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The alkali atoms, due to their small sizes and low charge ionic states, are most eligible to 

intercalate in the structural layers of V2O5. We have applied ab-initio density functional theory to 

study the dynamics of Li-ion in layers of α-V2O5.  The calculations are performed for two 

compositions, namely, Li0.08V2O5 and Li0.16V2O5, and show that there are unstable phonon 

frequencies. The unstable modes have large amplitude of Li atom along the b-axis of the 

orthorhombic unit cell indicating that such unstable modes could initiate Li-ion diffusion along b-

axis. The ab-initio molecular dynamics simulations are performed up to 25 ps at 1200 K, which 

reveal one-dimensional diffusion of Li atoms.  The diffusion pathways of Li atoms from the 

simulations seem to follow the eigenvectors of the unstable phonon modes obtained in the 

intercalated structure.  
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I. Introduction 

 

The battery research is progressively increasing for efficient storage of energy. This demands 

the batteries to be lighter, quickly chargeable, safer, long lived, stable and cost effective[1, 2]. There 

are relatively few gains that can be made to the battery besides directly improving component 

materials. In this respect many material scientists are searching for efficient electrodes[3-5] and 

electrolyte materials[6-10]. It has been calculated[11] that an increase of 57% in cell energy density 

can be obtained by doubling the capacity of cathode; however, only 47% gain is obtained by 10 

times increasing the capacity of anode. Therefore, large focus of electrode material research is 

dedicated to the discovery of cathode materials[3, 4, 12].  

 

Layered structure materials have been suggested best for battery cathode purpose[13, 14]. 

The present battery technology uses layered lithium cobalt oxide (LiCoO2)[15] and various doped 

combinations like NMC (LiNi0.33Co0.33Mn0.33O2), NCA (LiNi0.8Co0.15Al0.05O2) etc. as a cathode[16]. 

The major problem with these materials is that they contain cobalt in significant amount and hence 

limited by toxicity, high cost, low thermal stability, and fast capacity fade at high current rates. 

Therefore, many other alternative materials are being studied for this purpose[1, 3, 13, 14, 16]. The 

low cost, high abundance, easy synthesis and high energy density [17]of vanadium pentoxide (V2O5) 

makes it useful as a cathode material for Li, Na  and Mg ion batteries [5, 18-22]. 

 

The compound V2O5, due to its layered structure, offers a large affinity to host and intercalate 

with small elements [23-25]. The alkali atoms, due to their smaller sizes and lower charge ionic 

states, are most eligible to intercalate in the structural layers of V2O5. The lower charge states of 

these alkali ions favour their reversible intercalation. This type of intercalation is very useful for 

battery technology, where electrode materials are required to intercalate and deintercalate Li ions for 

charging and discharging of Li ion battery. Therefore, layered structures with high stability have 

always been of interest to battery researchers. In this respect, a few well known layered structures 

like MoSe2, WSe2, MoS2, WS2 etc have been studied for their thermodynamical behaviour for 

intercalation with Li, Na and Mg ions[26-28]. The intercalation of alkali ions like Li, Na and Mg has 

also been studied in various phases of V2O5 using ab-initio DFT techniques[24, 25]. The structures 

are found to form some metastable phases upon intercalations. Multivalent ions inserted within these 

structures encounter suboptimal coordination environments and expanded transition states, which 

facilitate easier ion diffusion. The calculated activation energy barrier using nudged elastic band 
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(NEB) method for divalent Mg ion is found in the range of 0.2 to 0.8 eV in various phases [24].  This 

barrier reduces to 0.11−0.16 eV for Li diffusion in α-V2O5.  

 

In the present study, we have performed the ab-initio molecular dynamics simulations to 

understand the dynamics of Li-ions among the V2O5 layers at high temperature. The MD trajectories 

are used to obtain the mechanism of Li diffusion. Moreover, the density functional perturbation 

theory (DFPT) is used to calculate the zone centre vibrational frequencies of Li intercalated V2O5 

which are further used to investigate role of phonons in Li diffusion.  

 

II. Calculations 

 

 The calculations are performed using Vienna ab-initio Simulation Package [29, 30] (VASP). 

All the simulations are performed on 1×3×2 supercell of the orthorhombic α-V2O5 phase. The kinetic 

energy cutoff of 960 eV is adapted for plane wave pseudo-potential. A k-point sampling with a grid 

of 2×2×2, generated automatically using the Monkhorst-Pack method[31], is used for structure 

optimizations. The ab initio molecular dynamics simulations are performed in NVT ensemble. 

