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Abstract

We consider a number v, of components in a random graph G(n,p)
with n vertices, where the probability of an edge is equal to p. By op-
erating with special generating functions we shows the next asymptotic
relation for factorial moments of v,:

S
s L= k2
E(vn — 1) —(1+ou»><gg; ——(mpg™)" )+ o()
as n tends to co and ¢ = 1 — p. And the following inequations hold:
n—1 1

1—2ngq <pn < —,
nqm

1 . n—1

I——<pin<ng ~,

nqm

where p,, is the probability that G(n,p) is connected and piy, is the prob-
ability that G(n,p) has an isolated vertex.

1 Notations

Let G, be a set of undirected graphs with n labeled vertices. For any graph
g € Gy, let C(g) be a number of connected components in the graph g and E(g)
be a number of edges in thr graph g. Besides we denote by Fj ,, the number of all
forests in G,,, that contains exactly s trees. We also suppose that components
in GG, are not ordered.

Further, let A, s be a number of graphs in G,,, which contains n vertices, k
edges and s components, A,, ; be a number of graphs, which contains n vertices
and k edges, and B, ; — a number of connected graphs with n vertices and k
edges. For definiteness we suppose that Ao r = Ao.k,s = Ank,0 = 0 in all cases,
except n = k = s = 0, where we set by definition Ay = Ag,0 = 1. Besides,
let By, = 0 for all k. It’s clear that A, x = >, A ks, where index s runs on
all integer non-nagative numbers.

Let us consider the random graph G(n, p), which contains n labeled vertices,
where each of (Z) edges is present with the probability p independently of other
edges. Each concrete realization of random graph G(n,p) is a graph from G,,.
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This model of random graphs was firstly described by Erdés and Rényi in [1L12]
and then has been well studied by Béla Bollobés [3], Valentin Kolchin [4] and
other authors.

It is easy to see that the parobability distribution of such random graph is
defined as follows:

P{G(n,p) = g} = (p/q)"@gn"~1)/2,

where g € G, and ¢ =1 — p.

Let denote by v, the number of connected components of G(n,p), i.e.
v, = C(G(n,p)), and let p, be the probability that random graph G(n,p)
is connected, thus p, = P{v, = 1}. It’s clear that

Plvn =5} =Y Auwns(p/q)fq" "1/ (1)
k=0

and

o0
Pn =Y Bux(p/q)Fq"" 12,
k=0
Froom the above agreements it follows that po = 0 and p; = 1.
Below we’ll need the special generated function, which we define as follows:
for a sequence of functions {r,(q)} we put

oo
xn

R=R(z,q) = Z W%(Q),

where we often will skip arguments = and ¢, except such cases when we will
use special values of them. Below in this text we will call such functions as
SG-functions (SG = special generated).

It is easy to see that SG-functions are formal power series which are not
converges at all. But most of all usual operations with SG-functions (such as
adding, production, differentiation and integration on both arguments) does not
lead to conflicts when counting coeflicients before x™.

Let denote
5w " dra(q)
R= Z@ n!qn(n—l)/2 dq ’

i.e. the operator denotes SG-function for the sequence of derivatives of r,,(q).




Let also:

o0 xn
A = _—
|,m(n—1)/2
nZ:o nlgn =17

T

oo 2
E = ZO 7/”!(]”(”_1)/2 EVn

_ z k
My, = Z nlgn(n—1)/2 E(vn)

o0 n

_ il k
Mk_ZWE(V"_l) ;

where 22 = 2(2—1)...(z — k+ 1) denotes the factorial power k > 0. Therefore,

A is a SG-function of {1}, B is a SG-function of probabilies that graph is
connected, F is a SG-function of expectations of components quantity, My, is a
SG-function of k-th factorial moments of v,,, and My is a SG-function of k-th
factorial moments of (v, — 1). It’s easy to see that A converges only if ¢ = 1.
Below we’ll see that all of theese series are converges in the same conditions.

2 Basical Relations

Lemma 1. If the relation n =k = s = 0 does not holds, then

! B, j - By,
Auis = Y I Znake 7 Dneks 2)

| l... |
s ! nil---ng!
ki+-+ks=k

where the summation is over all integer non-negative n;, k;.

Proof. Let consider the set of graphs G, with n vertices, where the components
are ordered. It is clear that the number flnykys of such graphs with n vertices,
k edges and s components is equal to s!A,, i s.

