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Abstract

A few elite classes of RNA-RNA interaction (RRI), with complex roles in cellular functions such as
miRNA-target and lncRNAs in human health, have already been studied. Accordingly, RRI bioinfor-
matics tools tailored for those elite classes have been proposed in the last decade. Interestingly, there
are somewhat unnoticed mRNA-mRNA interactions in the literature with potentially drastic biological
roles. Hence, there is a need for high-throughput generic RRI bioinformatics tools.

We revisit our RRI partition function algorithm, piRNA, which happens to be the most comprehensive
and computationally-intensive thermodynamic model for RRI. We propose simpler models that are shown
to retain the vast majority of the thermodynamic information that piRNA captures.

We simplify the energy model and instead consider only weighted base pair counting to obtain BPPart

for Base-pair Partition function and BPMax for Base-pair Maximization which are 225× and 1350× faster
than piRNA, with a correlation of 0.855 and 0.836 with piRNA at 37◦C on 50,500 experimentally charac-
terized RRIs. This correlation increases to 0.920 and 0.904, respectively, at −180◦C.

Finally, we apply our algorithm BPPart to discover two disease-related RNAs, SNORD3D and TRAF3,
and hypothesize their potential roles in Parkinson’s disease and Cerebral Autosomal Dominant Arteri-
opathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL).

1 Introduction

Since mid 1990s with the advent of RNA interference discovery, RNA-RNA interaction (RRI) has moved
to the spotlight in modern, post-genome biology. RRI is ubiquitous and has increasingly complex roles
in cellular functions. In human health studies, miRNA-target and lncRNAs are among an elite class of
RRIs that have been extensively studied and shown to play significant roles in various diseases including
cancer. Bacterial ncRNA-target and RNA interference are other classes of RRIs that have received significant
attention. However, new evidence suggests that other classes of RRI, such as mRNA-mRNA interactions,
are biologically important.

The RISE database [1] reports a number of biologically significant instances of mRNA-mRNA interac-
tions. These representative mRNA-mRNA interactions suggest that general RRIs, including mRNA-mRNA
interactions, play major roles in human biology. Hence, there is a need for high-throughput generic RNA-
RNA interaction bioinformatic tools for all types of RNAs.

As an example of this necessity for all types of RNAs, we found 3 cliques of size 4 of interacting protein-
coding RNAs in ribosome which conform to what we generally expect from the structure of the ribosome.
These cliques are highly entangled together to form an interaction graph as Figure 1. RPS3 which seems
to be one of the genes with the highest number of connections interacts with at least 14 other genes in
ribosome pathway. Another interesting clique of size 4 that we could find consists of 4 genes in the pathway
of regulation of actin cytoskeleton, ACTB, ACTG1, PFN1, and TMSB4X. These genes are involved in vital
tasks of proliferation, migration, mobility, and differentiation of the cell. Being able to capture all the
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Figure 1: A substructure of the genes in the ribosome pathway. Each node represents a gene and each edge
represents an experimentally observed interaction between the corresponding genes.

interactions that RNAs might have will help us better understand the post-transcriptional regulation of the
genes.

In this paper, we revisit our RNA-RNA interaction partition function algorithm, piRNA, which happens
to be the most comprehensive, albeit the most computationally intensive, thermodynamic model for RNA-
RNA interaction [2]. piRNA is a dynamic programming algorithm that computes the partition function,
base-pairing probabilities, and structure for the comprehensive Turner energy model in O(n4m2 + n2m4)
time and O(n4 +m4) space. Due to intricacies of the energy model, including various (kissing) loops such as
hairpin loop, bulge/internal loop, and multibranch loop, piRNA involves 96 different dynamic programming
tables and needs multiple table look-ups for computing their values. An implementation of piRNA is currently
available at http://chitsazlab.org/software/pirna.

In this paper, we introduce a strategic retreat from the slower comprehensive models such as piRNA by
simplifying the energy model and instead considering only simple weighted base pair counting. We develop
the BPPart algorithm for Base-pair Partition function and BPMax for Base-pair Maximization, both of which
are faster by a significant, albeit constant factor. By the explosion of experimental data which makes us able
to use machine learning methods, such as deep learning, for detection of RNA subsequences that interact, this
retreat is necessary if one is willing to build physics-guided models by using the features that are derived by
an energy model. BPPart involves nine 4-dimensional dynamic programming tables, and BPMax involves only
one 4-dimensional table. Both BPPart and BPMax compared with piRNA are simpler dynamic programming
algorithms which are more than 225× and 1300× faster, respectively, on the 50,500 RRI samples we used for
our experiments. The reason for this noticeable speed-up is reducing the number of tables and the number of
table look-ups for computing the new values and also the fact that the 96 large tables of piRNA renders piRNA
memory- rather than compute-bound in practice. Moreover, the significantly reduced memory footprint of
BPPart and BPMax makes them feasible targets for optimization on different hardware platforms like GPU
based accelerators, an avenue we plan to explore in the future.

The key question concerns the accuracy we lose by simplifying the scoring model from the comprehensive
Turner model to simply weighted base-pair counting. We answer this by computing both the Pearson and
Spearman’s rank correlations at different temperatures between the results of BPPart, BPMax, and piRNA on
50,500 experimentally characterized RRIs in the RISE database [1]. We find that the Pearson correlations
between BPPart and piRNA is 0.920 and BPMax and piRNA is 0.904 at −180◦C after optimizing the weights for
base pairs. The effect of entropy, for which the simple base pair counting model does not account, increases
with temperature. Completely in conformance with this theoretical expectation, we find that the Pearson
correlations between BPPart and piRNA is 0.855 and BPMax and piRNA is 0.836 at 37◦C. We conclude that
BPPart and BPMax capture a significant portion of the thermodynamic information. They can possibly be
complemented with machine learning techniques in the future for more accurate predictions.
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1.1 Related work

During the last few decades, several computational methods emerged to study the secondary structure
of single and interacting nucleic acid strands. Most use a thermodynamic model such as the well-known
Nearest Neighbor Thermodynamic model [3, 4, 5, 2, 6, 7, 8, 9, 10, 11]. Some previous attempts to analyze
the thermodynamics of multiple interacting strands concatenate input sequences in some order and consider
them as a single strand [12, 13, 14]. Alternatively, several methods avoid internal base-pairing in either strand
and compute the minimum free energy secondary structure for their hybridization under this constraint
[15, 16, 17]. The most comprehensive solution is computing the joint structure between two interacting
strands under energy models with a growing complexity [18, 19, 20, 21, 22, 2, 23].

Other methods predict the secondary structure of individual RNA independently, and predict the (most
likely) hybridization between the unpaired regions of the two interacting molecules as a multistep process: 1)
unfolding of the two molecules to expose bases needed for hybridization, 2) the hybridization at the binding
site, and 3) restructuring of the complex to a new minimum free energy conformation [24, 25, 26, 27]. The
success of such methods, including our biRNA algorithm [27], suggests that the thermodynamic information
vested in subsequences and pairs of subsequences of the input RNAs can provide valuable information for
predicting features of the entire interaction.

In addition to general RNA-RNA interaction tools, many tools have been developed to predict the
secondary structure of interacting RNAs for a specific type of interest which has been shown to be more
effective in some cases due to the utilization of certain properties belonging to that type. As mentioned
earlier, miRNA-target prediction is one such class of high interest for which such specialized tools have been
created to incorporate various properties specific to miRNAs; some of these tools use the seed region of a
miRNA which is highly conserved [28, 29, 30, 31], some consider the free energy to compute accessibility
to the binding site in 3′ UTR [32, 20, 29], some utilize the conservation level which is derived using the
phylogenetic distance [33, 34, 35, 36, 28, 29], and some others consider other target sites as well, such as the
5′ UTR, Open Reading Frames (ORF), and the coding sequence (CDS) for mRNAs [37, 38, 39, 40].

