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Abstract 

Deep phenotyping is an emerging conceptual paradigm and experimental approach that seeks to 

measure many aspects of phenotypes and link them to understand the underlying biology. 

Successful deep phenotyping has mostly been applied in cultured cells, less so in multicellular 

organisms. Recently, however, it has been recognized that such an approach could lead to better 

understanding of how genetics, the environment, and stochasticity affect development, 

physiology, and behavior of an organism. Over the last 50 years, the nematode Caenorhabditis 

elegans has become an invaluable model system for understanding the role of the genes 

underlying a phenotypic trait. Recent technological innovation has taken advantage of the worm’s 

physical attributes to increase the throughput and informational content of experiments. Coupling 

these technical advancements with computational/analytical tools has enabled a boom in deep 

phenotyping studies of C. elegans. In this review, we highlight how these new technologies and 

tools are digging into the biological origins of complex multidimensional phenotypes seen in the 

worm. 
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1. Introduction 

One of the great drivers of biological research in the 20th century was the desire to understand 

how the information encoded in an organism's genome gives rise to its physical and behavioral 

phenotypes, collectively referred to as the organism's phenome1. However, the phenotype an 

organism displays is not merely a reflection of its genes but the integrated product of its genotype 

coupled with the environmental conditions and stochastic effects that the individual experiences 

before observation2. This interplay means that phenome (collection of phenotypes) of an organism 

contains a vast multi-dimensional set of observable characteristics, and thus in a population of 

individuals, the resultant phenospace is effectively infinite. Understanding the specific contribution 

of an individual's genome, its environment, and stochastic processes to its position in phenospace 

presents a formidable technical challenge. Fortunately, the pace of technological innovation in 

modern biology is beginning to provide the tools that are necessary for both quantifying these 

multi-dimensional characteristics and their underlying causes, opening up a new experimental 

paradigm known as deep phenotyping.  

The laboratory animal Caenorhabditis elegans has many attributes that make it an ideal 

model system for deep phenotyping studies. For example, the worm is a small poikilotherm with 

an adult body length of ~1mm that feeds on bacteria. It has a rapid life cycle, going from egg to 

reproductive adult in ~3 days at 20°C with a deterministic developmental lineage3. These features 

coupled with the fact that the worm primarily reproduces as a self-fertilizing hermaphrodite mean 

that it is possible to grow large near-isogenic populations in highly controlled environmental 

conditions. Most importantly, at least ~38% of the protein-coding genes in the C. elegans genome 

have a human ortholog4, which means that insights gained from deep phenotyping studies in the 

worm can inform us about human biology.  

In this review, we will outline the technological and analytical developments that have 

enabled recent deep phenotyping studies in C. elegans (Section 2). We will then examine how 
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these tools have yielded greater insight into the biology of complex phenotypes using several 

different examples (Section 3). Finally, we will offer a prospective outlook on the future of deep 

phenotyping experiments in C. elegans (Section 4). 

2. Recent Development of Tools and Techniques that Enable Deep Phenotyping 

Historically, phenotypic analysis of C. elegans was based on the manual measurement of easily 

scorable morphometric or behavioral features, such as alterations in body shape or defects in 

movement5. However, modern biological techniques are dramatically expanding the definition of 

phenotype1. For example, access to RNAseq and mass spectrometry is now more widely 

available and less cost prohibitive, enabling transcriptomic and proteomic descriptions of 

individuals. Similarly, advancements in both hardware and computational analyses have led to an 

increase in both the throughput of experiments and their informational content. In the remainder 

of this section, we examine three specific areas that have been particularly influential in the 

evolution of deep phenotyping studies of the worm.  

2.1. Manipulating the C. elegans genome 

C. elegans researchers have developed a sophisticated set of genetic tools with which to 

manipulate the worm's genome and illicit phenotypes, these include both forward and reverse 

genetic approaches3. RNA interference-induced knockdown (RNAi) of gene expression can be 

achieved by feeding worms bacteria expressing double-stranded RNA corresponding to the gene 

of interest6,7. This relative ease of RNAi has enabled multiple reverse genetic screens to uncover 

the phenotypes associated with various gene inactivations8,9. More recently, several groups have 

introduced CRISPR/Cas9 methods that are optimized for manipulating the C. elegans 

genome10,11. These methods allow for the rapid and efficient knock out of genes or introduction of 

fluorescent markers of either gene or protein activity.  