Newton's equations of motion are integrated using Verlet's algorithm with a time step of 1 fs. 

 

III. Results and Discussions 

 

A supercell, 1×3×2,of the ambient α-V2O5 containing 84 atoms, is intercalated with one and 

two Li atoms giving rise to Li0.08V2O5 and Li0.16V2O5 configurations, respectively. The Brillouin 

zone centre phonon frequencies for these two supercell structures are calculated using linear response 

density functional perturbation approach. The calculated range of phonon frequencies is nearly same 

in both the structures (Fig. 1). These calculations show that there are one and two unstable phonon 

frequencies in the supercells of Li0.08V2O5 and Li0.16V2O5, respectively. This means that there is one 

unstable mode per Li-atom. The eigenvectors of these phonon modes are shown in Fig 2.  The 

unstable mode in Li0.08V2O5 has large amplitude of Li atom along b-axis of the orthorhombic unit 

cell. The large magnitude arises from the open channels along b-axis in the layers of V2O5 structure.   

On the other hand, in case of Li0.16V2O5, calculations give two unstable phonon frequencies. The 

eigenvectors corresponding to these frequencies give two different displacement patterns of Li atoms 

movements along b-axis. In one case, both the Li atoms move opposite to each other (Fig 2), while in 

the second unstable phonon mode, both the Li atoms move in the same direction along the b-axis. 

These unstable modes may be responsible for Li diffusion in the structure along b-axis. However, 
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molecular dynamics simulations are required to fully understand the nature and pathways of Li 

diffusion in V2O5. 

 

To investigate the Li diffusion in Li intercalated V2O5 we have performed the ab-initio 

molecular dynamics simulations up to about 25 ps at 1200 K. The calculated squared displacements 

(SD) of various atoms in Li0.08V2O5 and Li0.16V2O5 as obtained from these simulations are shown in 

Fig 3 and Fig 4 respectively. It can be seen from Fig 3 (right) that Li atoms show large jumps in SD 

value with time while the host structure atoms (V, O) have small SD and do not show any time 

dependence implying stability of host V2O5 structure. Further, the calculated anisotropic SD analysis 

shows that the Li jumps are taking place along the b- axis. There are no jumps along the c-direction 

implying the absence of interlayer Li diffusion in V2O5. This is in accordance with the calculated 

eigenvector pattern (Fig. 2) of unstable zone centre phonon mode in Li0.08V2O5.  

 

The simulations for  Li0.16V2O5 at 1200 K performed for 25 ps show similar rigidity of V-O 

structure like Li0.08V2O5 (Fig 4). Both the Li atoms present in the succeeding layers of V2O5 show 

jump like diffusion. The calculated anisotropic displacements show that the jumps of both Li atoms 

are only along the b- direction in the unit cell. These jumps show interesting behaviour that when one 

Li atom has maximum amplitude, another li-atom in second layer has low amplitude. This might be 

due to the fact that the diffusion of one Li atom locally distorts the structure, which may create 

hindrance for the other Li in the second layer. The Coulombic repulsion between the two Li atoms in 

different layers would also act as repulsive push for Li diffusion. The direction of Li jumps is 

consistent with the calculated eigenvector pattern of unstable zone centre phonon modes in 

Li0.16V2O5. We have observed that during the jump from one site to another when the Li approaches 

towards the saddle point, i. e., where it faces the direct interaction with oxygen, it gets the largest 

push for jump.   

 

The other interesting point to note here is the difference in the magnitude of the SD of Li in 

case of Li0.08V2O5 and Li0.16V2O5. The large values of SD of up to about 200 Å2 in about 25 ps in 

Li0.16V2O5 in comparison to that of 60 Å2 in Li0.08V2O5 may arise from the fact that there is an 

increase of about 3 % in the area of the channel like structure in the a-b plane with structure of two 

Li atoms (a=11.694 Å, b=10.721 Å, c=9.886 Å) in comparison to that with the structure with single 

Li atom (a=11.483 Å, b=10.634 Å, c=9.949 Å). This would facilitate the increase in diffusion. 