By the other side, any graph from G,, with n vertices and s components we
can make by getting some ordered partition of the set of n vertices with non-
empty parts, which has the volumes nq,...,ns. The number of such partitions
is equal to n!/(ni!---ngl). For every set of vertices, included in connected
components, we can find the number of connected graphs with n; vertices and
k; edges. It is equal to B,,, 1,. By choosing k; in such a way that k14 --+ks = &,
and summing over all partitions of n vertices, we get the equation:

A _ z : n!Bnlqkl e an,ks
ks nyl---ng!

ni+t--Fns=n
ki+4-+ks=k



From this we get (@) for positive n,n;, s and non-negative k. Extention of this
relation for zero values of n,n; and s follows from the previous agreements. [

Now we consider the next generated functions, which are exponential by
parameter x:

An,k n k Bn7k n, k
A(iﬁay)ZZTﬂﬁya B(:v,y)zZT:vy.
n,k n,k
The summation is over integer non-negative n, k.

Lemma 2.
A(z,y) =P (3)

Proof. By multyplying the relation @) by z"y*/n! we get:

= [2"y*]|B(z,y)*.

n! gl
ni+-Fns=n
ki+-+ks=k

k ks
An7k75 g k _ 1 § : Bnl,kl‘rnly T an7ksxn5y )
4 ni!---ng!

The last notation denotes a coefficient before z"y* in the series B(x,y)*. Now,
by summing over integer non-negative n, k for s > 0 we get the following;:

A 1
Yo =ty = = B(x,y)° (4)
n! s!
n,k
Note, that by virtue of the agreements this equation stays also true for s = 0.
Finally, by summing over integer non-negative s we get:
o0
B s
Awyy) =S B2Y _ s,
— s
O

From the relation (B]) we can obtain any exact expressions for probabilities
of random graph G(n,p). First of all, it is clear that:

A - (n(n - 1)/2)7

where we suppose that (7,:‘) =0 for k > m. It is easy to see that

S (n(n - 1>/2> S "“i)“ (n(n - 1)/2) o= (14 g)nn-D/2,

k=0 k=0
hence,
A — 1 n(n—1)/2 x" )
(z,y) g:o( +y) )



From this and from (@) it follows that

- n{n— In
Bla,y) = In Y (14 )" 02E
n=0 ’

(5)

One can see that B(x,y) is the generated function for a sequence [5] where
the nulled element is equal to zero.
By putting y = p/q and from the obvious equtions

k k
> Ak (£> """V =1, > B (B) "2 =p,,
k q k q

we get that for previously defined series A and B the next relations are true:

py\ Ank 2" " o
A(02) = St o) = =4

n,k

p o Bn,k n k _ pnxn =
B(0.2) = 2ar o/ =2 g = B

n,k

(6)

Thus, we have

Lemma 3.
A=¢eb.

This proved equation is the base fact, which we will use anythere below without
a special link.
From () it follows that:

s P{v, = s}z An ks o
Z n(n—1)/2 pl Z —n' (p/0)",
n,k

n=0 q

and by ), where we put y = p/q, we get following:

= z" 1 .
;mp{%ZS}ZEB(%?/Q) =555 (7)

i.e. the formal series B®/s! is SG-function of probabilities P{v,, = s} for a fixed
number s of connected components.
Let us consider two SG-functions and their product:

R= an :,7(1:: 1)/2° T= Z nl n(n—1) /2’ RT = an inx

One can easily proof the following



Lemma 4 (Convolution Formula). For n > 0:

n n
Zn = Z (k) qk(nik)rktnfk-

k=0

Further we will use this formula without a special link to it. The next recursion
formula for probabilities p, is an anlogue of a recursion formula for a number
of connected graphs, that was obtained in [6].

Lemma 5. For anyn > 1

n—1

n—1 _
pn—l—z< i )qk(" " k. (8)

k=1
Proof. By differentiating the relation A = e® by the parameter x we get:

zA' = 2AB’,

hence, from the [convolution formulalit follows that
n=3 (1) (9)
k
k=0
Since pp = 0 and %(Z) = (Z:i) follows
n—1 n 1
1— _ - k(n—k)
Pn= ( L 1) ¢ P py,
k=1
and by replacing k by n — k we get the statement of Lemma. O
By analogue we can get a recursive formula for probabilities P{v,, = s}.
Lemma 6.
n—1 n—1
P{Vn = S} = Z ( k )P{Vk =S5 1}pn—qu(n_k) (10)
k=s—1
forn>s>1.