2.2. Hardware employed in deep phenotyping  
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The hardware development that has enabled deep phenotyping studies in C. elegans broadly falls 

into two categories. The first is an improvement in the technology that allows manipulation of the 

worm and the second is an improvement in the technology that records the output of the 

experiment. Both categories have seen significant reductions in component costs and 

accumulation of many designs and proof-of-principle experiments, which increases the 

accessibility of the hardware needed for deep phenotyping experiments. We highlight the 

technical aspects in this section and give specific examples of using the hardware in section 3. 

Manual handling of C. elegans can be very labor intensive and may act as a barrier to the 

scale and scope of an experiment. However, the small size of the worm makes it very easy to 

manipulate using microfluidics12. In the last decade or so, the microfluidic devices used by the C. 

elegans research community have been fabricated from polydimethylsiloxane (PDMS). The 

fabrication of devices with is this material is relatively cheap and straightforward, and PDMS is 

non-toxic to worms. It is also optically transparent, which makes it compatible with many forms of 

microscopy used to study the worm. Its elastic properties allow for simple on-chip valves that can 

control the flow of fluid containing the worms, which enables automation of worm handling leading 

to increases in sample throughput12-14. In addition, microfluidics can also be used to tightly control 

the microenvironment surrounding the worm within the device, something that is much harder to 

do on an agar plate. Typical device designs that are widely used for imaging-based or behavior-

based experiments include multi-chamber arrays13,15 (Fig 1A), sorting devices16-18 (Fig 1B), and 

arena devices19 (Fig 1C), specific examples of the use of these devices are described in section 

3.  

The majority of deep phenotyping experiments in C. elegans rely on some form of optical 

readout of the data being recorded, often involving automated image capture. Studies that focus 

on high-spatial resolution examination of specific cells, tissues, or regions of individual worms are 

now more accessible to researchers due to the increased availability of epi-fluorescent and 
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confocal microscope systems20-23. Similarly, many high-content behavioral studies use imaging 

systems that allow continuous capture of worms at relatively low magnification for the longitudinal 

tracking and quantification of multiple whole-animal level phenotypes24. These systems typically 

utilize dark-field or transmission imaging to enhance the contrast of the transparent worms. The 

cost of components needed for dark-field illumination setups has fallen precipitously in recent 

years, which has led to an explosion in automated systems designed to track freely moving 

worms24,25.  

2.3. Computational Techniques for Deciphering High-Content Phenotypic Information  

A consequence of the hardware-related gains in throughput and information recording is a 

dramatic increase in the data produced by deep phenotyping assays compared to more traditional 

experimental pipelines. These experiments often produce volumes of data that are well beyond 

the analytical capability of an individual human being, which in turn has spurred the development 

of efficient computational tools to parse it. Given the ubiquity of microscopy in C. elegans 

research, the primary set of computational tools that have enabled deep phenotyping studies are 

various forms of image processing algorithms. A large body of literature exists on methods for 

image segmentation and reconstruction to extract the morphological features not only in C. 

elegans but also in other species such as Drosophila and mouse26, on labeled synapses16,27-30, 

cell nuclei31-35, neuronal structure36-40, and cells in general41. It should be noted that not all of these 

image processing techniques have been applied in deep phenotyping yet; we envision that many 

of these tools, when adapted for specific applications, could enable high-content experiments and 

thus deep phenotyping in the future. This will likely require the image processing and biological 

research communities to establish close collaborations, as there are still significant barriers in 

translating knowledge between fields and mapping the technical know-how to specialized 

application details.  
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Beyond image processing, additional computational approaches, include methods in 

stochastic processes42-44, information theory44-46, and machine learning16,17, have been introduced 

into the field in recent years. One important class of techniques is the dimensional reduction of 

features to probe the structure of the data17,47-53. Several unsupervised learning approaches have 

been applied for this purpose, such as principal component analysis (PCA) and clustering, whose 

use was inspired by their application in earlier non-worm studies in gene cluster identification54, 

cell identification55, and human brain activity56. More recent efforts that focus on feature 

classification employ machine learning methods such as support vector machine (SVM) or logistic 

regression models15-17. A third class of analytical tools that focus on deciphering the transition 

processes of biological states employ stochastic processes and information theoretical methods. 