There are also several other tools developed for other specific types of RNA; IntaRNA [41, 42] is one such
tool that although is used for RNA-RNA interaction in general, it is primarily designed for predicting target
sites of non-coding RNAs (ncRNAs) on mRNAs. There are many other examples, such as PLEXY [43] which
is a tool designed for C/D snoRNAs, RNAsnoop [44] that is designed for H/ACA snoRNAs, TargetRNA [45]
which is a tool aimed at predicting interaction of bacterial sRNAs [46].

2 Methods

Here we describe how our algorithm, BPPart, utilizes a dynamic programming approach to compute the
partition function for RNA-RNA interaction when entropy is ignored and only a weighted score for pairing
different nucleotides is considered. This algorithm is guaranteed to be mutually exclusive on the set of
structures, i.e., it counts each structure exactly once. For BPMax which maximizes the (weighted scores) of
base-pairs, such mutual exclusion is not necessary because the max operator is idempotent (counting the
same structure multiple times does not affect the value of the objective function) and we give a 10× simpler
recursion. Our codes are freely available under open source license.1

Preliminaries

In this paper, we mostly follow the notations and definitions used to develop our piRNA algorithm [2]. We
denote the two nucleic acid strands by R and S. Strand R is indexed from 1 to LR, and S is indexed from 1
to LS both in 5′ to 3′ direction. Note that the two strands interact in opposite directions, e.g. R in 5′ → 3′

with S in 3′ ← 5′ direction; however, we consider the reverse of S in our figures for clearer illustration of the
configurations. Each nucleotide is paired with at most one nucleotide in the same or the other strand. The
subsequence from the ith nucleotide to the jth nucleotide, inclusive, in either strand is denoted by [i, j].

An intramolecular base pair between the nucleotides i and j (by convention, i < j) in a strand is called
an arc and denoted by a bullet i • j. We represent the score of such arc by score(i, j). Essentially, score(i, j)

1See https://github.com/Ali-E/bipart
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Figure 2: An illustration of a zigzag (left) and a crossing bond (right), which are excluded in our algorithm.

is c1 if i • j is GU or UG, is c2 if i • j is AU or UA, and is c3 if i • j is CG or GC. An intermolecular base
pair between the nucleotides k1 and k2, where k1 ∈ R, k2 ∈ S, is called a bond, denoted by a circle k1 ◦ k2.
We represent the score of such a bond by iscore(k1, k2). Essentially, iscore(k1, k2) is c′1 if k1 ◦ k2 is GU or
UG, is c′2 if k1 ◦ k2 is AU or UA, and is c′3 if k1 ◦ k2 is CG or GC.

An arc i • j in R covers a bond k1 ◦ k2 if i1 < k1 < j1. We call i • j an interaction arc in R if there
is a bond k1 ◦ k2 covered by i • j. The scope of an interaction arc is the interval [i + 1, j − 1]. We call a
base on either strand an event if it is either the end point of a bond or that of an interaction arc. In our
explanation we may use arc and bond as verbs. Two bonds i1 ◦ i2 and j1 ◦ j2 are called crossing bonds (right
case of Figure 2) if i1 < j1 and i2 > j2, or vice versa. An interaction arc i1 • j1 in a strand subsumes a
subsequence [i2, j2] in the other strand if none of the bases in [i2, j2] has a bond with a base outside this arc.
Mathematically, for all bonds k1 ◦ k2 where i2 < k2 < j2, k1 lies within the scope of i1 • j1. Two interaction
arcs are equivalent if they subsume one another. Two interaction arcs i1 • j1 and i2 • j2 are part of a zigzag,
if neither i1 • j1 subsumes [i2, j2] nor i2 • j2 subsumes [i1, j1] (left case of Figure 2).

In this work, we assume there are no pseudoknots in individual secondary structures of R and S, and
also there are no crossing bonds and no zigzags between R and S. These constraints allow a polynomial
algorithm—the general case of considering all possible structures is NP-hard [19]. We denote the ensemble of
unpseudoknotted structures of R and S by S(R) and S(S) respectively. The ensemble of unpseudoknotted,
crossing-free, and zigzag-free joint interaction structures is denoted by SI(R,S).

For a given structure s in either S(R) or S(S), let AU(s) denote the number of A-U base pairs in s.
Similarly, CG(s) and GU(s) denote the number of C-G and G-U base pairs in s, respectively. We define
bpcount as a weighted sum, for some constants, c1, . . . , c3

bpcount(s) = c1GU(s) + c2AU(s) + c3CG(s). (1)

For a given joint interaction structure s ∈ SI(R,S), let AU(s), CG(s), and GU(s) denote the respective
number of intramolecular base pairs in s, and let AUI(s), CGI(s), and GUI(s) denote the number of
corresponding intermolecular base pairs in s. We define for some constants, c′1, . . . , c

′
3, for any joint interaction

structure s,
bpcountI(s) = c′1GUI(s) + c′2AUI(s) + c′3CGI(s), (2)

and
bpcount(s) = c1GU(s) + c2AU(s) + c3CG(s) + bpcountI(s). (3)

Rivas-Eddy Diagrams
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For the sake of completeness, we describe the “Rivas-Eddy diagram” notation that we adopt in this paper.
The main elements are:

1. A solid horizontal straight line represents a sequence; we have two sequences drawn as two parallel
horizontal lines.

2. A solid curved line between two points in the same sequence is an arc; all arcs are either above the
upper sequence, or below the lower one.

3. A dotted curved line with a cross in the middle, between two points in the same sequence means that
those two points do not form an arc.

4. A dashed curved line between two points in the same sequence denotes either 2 or 3.

5. A solid line between two points in different sequences is a bond.

6. Similarly, a dotted line with a cross in the middle, between two points in different sequences means
that those two points do not form a bond.

7. A dashed line between two points in different sequences denotes either 5 or 6.

8. A region is the space under an arc, or between bonds. When there are no additional choices of
bonds/arcs in a given region, we fill it with a color (cyan); no arc or bond crosses a filled region.

9. A point in a sequence may be labeled with an index, and in general, the set of such indices are free
variables used in the recursions; the index of unlabeled points before (after) labeled points is assumed
to be the predecessor (successor) of the label.

10. A diagram may be labeled with the name(s) of the constituent substructures (which are eventually
implemented as dynamic programming tables/variables).

11. A vanishing arc (i.e., one that starts at some index, and does not explicitly specify an end point)
represents a structure whose start point is as specified, and the end point is to be determined.

The Rivas-Eddy diagram to compute a certain function is written like a formal (context free) grammar.
The left hand side is labeled with the name of a table (structure), and the right hand side has a number
of alternate substructures separated by vertical bars. Often, some of the boundary cases (e.g., singleton or
empty subsequences) are omitted for brevity.

Problem Definition

In this paper, we solve two problems:

1. Base Pair Counting Partition Function: we give a dynamic programming algorithm BPPart to
compute the partition function

Q(R,S) =
∑

s∈SI(R,S)

ebpcount(s), (4)

2. Base Pair Maximization: we give a dynamic programming algorithm BPMax to find the structure
that has the maximum weighted base pair count, i.e.

BPMax(R,S) = max
s∈SI(R,S)

bpcount(s). (5)

This problem was previously studied by Pervouchine [18] in an algorithm called IRIS. However, there is
no publicly available correct implementation of IRIS. Moreover, we also define an additional interaction
score to capture the structure with the highest intermolecular score, amongst those that maximize the
total score. Mathematically,

IS(R,S) = max
{s | bpcount(s)=BPMax(R,S)}

bpcountI(s). (6)

We compute IS(R,S) by backtracing all possible total-score-optimal structures, and selecting the one
that has the maximum intermolecular score.
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i1 j1

i2 j2

i1

i2

j1

j2

i1 j1

i2 j2

i1 j1

j2i2

k1 + 1

k2 + 1

k1

k2

i1 + 1

i2 + 1

j1 − 1

j2 − 1

Figure 3: The four cases defining table F . Note that in the BPMax algorithm, the cases do not have to be
mutually exclusive since we are working with the max operator, which is idempotent.