Proof. Let us denote

n

> X
Bs = Z mP{Vn = 5}7

3
Il
=]

then by (1) we get:
s!Bg(z) = B(x)?,



then by differentiating by x it follows that:
s\B, = sB*'B' = s(s—1)!B, 1B,

hence,

xB., =xBs_1B'.

From this and according to P{vy = s —1} = 0 as k < s — 1 we get Lemma
statement. O

Lemma 7. The following relations hold:

n nl(l — k1 — gks
pen=> Y METelm e, o

s=1 k1 4-+hko=n

Pnt1 = (1= ¢")pn. (12)

Proof. If we put x/q instead of x in the definition of series A, we get that
A" = A(x/q) = eB®/9. On the other side, A’ = B’e”. Therefore,

BleP = ¢B@/0) B’ = ¢Bl@/0)-B()
hence,
— 1 (= poz"(1—¢")
w3y (s
| n(n—1)/2
= s\ nlgnn=1/

Now we take the corresponding coefficients before z™ in theese series and get
the relation ([I)). The ineqution (2] follows from ([T if we left in this summa
only the summand with s = 1. O

3 Several Equations

Lemma 8. Fors >0
M, = AB?,

and in particulary, E = AB.
Proof. By definition,

= k=P{v, =k},
k=0
hence by (@) we get:
P{v, = k}a"
M, = annn 1)/2 Z ann(n /2

S S S Bkis S
=> k*B*/s!=B Zm:AB.

=0 k=s



Now we consider the connection between moments of v,, and v, — 1.
Lemma 9. Fors>1
M, = Ms + SMs—l

—1) S _1k
(s!) Mszkzo(k!) M

Proof. The first equation is follows from

E(wn —1)E=E(v, —1)...(vn — 5) = E(v,)2 — sE(v,, — 1)L,

and the second one not hard to proof by induction with the obvious start eqation
My = A = M. O

Lemma 10. Fors>1

M _ o <MS L Mo )

s! st (s=1)!

M’ M, M, M,
S — B/ —_— —_— — B/_

s! < s! + (s — 1)!> s!

Now we ready to use the operator ~for SG-functions of moments. First of
all, we get:

Lemma 11 (Derivative Relashionship Formula). If R is a SG-function, then:
2
~ x
R _ R/ _R//
' 2

Here and below the single quote without a parameter notation denotes the
derivative by z, and the derivative by ¢ is marked by index gq.
The following equations hold.

Lemma 12.

M, 22 _,,( My, M,_s a2 M.,

S5 P ((5—1)!+(s—2! =3P o)

M, 22 M, M,_ 2 M,_ 2 ML
S = (B (o s ) = (B = el
s! 2q (s=1)!  (s—2 2q (s—=1)! 2¢ (s—1)!

From here it follows that:

2
(M,), = (AB®), = AL B® + sAB* "' B, = A(B® + sB*"") = —;—qA”(BS +sB°h)
M;/ — (ABS)// — (A/Bs 4 SBs—lA/)/ — A//(Bs 4 SBsfl) +A/B/(SB571 4 S(S _ 1)B572)



Hence by Derivative Relashionship Formula we get that:

Y I2 ‘IQ s—1 s—2
M, = (MS);+2—qMS”: 2—qA’B/(sB +s(s—=1)B°7°) =
2

§—q<B’>2<sMsfl +5(s — 1)M,_2),

so we have the first equation of statement.
To get the equations for M it is sufficient to use Lemmas[@ [0 and previous
relation. o

4 Several Inequations

Let denote by > that the inequation > holds for all coefficient before ™ in the
considering series. For example, the notation Y a,z® > > b,z™ means that
for all n the inequation a, > b, holds. It is easy to verify that:

if X>Y and Z >0, then XZ > YZ;

ifX>Yand V> W, then X4+V >Y +W.

Lemma 13. Forn >0
qn_lE(Vn—l)§ < E(Vn - 1)§ < E(Vn—1)§
Proof. Left inequation follows from:

M, = B'My > M,

with help of [convolution formulal and because of B’ > 1. Right inequation
follows from:

M, = B'M, = B'AB* = A'B* = A(z/q)B* < A(z/q)B(z/q)* = My(z/q).
O
Lemma 14. For alln > 1 and s > 1 the following inequations hold:
(n—1)=%. q(nfl)s <E(v, —1)2<2(n— 1)§q(n71)(s+1)/2
Proof. Left inequation.