An example of the use of these tools is the study of C. elegans locomotion44,45,57, which involves 

continuous transitions in worm posture. The use of these tools is driven mainly by the need to 

process complex information that usually escapes human visual detection and imagination, and 

to avoid human bias. As we see more data gathered using advanced experimental tools and the 

complexity of the data increases over time, these computational and theoretical tools are likely to 

gain more prominence in the biological discovery process.  

3. Recent Applications of Deep Phenotyping 

Given that the hardware and computational tools to perform deep phenotyping experiments in C. 

elegans now exist, we next turn to question of how these technologies have been used and what 

they have taught us. In this section, we review a range of recent studies covering diverse areas 

of worm biology. 

3.1. Embryogenesis/lineage tracing  

C. elegans is one of the few metazoans for which the entire somatic cell lineage can be traced 

from single-cell embryo to adult. However, tracing the lineage of cells in the developing worm 
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embryo is exceptionally challenging due to the rapidity of cell division and morphological similarity 

of the cells58. The relative complexity of identifying phenotypic aberrations in the embryonic 

lineage compared to that of the post-embryonic cells has meant that the mechanisms governing 

embryonic cell division and differentiation have been harder to elucidate. The advent of 4-

Dimensional imaging systems59,60 removed the need for manual observation of embryogenesis 

but not curation of the resultant images into lineages. Deep phenotyping is still possible using 

manually curated data, for example, a study involving a whole genome RNAi screen identified 

661 genes involved in the early embryogenesis61. A subsequent study integrated transcriptional, 

protein-interaction and visual phenotypic data of these 661 genes to create predictive models of 

cellular events during embryogenesis62 (Fig 2A). The use of transgenic worms that ubiquitously 

express fluorescently-tagged histone proteins has enabled the development of automated tracing 

algorithms that track the embryonic lineage through to the 350-cell stage63-68 (Fig 2B).  

With automated image collection and curation in place, it is now possible to examine 

different aspects of embryonic cell division. Several studies used automated lineage tracing to 

identify the precise cellular expression patterns of known embryonic genes69-71. Automated cell 

lineage tracing has allowed for the construction of a single cell resolution atlas of gene expression 

revealing when and where transcription factors are expressed in the developing embryo70,71. It 

has now become possible to ask how different genetic perturbations affect embryogenesis. Early 

examples of this include identifying the subtle roles of a single transcription factor72 and the distinct 

roles of highly-related/recently duplicated genes73 in defining different aspects of the embryonic 

lineage. More recent advances have demonstrated the roles of several hundred genes in cell fate 

choice74,75, the regulation of asynchronous cell division76. A more limited screen of chromatin 

regulators has also revealed distinct roles for several chromatin modifying complexes during 

embryogenesis77. Together these deep phenotyping studies are revealing the genetic programs 
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and molecular mechanisms that specify how a single fertilized oocyte becomes an embryo 

containing a complex collection of differentiated cell types. 

In contrast to tools available for deep phenotyping of the embryonic development, the ability 

for high-throughput examination of the cell lineage of post-embryonic worms has been lagging. 

However, recently Keil et al. have demonstrated a microfluidic device that allows the long-term 

culture of C. elegans larvae coupled with the ability to routinely immobilize the animals in order to 

take high-resolution images with a variety of microscopy techniques78. Using this platform, the 

authors demonstrated the ability to image the animals from the first larval stage (L1) through to 

egg-laying adult, while examining vulva precursor cell development, apoptosis during larval 

molting, neuron differentiation and neurite outgrowth. This type of platform coupled with future 

developments in post-embryonic phenotyping is likely to lead to a complete description of the 

biological events involved in the development of a multicellular animal. 

3.2. Automated high throughput genetic screens  

One of the most potent aspects of C. elegans as a model system has been the ability to carry out 

forward genetic screens in order to identify mutations that affect all possible elements of a gene. 

