 when compared to the monolayer, while the peak at 257.5 
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cm-1 (2LA(M)) is red shifted by 2.5 cm-1. The frequency difference Δω [2LA(M) - A1g] is 7 cm-1 for bilayers 

and 11 cm-1 for monolayers, in agreement with previous reports 29. In bilayer MoSe2, the characteristic 

phonon modes (Fig. 2c) were observed at 240 cm-1 (A1g mode) and at 249.5 cm-1 (𝐸2𝑔
2 (M) shear mode). In 

contrast to bilayer WSe2, the difference in frequency Δω [𝐸2𝑔
2 (M) - A1g] for bilayer MoSe2 is negligible. 

However, the intensity ratio A1g/𝐸2𝑔
2 (M) decreases by 76 % in bilayer MoSe2 when compared to its 

monolayer. Figure 2d displays the composite Raman intensity map at frequencies of 250 cm-1 (2L-WSe2) 

and 240 cm-1 (2L-MoSe2), the color pattern agrees with the optical contrast in Fig. 2a.  

We observed a clear dependence of the PL spectra with the number of layers in both WSe2 and 

MoSe2 domains as shown in Fig. 2e (see also supplementary information Fig. S2), in agreement with 

previous reports 29-31. In bilayer WSe2, the PL peak corresponding to the direct excitonic emission appears 

at 788 nm, which is shifted by ΔE = E1L - E2L = 8.6 meV when compared to the monolayer. The shoulder at 

~811 nm is associated with the indirect bandgap optical transition. Similarly, for bilayer MoSe2, the direct 

and indirect band transitions are located at 827 nm and 893 nm, respectively 31, with a direct bandgap shift 

of ΔE = E1L - E2L = 9 meV with respect to the monolayer. The PL signal from the bilayer domains (WSe2 and 

MoSe2) is rather broad and exhibits relatively strong emissions, typical of high quality materials. Composite 

PL intensity maps (Fig. 2f) at 788 nm (2L-WSe2) and 827 nm (2L-MoSe2) further confirms the homogeneity 

of the PL signal within each domain (see also supplementary information Fig. S4). A PL line-scan 

perpendicular to the three-junctions (Fig. 1g) also confirms the sequential modulation of the bandgap across 

the heterostructure. Note that, similar to our observations in Fig. 1j for the sulfides-based heterostructures, 

the change in the position of the PL peak at the WSe2→MoSe2 junction is sharp when compared to the 

MoSe2→WSe2 interfaces (Fig. 1g). For the latter, the smooth change in the PL peak position across the 

interface suggests the presence of a compositional gradient, which contrasts with the sharp chemical 

transition observed for the WSe2→MoSe2 junctions. This trend does not depend on the type of chalcogen 

atom, but, as mentioned before, on the different oxidation-reduction kinetics of the Mo and W precursors 9.   

A low magnification HAADF-STEM image of a bilayer (2L) WSe2-MoSe2-WSe2 lateral 

heterostructure is shown in Fig. 2h. The 2L-WSe2 domain appears in bright electronic contrast while the 

2L-MoSe2 domain is darker. The spatial chemical distribution observed from Z-contrast images (Fig. 2i), as 

well as elemental EELS maps (Fig. 2j and 2k) also confirm the formation of laterally connected 2L-WSe2 

and 2L-MoSe2 domains, in agreement with the PL and Raman data shown in Figs. 2b-2g. Similar to the 

case of sulfides, there is a 1L-WSe2 fringe domain at the outermost border of the heterostructure, 

presumably formed due to a reduction in precursors supply at the end of the synthesis process during the 

sample cooling (Fig. 2h). Atomic resolution imaging of this 2L-1L transition region (Fig. 2l) shows the distinct 

crystal symmetries of the 2L-WSe2 and the 1L-WSe2 domains. In contrast with the 2Hc stacking observed 

in the sulfide bilayers, the symmetry observed for the selenides bilayers is more consistent with a 2Hb 

stacking 28, space-group 𝑃6𝑚2, as depicted with the ball model in Fig. 2m. 
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In order to evaluate the optoelectronic properties of the bilayer lateral heterostructures, a particular 

configuration of metallic contacts have been designed to probe the electrical transport of the individual 

domains, as well as the transport properties across their junctions (Fig. 3a). The bilayer heterostructure in 