! ! S
oM, wBM, xA’B—' =z A'Bs,
s!

s! s!

hence, by the lconvolution formulal we get:

nE(v, —1)8 < (n k(n—k)
_— = E n ij n—k = s
k=0 <k)q =)

s!



where the last summation we can estimate by the summand as £k =n — s, and
therefore we have:

Ern—1)2> [ " )slg=2gss=0/2. D75 _ (5 _qys. g(n=Dsgs(s—1)/2
n—s n ’

here we get the left equation of Lemma statement.
Right inequation. Following relations one can get from the results that were
proved above.

(M) _ x_Q(B,)Q M, ’: 2?(B')? +a°B'B" My, | 23(B)? My, _
s! 2q (s—1)! q (s —1)! 2¢g  (s—=1)!
LL‘2 M 1 M 1 X M, —1 X M, 2
_ B/ 2 S B/B//; < B/ 3 s < B/ 3 S
q(( Voo T oy 2B oy T2 ) o
2 2 2
z " xz ’ ’ xz nMs o Ms no Ms 1
—M, =—(B'M;))=— | B"— 4+ (B B
gs! ¢ qs!( ) q ( s! +(B) s! +(B) (s —1)!

;C(J/\/\[S)' z? " z? ne Ms—1 z? " B’ sB
Bs) 2 v =2 (B 1)+ ZB'M,, [ 22— -2
s! qu!MS q (B') (3—1)!( 8+ "\G=—1)1 s
2 / 3
LTy tB'  sB\ 2 5 Mo
- q(B) Ms—1 (2(5—1)! s'>+2q(B) (s —2)!

R 2 2 2
2(M,) — %M :s%B”Ms_l(:cB’ ~B)+ %(B’)QMS_l(:vB’ﬂ ~B)
2

+s(s— 1)%(3’)2Ms_2(xB’/2 ~B)=

2 122 M M,
_ T 7 / 5T N2 s—1 s—2 / .
2

=" B'Mo1(aB' — B) + 20,(xB'/2 ~ B). (13)

Sincen—1>0,n/2—1>0forn>2,n/2—1> —1/2for n =1 it follows
that

! T

B> -Z
> 5

and from the equations ([I3]) we get the next inequation:

B’ — B> 0;

~ —~ _ sx2?
(M) + aMs > —M.
q

Now we get coefficients before x™:

\
m
S
I
—_
~—
|

n(E(vn — 1)%);, + nq"fl(E(z/n_l)é); >

10



Dividing by n we get:
s(n—1)

E(v, —1)2 asn>0. (14)
q

(E(vn = 1)%)g + ¢" (E(n-1)%)q >
It is esy to see that

¢ En)®), = (" Ernr)2), — "

-1) ,_
)q lE(
q

where we use derivative of product. Therefore from this and ({4l we get

Vn—1)§7

-1 -1
ME(Un_l)é_Fqu*lE(Vn_l)é (15)
q q
Hence, dividing by E(v,, — 1)+ ¢"'E(v,—1)% we find the inequation
(E(vn — 1)2 4 ¢" 'E(vn-1)%), on—1 sE(n—1)*+ i (7
E(vn — )2+ ¢" 'E(vn-1)* ~ ¢ E(vn —1)2+ ¢ 1E(vp-1)%

Note, that the function f(t) = (s +t)/(1 + ¢) not increases as t increases, if
s>1and ¢t > 0. From Lemma [I[3] it follows that:

E(wn — 12> ¢" 'E(vp_1)® asn>0
Therefore from this and (I6]) we get:
(E(Vn - 1)§ + qnilE(anl)i); S (S + 1)(n — 1)
E(wn — )£+ ¢" E(vn_1)t ~ 2q

Let ¢ < ¢1 < 1, and let E; = E|,—,,. By integrating (IT) on the interval
[q; 1] we get follows:

(E(vn—1)*+¢" " E(va-1)2); >

(16)

(17)

q 1 -1 q
SRRV UES T
q 2
Then we put both sides of this inequation into the argument of function e*, and
get:

In (E(vy, — 1)+ ¢" 'E(vn-1)%)

q

qn—l (s+1)/2
E(Vn - 1)§+ qn_lE(Vn—l)§ < (El(Vn - 1)§ + Q?71E1 (Vn—l)g) (qn—l)
1

o (s4+1)/2
qnl)

E(v, —1)2 < (El(un - 1)+ q{l_lEl(Vn,l)é) (
Then we set ¢ = 1 and finally find that
E(vn — 1)* < 200 — 12" D12,

n—1
1

because as g1 = 1 we have Eq (v, — 1)2 = (n — 1)2.
This proofs the right inequation of Lemma. O

Note, that if we put s = n — 1, then we have an equation
E(v, — 1)t = (n— 1);qn(n71)/2 =(n— 1)n;lqn(nfl)/27

where the right hand side is equal to half of the just proved estimation.