However, most genetic screens rely on visually identifiable phenotypic differences from the 

control, which inherently limits the ability to identify mutations that have weak or non-obvious 

phenotypes but still provide valuable information on a gene’s function. The power of deep 

phenotyping in identifying subtle mutants that may be missed by visual inspection was 

demonstrated in automated screens to find mutations affecting synaptogenesis16,17,79. In 

particular, using a microfluidic sorting system16 (Fig 1B), hundreds to thousands of worms can be 

continuously imaged, processed, and sorted in real time. An online image processing algorithm 

based on support vector machine (SVM), inspired by the recent success of using supervised 

learning in various computer visions applications, was developed to classify multidimensional 

features of synapses on the fly16,17. In addition, a stepwise logistic regression model was used to 
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measure the degree of phenotypic deviation of mutagenized worms from wild-type16,17. Clustering 

of the multidimensional features derived from the quantification of the fluorescent synaptic marker 

in the worms from the screen reveals the phenospace of the entire mutational spectrum16,17 (Fig 

2C). These clusters indicate where each new mutant resides in phenospace, allowing the 

inference of their potential genetic relationships. This study offers a powerful example of how 

deep phenotyping integrates high-throughput hardware with computational tools to provide 

mechanistic insights that would not have been possible for a human observer. 

3.3. Measuring ‘whole-brain’ neural activity  

C. elegans is an excellent model system for examining how nervous systems encode 

environmental information and modulate animal behavior. However, measuring the activity of 

neurons as the worm responds to specific stimuli is a major technical challenge. The recent 

development of genetically encoded calcium indicators has allowed the imaging of neuronal 

activity, ranging from a single neuron all the way up to the entire ‘brain’ in the C. elegans nervous 

system (for a summary, see 80).  

‘Whole-brain’ imaging is an inherent form of deep phenotyping, as it involves long-term 

observation and analysis of a large number of neurons. The methodology has only recently 

become feasible in C. elegans because of advancement in speed and sensitivity of cameras and 

research and commercial success in new microscopy platforms. Several studies have 

successfullly characterized whole-brain dynamics under various experimental conditions. Kato et 

al.81 used a microfluidic imaging platform51 to carry out whole-brain recordings from immobilized 

worms, which reveals that the evolution of network dynamics among neurons are directional and 

cyclical. They showed that different phases in this cyclical activity regulate motor commands that 

drive certain locomotory behaviors. Using a modified commercial spinning disk confocal system, 

Venkatachalam et al.82 developed a whole-brain imaging platform and studied representations of 

sensory input and motor output of individual neurons upon thermosensory stimulus in freely 
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moving worms. Similarly, using a simultaneous worm tracking and whole-brain imaging system, 

Nguyen et al.50,83 recorded whole-brain activities of freely moving without stimulation; in a related 

effort Nguyen et al.83 showed a machine-learning approach to track neurons in the freely moving 

heads, which is an important step towards robustly and automatically analyzing such large sets 

of dynamical data . Most recently, Nichols et al.84 investigated the global brain dynamics during 

lethargus, a sleep-like state in the worm. This study showed that global brain activity becomes 

quiescent during lethargus; interestingly, however, certain neurons remain active as these cells 

promote the establishment of the quiescent state. By examining the whole-brain dynamics, this 

work demonstrated that the transition to the ‘wakeful’ state is carried out by the re-establishment 

of activity in specific neurons that then drive global brain dynamics back to the aroused state84.  

From the above examples, it is clear that there is much to be gained by studying the entire 

nervous system, rather than analyzing a specific subset of neurons, as not all of the neurons nor 

their functional connections in the neural circuits governing various sensorimotor behaviors have 

been identified. These examples also point to many opportunities for future theoretical and 

technological development for analyzing and understanding such complex and dynamical 

systems. For instance, better imaging systems that allow coupling of other experimental 

techniques (e.g., microfluidics or optogenetics) and better/faster tracking algorithms and the 

automatic identification of the neurons are still needed. Further, better theories may be needed 

for interpreting the large volumes of curated data in the future to make sense of how the brain 

processes information and makes decisions.  

3.4. Behavioral analysis 

One of the original motivations that drove the development of C. elegans as a model system was 

the desire to understand how the nervous system of an animal gives rise to all the behaviors it 

elicits5. A recent extensive review by McDiarmid et al.25 lays out the history and biological 

significance of behavioral studies of C. elegans. Recording behavioral phenotypes is technically 
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non-trivial as worms exhibit rapid changes in direction and posture. Here we discuss briefly recent 

improvements in worm tracking hardware and software and show how deep phenotyping studies 

could reveal mechanisms underlying emergent behaviors.  