BPMax Algorithm

We first explain the BPMax algorithm. It is simpler than BPPart, and allows us to describe the notation and
conventions. When explaining some of the equations, helper functions, called H,L,M,N , are used to ease
the reading of the paper. To differentiate these helper functions, superscripts are used.

For a single strand of nucleotides, we define Si,j as the maximum weighted sum of base pair scores on
all possible foldings of subsequence [i, j]. We need to make such a table, for each of the R and S strands,
and we use superscripts (1) and (2), respectively, to distinguish between them. We also define Fi1,j1,i2,j2 as
the maximum weighted sum of base pair scores (considering both intra- and inter-pairings) of subsequences
[i1, j1] from R and [i2, j2] from S.

The computation of Si,j is based on the well known single RNA folding algorithm [47]. For short sequences
(i.e., those whose length is strictly less than 5) the score is 0, otherwise, we use the recursion in the second
case of Equation (7) shown below. It considers the case where we have an arc i• j and recurs on [i+1, j−1],
and also other cases in which the ith and jth bases are not paired and the [i, j] is split into two smaller
subsequences:

Si,j =

 0 j − i < 4

max

(
Si+1,j−1 + score(i, j),

j−1
max
k=i

Si,k + Sk+1,j

)
otherwise.

(7)

We define the recurrences for Fi1,j1,i2,j2 similarly. When either sequence is empty, the value is simply
the S of the other sequence, and for two singleton sequences, it is the score of the single bond possible.
Otherwise we have three cases: (i) i1 arcs j1 (i1 • j1) in which case the residual structure is given by a
recursion on Fi1+1,j1−1,i2,j2 , (ii) the symmetric case of i2 • j2 and Fi1,j1,i2+1,j2−1, or (iii) none of these arcs,
and two recursive cases of Fi1,k1,i2,k2

and Fk1+1,j1,k2+1,j2 . They are illustrated in the Rivas-Eddy diagram
of Figure 3, which lead to

Fi1,j1,i2,j2 =



−∞ j1 < i1 and j2 < i2

S
(1)
i1,j1

i1 ≤ j1 and j2 < i2

S
(2)
i2,j2

j1 < i1 and i2 ≤ j2

iscore(i1, i2) i1 = j1 and i2 = j2

max [ Fi1+1,j1−1,i2,j2 + score(i1, j1),

Fi1,j1,i2+1,j2−1 + score(i2, j2),

Hi1,j1,i2,j2 ] otherwise,

(8)
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QzQ

Figure 4: For computing Q, notice that either there is no pairing or there is at least one arc which starts at
some index k and results in a case of Qz.

Hi1,j1,i2,j2 =
j1

max
k1=i1−1

j2
max

k2=i2−1
(Fi1,k1,i2,k2

+ Fk1+1,j1,k2+1,j2). (9)

Note that H is equivalent to

Hi1,j1,i2,j2 = max



S(1)(i1, j1) + S(2)(i2, j2),
j1−1
max
k1=i1

j2−1
max
k2=i2

Fi1,k1,i2,k2
+ Fk1+1,j1,k2+1,j2 ,

j2−1
max
k2=i2

S(2)(i2, k2) + Fi1,j1,k2+1,j2 ,

j2−1
max
k2=i2

Fi1,j1,i2,k2 + S(2)(k2 + 1, j2),

j1−1
max
k1=i1

S(1)(i1, k1) + Fk1+1,j1,i2,j2 ,

j1−1
max
k1=i1

Fi1,k1,i2,j2 + S(1)(k1 + 1, j1)


. (10)

In Equation (8), we compute S tables separately for each strand, according to Equation (7) with the
corresponding sequence as the input, and we distinguish them by superscripts (1) and (2) above. We use the
same superscript convention throughout this paper.

BPPart Algorithm

It is well known that the partition function can be computed by developing similar recursions, with two
simple modifications. The first is that algebraically, we operate with the field of reals rather than the max-
plus semi-ring. Here, the additive identity is 0, rather than INT MIN and the multiplicative identity is 1,
rather than 0. The second, as already mentioned earlier, is that because addition is not idempotent, we must
carefully ensure that we enumerate substructures in a mutually exclusive manner.

First, we start with the recursions for computing the partition function on a single strand which is going
to occur in many cases of the double-stranded version. Let Qi,j represent the partition function of the
subsequence [i, j]. As shown in Figure 4, there are two mutually exclusive cases: either (the right case) there
is no arc, or (the left case) there is a unique leftmost arc (the cyan fill ensures this) which starts at k, and a
substructure on [k, j] with an arc starting at k, for which we introduce a new table Qz.

To define Qzi,j , let i • k (read as “let i arc k”) for some index k. This results in two Q substructures, one
on [i+1, k−1], and the other on [k+1, j]. Therefore, the value of Qzi,j can be computed using Equation (12)
which accounts for the assumption that no pairing is allowed between two bases that are less than 3 bases
apart:

Qi,j =


1 j ≤ i

1 +

j−4∑
k=i

Qzk,j otherwise,
(11)
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i j i jk + 1k

Qk+1,j

Qz
Qi+1,k−1

Figure 5: Computing Qz can be achieved by considering the base k that is paired with i and the two Q
substructures it forms, one between i and k and one after k.

= QI QIaQI

Q(1)

Q(2)

i1 j1

i2 j2

k1

k2

k1

k2

Q(1) Q(1)

Q(2) Q(2)

Figure 6: Each case of a QI structure (left side of the equation) can lead to three cases: either no bonds
exist (leftmost case), or at least one bond exists. If the first event on both of the sequences is a bond (middle
case) the subsequences to the left of the bond involve only Q and the subsequences to the right recurs on
QI. Otherwise (rightmost case) we will have QIa (see Figure 7).

Qzi,j =


0 j − i < 4

j∑
k=i+4

Qi+1,k−1 × escore(i,k) ×Qk+1,j otherwise.
(12)

For the partition function of a pair of RNA sequences, we consider a 4-dimensional table QI in which
QIi1,j1,i2,j2 is the value of base pair counting partition function for the subsequences [i1, j1] on R and [i2, j2]
on S. As Figure 6 shows, we can split the set of all possible structures of QI into three mutually exclusive
subsets. The leftmost case shows the structures in which there exist no bonds (the first term of Equation (13).
The other two cases occur when there is at least one bond, and hence, unique leftmost events on both R and
S, at positions k1 and k2, respectively. In the second (middle) case, these leftmost events are end points of
a bond, k1 ◦ k2; hence, this case can be broken into: a bond-free section on the left of the bond itself, and a
general case of QI on the right of the bond. The third case occurs when k1 and k2 are not end points of a
bond. We call this structure QIa, and explain it next.

QIi1,j1,i2,j2 =

Q
(1)
i1,j1
×Q

(2)
i2,j2

+

j1∑
k1=i1

j2∑
k2=i2

Li1,j1,k1,i2,j2,k2
+

j1∑
k1=i1

j2∑
k2=i2

(
Q

(1)
i1,k1−1 ×Q

(2)
i2,k2−1 ×QIak1,j1,k2,j2

)
, (13)

Li1,j1,k1,i2,j2,k2
= Q

(1)
i1,k1−1 ×Q

(2)
i2,k2−1 × eiscore(k1,k2) ×QIk1+1,j1,k2+1,j2 . (14)

8



=QIa QIs(2) QIeQI QIQIs(1) QI

i1 j1 k1k1k1

k2 k2 k2
i2 j2

Figure 7: There are three cases for computing the QIa structure; either the leftmost base of only one of the
strands is an end point of an arc or both end points are.

= QIaux(1)QIs(1)

i1 j1

i2 j2

i1 j1

i2

k1Q(1)

j2

i1 + 1

j1 − 1

Figure 8: QIs(1) has one arc that can be extracted and the structure derived will have the property that the
two end bases of the bottom strand cannot be paired (the new structure inherits this property from QIs(1)).

On the top strand, we consider the leftmost event. This new structure is QIaux(1).