Fig. 3a is composed of three concentric triangular domains (MoSe2 - WSe2 - MoSe2 ), and their junctions 

are highlighted by the red dashed lines. I-V characteristics measured across the junctions (i.e. across 

contacts 1-2 or 4-5, black symbols in Figs. 3b and 3c, respectively), show a clear diode-like response. The 

dark currents Ids≈200 nA measured in forward bias (Vds > 0) and Ids≈3.5 nA measured in reverse bias (-1.5 

V < Vds < 0), result in a 102 ration between forward and reverse biases. Under illumination conditions the 

Ids in direct bias increases by a factor of three. Similarly to the monolayers 9 this marked non-linearity cannot 

be attributed to Schottky barriers at the level of contacts given the nearly linear I-V characteristics of 

individual domains, see Fig. 3d. The doping type for each individual domain, p-type WSe2 and n-type 

MoSe2, was determined by measuring the drain-source current (Ids) as a function of back-gate voltage Vbg 

(Fig. S5a).  

The I-V characteristics across the junctions, shown in magnified scales in the insets of Figs. 3b and 

3c, reveal the existence of a finite current under zero bias which scales with the illumination power, this 

photovoltaic-effect was not previously observed by us in the corresponding monolayer heterostructures 9. 

Conventional solar cells are typically vertical PN-junctions, and the photovoltaic power conversion efficiency 

() is calculated dividing the maximum photogenerated electrical power P = Ids x Vds by the illumination 

power, vertical PN-junctions cover the entire illuminated area since they are parallel, regardless the 

sharpness of the junction in the vertical direction. Notice that for lateral junctions, the area of the junction is 

considerably small compared to the total illuminated area. As shown in Fig. 1l, the lateral junctions can be 

atomically sharp extending by a distance of less than 1 nm at the interface between both domains, and are 

only two monolayers in thickness (1.2 nm). Thus, taking in to account the laser spot size of 10 m 

(diameter), regardless whether we consider the cross-sectional area or the in-plane area of the junction, 

the calculated area will be Aj  10-2 m2. Therefore, a laser illumination power of 1 W would provide only 

1.2710-4 W to the junction area and the calculated efficiencies will be extremely high. To address this 

point, we fabricated contacts that expose distinct areas of the material surrounding the junctions, observing 

that the short circuit current or Isc = Ids (when Vds = 0 V) seems to scale with the illuminated area. In effect, 

we estimate illuminated areas of ~ 21.6 m2 and 10.8 m2 between contacts 1-2 and 4-5, respectively; with 

corresponding Isc values of  3 nA and 9 nA under 9 W of laser illumination power ( = 532 nm). Therefore, 

these areas receive effective illumination powers P = 2.48 W and 1.23 W, respectively; which can be 

contrasted to the extracted maxima photovoltaic electrical power Pel
max = 2 nW and 0.4 nW, as indicated by 

the red dots in Figs. 3e and 3f, respectively. These numbers would lead to modest power conversion 

efficiencies  = 100 x Pel
max/P  0.08 % and 0.03 %, respectively. Notice that if we use the previously 

estimated value of Aj to calculate  one would obtain values that are ~103 higher. Therefore, future work 

should focus in defining, unambiguously, the effective width of the junctions in lateral heterostructures as 
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the ones studied here. However, small  can be attributed to a number of factors, like the detrimental role 

played by the Schottky barriers, or the relatively small probability of generating electron-hole pairs by 

photons traveling through quite thin layers (low optical absorption). Nevertheless, one can envision a 

number of strategies to improve the conversion efficiency, i.e. use of reflective back layers, metals with 

distinct work functions for the electrical contacts, or the addition of extra layers to increase the efficiency of 

these heterostructures 32. Figures 3g and 3h display Isc, the open-circuit voltage Voc, Pel
max, and the 

photovoltaic fill factor FF = Pel
max/(Isc x Voc) as functions of the illumination power P. Isc and Pel

max are 

observed to display a power law dependence on P as previously observed in multilayered junctions 33. Voc 

displays the typical semi-logarithmic dependence on P while FF shows very modest values, i.e. between 

0.2 and 0.3, which are considerably smaller than the values extracted from conventional solar cells 32 

indicating that there is ample room for improvement in performance. 