The rapidity of changes of behavior in freely moving worms makes it nearly impossible for 

a human observer to record all events in real time; thus the majority of behavioral studies employ 

some form of automated image capture. The earliest studies were able to record the spatial 

position, speed, and turning rate of individual worms42. However, more recent tracking systems 

are capable of offering more comprehensive descriptions of worm behavior. Worms tracking 

systems fall into two categories: single-worm trackers for high-resolution analysis of individual 

behavior19,85-87 and multi-worm systems for higher throughput population-level studies88-92 (Fig 3). 

These systems have been used to elucidate the behavioral genetics of several sensory 

modalities. Explicit analyses of different behavioral features of thousands of animals from 239 

genotypes revealed uncovered 87 genes, including those in sensory function and the Gαq 

signaling pathway, involved in worm locomotion and predicted 370 genetic interactions among 

them93. Similar studies have identified genes involved in thermotaxis47, chemotaxis88,94 and 

mechanosensation88. Most of these studies were performed on agar plates; in contrast, the 

development of microfluidic arenas allows for precise spatiotemporal control of the chemical 

environment revealing behaviors are not observable in plate-based experiments95.  

In addition to the improvement in worm tracker hardware, development of new algorithms 

has led to a more comprehensive description of worm behaviors. For example, PCA has been 

used to decompose the postural space of worms into eigenvectors referred to as “eigenworms”53; 

surprisingly, the postural space of locomoting worms on agar plates is low dimensional - 

superposition of four of eigenworms is sufficient to describe the majority of the worm’s locomotory 

postures. This analysis, which dramatically reduces the complexity of quantifying behavioral 

patterns, has been built into many worm tracking systems52,53,86-88. The approach has also enabled 
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studies of behavioral dynamics52,86. Brown et al.52 developed a dictionary of behavioral motifs for 

both wild-type and 307 mutant strains, which enables clustering of mutants into related groups, a 

task that would have been nearly impossible to do by eye. Similarly, Yemini et al.86 established a 

comprehensive behavioral recording and curation system and developed an extensive phenotypic 

database of locomotory behaviors for a large number of strains, including multiple alleles of the 

same gene as well as some double and triple mutants. The growing dictionary52 and database86 

have allowed users to uncover subtle behavioral phenotypes for mutants that could not be 

discerned by manual observation, underscoring the importance of deep phenotyping pipelines. 

Understanding how these behaviors emerge from the integration of information about the 

external environment and the worm’s own internal state remains limited. This problem has been 

studied extensively in C. elegans foraging behavior44-46,96-98. The behavioral state transitions a 

worm undergoes, as well as the informational value of the food it encounters while foraging can 

be formulated mathmatically44,45. For example, behavioral state transitions can be predicted by 

using the probabilistic transitions in a Markov process44,57, and information about food can be 

evaluated by information theoretic measures such as mutual information44,45. These models can 

be used to predict the worm’s response to food encountered while foraging44,57. We anticipate 

that when such predictive models are integrated into deep phenotyping studies, it will lead to a 

greater mechanistic insight into the genetics of foraging behavior. 

Increasing throughput is essential to the deep phenotyping of foraging behavior. A recently 

developed microfluidic imaging system, WorMotel99, is a multi-well PDMS platform that uses a 

chemo-aversive moat to trap animals to their specific well, which allows for highly parallelised 

monitoring of individual worms under uniformly controlled environmental conditions This platform 

has been used to examine the relationship between the roaming (active) or dwelling (sedentary) 

behaviors and food abundance96,97. These studies show reveal the biological complexity of 

foraging behaviors. For example, are serotonin produced by the ADF neurons promote roaming 
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while serotonin produced by the NSM neurons promote dwelling97. Other biological amines such 

as dopamine promote dwelling96, while octopamine is involved in roaming behaviors97.  