For computing QIai1,j1,i2,j2 , (see Figure 7) we have to consider the property of this structure that the
leftmost bases on both R and S have to be events, but they cannot both be the end points of a bond.
Therefore, either one or both of them have to be end points of an interaction arc. There are two possibilities.

First, if both i1 and i2 are end points of some interaction arcs, i1 • k1 and i2 • k2, these arcs must be
equivalent (or else, we have a zigzag). As shown in the rightmost diagram in Figure 7, QIa then splits into
two exclusive substructures, namely one where the first and last bases on each strand are paired, and the
two arcs are equivalent (we call it QIei1,k1,i2,k2

and derive its recursion later), followed by QIk1+1,j1,k2+1,j2
on the suffixes of these arcs.

Otherwise, exactly one of the leftmost events on R and S is an end point of a bond, and we have two
symmetric cases (QIs(1) and QIs(2)), one where the interaction arc is in R, and the other where it is in S.
In the first case (middle diagram in Figure 7), let k1 be the event in R such that i1 • k1 is an interaction
arc, and [i2, k2] is the longest subsequence in S that i1 • k1 subsumes, and k2 is an event. The suffix of this

substructure recurs on QI. We derive QIs(1) later.
To derive QIei1,j1,i2,j2 , note that removing the arcs i1•j1 and i2•j2 yields the general case of QIi1+1,j1−1,i2+1,j2−1

for the inner-section with an additional constraint that there has be at least one bond in that region because
the assumption is that the extracted arcs were interaction arcs. We can fulfill this constraint by excluding
all cases where no bonds exist (i.e., considering only the two rightmost substructures of Figure 6).

To derive QIs
(1)
i1,j1,i2,j2

let k1 be the leftmost event in the subsequence [i1 + 1, j1 − 1]. Note that such a
k1 is guaranteed to exist because first, i1 • j1 subsumes [i2, j2] and we know that i2 is an event, i.e., the end
point of either a bond (subsumed by i1 • j1) or of an interaction arc. Then (see Figure 8) we define a new

substructure, QIaux(1), after removing i1 • j1 and the prefix of R up to k1.
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= QImQIaux(1)

i1 Q(1)Q(1)i1 j1

i2 j2 i2 i2

k1 k1

QIs(1)
i1

j1 j1

j2 j2

Figure 9: Two cases must be considered for the QIaux(1) structure, in which the two end points of the
bottom strand are events. For the top strand, only the leftmost end point is required to be an event. It can
either be the end point of an arc (rightmost case) or not (leftmost case).

= QIaQI QIacQIm QIacQIa

i1 i1 j1 i1 j1 i1 j1

i2 j2

j1

i2 j2 i2 j2 i2 j2

i1 + 1

i2 + 1
j2 − 1

j1 − 1

i2 + 1 k2

k1

j2 − 1

j1 − 1 i1

i2 j2

j1k1k1 − 1

k2k2 − 1

i1 + 1

QI

k1 − 1

k2 − 1

Figure 10: For computing QIm, since we know the four end points are events, but none of the two end points
in one strand can form an arc, we must consider the four different cases shown above. For convenience, arcs
of QIac structure are shown with dash-dotted lines because it represents the sum of three structures in which
each of the arcs could be present or not (we could replace the second and fourth cases with three cases, one
for each term of Equation (16)).

To derive QIaux
(1)
i1,j1,i2,j2

, note that the context of its definition implies that i1, i2 and j2 are all three

events. Let, as shown in Figure 9, k1 be the last event on [i1, j1]. Now, if i1 • k1, then recur on QIs(1).
Otherwise, k1 is an event that does not pair with i1. We define a new substructure, QIm, where all four
corners are events, and neither i1 • j1 nor i2 • j2 is allowed.

For computing QImi1,j1,i2,j2 , since there are four corners each of which can be the end point of either
a bond or of an arc, there might be at most sixteen possibilities. Upon combining some of those sixteen
possibilities, we have to consider four mutually exclusive cases (see Figure 10). The first one is the case
where i1 ◦ i2 and j1 ◦ j2 and the remaining part will be QIi1+1,j1−1,i2+1,j2−1. That case corresponds to all
four corner events being the end points of bonds. Since we assume there are no crossing bonds, we must
have i1 ◦ i2 and j1 ◦ j2. In the second case, i1 and i2 are the end points of a bond, i.e., i1 ◦ i2, but either
j1 or j2 (or both) does not form a bond. That captures three out of the sixteen total possibilities. Since j1

and j2 are both events but do not form a bond, we define a term QIac which is the sum of QIe and the two
symmetric QIs’s, since they preserve the constraints that arise in the first term in the definition of QIa (see
Figure 7). The prefix of this substructure is a general recursion on QI on the subsequences [i1 + 1, k1 − 1]
and [i2 + 1, k2 − 1]. The third case is the symmetric case of the second case, i.e., there is no bond between
i1 and i2, but j1 ◦ j2. The prefix of this bond is a recursion on QIa. That captures three out of the sixteen
total possibilities. Finally, the fourth case corresponds to either i1 or i2 (or both) does not form a bond and
either j1 or j2 (or both) does not form a bond. That captures the remaining nine out of the sixteen total
possibilities.
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Putting all those together, we obtain

QIai1,j1,i2,j2 =

j1∑
k1=i1

j2∑
k2=i2

QIaci1,k1,i2,k2
×QIk1+1,j1,k2+1,j2 , (15)

QIaci1,j1,i2,j2 = QIs
(1)
i1,j1,i2,j2

+ QIs
(2)
i1,j1,i2,j2

+ QIei1,j1,i2,j2 , (16)

QIei1,j1,i2,j2 =


0 j1 − i1 < 4

or j2 − i2 < 4

Mi1,j1,i2,j2 otherwise,

(17)

Mi1,j1,i2,j2 =
(

QIi1+1,j1−1,i2+1,j2−1 −Q
(1)
i1+1,j1−1 ×Q

(2)
i2+1,j2−1

)
× escore(i1,j1)+score(i2,j2), (18)

QIs
(1)
i1,j1,i2,j2

=


0 j1 − i1 < 4 or j2 < i2

j1−1∑
k1=i1+1

Q
(1)
i1+1,k1−1 × escore(i1,j1) ×QIaux

(1)
k1,j1−1,i2,j2

otherwise,
(19)

QIs
(2)
i1,j1,i2,j2

=


0 j1 < i1 or j2 − i2 < 4

j2−1∑
k2=i2+1

Q
(2)
i2+1,k2−1 × escore(i2,j2) ×QIaux

(2)
i1,j1,k2,j2−1 otherwise,

(20)

QIaux
(1)
i1,j1,i2,j2

=

j1∑
k1=i1

(
QIs

(1)
i1,k1,i2,j2

+ QImi1,k1,i2,j2

)
×Q

(1)
k1+1,j1

, (21)

QIaux
(2)
i1,j1,i2,j2

=

j2∑
k2=i2

(
QIs

(2)
i1,j1,i2,k2

+ QImi1,j1,i2,k2

)
×Q

(2)
k2+1,j2

, (22)

QImi1,j1,i2,j2 =


eiscore(i1,i2) i1 = j1 and i2 = j2

Ni1,j1,i2,j2 i1 < j1 and i2 < j2

0 otherwise,

(23)

Ni1,j1,i2,j2 =

eiscore(i1,i2)+iscore(j1,j2) ×QIi1+1,j1−1,i2+1,j2−1+

eiscore(i1,i2) ×
j1∑

k1=i1+1

j2∑
k2=i2+1

QIi1+1,k1−1,i2+1,k2−1 ×QIack1,j1,k2,j2+

eiscore(j1,j2) ×QIai1,j1−1,i2,j2−1+
j1∑

k1=i1

j2∑
k2=i2

QIai1,k1,i2,k2
×QIack1+1,j1,k2+1,j2 .

(24)

11



Figure 11: Distribution of the lengths (left) and product of the lengths (right) of all the RNA subsequences
used in our experiment.