 The contacts configuration employed to study the electrical properties of lateral heterojunctions 

composed of MoS2 and WS2 bilayer domains is shown in Fig. 4a. Similar to the selenides, the individual 

domains display a p-type behavior for the WS2 and n-type for MoS2 (Fig. S5b). A clear diode like response 

is observed for the I-V characteristic measured between contacts 1-4, i.e. from the central MoS2 bilayer 

domain towards the WS2 outer domain (Fig. 4b). There is a pronounced photo-induced increase in the 

forward bias current. The MoS2-WS2 bilayers lateral junctions also display a clear photovoltaic response 

which is comparable in magnitude to that observed for MoSe2-WSe2 heterojunctions, the corresponding 

short-circuit currents are shown in the inset of Fig. 4b. The I-V characteristic corresponding to the WS2 

single domain (Fig. 4c), measured through contacts 5-6, is non-linear, indicating a more prominent role for 

the Schottky barriers around the contacts when compared to the Se based heterostructures. However, it 

does not display a clear diode-like response, the currents are 3 orders of magnitude inferior to the forward 

biased currents observed across the junction, and the effect of illumination is barely observable. This clearly 

indicates that the Schottky barriers play little to no role in the diode like response observed in MoS2-WS2 

bilayer heterojunctions. The photo-generated electrical power is plotted in Fig. 4d. The illuminated area 

between the electrical contacts is 16 m2, which represents ~1/5 of the total laser spot area, hence 1 W 

in laser power actually corresponds to an incident power P = 0.2 W. According to Fig. 4d, this yields a 

photo-generated Pel
max = 0.043 nW and thus an efficiency  = 100 x Pel

max/P = 0.02 % which is comparable 

to the values previously extracted for the Se based heterojunctions. In these calculations we have assumed 

conservatively that the entire area of the exposed channel contributes to the photovoltaic response, but this 

remains to be confirmed. Figures 4e and 4f display Isc, Voc, Pel
max and FF as functions of the incident power 

P in logarithmic scale. As previously seen for the Se based bilayer heterojunctions, both Isc and Pel
max follow 

a power law dependence on P, with Voc displaying the canonical semi-logarithmic dependence on P. FF on 

the other hand displays lower values, i.e. below 0.21, indicating a slightly inferior performance, possibly 

resulting from larger Schottky barriers as implied by the non-linear I-V characteristics of the individual 

domains.  
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Finally, the devices based on bilayer MoS2-WS2 lateral heterostructures exhibit 

electroluminescence (EL) at room temperature as shown in Fig. 4g. The electroluminescence signal is 

observed for bias voltages between 1.5 V and 2.5 V. The position of the EL peak maximum is between 

1.91-1.94 eV, which is similar to the 1.92 eV direct excitonic emission in the PL spectrum of 2L-WS2 

domains (Fig.1j). Interestingly, these EL energy values are also comparable to the average energy (1.94 

eV) between the most prominent peaks, excitons A and B, in the PL spectrum of the 2L-MoS2 domains 

(Fig.1j). We have observed that the PL signal is considerably stronger in WS2 than MoS2, this suggests that 

the radiative electron-hole recombination process is more efficient in WS2 and hence that the EL signal 

could be generated mainly in the 2L-WS2 side of the junction. However, the EL peak is asymmetric towards 

lower energies, therefore a small contribution to the EL signal from electron-hole recombination (exciton A) 

in the 2L-MoS2 domain cannot be ruled out. Finally, notice that 1.94 eV corresponds to photons in the 

visible spectra, of red color approaching orange, which makes these junctions potential candidates for 

developing light emitting devices. 