However, the separation between the two channels along the c-axis reduces slightly by about 0.6 % 

for the structure with two lithium atoms.  
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The calculated trajectories of Li in Li0.08V2O5 and Li0.16V2O5 obtained from ab-initio MD 

simulations at 1200 K are shown in Fig. 5. The one-dimensional diffusion along the b-axis is clearly 

evident.  Overall, both the unstable phonon modes and the actual diffusion pathways from MD 

simulations show diffusion of intercalated Li along the b-axis of the structure. The diffusion of Li 

seems to follow the same path as guided by the eigenvector of unstable phonon modes in LixV2O5. 

The vibrational dynamics may provide initial screening for diffusion pathways for Li ion migration 

in solids. 

 

IV. Conclusions 

 

We have investigated the dynamics of Li ions in V2O5 layers, using ab-initio molecular 

dynamics simulations. Moreover, the phonon frequencies and corresponding eigenvectors in the 

intercalated V2O5 are calculated using lattice dynamics to see the role of vibrational dynamics in the 

onset of Li diffusion in the compound. The combined ab-initio molecular dynamical simulation and 

lattice dynamics study shows that the vibrational dynamics of Li may initiate one-dimensional  

diffusion of Li along the b-axis in LixV2O5.  

 

 

 

  



6 

 

[1] C. Wei, W. He, X. Zhang, J. Shen, J. Ma, Recent progress in hybrid cathode materials for lithium 

ion batteries, New Journal of Chemistry, 40 (2016) 2984-2999. 

[2] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the 

American Chemical Society, 135 (2013) 1167-1176. 

[3] Z. Ma, X. Yuan, L. Li, Z.-F. Ma, D.P. Wilkinson, L. Zhang, J. Zhang, A review of cathode 

materials and structures for rechargeable lithium–air batteries, Energy & Environmental Science, 8 

(2015) 2144-2198. 

[4] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical 

lithium battery materials, Journal of Materials Chemistry, 21 (2011) 9938-9954. 

[5] B. Singh, M.K. Gupta, S.K. Mishra, R. Mittal, P. Sastry, S. Rols, S.L. Chaplot, Anomalous lattice 

behavior of vanadium pentaoxide (V 2 O 5): X-ray diffraction, inelastic neutron scattering and ab 

initio lattice dynamics, Physical Chemistry Chemical Physics, 19 (2017) 17967-17984. 

[6] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, 

Nature Reviews Materials, 2 (2017) 16103. 

[7] Y. Meesala, A. Jena, H. Chang, R.-S. Liu, Recent Advancements in Li-Ion Conductors for All-

Solid-State Li-Ion Batteries, ACS Energy Letters, 2 (2017) 2734-2751. 

[8] J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. 

Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Inorganic Solid-State Electrolytes for Lithium 

Batteries: Mechanisms and Properties Governing Ion Conduction, Chemical Reviews, 116 (2016) 

140-162. 

[9] B. Singh, M.K. Gupta, R. Mittal, S.L. Chaplot, Ab initio molecular dynamics study of 1-D 

superionic conduction and phase transition in β-eucryptite, Journal of Materials Chemistry A, 6 

(2018) 5052-5064. 

[10] B. Singh, M.K. Gupta, R. Mittal, M. Zbiri, S. Rols, S.J. Patwe, S.N. Achary, H. Schober, A.K. 

Tyagi, S.L. Chaplot, Superionic conduction in β-eucryptite: inelastic neutron scattering and 

computational studies, Physical Chemistry Chemical Physics, 19 (2017) 15512-15520. 

[11] J.-M. Tarascon, Key challenges in future Li-battery research, Philosophical Transactions of the 

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010) 3227-

3241. 

[12] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials 

for lithium-based rechargeable automotive batteries, Nature Energy, 3 (2018) 267-278. 

[13] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 104 (2004) 

4271-4302. 



7 

 

[14] Q. Cheng, W. He, X. Zhang, M. Li, L. Wang, Modification of Li2MnSiO4 cathode materials for 

lithium-ion batteries: a review, Journal of Materials Chemistry A, 5 (2017) 10772-10797. 

[15] K. Mizushima, P. Jones, P. Wiseman, J.B. Goodenough, LixCoO2 (0< x<-1): A new cathode 

material for batteries of high energy density, Materials Research Bulletin, 15 (1980) 783-789. 

[16] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for 

advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73 (2012) 51-65. 

[17] M. Sathiya, A.S. Prakash, K. Ramesha, J.M. Tarascon, A.K. Shukla, V2O5-Anchored Carbon 

Nanotubes for Enhanced Electrochemical Energy Storage, Journal of the American Chemical 

Society, 133 (2011) 16291-16299. 