3 Results

To investigate the correlation between the scores of BPPart and BPMax, and those of piRNA, we used the
RISE database [1] which combines information about interacting RNAs from multiple experiments. For
the human dataset, we extracted all the interaction windows for those pairs that have this data in RISE.
We eliminated the ones that contained a window with length less than 15 because they are too short for
an unbiased comparison. Then, we sorted the remaining pairs based on the product of the lengths of the
interacting windows. Finally, the first 50,500 pairs of sequences were chosen as our primary dataset for
different experiments and analysis. Figure 11 shows the distribution of the sequence lengths in this dataset,
and also the product of the lengths of the RNA subsequences in each pair.

We first ran piRNA on our primary dataset at 8 different temperatures, 37, 25, 13, 0, −40, −80, −130,
and −180 degrees Celsius. We also ran BPPart and BPMax on the dataset with different weights, i.e., ci’s
and c′i’s. In general, we want to use the stack energies of the Turner model as a starting point for tuning
the weights. Since the parameters form a projective space (invariant results with respect to scaling), we
considered a fixed weight of 3 for CG (and GC). Using the experimentally computed stack energies of the
Turner model, minimum and maximum values for the weights of AU and GU were computed. That is, to
compute the maximum weight of AU (and UA), we consider the maximum released energy when AU (or UA)
is stacked with another pair; this happens when UA is stacked with CG and 2.4 kcal/mol energy is released.
Then, we considered the minimum value of released energy in an stack for CG or GC (for which we assumed
a constant weight of 3), which is 1.4 kcal/mol. We derived the maximum weight of AU and UA as 5.143 by
multiplying 2.4 by 3

1.4 . Finally, we made sure that the range of values that we explore for the weight of AU

and UA contains this maximum value (we chose 5.5 as the upper-bound). For finding the minimum weight
of AU and UA, we consider their minimum stack energy, which is 0.6 kcal/mol. Given the maximum energy
of CG, namely 3.4 kcal/mol, the value of interest is computed as 0.6 × 3

3.4 = 0.529. However, for the sake
of comprehensiveness and exploring the shape of the plots, we used much smaller lower-bounds—−4.5 and
−3—for BPPart and BPMax, respectively.

For all the combinations of weights of AU and GU, in steps of 0.5, we computed the Pearson and Spearman’s
rank correlations with the scores from piRNA at different temperatures. When computing the correlations,
to normalize the scores from all algorithms, we divide them by the sum of the lengths of corresponding
sequences, LR + LS . This normalization mitigates the effect of length bias on the computed correlations.
This step is necessary because, generally, as the length of the pair of sequences increases the scores of all
three algorithms increases, and if unnormalized scores are used, a biased higher correlation will be derived.
Note that for partition functions, piRNA and BPPart, we used the log of the scores; that is why we factor out
the sum of the lengths for normalization. If the original values were to be used, we would have to take the
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(LR +LS)th roots of the scores. Figures 12 and 13 show the Pearson correlations for different combinations
of weights of AU and GU at −180◦C and 37◦C. Figure 14 shows the scatter plots of the scores of BPPart and
piRNA at these temperatures. In these plots, the red line shows the regression line that is fitted to the points
by minimizing the mean squared error (MSE).

The optimum values of correlation for each temperature are presented in Tables 1 and 2. There is a high
correlation between piRNA and BPPart as well as between piRNA and BPMax, especially when the temperature
decreases which is due to a decrease in the role of thermodynamic entropy at the lower temperatures. Also,
we computed the Pearson and Spearman’s rank correlation between BPPart and BPMax with their optimum
weights at 37◦C, which yielded values of 0.971 and 0.968, respectively.

Table 1: Pearson correlation between piRNA and BPPart and between piRNA and BPMax at different temper-
atures (T ◦C).

Method \T 37 25 13 0 -40 -80 -130 -180

BPPart 0.855 0.862 0.869 0.877 0.896 0.908 0.916 0.920
BPMax 0.836 0.846 0.855 0.864 0.884 0.895 0.901 0.904

Table 2: Spearman’s rank correlation between piRNA and BPPart and between piRNA and BPMax at different
temperatures (T ◦C).

Method \T 37 25 13 0 -40 -80 -130 -180

BPPart 0.864 0.867 0.871 0.876 0.889 0.896 0.901 0.901
BPMax 0.830 0.835 0.841 0.847 0.862 0.871 0.877 0.877

To make sure that the optimization results are not data dependent, we conducted the same experiments
for randomly generated sequences. To factor out the effect of length, for each pair in our primary dataset,
we generated a pair of random sequences with the same lengths as those of the pair in our primary dataset.
The shape of the plots are very similar to those for the primary dataset, for both BPPart and BPMax (see
Figures 15, 16). For BPPart, the optimum weights at −180◦C are the same (1.0, 1.0, and 3 for AU, GU, and
CG, respectively) and at 37◦C the optimum weights we had earlier (0.5, 1.0, and 3) are ranked 3rd for the
random dataset with only 0.003 difference in the Pearson correlation from the optimum, achieved by weights
of (1.0, 1.0, and 3) for the random dataset. Similarly, for BPMax, the optimum values for the two datasets are
the same at −180◦C (1.0, 2.0, and 3), and at 37◦C, the optimum values of weights for the primary dataset
(1.0, 1.5, and 3) are ranked 2nd for the random dataset with only 0.008 difference in the Pearson correlation
from the optimum, achieved by weights of (1.0, 2.0, and 3) for this dataset.

Although the shape of the plots and the peaks were almost the same for the primary dataset and the
random dataset, the best correlations for the random one were considerably less than those of the primary
one. Table 3 shows the Pearson and the Spearman’s rank correlation of BPPart and BPMax with piRNA at
−180◦C and 37◦C for the random dataset.

Table 3: Pearson and Spearman’s rank correlation between piRNA and BPPart and between piRNA and BPMax

at −180◦C and 37◦C for the random input sequences.
Pearson Spearman

Method \T 37◦C −180◦C 37◦C −180◦C

BPPart 0.761 0.825 0.753 0.801
BPMax 0.716 0.785 0.702 0.751

Finally to better understand the behavior of the surface around the higher values in the correlation plots
of Figures 12 and 13, we computed the Shannon entropy for the values above a threshold. Figure 17 shows
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Figure 12: Pearson correlation between piRNA and BPPart (vertical axis), on the primary dataset, at −180◦C
(left) and 37◦C (right) for different values of constant factors (weights) for AU (left axis) and GU (right
axis). The weight of CG pair is fixed at 3.

these values for the top 30 values of Pearson and Spearman’s rank correlation at each temperature.

Discussion

The Gibbs free energy
∆G = ∆H − T∆S (25)

is composed of a term ∆H called enthalpy that does not depend on temperature and a term T∆S called
entropy that linearly depends on temperature T . Intuitively, enthalpy is the chemical energy that is often
released upon formation of chemical bonds such as base pairing. Entropy, on the other hand, captures the
size of all possible spatial conformations for a fixed secondary structure. In other words, entropy captures
the amount of 3D freedom of the molecule. A base pair brings enthalpy down, hence favorable from enthalpy
point of view, and decreases freedom (entropy), hence unfavorable from entropy point of view. These two
opposing objectives are combined linearly through the temperature coefficient.

In the full thermodynamic model, we consider both terms. In the base pair counting, we consider only a
simplistic enthalpy term. Partition function for the full thermodynamic model is∑

s∈SI

e−∆G/RT , (26)

in which R is the gas constant. Note that

− ∆G

T
= −∆H

T
+ ∆S, (27)

and as T → 0, −∆H/T →∞ and the contribution of ∆S is diminished to 0 since it is finite. Hence, at low
temperatures, the effect of entropy becomes negligible, and we expect to see strong correlation between the
base pair counting model and full thermodynamic model.