 The ability to produce bilayer lateral heterostructures of transition metal dichalcogenides, through 

a newly developed and relatively simple chemical vapor deposition technique, offers an additional degree 

of freedom to create complex 2D device architectures and geometries. We demonstrated that bilayer lateral 

heterostructures have a superior optoelectronic response when compared to their monolayer counterparts, 

for instance, displaying clear photovoltaic and room-temperature electroluminescent responses. Although, 

the competition between the direct and the indirect electronic transitions in bilayer TMDs is detrimental to 

their photoluminescence quantum efficiency, the addition of an extra layer in 2D lateral heterostructures 

seems to minimize the role of substrates and adsorbates that could act as additional scattering centers for 

the charge carriers. The latter effect appear to be dominant, leading to a remarkable enhancement in device 

performance. Our observations suggest a promising route to produce more robust and reliable 

optoelectronic components based on few-layers transition metal dichalcogenides that are less sensitive to 

environmental factors. 

 

Methods 

Synthesis of bilayer lateral heterostructures. All in-plane bilayer lateral heterostructures were 

synthesized using the one-pot CVD approach recently developed by our group that is described in detail in 

the reference (9) of the main text. In brief, this method uses water-assisted thermal evaporation of solid 

sources at atmospheric pressure. Bulk powders of MoSe2 (99.9%, Sigma Aldrich) and WSe2 (99.9%, Sigma 

Aldrich) were placed together within a high purity Alumina boat and used as solid source precursors to 

synthesize the bilayer MoSe2 –WSe2 heterostructures; while MoS2 (99.9%, Sigma Aldrich) and WS2 (99.9%, 

Sigma Aldrich) were the solid sources for bilayer MoS2-WS2 heterostructures. In each case, the powder 

sources containing 120 mg of MoX2 and 60 mg of WX2 [where X=S, Se] in a ratio of 2:1, were placed side-

by-side within an alumina boat (L x W x H: 70 x 14 x 10 mm) in the center of a 1” diameter horizontal quartz 

tube furnace. SiO2/Si (300nm oxide thickness) substrates were pre-cleaned with acetone, isopropanol and 
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deionized water. During the growth, the substrates were placed downstream at temperatures ranging 

between 810 oC and 780 oC and 6-7 cm away from the solid sources which were maintained at 1060 oC. 

Initially, the temperature of the furnace was slowly raised up to 1060 °C within 50 min with a constant flow 

of N2 (200 sccm) and both, substrates and sources, were kept outside the furnace. When the temperature 

of the furnace reached above 1040 oC, the solid precursor as well as the substrates were placed at their 

respective positions, by sliding the quartz tube into the furnace. Simultaneously, water vapor was introduced 

in a controlled manner by diverting N2 flow through a bubbler (Sigma Aldrich) containing 2 ml of DI water at 

room temperature. In order to switch the growth from Mo- to W-rich compounds, the N2+H2O vapor flux was 

suddenly replaced by a mixture of Ar + 5% H2 (200 sccm). Multiple TMD domains were grown by 

sequentially switching the carrier gases: N2+H2O vapor favors the growth of MoX2 domains whereas 

changing the carrier gas from N2+H2O to Ar+H2 (5%) favors the growth of WX2 (where X = S or Se). The 

lateral dimensions of individual TMD domains were independently controlled by varying the carrier gas flow 

times. We observed that increasing the amount of solid precursors and hence the deposition rate, promotes 

the formation of “bilayer” domains (2L MoX2 – 2L WX2) laterally connected via edge epitaxy. Similar growth 

conditions were employed for the growth of the selenium and the sulfur based heterostructures. Once the 

desired heterostructure sequence was completed, the synthesis process was abruptly terminated by sliding 

the quartz tube containing both the precursors and the substrates to a cooler zone, while keeping a constant 

200 sccm flow of Ar + H2 (5%) until it cooled down to room temperature.  