11



5 Asymptotic behavior of v,

In this section we consider an asymptotics of moments E(1,, — 1) as s is fixed
and positive. We will study a behavior of moments in the following zones of
parameters:

1. p — 0, n = const;
2. q" — e~ %, where fixed o > 0 and n — o0;
3.¢" - 0asn— o0

3.1 ng™ — oo,

3.2 ng" = a >0,

3.3 ng™ — 0 (in this case p can be a positive constant < 1).

5.1 Asymptotics for n = const

It is easy to prove the following Lemma, besause the minimal graph with n
vertices and s components is a forest with s trees.

Lemma 15. If p — 0 and n = const, then for any s < n the following equation
holds: P{v, = s} = Fs,,p" %+ O(p"~*t1). In particular, p, = n""2p"~! +
O(p").

Hence we have the following

Theorem 1. If p — 0 and n = const, then for any s < n:
Evi =n°(140(1)), E(v, —1)2— n®

«

5.2 Asymptotics for ¢" — e~

Let i

k=1

This series converges as |z| < e~ ! and this is a generated function for sequence
of numbers of labelled trees [4].

Theorem 2. If ¢" — e~ ® as n — oo, where a > 0, then for s >0

n

E(vn — 1)° = (aﬁ(ae_o‘))s (14 o(1)).

In particular, for o = 0 we have the relation E(v, — 1) ~ n®.

12



Proof. We will use a mathematical induction on the parameter s. It is clear
that the statement of Theorem holds for s = 0. Let us suppose that it holds for
s — 1 and will show it for s > 1.

From the relation aM/, = tB'M, = tB'BM;_; = BeM’,_; (see Lemma [10)
and from the lconvolution formulal we get:

" (n
nE(v, —1)* = Z (k) " P pe(n — k)E(wn_p — 1)*=L =
k=0

n—1
n—1
=ny ( L >qk<”’“>pkE<un_k — 1=t = n(S) + 5),

where

ko
n—1
Si=Y < B )q’““’“)pkE(unk — 1=

k=0

n—1
n—1 _ o
So= Y ( . )q’“” B prE(vn—k — 1)

k=ko+1

As k is fixed, one can get next relations: ("gl)qk("_k) ~ (ng™k/k!, pp ~
k*=2pF=1 (Lemma[lH). And from the induction hypothesis we get: E(v,,_s)2=L ~
(ﬂﬁ(ae’o‘)sfl. Hence:

o

ko

e (g™ s\ R T N
Sl_zipk! k (aﬁ(ae )) (1—%—0(1))-2@ o (e )(aﬁ(ae )) (1+0(1)),

where we use the asymptotics np — a and npg™ — ae™“, which is follows from
Theorem conditions.

So, it is easy to see that Sp/ (gﬁ(ae’o‘))s as closed to 1 as kg is bigger,
because of the convergence of the series () for x = ae™*.

Let we estimate Sp. It is clear that E(v,_x — 1)*=t < n®~!. From this and

from the equation (@) we get

n

n—1
n—1 k(n—1— k ko n—1 _
> (n—1-k) > k(n—k) >
1> > < N )q m—s>—7 > (. )"z

k=ko+1 k=ko+1
n—1
ko n — 1 k( —k) -1 ko
> — " E(vp_r —1)—= —28,.
S Z ( 1 >q prE(Wn—r — 1) e S
k=ko+1
Therefore,

1 | n —an)®
S2= 10 (n) = 10 (Zf(ac™)

i.e. the ratio Sa/ (gﬁ(ae’o‘))s tends to 0 as kg — oo.

13



Thus, E(v, —1)* = (28(ae™))’ (1 + o(1)).