Similar parallelization has also been demonstrated on plate-based foraging assays through 

the use of multiple cheap cameras46. Stern et al. examined roaming and dwelling behavior in 

single worms continuously across their development46. The authors found that the pattern of 

behaviors varied across the different developmental stages and also between the onset and exit 

phases of each larval stage in a reproducible way. A suite of neuromodulators is responsible for 

the regulation of these behavioral patterns46. Interestingly, by tracking individual worms 

throughout their development, the authors also found that there was significant inter-individual 

variation in roaming behavior. Even though the worms were derived from isogenic populations, 

some animals consistently roamed less across all developmental stages while other consistently 

roamed more46. Quantifying inter-individual variation in any phenotype and understanding it 

biological origins is challenging, given the large numbers of individuals that need to be surveyed. 

Deep phenotyping offers an integrated way of achieving high-throughput experimentation with 

comprehensive behavioral analysis.  

3.5. Measuring aging and age-related decline  

Over the last 30 years, there has been a concerted effort among scientists to understand the 

biology of aging. C. elegans is the premier model organism for the study of longevity, due to its 

short lifespan and powerful genetics100. The majority of lifespan studies in C. elegans are 

performed manually by periodically examining animals maintained on agar plates under a 

stereomicroscope for either spontaneous or stimulated movement101. These manual experiments 

place constraints on the types of phenotypic and scale of demographic data that can be obtained 

by a human observer. Deep phenotyping technologies offer a more efficient and cost-effective 

way of collecting high-throughput and high-temporal resolution lifespan data.  
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The first push towards automating aging studies in C. elegans used commercial grade 

scanners to capture time-lapse data on worm movement on agar plates102,103. In these scanner-

based systems, death is defined as a persistent absence of movement, as there is no ability to 

perform stimulation on the worms to test for induced movement. Stroustrup et al. used their 

automated system, termed the Lifespan Machine103, to examine the demographic features of large 

populations104. The authors found that at the population-level aging appeared to scale temporally 

between groups that had very different mortality rates due to a variety of different factors. This 

scaling implied a single effective rate constant of aging in C. elegans and that interventions that 

altered longevity did so by changing this rate104. 

These scanner-based lifespan studies are unable to gather data at the level of the individual, 

as the temporal resolution of the scanner does not allow the tracking of each worm till it dies103. 

As a result, these systems cannot assess the level of inter-individual variation in lifespan within a 

population, which can be dramatic even for isogenic worms raised in identical conditions105. Two 

groups have recently demonstrated robust high-throughput automated acquisition of lifespan data 

from individual animals106,107. Pittman et al. use a polyethylene glycol hydrogel (PEG) substrate 

that is seeded with spots of E. coli as a food source for developing embryos that are individually 

placed in a single spot, once the embryos are deposited the substrate is sealed using a layer of 

PDMS108. The PDMS acts as a barrier confining each animal upon hatching to its local spot of E. 

coli. The PEG substrate can then be imaged using a wide array of microscopy platforms, which 

allows the tracking of multiple features of the development and lifespan of each worm individually. 

Zhang et al. used this system to show that when tracked at the level of the individual, aging does 

not display temporal scaling, with long-lived animals displaying an extended decrepitude phase 

the authors termed ‘twilight’ compared to short-lived individuals107. The WorMotel platform106 (see 

Section 3.4.2), can record both spontaneous and stimulated movement, which is evoked by the 

use of a brief pulse of blue light, to assess whether a worm is alive or not. Using this system 
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Churgin et al. also demonstrate that short-lived and long-lived individual lifespans from an 

isogenic population do not temporally scale106. The differences seen between a population-level 

measure of longevity and those that account for inter-individual variability demonstrate the 

increasing power of deep phenotyping technologies. 

Dietary restriction (DR) is one of the most robust interventions that has been shown to 

extend lifespan in an evolutionarily conserved manner109. There is considerable interest in finding 

drugs that can induce the phenotypic effects of DR without the concomitant need for drastic diet 

alteration in humans. Using the scanner-based lifespan machine103, Lucanic et al. designed a 

high-throughput screen designed to identify potential DR mimetics in C. elegans110. The authors 

screened through a library of 30,000 small molecules, identifying 57 compounds that repeatedly 

extended the lifespan of treated animals versus control worms. Several of these compounds were 

structurally related, containing a nitrophenyl piperazine moiety, and further analysis of the most 

potent of these, NP1, suggested that it extended longevity by inducing DR-like effects110. 