Raman and Photoluminescence Characterization. The Raman and photoluminescense experiments 

were performed in a confocal microscope-based Raman spectrometer (LabRAM HR Evolution, Horiba 

Scientific) using a backscattering geometry. An excitation wavelength of 532 nm (laser power at the sample 

77 W) was used, and focused with a 100x objective (NA = 0.9, WD = 0.21 mm). During the PL and the 

Raman mapping the optical path is stationary, while moving the sample on a computer controlled motorized 

XY stage.   

Transmission Electron Microscopy. High angle annular scanning transmission electron microscopy 

(HAADF-STEM) imaging was  performed with an aberration-corrected JEOL JEM-ARM200cF with a cold-

field emission gun at 200kV. The STEM resolution of the microscope is 0.78 Å. The HAADF-STEM images 

were collected with the JEOL HAADF detector using the following experimental conditions: probe size 7c, 

condenser lens (CL) aperture 30 µm, scan speed 32 µs/pixel, and camera length 8 cm, which corresponds 

to a probe convergence angle of 21 mrad and inner collection angle of 46 mrad.  

Device fabrication. The electrical contacts to individual MoX2 and WX2 domains were fabricated by 

depositing 80 nm of Au onto a 8 nm thick layer of Ti via e-beam evaporation. Contacts were patterned using 

standard e-beam lithography techniques. After gold deposition, and in order to extract adsorbates, the 

samples were annealed under high vacuum for 24 hours at 120 oC. In order to access the inner domains 

in the heterostructures without short circuiting with the external ones, as in the case of WSe2- MoSe2 

heterojunctions, thin h-BN crystals were mechanically exfoliated from larger crystals and conveniently 
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placed on the heterostructure before depositing the contacts. The h-BN crystals were grown following the 

technique described in ref. (35). The technique used to transfer the h-BN onto the heterostructure is similar 

to the one described by Lee et al. 34. 

Electrical characterization was performed using a sourcemeter (Keithley 2612 A). For photo-current 

measurements a Coherent Sapphire 532-150 CW CDRH and Thorlabs DLS146-101S were used, with a 

continuous wavelength λ = 532 nm. Light was transmitted to the sample through a 10 µm single-mode 

optical-fiber with a mode field diameter of 10 µm. The size of the laser spot was also measured against a 

fine grid. 
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Figure 1. Bilayer MoS2-WS2 lateral multi-junction heterostructure and their interfaces. a, b, c, Optical 

images of bilayer MoS2-WS2 lateral heterostructures with single junction, three junctions and seven-

junctions (periodic structure), respectively. d, Atomic structure of the bilayer heterostructure from a cross-

section perspective, with 2H stacking. e, Typical Raman spectra of bilayer WS2 and MoS2 domains. f, 

Composite Raman intensity map including the modes at 405 cm-1 (A1g  - MoS2) and 350 cm-1 (2LA(M) - 

WS2) for the heterostructure in (b). g, Typical photoluminescence (PL) spectra of a 2L-WS2 domain, a MoS2 

domain and the interface WS2-MoS2. h, PL intensity maps of MoS2 domains (peak at 680 nm) for the 

structure in (b). i, PL position map for the peak maxima, corresponding to the structure in (b). j, Contour 

color plots of the normalized PL intensity as a function of the position across the three-junctions (for the 

structure in b) where the white arrows indicate the direction of the line map. Scale bars correspond to 10 

m. k, HAADF-STEM image of a lateral heterostructure section. l, Atomic-resolution STEM image of an 

atomically-sharp bilayer lateral heterojunction. m, Scattered electron intensity profile (along the line in (l)) 

and its corresponding ball model from a cross-sectional perspective. n, Lower magnification Z-contrast 

images from a bilayer lateral heterojunction and (o), its corresponding EELS maps of the Mo-L and W-L 

edges. p, atomic-resolution STEM image of a thickness transition from bilayer 2Hc WS2 to monolayer 1H 

