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In this work, we investigate theoretically and demonstrate experimentally the existence of valley-
Hall edge states in the in-plane dynamics of honeycomb lattices with bi-valued strut thickness. We
exploit these states to achieve non-trivial waveguiding of optical modes that is immune to backscat-
tering from sharp corners. We also present how different types of interfaces can be combined into
multi-branch junctions to form complex waveguide paths and realize a variety of structural logic
designs with unconventional wave transport capabilities. We illustrate this potential with two ap-
plications. The first is a direction-selective energy-splitting waveguide tree featuring a pronounced
asymmetric wave transport behavior. The second is an internal waveguide loop along which the
energy can be temporarily trapped and periodically released, effectively working as a signal de-
layer. The modal complexity of in-plane elasticity has important consequences on the regime of
manifestation of the edge states, as the availability of viable total bandgaps is shifted to higher fre-
quencies compared to the out-of-plane counterpart problem. It also poses additional experimental
challenges, associated with proper acquisition and deciphering of the in-plane modes, the solution

of which requires a systematic use of in-plane laser vibrometry.

I. INTRODUCTION

Acousto-elastic metamaterials and phononic crystals
are architected structures that are artificially designed
to control and manipulate mechanical wave propagation.
Some of their most well known properties are mechanical
filtering and wave directionality [IH4], waveguiding (con-
ventional and sub-wavelength) [5H7] and energy trapping
[BHIO]. In recent years, topological insulators (TI) en-
dowed with topologically-protected edge states (TPES)
have paved the way to new strategies for wave manipula-
tion in quantum and electronic systems [ITHI6]. Inspired
by these condensed matter problems, researchers have
been able to adapt the working principle of TI to acous-
tic and elastic systems to achieve analogous wave control
capabilities in both the static [I7TH21] and dynamic regime
2230,

One of the first quantum phenomena to inspire a me-
chanical analog was the quantum Hall effect (QHE),
which allows one-way, non-reciprocal wave propagation
by creating chiral edge states that are robust against de-
fects and disorders [23H26]. The QHE can be realized
by breaking time-reversal symmetry through the appli-
cation of an external (e.g. magnetic) field [31] that results
in the lifting of a degenerate Dirac cone in the band dia-
gram of lattice and the opening of a non-trivial bandgap.
In a corresponding mechanical system, it is possible to
resort to external active controls, such as spinning rotors
[23, 24] or circulating fluids [25] [26], to achieve analo-
gous unidirectionally propagating edge states. However,
unlike in electronic systems, the complexity required to
apply external mechanical fields partially hinders the
practicality of QHE for applications at the device level.
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In light of these limitations, researchers started exploit-
ing the mechanical analog of the quantum spin Hall ef-
fect (QSHE), for which time-reversal symmetry break-
ing is not required. The QSHE can be realized by ma-
nipulating sublattice configurations to create mechanical
pseudo-spins and pseudo-spin-dependent effective edges,
ultimately achieving topologically protected helical edge
modes that are also immune to back-scattering [27H29].
While enjoying the inherent advantages of being fully
passive, QSHE requires carefully engineered configura-
tions in order to obtain the doubly-degenerate Dirac
cones whose lifting is essential to establish helical edge
wave conditions. As a result, its practical applicability
is also met with difficulties. Mechanical systems involv-
ing topologically-protected floppy edge modes [17H20, [30]
have also been proposed to obtain asymmetric wave prop-
agation. Although these systems can be easily manu-
factured and indeed achieve asymmetric wave transport
without requiring any active control, the asymmetric be-
havior only occurs at frequencies lower than the folding
region of the acoustic modes [30].

The most recent efforts in this line of developments
have been directed towards creating mechanical analogs
of the quantum valley Hall effect (QVHE), whose only
requirement is the breaking of space-inversion symmetry
(SIS), which can be achieved in a relatively agile fashion
in many acoustic and mechanical systems. In acoustics,
this effect has been demonstrated for sonic crystals ob-
tained from arrays of rod-like scatterers [32, B3]. In elas-
todynamics, the concept was first realized in honeycombs
with masses added at lattice nodes [34} [35], and then ex-
tended to lattices with curved struts [36, [37] and thin
plates endowed with arrays of surface masses [38-442]. In
hexagonal lattices with a Cg, symmetry, Dirac points, or
valleys are observed at the high-symmetry corners of the
Brillouin zone. SIS breaking, which preserves Cs, sym-
metry, results in bandgap opening and in the lifting of the
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cones. This leaves behind two adjacent valleys, K and
K, that are largely separated in the reciprocal space and
feature opposite values of the locally-defined topological
index known as valley Chern number. The Chern number
dichotomy between the valleys implies low modal com-
patibility between phonons associated with the K and
K’ points (which can be interpreted as waves traveling
in opposite directions in the lattice), which ultimately
manifests as a low degree of back-scattering. A complete
and lucid description of the working principle of QVHE
is given in Ref. [37]. The SIS breaking requirement is
relatively simple to achieve through a mechanical modu-
lation of the unit cell parameters, making this approach
much more amenable to manufacturing and therefore ap-
plicable to elastic systems. Most efforts on QVHE to
date (with the notable exception of one theoretical work
on in-plane elasticity in discrete systems [43]) have been
devoted to the analysis of the out-of-plane flexural (an-
tisymmetric Lamb wave) response of thin elastic plates.