One of the reasons for the recent rise in interest in the study of aging is that the incidence 

of both cognitive impairment and neurodegenerative disease increases with old age, which 

imposes a significant societal cost as the proportion of elderly individuals relative to those of 

working age in the general population continues to grow111. There is strong desire with the 

research community to develop treatments that can counteract the debilitating neurological effects 

of aging. C. elegans also displays age-related declines in cognitive ability and the morphological 

structure of its nervous system112. Bazopoulou et al. have developed a microfluidic platform to 

monitor the calcium responses of a specific polymodal neuron, ASH, as it ages113. They then used 

this system to conduct a pilot screen to identify small molecules that could delay the age-related 

decline of ASH activity. Several molecules from a panel of 107 FDA-approved compounds 

delayed the decline of calcium responses in ASH during aging, the most potent of these were 
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Tiagabine and Honokiol113. This study demonstrates the power of deep phenotyping technologies 

to acquire dynamic readouts, such as neural activity, in a high-content manner.  

3.6. Drug discovery and small molecule biology  

Deep phenotyping is increasingly being embraced by researchers in the field of drug discovery 

as it allows rapid screening of the pleiotropic effects of different molecules. Given the ease of 

culture and amenability of C. elegans to high-throughput experimentation, the worm has been 

used to model many different human diseases114,115. While many researchers are developing 

methodologies to use these C. elegans disease models to speed up drug discovery, these 

platforms cannot yet be considered as examples of deep phenotyping as they tend to analyze 

single and relatively simple phenotypes. However, it is worth noting that as they serve as the as 

signposts for where we hope truly deep phenotyping platforms will be able to take drug discovery 

screens in model organisms. 

A C. elegans model of cirrhosis, a mutant human α1-antitrypsin (ATZ) fused to GFP 

aggregates within the ER of worm intestinal cells replicating the phenotype seen in diseased 

hepatocytes115. In this study, a high-resolution plate reader was used to rapidly screen a 

commercially available compound library, yielding 33 compounds that decreased the rate of GFP-

aggregation within the worms’ intestinal cells115. More recently, a high-throughput genome-scale 

RNAi screen of ATZ model worms was performed a to find gene inactivations that alter the 

intestinal GFP-aggregation by the same group116. RNAi of 100 genes led to decreased levels of 

GFP-aggregation in the ATZ worms. An in silico approach then identified drugs that are known to 

target the mammalian orthologs of the worm genes and tested them for rescue of the GFP-

aggregation phenotype. Poly-glutamine expansion (polyQ) diseases, such as Huntington’s, are 

another example of a protein aggregation disorder that has also been successfully modeled in 

transgenic worms117. Recently, a new microfluidic system was unveiled for high-throughput drug 

discovery using the C. elegans polyQ model as a demonstration of the potential of the platform118. 
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Using this platform, Mondal et al. rapidly screened ~100,000 worms through their device testing 

983 FDA-approved compounds for their ability to reduce YFP aggregation in a high-polyQ 

strain118. The screen resulted in four compounds that had a statistically significant reduction in 

protein aggregate formation. 

Application of deep phenotyping technologies may also enable the study of widespread but 

often neglected diseases in a cost-effective way. Parasitic nematodes are thought to infect a 

billion people worldwide and are also a significant source of infection in many animals and plants 

that humans are dependent on for food and their livelihoods. However, development of 

anthelmintic drugs has not kept pace with the acquisition of drug-resistance by these nematodes, 

and so there is an urgent need for new therapeutics (see references in 119,120). Parasitic 

nematodes are difficult to work with directly due to the need to grow them in a host system, so C. 

elegans has become a model organism for anthelmintic toxicology. The WormScan platform, 

which uses a consumer-grade flatbed scanner as its basis, can simultaneously measure the 

mobility, brood size, body size and lifespan of worms either on agar plates or liquid culture102,119. 

This system was used to screen through 26,000 compounds resulting in the identification of 14 

potential anthelmintic compounds. The INVAPP/Paragon assay uses a similar liquid culture 

strategy for screening for anthelmintic compounds120. This system also utilizes a 96-well plate 

format for culturing worms in liquid. However, the automated image capture relies on a high-

frame-rate camera instead of a scanner120, giving this system increased sensitivity in the detection 

of drug-induced motility defects. A proof-of-concept drug screen using this system with a 400-

compound library identified 14 molecules that impaired C. elegans growth120. A separate 

compound library screen against the parasitic nematode Trichuris muris using INVAPP/Paragon 

uncovered an entirely new class of promising anthelmintics121. These deep phenotyping-based 

studies of C. elegans allow researchers to rapidly identify potential anthelminthic drugs and their 
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mode of action without the need to perform the complex in-host assays required to study parasitic 

worms. 