Figure 18 shows the Pearson correlations between BPPart and BPMax scores with piRNA scores for a
fixated combination of weights that results in the highest correlation at 37 (◦C). For BPPart the chosen
weights are 0.5, 1.0, and 3 for AU, GU, and CG, respectively, while the corresponding weights for BPMax are
1.0, 1.5, and 3.

Perfectly conforming with the theory, we see higher correlations at low temperatures. That somewhat
validates our implementations as piRNA was written totally independently about 10 years ago. Moreover, as
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Figure 13: Pearson correlation between piRNA and BPMax (vertical axis), on the primary dataset, at −180◦C
(left) and 37◦C (right) for different values of constant factors (weights) for AU (left axis) and GU (right
axis). The weight of CG pair is fixed at 3.

can be seen in Figures 12 and 13, the surface around the optimum value for higher temperatures becomes
flatter. Figure 17, which shows the entropy of the top 30 correlation values, confirms this observation.
This means the correlation values are less sensitive to a change in the weights of the base pairs as the
temperature increases; this conforms with the theory because at higher temperatures, the thermodynamic
entropy increases and the total score of piRNA becomes less sensitive to the energy released by pairings. It
is worth mentioning that having less Shannon entropy for the top values at higher temperatures decreases
the possibility of having universal optimum values for the weights of the base pairs.

Another noticeable characteristic of the plots in Figures 12 and 13 is the region in which the scores of
both AU and GU are non-positive. This region for BPMax is flat because when both of these pairs are penalized
(or not rewarded when their score is zero), the algorithm simply avoids making such pairs because it is trying
to maximize the score. Therefore, it only tries to maximize the number of CG pairs, which is independent of
the scores (penalty in this case) of the other two types of base pairs. This also applies to the case where one
of the base pairs has a non-positive score; in that case, BPMax works independently of the score of that base
pair. So, as soon as any of the scores becomes non-positive, BPMax remains constant along the corresponding
axis. For BPPart, however, the story is different because it simply counts all the possible pairings and even
if the score of a base pair becomes negative, it does not ignore counting that.

Moreover, BPPart has a higher correlation than BPMax does, which comes with the price of a 6× increase
in empirical running time. Also, as Figure 17 shows, the Shannon entropy for the top 30 values is less in
BPMax and the gap between them grows as temperature decreases; this shows that BPPart has a flatter region
around the optimum value and its optimum value is less sensitive to changes in the weights. Meanwhile,
having a steeper surface in BPMax which has less entropy, increases the possibility of having more stable and
universal optimum values for the weights. As mentioned earlier, the running time difference between the two
is noticeable: BPMax is about 6× faster than BPPart. Hence, we now have three choices in increasing order
of computational cost: BPMax, BPPart, and piRNA. The computation time increases by about 6× and 225×,
respectively, from one to the next.

Finally, based on the results of the experiments on both the primary dataset and the random one, we see
that although the shapes of the optimization plots and the optimum weights are very similar, the correlation
values are much less for the random dataset. This observation suggests that probably the interaction regions
are more complementary than the random sequences of the same size because in these regions the effect of
the energy released by pairing probably becomes more significant than the energy added by an increase in
the entropy on the final score of piRNA. That could explain why we get a higher correlation in such regions
with BPPart and BPMax, which mainly depend on the base pairs. This hypothesis has to be thoroughly
investigated in the future.
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Figure 14: Scatter plots of the values of the corresponding axis for each sample (interaction windows of a
pair of RNAs from RISE dataset) at −180◦C (left) and 37◦C (right). In both plots, the red line is a straight
regression line fitted to the points by minimizing mean square error (MSE).

Application of BPPart in Human Biology

One of the use-cases of BPPart and BPMax, among others, is making predictions about the consequences of
a slight change in the RNA sequences. This information becomes helpful for various domains and tasks,
such as synthetic biology and studying the mutations. Between BPMax and BPPart, the latter is much more
sensitive to small changes in the sequence, because it considers all possible structures that the two interacting
sequences might form. Therefore, even a missense mutation might make a tangible difference in the computed
BPPart score.

To verify this hypothesis, we used BPPart to study the effects of known missense mutations, provided by
Ensembl, in the interaction regions of some RISE pairs. Given a pair of interacting RNAs in RISE for which
the information about the interacting regions is provided, we retrieved the data of all the reported missense
mutations of those regions from Ensembl API. Also, we got the phenotypic consequences of each mutation
from Ensembl. Finally, we computed the BPPart score for the original sequence of one of the interacting
regions and each of the mutated versions of the other sequence. Among all the generated scores for a pair, we
found the outliers using the interquartile range. These outliers, represent a mutation in one of the interacting
RNAs, which falls within the interacting region, that causes a great difference in the interaction score. In
the rest of this section, we almost-randomly pick and narrate two of such cases that we observed, among
many discovered ones. In Appendix A, we report 65 such pairs that have been discovered using this pipeline
after analyzing more than one million pairs of sequences that have been generated after applying the known
missense mutations to over 15, 200 pairs of interacting sequences reported in the RISE database. Further
study of each of these pairs and more comprehensive study of effect of nonsense mutations on RRI would be
a next step in the future.

Traces of TRAF3 in CADASIL

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)
is an inherited condition in which the muscle cells of small blood vessels, especially the ones in the brain,
gradually die and cause many impairements, such as stroke, cognitive impairement, and mood disorders
in the elderly [48]. It has been shown that mutation in NOTCH3, which resides on the reverse strand of
chromosome 19, is responsible for this condition in people with this genetic disorder [49]. NOTCH3 and
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Figure 15: Pearson correlation between piRNA and BPPart (vertical axis), on the randomly generated dataset,
at −180◦C (left) and 37◦C (right) for different values of constant factors (weights) for AU (left axis) and
GU (right axis). The weight of CG pair is fixed at 3.

Figure 16: Pearson correlation between piRNA and BPMax (vertical axis), on the randomly generated dataset,
at −180◦C (left) and 37◦C (right) for different values of constant factors (weights) for AU (left axis) and
GU (right axis). The weight of CG pair is fixed at 3.
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Figure 17: Shannon entropy for the top 30 Pearson (left) and Spearman’s rank (right) correlation values at
different temperatures for BPPart and BPMax.

Figure 18: Pearson correlation (left) and Spearman’s rank correlation (right) between piRNA and BPPart

and between piRNA and BPMax at different temperatures.

TRAF3 are a pair of interacting RNAs that have been reported in RISE. One of the missense mutations
in NOTCH3 that has been reported to be contributing to CADASIL [50] lies within the interacting region
of this gene, from loci 15, 161, 520 to 15, 161, 543 (according to GRCh38 assembly of human genome), with
TRAF3. Interestingly, this mutation, which replaces nucletide C with G at loci 15, 161, 526 of chromosome
19, causes a dramatic increase in the score of BPPart such that it makes it an outlier when the aformentioned
procedure is followed. TRAF3 is a gene that has been reported to play a role in angiogenesis [51, 52]. A
noticeable increase in the score of BPPart increases the chance that these two RNAs interact and cause
post-transcriptional conditions that affect the translation rate of TRAF3 which possibly contributes to the
phenotypic consequences of CADASIL. Further evaluation and verification of this hypothesis requires further
experimental analysis.

Traces of SNORD3D in Parkinson’s Disease

SNORD3D is a small nucleolar RNA which has been detected not long ago [53] with which no specific task
or annotation is associated in the literature yet. According to the RISE database, one of the genes that
interacts with this snoRNA is GBA which resides on the reverse strand of chromosome 1. Mutations in
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GBA has been reported to play a role in Parkinson’s disease which is a brain disorder that affects movement
and often causes tremors. One of the GBA mutations that is reported to be linked with Parkinson’s disease
lies within the interaction region of this gene, from loci 155, 239, 966 to 155, 239, 984 (according to GRCh38
assembly of human genome), with SNORD3D. This specific mutation of GBA, which changes the nucleotide
G to C at loci 155, 239, 972 of chromosome 1, is one of the cases that is detected as an outlier using our
aforementioned analysis of BPPart scores. This mutation, when applied to GBA, decreases its score of
interaction with SNORD3D, which might cause the interaction to occur much less than the normal case.
This possibly leads to a change in the expression of GBA protein. According to KEGG, GBA is a member
of Other glycan degradation, Sphingolipid metabolism, Metabolic pathways, and Lysosome pathways [54].
Therefore, we hypothesize the role of SNORD3D in some or all of those pathways, particularly, the ones that
are closely related to Parkinson’s disease. Further evaluation of this hypothesis requires further experimental
data and analysis.