WS2. q, Scattered electron intensity profile (along the line in (p)) and its corresponding ball model of the 

cross-section perspective.  
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Figure 2. Bilayer MoSe2-WSe2 lateral multijunction heterostructures and interfaces. a, Optical image 

of a three-junction bilayer MoSe2 - WSe2 lateral heterostructure. b, Raman spectra of 1L- and 2L-WSe2 

domains. c, Raman spectra of 1L- and 2L-MoSe2 domains. d, Composite Raman intensity map at the 

frequency 250 cm-1 (A1g mode of 2L-WSe2) and at 240 cm-1 (A1g mode of 2L-MoSe2). e, Normalized PL 

spectra of 1L- and 2L-WSe2 as well as 1L- and 2L-MoSe2 domains. f, Composite PL intensity map using 

the 788 nm (2L-WSe2) and 827 nm (2L-MoSe2) peaks. g, Top panel: optical image (section) of a bilayer 

MoSe2-WSe2 lateral heterostructure. Lower panel: normalized PL color contour plot across the white line in 

the top panel. h, Low magnification HAADF-STEM image of a bilayer (2L) WSe2-MoSe2-WSe2 lateral 

heterostructure. i, Higher magnification Z-contrast image of the junction at the top red square in (h). j, k, 

Elemental EELS maps for the top and middle bilayer lateral junctions (red squares in (h)), respectively. l, 

Atomic resolution STEM image of the 2L-1L transition region (bottom red square in (h)). m, Scattered 

electron intensity profile (along the line in (l)) and its corresponding cross-section depicted through a ball 

model. 
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Figure 3. Photovoltaic response across bilayer WSe2-MoSe2 junctions. a, Optical image of a bilayer 

MoSe2/WSe2 bi-junction, red triangles indicate the junctions positions, gold electrical contacts are in yellow 

and h-BN 35 used as an insulating bridge to reach the inner domains appears in green. The response of the 

MoSe2 domain was characterized via two-terminal measurements using the contacts 1-5, while the outer 

WSe2 domain through contacts 3-4 and 2-3. The transport across the junctions, particularly under laser 

illumination ( = 532 nm), was probed through contacts 4-5 and 1-2. Notice that these pairs of contacts 

have distinct separations. b, c, are drain to source current Ids as a function of the bias voltage Vds, for Ids 

flowing through contacts 1-2 and 5-4, respectively. Both show diode-like responses (PN-junction) that are 

enhanced by illumination. The insets are amplified scale plots showing short-circuit currents Isc (for Vds=0) 

resulting from the photovoltaic effect. d, Ids vs. Vds within individual domains measured through contacts 3-

4 (WSe2-main panel and top inset) and through contacts 1-5 (MoSe2-bottom inset). Notice the absence of 

a diode like response and the very small Isc values, i.e. in the order of just 0.1 nA. e, f, photo-generated 

electrical power Pel = Ids x Vds, under several illumination powers P, measured between leads 1-2 and 4-5, 

respectively. Red dots indicate the corresponding maxima of Pel (Pel
max), which scale with the illuminated 

area despite the sharpness of the junctions. g, Short-circuit current Isc (dark blue symbols) and open-circuit 

voltage Voc (brown symbols), where circles (triangles) are the values extracted for the junction between 
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leads 1-2 (4-5). The Isc linear fit (red line) displays a power law dependence Isc  P 0.6. Voc follows the 

characteristic semi-logarithmic dependence on P (red line linear fit). h, Pel
max (violet hollow symbols) and fill 

factors FF = Pel
max/ (Isc x Voc) (blue filled symbols) as functions of P. Circles and triangles depict data from 

the junctions between leads 1-2 and 4-5, respectively. Red lines are linear fits Pel
max  P , with  = 1.5 

(junction 1-2) and  = 0.9 (junction 4-5). 
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Figure 4. Optoelectronic response of bilayer MoS2-WS2 junctions. a, Optical image of a bilayer 

MoS2/WS2 three-junctions heterostructure, the junctions are highlighted by the magenta dashed lines, gold 

pads electrical contacts are in yellow. The optoelectronic response of the outer WS2 domain was 

characterized through contacts 5-6; while the transport across the junction was probed through contacts 1-

4. b, Ids vs. Vds measured across the junction (1-4), for different laser illumination powers ( = 532 nm). 