In the case of @ = 0 the proof of Theorem is similary, but instead of
Blae™%)/a we should write 1 at all places

O
5.3 Asymptotics for ¢" — 0

Theorem 3. Let ¢ — 0 and ng C as n — oo, where fired C' > 0, then

E(vn — 1)* = (ng")*(1 + o(1)).
Proof. We will use an induction by s. It is clear that the statement of Theorem

holds for s = 0. Let us suppose that it holds for s — 1 and will show it for s > 1
The following relations hold:

oo

> (Bl o ey DT ML = (o) = M, — B () Me ) =
n=0 !
— AB® — A'(2q)B*(vq) = A(B® — B*(2q)) = A(s!B, — 5!By(2q)) =
IPVn—SS z"P{v, = s}s
—AZ {Ml)/]; <<AZ ¥*

n n—1)/2

n

— D=
s—1

= Apz(B*) = spxAB'B*~' = spxB'Ms_1 = spxM),_, = sp g qn(n 1)/2 ,
where we use the fact, that (1 — ¢") < n(1 — ¢) = np. Therefore we get that

E(vn)® — E(ng1 — 1)* < spnE(v, — 1)&
or

E(vn-1)®* <E(v, — 1)* + spnE(v,—1 — 1)5_1
From the equation (I8)) it follows that

(E(vp, — 1)2+ q"ilE(an)é); n—1 sE(,—1)2+¢" 'E(vp_1)2
E(vn — 1) 4+ ¢"'E(vp—1)2 ¢ E@n—12+q¢" E(n_1)®
n—1 sE(, — 1)+ ¢ HE(vn — 1)2+ snpE(v,—1 — 1)5=L)

¢ E(n -1+ ¢ (E(rn — 1)5 + snpE(vn_1 — 1)5=1)
n—1 s+q¢ ' +snpg" *E(p_1 — 1)*=1/E(v, — 1)
¢  14+q" "+ snpg" E(vn_1 — 1):=L/E(v, — 1)s’

By the induction hypothesis and from Lemma [I4] we get that

(18)

3

E(Vn,1 — 1)571
E(v, —1)2 7'

nys—1
(ng") < Co
n — 1)§q("71)5

ng™’

14



where the positive constants Cj, generally speaking, are depends on the param-
eter s. By putting this inequation into (Ig]) we get:

(E(vn — 1)+ ¢" 'E(vn-1)2), Jn—l s+ "'+ Cunpg™ '/ (ng™) S
E(vn — D)2+ " 'E(n-1)* = ¢ 1+gq"7 "+ Canpg" =t/ (ng") ~

n— — n— n n—1 n—
> (s —s¢" " = Csnpg" ™" /(ng")) > (s —s¢" ' = Cop) >
> (n—1)s¢ ' — Cz(n—1)¢g" % — Cgnp.  (19)
Let ¢ = ¢Y/("=1 where ¢ is an arbitrary small positive number, hence
¢ ' =¢cand ¢ < ¢ (it follows from ¢" — 0). Besides let denote E; = E|,—,

as it was above.
Now, we integrate the inequation (I9]) on the interval [g; ¢1] and get that

n—1

—(n—l)C7 el

n —

In (E(I/n -1+ q"flE(l/n_l)ﬁ) "

q

> s(n—1)Ing

q1
q
or

E(vn —1)* +¢" 'E(vn-1)® <

s(n—1) B B
< (Eilvn = D" + ¢ Er(va1)?) (i) eCrlai T D Cenlun ek 2 )

q1

El(Vn — 1)§ + q{l_l El(anl)éqs(nfl)eCQE
€® 7

< (20)
because ¢ ' = ¢ and n(q1 — g+ ¢*/2 — ¢3/2) = n(q1 — ¢)(1 — ¢/2 — q1/2) =
n(p—p1)(p/2+p1/2) < np? — 0. The last expression is follows from np?-ng" =
(np)2e™m? — 0 and from the conditions of Theorem.
By Theorem [2] we get that
n

Ex(vn — 1) = (28(ac ™)) (1+0(1)) = n*f(as)* /o (1 +o(1))

where a = —Ine.
Besides that,

¢ E1(vn—1)® = e(E1(vn—1 — 1)*+ sE1 (1 — 1)) =
= c(n*Blaz)* fa* + sn* 7 Blaz)* " fa* ) (1 +o(1)),

because ¢! = ¢ and again from Theorem Pl From this and from (20) it follows
that

E(v, — 1)2 < (1 +¢)Blac)*/a” :S esflac) o n*q*"e“*¢(1 + o(1)).