4 Conclusion

We revisited the problems of partition function and structure prediction for interacting RNAs. We simplified
the energy model and instead considered only simple weighted base pair counting to obtain BPPart for the
partition function and BPMax for structure prediction. As a result, BPPart runs about 225× and BPMax

runs about 1300× faster than piRNA does. Hence, we gained significant speedup by potentially sacrificing
accuracy.

To evaluate practical accuracy of both new algorithms, we computed the Pearson and rank correlations
at different temperatures between the results of BPPart, BPMax, and piRNA on 50,500 experimentally char-
acterized RRIs in the RISE database [1]. BPPart and BPMax results correlate well with those of piRNA at
low temperatures. At the room and body temperatures, there is considerable correlation and therefore,
significant information in the results of BPPart and BPMax.

We conclude that both BPPart and BPMax capture a significant portion of the thermodynamic information.
Both tools can be used as filtering steps in more sophisticated RRI prediction pipelines. Also, the information
captured by BPPart and BPMax can possibly be complemented with machine learning techniques in the
future for more accurate predictions. We now have three choices for RRI thermodynamics in increasing
computational cost: BPMax, BPPart, and piRNA. Depending on the application and the trade-off between
time and accuracy, one can be chosen.

Finally, we show that BPPart might be useful to explain how some mutations lead to some specific
phenotypic consequences. We presented two new hypotheses about the roles of TRAF3 in CADASIL and
SNORD3D in lipid processing pathways and/or Parkinson’s disease.
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Appendix A: Disease-causing mutations that incur an
outlier BPPart score with a known RRI partner
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rise_id id1 id2 name1 name2 mutachr strand position orig_new_phenotype IQR deviation
0 51273 ENSG00000136068 ENSG00000148734 FLNB NPFFR1 1 chr3 + 58124465 C G FLNB-Related Spectrum Disorders 1.28964999999999 --0.07925000000000892
1 50415 ENSG00000140470 ENSG00000123607 ADAMTS17 TTC21B 2 chr2 - 165912577 G A Jeune thoracic dystrophy;Joubert Syndrome 0.894625000000005 --0.40788749999999396
2 61127 ENSG00000142197 ENSG00000105983 DOPEY2 LMBR1 2 chr7 - 156762153 A C Triphalangeal thumb polysyndactyly syndrome 1.16395 0.257249999999999
3 58037 ENSG00000136937 ENSG00000156873 NCBP1 PHKG2 2 chr16 + 30756397 T G GLYCOGEN STORAGE DISEASE IXc;GLYCOGEN S0.286300000000004 0.872049999999994
4 62929 ENSG00000189056 ENSG00000240771 RELN ARHGEF25 1 chr7 - 103472745 G A Lissencephaly, Recessive 0.342799999999997 --2.3163000000000054
5 63228 ENSG00000117174 ENSG00000151929 ZNHIT6 BAG3 2 chr10 + 119672416 C G "Primary familial hypertrophic cardiomyopathy;Myofib 0.578600000000002 0.749600000000001
6 49884 ENSG00000183943 ENSG00000156873 PRKX PHKG2 2 chr16 + 30756397 T G GLYCOGEN STORAGE DISEASE IXc;GLYCOGEN S0.659300000000002 0.744249999999994
7 57967 ENSG00000158813 ENSG00000130520 EDA LSM4 1 chrX + 69957098 G T Hypohidrotic X-linked ectodermal dysplasia;Hyp 1.0635 0.170150000000007
8 54237 ENSG00000187942 ENSG00000101463 LDLRAD2 SYNDIG1 1 chr1 + 21822492 C G Schwartz Jampel syndrome type 1;Dyssegmental Dy 0.525700000000001 2.01465
9 61924 ENSG00000234465 ENSG00000156873 PINLYP PHKG2 2 chr16 + 30756397 T G GLYCOGEN STORAGE DISEASE IXc;GLYCOGEN S0.400399999999998 1.27310000000001