Inset: magnified scale within the dashed rectangle (around Vds =0) showing significant short-circuit current 

Isc resulting from the photovoltaic effect. c, Ids vs. Vds for currents flowing between contacts 5-6 (WS2 

domain), showing a non-linear I-V characteristic due to the Schottky barriers at the electrical contacts. Upon 

illumination the diode current across the junction is 103 times higher than the non-linear current flowing 

across a single domain. d, Photo-generated electrical power Pel under different illumination powers P for 

currents flowing between leads 1-4. Red dots indicate the corresponding Pel
max. e, Short-circuit current Isc 

(blue hollow symbols) and open-circuit voltage Voc (brown filled symbols) extracted for the junction (1-4). 

The red linear fit for Isc is a power law Isc  P 0.5. The red linear fit for Voc follows the characteristic semi-

logarithmic dependence on P. f, Pel
max (violet hollow symbols) and fill factors FF (blue filled symbols) as 

functions of P. The red line is a linear fit yielding Pel
max  P . g, Room-temperature electro-luminescence 

(EL) response from a bilayer MoS2-WS2 lateral heterostructure.  
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Figure S1. Raman and photoluminescense (PL) mapping of bilayer MoS2-WS2 lateral 

heterostructures. a, Low magnification optical image of a sample mainly composed of bilayer 

lateral heterostructures with three lateral junctions. b-d, Raman maps for a heterostructure with 

one lateral junction. e-g, and h-j, are Raman and PL maps, respectively, for a heterostructure 

with three lateral junction 
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Figure S2. Comparison between monolayer (1L), bilayer (2L) and trilayer (3L)- MoSe2-WSe2 

lateral heterostructures. a, Low magnification optical image showing the coexistence of 1L-, 2L- 

and 3L- lateral heterostructures within the sample indicated by the red, blue and green arrows, 

respectively. For the growth conditions described in the methods section, of all the 

heterostructures on the substrate about 90 % are 2L-heterostructures. These heterostructures 

have one junction and their distinct optical contrast can be used for their easy identification as 

shown in (b), (c) and (d). Photoluminescence signal from 1L, 2L and 3L individual domains of (e) 

MoSe2 and (f) WSe2 which display very distinct peak positions, peak shapes, and intensity. (g) 

Optical image from a sample with three sequential hetero-junctions, showing that the lateral 

pattern of distinct chemical domains is accurately reproduced either in 2L or in 3L heterostructures 

with approximately the same lateral domain size in each case. 
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Fig. S3. Bilayer MoSe2-WSe2 lateral heterostructures. a, Low magnification optical image 

showing the homogeneous island size distribution and coverage. b, Magnified optical image of 

the islands in (a), in this case, each island is composed of a bilayer heterostructure with four 

consecutive lateral hetero-junctions, the gas switching time were intentionally varied in order to 

show independent control of the lateral size of each domain. 
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Fig. S4. Raman and PL maps of bilayer MoSe2-WSe2 lateral heterostructures. a-f, One-

junction 2L- MoSe2-WSe2 heterostructure; (a) Optical image; (b) and (e) Raman maps; (c) and (f) 

PL maps and (d) SEM image of another one-junction heterostructure with different domain sizes. 

g-j, A 2L- MoSe2-WSe2 heterostructure with two junctions; (g) optical image; (h-j) Raman maps. 

k-o, A 2L- MoSe2-WSe2 heterostructure with three junctions; (l) and (m) are Raman map; (n) and 

(o) PL maps.  
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Fig. S5. Electrical characterization of individual domains. Drain-source current (Ids) as a 

function of the back-gate voltage Vbg for (a) a MoSe2-WSe2 and (b) a MoS2-WS2 lateral 

heterostructure. Both heterostructures were transferred onto a fresh SiO2 /Si substrate to evaluate 

the response of its individual domains and to minimize the current leakage through the back-gate. 

Notice how WS2 (WSe2) and MoS2 (MoSe2) display hole and electron doped like behavior, 

respectively.  

 

 

 