[18] D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, G. Cao, Mesoporous 

vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by 

electrospinning, Energy & Environmental Science, 4 (2011) 858-861. 

[19] Q. Liu, Z.-F. Li, Y. Liu, H. Zhang, Y. Ren, C.-J. Sun, W. Lu, Y. Zhou, L. Stanciu, E.A. Stach, J. 

Xie, Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary 

electrochemical performance for Li-ion batteries, Nat Commun, 6 (2015). 

[20] Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An, L. Mai, Hydrated vanadium pentoxide 

with superior sodium storage capacity, Journal of Materials Chemistry A, 3 (2015) 8070-8075. 

[21] Q. An, Q. Wei, P. Zhang, J. Sheng, K.M. Hercule, F. Lv, Q. Wang, X. Wei, L. Mai, Three-

Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life 

Lithium Batteries, Small, 11 (2015) 2654-2660. 

[22] M. Rao, Vanadium Pentoxide Cathode Material for Fabrication of all Solid State Lithium-Ion 

Batteries-a Case Study, Research Journal of Recent Sciences, 2 (2013) 67-73. 

[23] A. Parija, Y. Liang, J.L. Andrews, L.R. De Jesus, D. Prendergast, S. Banerjee, Topochemically 

de-intercalated phases of V2O5 as cathode materials for multivalent intercalation batteries: a first-

principles evaluation, Chemistry of Materials, 28 (2016) 5611-5620. 

[24] A. Mukherjee, N. Sa, P.J. Phillips, A. Burrell, J. Vaughey, R.F. Klie, Direct investigation of Mg 

intercalation into the orthorhombic V2O5 cathode using atomic-resolution transmission electron 

microscopy, Chemistry of Materials, 29 (2017) 2218-2226. 

[25] G. Sai Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik, G. Ceder, The intercalation phase 

diagram of Mg in V2O5 from first-principles, Chemistry of Materials, 27 (2015) 3733-3742. 

[26] X. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, Atomic-Scale Clarification of Structural 

Transition of MoS2 upon Sodium Intercalation, ACS Nano, 8 (2014) 11394-11400. 



8 

 

[27] E. Yang, H. Ji, Y. Jung, Two-Dimensional Transition Metal Dichalcogenide Monolayers as 

Promising Sodium Ion Battery Anodes, The Journal of Physical Chemistry C, 119 (2015) 26374-

26380. 

[28] X. Sun, Z. Wang, Ab initio study of adsorption and diffusion of lithium on transition metal 

dichalcogenide monolayers, Beilstein journal of nanotechnology, 8 (2017) 2711-2718. 

[29] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and 

semiconductors using a plane-wave basis set, Computational materials science, 6 (1996) 15-50. 

[30] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations 

using a plane-wave basis set, Physical review B, 54 (1996) 11169. 

[31] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B, 13 

(1976) 5188. 

 

  



9 

 

FIG. 1 The calculated zone centre optic phonon modes in a 1×3×2 supercell of Li0.08V2O5 and 
Li0.16V2O5. The vertical lines in the plot corresponds to the calculated frequencies of zone centre 
optic phonon modes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2 The calculated eigenvector of unstable phonon modes in (a) Li0.08V2O5 and (b) Li0.16V2O5 
obtained from density functional perturbation theory approach. Key: O- Red & V-Blue. The Li atoms 
are shown by green circles. The arrow on the green balls gives the direction of displacement of Li 
atoms. 

 
 

  

 

 

 

FIG 3 (Left) The calculated anisotropic squared displacement of Li atom along the crystallographic 
axes at 1200 K. (Right) The calculated mean squared displacement of various atoms Li, O, Al in 
Li0.08V2O5 obtained from ab-initio MD simulations at 1200 K. 
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FIG 4 (Left) The calculated squared displacement of Li atoms (Li1 & Li2) along the crystallographic 
axes at 1200K. (Right) The calculated mean  squared displacement of various atoms Li1, Li2, O, Al 
in Li0.16V2O5 obtained from ab-initio MD simulations at 1200 K. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5 The calculated trajectories of Li in (Left) Li0.08V2O5 and (Right) Li0.16V2O5 obtained from ab-
initio MD simulations at 1200 K. The time dependent positions of Li atoms are shown by green and 
black dots. Key: O- Red & V-Blue. 

 

 

 

 

 

 

 

 

 

 