10 53477 ENSG00000184937 ENSG00000270641 WT1 TSIX 1 chr11 - 32434971 A G WILMS TUMOR, ANIRIDIA, GENITOURINARY ANO 0.660525000000007 0.515787499999973
11 53142 ENSG00000177628 ENSG00000281000 GBA SNORD3D 1 chr1 - 155239972 G C Parkinson disease, late-onset;Parkinson disease, lat 0.616700000000002 --0.5511749999999935
12 53382 ENSG00000128645 ENSG00000118972 HOXD1 FGF23 2 chr12 - 4370564 C A HYPOPHOSPHATEMIC RICKETS, AUTOSOMAL DOMINA0.513374999999996 --0.1644124999999974
13 58401 ENSG00000188493 ENSG00000187535 C19orf54 IFT140 2 chr16 - 1520311 G A Renal dysplasia, retinal pigmentary dystrophy, cerebe0.192399999999992 --1.6374500000000154
14 51135 ENSG00000161594 ENSG00000125730 KLHL10 C3 2 chr19 - 6709754 G A HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPT0.292400000000001 --0.07389999999999475
15 54836 ENSG00000196712 ENSG00000163626 NF1 COX18 1 chr17 + 31225205 G A Neurofibromatosis, type 1 0.667774999999999 --0.31838750000000715
16 51249 ENSG00000163513 ENSG00000171444 TGFBR2 MCC 1 chr3 + 30606953 G T Thoracic aortic aneurysm and aortic dissection 1.158175 --0.15768750000000153
17 50639 ENSG00000147027 ENSG00000164190 TMEM47 NIPBL 2 chr5 + 36876831 G C Cornelia de Lange syndrome 1.12332499999999 --1.5334125000000043
18 65472 ENSG00000240490 ENSG00000177098 RN7SL277P SCN4B 2 chr11 - 118135693 G A Long QT syndrome;Romano-Ward syndrome 0.259449999999994 --1.4180250000000072
19 52715 ENSG00000177663 ENSG00000196943 IL17RA NOP9 1 chr22 + 17102166 G A Familial Candidiasis, Recessive 0.998850000000004 --0.09147499999998843
20 53657 ENSG00000186684 ENSG00000156873 CYP27C1 PHKG2 2 chr16 + 30756397 T G GLYCOGEN STORAGE DISEASE IXc;GLYCOGEN S0.411999999999999 1.0973
21 62243 ENSG00000197430 ENSG00000179915 OPALIN NRXN1 2 chr2 - 51028694 A C Pitt-Hopkins-like syndrome 0.123999999999995 --0.5340000000000131
22 55306 ENSG00000174469 ENSG00000112319 CNTNAP2 EYA4 1 chr7 + 148415896 C A Pitt-Hopkins-like syndrome;CORTICAL DYSPLAS 0.457799999999999 --0.6374000000000066
23 60574 ENSG00000166813 ENSG00000147144 KIF7 CCDC120 1 chr15 - 89642233 G C Acrocallosal syndrome, Schinzel type" 1.11322500000001 0.218512499999989
24 54812 ENSG00000054654 ENSG00000239900 SYNE2 ADSL 2 chr22 + 40364966 G A ADENYLOSUCCINASE DEFICIENCY;Adenylosuccinate 1.1359 --0.3874499999999941
25 49578 ENSG00000138095 ENSG00000156521 LRPPRC TYSND1 1 chr2 - 43887016 G A Leigh syndrome 0.099999999999994 --1.6709000000000103
26 50039 ENSG00000074181 ENSG00000131323 NOTCH3 TRAF3 1 chr19 - 15161526 C G Cerebral autosomal dominant arteriopathy with subco0.729074999999995 0.891187500000015
27 57248 ENSG00000151929 ENSG00000279659 BAG3 RP11-177G23 1 chr10 + 119672297 C G Myofibrillar myopathy, BAG3-related;Dilated Cardio 0.253600000000006 1.49602499999999
28 50475 ENSG00000141576 ENSG00000166147 RNF157 FBN1 2 chr15 - 48432910 G A MARFAN SYNDROME 0.906750000000002 --0.240524999999991
29 50754 ENSG00000124155 ENSG00000164588 PIGT HCN1 2 chr5 - 45262033 G C Early infantile epileptic encephalopathy 0.498525000000001 -0.038812500000006
30 62856 ENSG00000130234 ENSG00000169604 ACE2 ANTXR1 2 chr2 + 69152194 G A HEMANGIOMA, CAPILLARY INFANTILE, SUSCEPTIB0.279900000000005 -1.35504999999999
31 61544 ENSG00000221869 ENSG00000166813 CEBPD KIF7 2 chr15 - 89648308 A G Acrocallosal syndrome, Schinzel type" 0.550025000000005 0.614062499999989
32 54646 ENSG00000127914 ENSG00000229807 AKAP9 XIST 1 chr7 + 92002229 G A Long QT syndrome 0.934375000000003 -0.019387499999994
33 48374 ENSG00000100345 ENSG00000178996 MYH9 SNX18 1 chr22 - 36387950 C G MYH9-related disorder;Nonsyndromic Hearing Loss, 0.480525 0.739812499999999
34 57452 ENSG00000101974 ENSG00000156709 ATP11C AIFM1 2 chrX - 130131756 G A Deafness, X-linked 5" 0.576374999999999 -0.539487500000007
35 64673 ENSG00000075624 ENSG00000180182 ACTB MED14 1 chr7 - 5529594 G A BARAITSER-WINTER SYNDROME 1 0.971800000000002 -0.159500000000008
36 64673 ENSG00000075624 ENSG00000180182 ACTB MED14 1 chr7 - 5529624 A G BARAITSER-WINTER SYNDROME 1;BARAITSER- 0.971800000000002 0.399899999999988
37 64673 ENSG00000075624 ENSG00000180182 ACTB MED14 1 chr7 - 5529624 A C BARAITSER-WINTER SYNDROME 1;BARAITSER- 0.971800000000002 0.14139999999999
38 51417 ENSG00000164619 ENSG00000105576 BMPER TNPO2 1 chr7 + 33905094 G A Diaphanospondylodysostosis 0.296549999999996 -0.386200000000017
39 62328 ENSG00000232316 ENSG00000170289 RP1-124C6 CNGB3 2 chr8 - 86574166 G A Stargardt Disease, Recessive;Achromatopsia 0.72547500000001 -0.24951249999998
40 53469 ENSG00000183196 ENSG00000166233 CHST6 ARIH1 1 chr16 - 75477044 T G Macular corneal dystrophy Type I 0.450999999999993 0.446200000000005
41 61935 ENSG00000183873 ENSG00000108306 SCN5A FBXL20 1 chr3 - 38550198 A G Paroxysmal familial ventricular fibrillation;Roman 0.237174999999993 1.6237375
42 59210 ENSG00000207110 ENSG00000173575 RNU1-106P CHD2 2 chr15 + 93020077 G A Epileptic encephalopathy, childhood-onset;Epileptic 0.112300000000005 -0.015799999999992
43 64224 ENSG00000165283 ENSG00000183873 STOML2 SCN5A 2 chr3 - 38633255 G A Congenital long QT syndrome 0.395350000000008 -0.459074999999984
44 48691 ENSG00000110092 ENSG00000076248 CCND1 UNG 2 chr12 + 109110470 C G Immunodeficiency with Hyper-IgM 0.374000000000002 1.55159999999999
45 62535 ENSG00000105576 ENSG00000110799 TNPO2 VWF 2 chr12 - 5981833 G T von Willebrand disorder 0.867199999999997 -0.523500000000013
46 62535 ENSG00000105576 ENSG00000110799 TNPO2 VWF 2 chr12 - 5981833 G A von Willebrand disorder 0.867199999999997 -1.13360000000001
47 51170 ENSG00000149136 ENSG00000100234 SSRP1 TIMP3 2 chr22 + 32862388 G A Pseudoinflammatory fundus dystrophy 0.221199999999996 -1.61210000000001
48 58057 ENSG00000185920 ENSG00000162341 PTCH1 TPCN2 1 chr9 - 95469067 A G Gorlin syndrome 0.730800000000016 1.06344999999997
49 58057 ENSG00000185920 ENSG00000162341 PTCH1 TPCN2 1 chr9 - 95469088 G A Gorlin syndrome 0.730800000000016 -0.740349999999964
50 53161 ENSG00000183864 ENSG00000075624 TOB2 ACTB 2 chr7 - 5529624 A C BARAITSER-WINTER SYNDROME 1;BARAITSER- 0.956874999999997 0.639812500000005
51 64674 ENSG00000075624 ENSG00000251497 ACTB RP11-197N18 1 chr7 - 5529594 G A BARAITSER-WINTER SYNDROME 1 0.705799999999996 -0.336849999999998
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52 53476 ENSG00000184937 ENSG00000252680 WT1 RNA5SP449 1 chr11 - 32434971 A G WILMS TUMOR, ANIRIDIA, GENITOURINARY ANO 0.821150000000003 0.399924999999982
53 53476 ENSG00000184937 ENSG00000252680 WT1 RNA5SP449 1 chr11 - 32434980 C G Drash syndrome;WILMS TUMOR, ANIRIDIA, GEN 0.821150000000003 0.681824999999989
54 65331 ENSG00000163686 ENSG00000075624 ABHD6 ACTB 2 chr7 - 5527786 G A BARAITSER-WINTER SYNDROME 1 0.394350000000003 -0.161524999999998
55 51773 ENSG00000164588 ENSG00000105576 HCN1 TNPO2 1 chr5 - 45695893 T C Early infantile epileptic encephalopathy 0.37462499999998 0.822012500000042
56 53048 ENSG00000158467 ENSG00000105610 AHCYL2 KLF1 2 chr19 - 12885877 G A Congenital dyserythropoietic anemia 0.503799999999998 -0.714799999999997
57 61065 ENSG00000249158 ENSG00000130164 PCDHA11 LDLR 2 chr19 + 11132534 C G Familial hypercholesterolemia 0.647699999999986 0.641475000000028
58 53557 ENSG00000184634 ENSG00000140323 MED12 DISP2 1 chrX + 71137822 G T FG syndrome 0.388400000000004 -1.47449999999998
59 58063 ENSG00000072501 ENSG00000202324 SMC1A RNA5SP366 1 chrX - 53376265 G A Cornelia de Lange syndrome 0.564299999999989 -0.531150000000011
60 56554 ENSG00000201861 ENSG00000136068 RNA5SP298 FLNB 2 chr3 + 58077256 G A FLNB-Related Disorders 0.698800000000006 -1.1193
61 56554 ENSG00000201861 ENSG00000136068 RNA5SP298 FLNB 2 chr3 + 58077266 T G BOOMERANG DYSPLASIA;BOOMERANG DYSPLASIA;A0.698800000000006 0.63339999999998
62 56554 ENSG00000201861 ENSG00000136068 RNA5SP298 FLNB 2 chr3 + 58077271 G A ATELOSTEOGENESIS, TYPE III;Atelosteogenesis ty0.698800000000006 -0.962399999999988
63 53823 ENSG00000124107 ENSG00000169071 SLPI ROR2 2 chr9 - 91733195 G A Brachydactyly;Robinow syndrome 0.744950000000003 -0.730199999999982
64 49653 ENSG00000101577 ENSG00000198931 LPIN2 APRT 1 chr18 - 2920313 G A MAJEED SYNDROME 0.404200000000003 -1.661575
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