Small molecule screens are not only a tool to identify therapeutic chemicals, but they can 

also be used to study the biology of genetic pathways. The C. elegans gene skn-1 is a 

transcription factor that regulates the worm’s response to oxidative and xenobiotic stress122. 

Leung et al. performed a screen for small molecule activators of the SKN-1 protein by using a 

plate reader to measure the induction of a GFP-based transcriptional reporter of the skn-1 target 

gene gst-4123. These authors then subsequently demonstrated the ability of their system to 

perform an ultra-high-throughput screen for inhibitors of SKN-1 amongst a compound library 

containing over 364,000 small molecules124. This screen resulted in 125 that specifically lowered 

the fluorescent signal via inhibition of the gst-4::gfp reporter, suggesting that these molecules 

were SKN-1 inhibitors124. A similar strategy has been used to study C. elegans male-specific linker 

cell undergoes cell death just after the molt between the fourth larval stage and adulthood125. The 

death of this cell is non-apoptotic as it is independent of caspases; however, its death shares 

many morphological features with other non-apoptotic cell death observed in vertebrate 

development125. Schwendeman and Shaham performed a proof-of-concept small molecule 

screen to identify potential inhibitors that may shed further light on the biology of this 

phenomenon126. A screen of 23,797 compounds using a laser scanning cytometer resulted in the 

identification of six compounds that caused persistence of the linker cell by inducing some form 

of global developmental delay in the worms that was rescuable upon removal of the worms from 

the drug126. Together these studies demonstrate how the use of deep phenotyping technologies 

could enable the quantitative measurement of multiple morphometric traits to gain new insight 

into biology. 

4. Future outlook  
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In this review, we have highlighted many recent conceptual and methodological developments for 

deep phenotyping, specifically using C. elegans as a model system. From the success of these 

studies, it is clear that by measuring many aspects of the morphology, functional output, or 

behavior of cells, circuits, tissues, and individual animals, we can expand the scope of biological 

studies. Furthermore, by using appropriate mathematical and statistical tools, we can better 

understand their underlying biological mechanisms. We believe that these approaches will 

become more ubiquitous as improved microscopy and other experimental tools and analytical 

pipelines using advanced computational and theoretical techniques become more accessible. 

While many of these tools might be initially developed for C. elegans, their general utility will apply 

to a broad range of biological systems. We predict that with future integration of efforts in different 

disciplines (e.g., biology, engineering, and computational sciences), the ability to link phenotypes 

to genotypes, environmental conditions, and stochasticity will significantly accelerate.  
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Figures 

 

Figure 1. Microfluidics enables high-throughput experimentation in C. elegans. Examples of 
microfluidic devices routinely used in worm deep phenotyping studies. A. Multi-chamber arrays 
for simultaneously studying large numbers of individual worms (reproduced from 15) B. Sorting 
devices used to rapidly isolate worms with specific characteristics (reproduced from 18) C.  Arena 
devices for behavioral assays (reproduced from 88) 
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Figure 2. Deep phenotyping is a tool to produce informationally rich datasets. A. Integration of 
transcriptomic, proteomic and phenotypic data can be used to create models of cellular events in 
early embryogenesis. (reproduced from 62). B. Use of two-color imaging can aid automated 
embryonic lineaging (upper panel) which can then be used to create spatiotemporal maps of gene 
expression (lower panel) (reproduced from 75). C. Deep phenotyping can reveal a broader swathe 
of the phenotypic spectrum than traditional screens. Subtle mutants (labelled in pink) lie closest 
to wild-type (WT), while most previously identified mutants are the farthest from WT (reproduced 
from 17). 
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Figure 3. Behavioral deep phenotyping of worms using automated trackers. A. Behavioral 
repertoire of  C. elegans that can be automatically tracked. B. Example of a single worm’s 
behavior during an experiment. C. A multi-worm tracking system developed for tracking behaviors 
in a group of worms. (A. and C. are reproduced from 88, B. is reproduced from 93.) 
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