15

q1
- —Csn(q—q°/2)
q

q1
q



Therefore, by choosing an arbitrary small € > 0 and using the relationship
B(x) ~ x as x — 0 we get the relation:

limSup M < lim (1 + E)ﬁ(OCE)S =+ Sgaﬁ(ag)s_

1
eCr0e =1,
s 00 (nqn)s £—0 ases

From Lemma [I4 we have E(v, — 1)£ > (n — 1)2¢°™=D = (ng")*(1 + o(1)). Now
we see that Theorem follows from theese both equations. o

Let n¢g"™ — «, where « is a positive constant. From Theorem [3] we see that
E(v, — 1)2 = a®.

It is known that in this case random variable (v, — 1) tends to Poisson
distribution with the parameter a.

Thus we have

Theorem 4. If ng™ — « as n — oo and « is a fized positive constant, then for
any fized integer k > 1:

P{Vn = k} — me_a.

From Lemma [I4 it follows that if ng™ — 0, then E(,, — 1) < ng"~!. So we
can conclude that v, tends to 1. Below we’ll show an estimation of p, in this
case.

6 Several Consequences
Generally, we can conclude that in all zones of parameters p and n
E(vn — 1)~ (B(npq")/p)®  as ng" — o0
and
E(vn —1)>= (B(npg")/p)* +o(1) as ng" = O(1)

It is easy to verify, because if np — oo or np — 0, then it follows that

npq™ — 0 and B(npg™)/p ~ ng™.
Now we can estimate the probability p,, that graph G(n,p) is connected.

pnzP{un<2—1/n}=1—P{1/n—121—1/n}21—E(Vn—1)—n1, (21)
n—
and from Lemma [T4] we get:

pn=>1—2ng""". (22)

clnn n—1
n

If we put p = and ¢ > 1, then we have ng = nexp{—clnn +
O(In*n)/n} = n'=¢(1 + O(In* n)/n). Therefore we finally get:

Pn=1— nil (1+O0(In*n)/n). (23)

16



If ng™ — a (for example, p = (Inn+c+o(1))/n, where a = e~ ), then from
Theorem [ we get that:

«

Pn — e .

To estimate p,, as nq™ — oo we now consider the isolating probability. Let
pin be a probability that G(n,p) has an isolated vertex. Let A; be an event
that i-th vertex is isolated, then from the Inclusion—exclusion principle we get:

pin = P{A1U---UA,} = > (—1)F! > P{A;, ... A} = (-1)F! <Z> P{A;...
k=1

k=1 1< < <ip<n

It is easy to see that P{A; ... A} = ¢Fk=1/2¢k(n=k) 50

n

iy, = Z(_l)k—l (Z) qk(n—k)qk(k—l)/2 +1.
k=0

According to [convolution formulal we can find that SG-function PI of {pi,} is

equal to RT'+ A, where R and T are SG-functions of the corresponding sequences

{r,} and {t,,}, which are defined as follows: 7, = (—1)*~1¢"™(»=1/2 and t,, = 1.
Hence we have

= ™ e _
R:;W:—e ] T—A

Thus PI=A—e A= A(l—e").
Since (1—e~*) < x it follows that PI < Az, and from thelconvolution formulal
we obtain

pin < ng" L. (24)

It is easy to see that PI' = A'(1—e %)+ Ae * = PI-B'+ A— PI > PI- B,
because A — PI > 0, and from the [convolution formulal we get:

n
. n _ . _
npi, > ; <k> " pi _kkpe = n(n —1)¢" p, 1

or
Pint1 = nq"pn (25)
So, if ng™ — o > 0, then pi, > ae™* + o(1).
And also we have

Pn < piny1/(ng") < 1/(ng") (26)

Since PI = A(1—e™7) it follows that PIe® = Ae® — A and, therefore, (PI —
A)(e® —1) = —PI. From the relation e” — 1 > z we get that PI > (A — PI)x,
therefore from the [convolution formulal we find that pi,, > (1 — pi,)ng™~*, then
(1 —pin) < 1/(ng" ') and we get finally

1

nqn 1

Pip >1— (27)

17
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Now we can combine all obtained results 22)), 28), 25), @24) and (1) in
the following

Theorem 5. For alln > 1

ng"Pn < Ping1

Andif ng™ = C > 0 asn — oo, then we can substitute ng™ by E(vy,—1)(14+0(1))
in theese relations.
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