In this work, we shift our attention to the in-plane dy-
namics of thin lattices in plane-stress conditions. Realiz-
ing viable QVHE conditions in in-plane systems features
some additional challenges compared to their out-plane
counterparts. In out-of-plane problems, a total bandgap
can be easily obtained at low frequencies [32H35]. This
allows a straightforward establishment of edge waves that
are not contaminated by any of the bulk modes (as a side
note, it is worth noting that edge modes have also been
successfully achieved in systems and frequency regimes
where SIS breaking only induces partial bandgap open-
ing [36] [40]; this result can be explained by invoking
the low modal compatibility and the large difference in
density of states between the edge and bulk modes at
the frequencies of interests, which makes the establish-
ment of edge modes more favorable). In contrast, in-
plane mechanics are characterized by additional modal
complexity associated with the co-existence of longitudi-
nal and shear modes even at low frequencies. As a re-
sult, identifying total bandgaps that naturally allow for
spectrally-isolated edge modes inevitably requires explor-
ing the high-frequency optical regime.

Our structure of choice is a modified hexagonal lat-
tice consisting of beam-like struts with bi-valued thick-
ness. This configuration is characterized by extreme
geometric simplicity, which makes it easy to manufac-
ture using conventional cutting or printing techniques.
While this structure features multiple bandgaps that are
amenable to QVHE, here we focus our attention on the
high-frequency regime, where a wide total bandgap is
available. Under these conditions, we study numeri-
cally and demonstrate experimentally the establishment
of non-trivial waveguides and their robustness against
back-scattering from sharp corners. Moreover, we lever-
age this platform to realize complicated paths involv-
ing multi-branch junctions and different types of domain
walls to achieve a variety of special energy channeling and
routing effects. As a first example, we design a direction-
selective energy-splitting waveguide tree that allows one-

way wave propagation at high frequencies. We also de-
sign a triangular waveguide loop that works as a signal
delayer: here a portion of the energy injected in the sys-
tem is temporarily trapped in the loop, and then released
periodically at an output boundary with programmable
delays.
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FIG. 1. (a) Unit cell (maroon) of a regular hexagonal lat-
tice with uniform strut thickness, and (b) its corresponding
band diagram. The crossing points in the dashed squares are
Dirac points. The surface plot on the right provides a 3D
visualization of the Dirac cones at the K point. (c) Unit
cell (maroon) of a hexagonal lattice with modulated strut
thickness. The thickness of the thick (thin) parts is increased
(decreased) by 20% with respect to the reference value in (a).
(d) Band diagram for the bi-valued hexagonal lattice. The
green and blue shaded areas denote partial and total band
gaps, respectively. The two inserted displaced cells represent
the eigen-displacements at the K points for the 5th and the
6th bands.

II. TOPOLOGICALLY-PROTECTED EDGE
MODES

To obtain a lattice with a Cs, symmetry after breaking
the SIS, we start with a regular hexagonal lattice with a
Cey symmetry made of 2-cm-long struts with a 7.5:1 in-
plane aspect ratio, Fig. [I| (a). The geometric and mate-
rial properties are chosen to match those of the specimen
that we intend to test experimentally, which is manufac-
tured via water jet cutting from a sheet of acrylonitrile
butadiene styrene (ABS): length of the struts [ = 2 cm,
out-of-plane sheet thickness d = 3.2 mm, Young’s mod-
ulus, £ = 2.14 GPa, Poisson’s ratio v = 0.35, density
p = 1040 kg/m3. The phonon dispersion relation, ob-
tained via Bloch unit cell analysis conducted via finite
element analysis (FEA), is shown in Fig. [l (b). The
struts are modeled as shear-deformable beams according
to Timoshenko beam theory to expedite the calculation
with respect to a 2D elasticity model, without compro-
mising the accuracy. In the frequency range of interest
(below 1.0 x 105 Hz), dictated by the bandwidth of our



actuation equipment, we identify two Dirac points at the
K point. A detailed calculation of the Berry phase con-
firming the Dirac-like nature of these points, is reported
in Section I of the Supplemental Material (SM) [44].

To break the SIS, we modulate the strut thickness so
that the aspect ratio of the upper (lower) half of the unit
cell is increased (decreased) by 20%, as shown in Fig.
(c). The asymmetry of the lattice opens the Dirac cones
and creates band gaps of 1.684x10* Hz and 2.720x 103 Hz
for the upper and lower cones, respectively, see Fig. [1|(d).
We decide to focus our analysis on the upper gap, which
is wider and more tractable. To describe the topology
of this gap, we calculate the valley Chern number C,, at
the valley K (K') point, and obtain the value +(—)0.48,
which approximately tends to +(f)% of classical QVHE
theory.

We now proceed to consider a lattice consisting of two
domains (termed lattice type A and B) separated by an
interface. The cells above the interface have thin (thick)
struts in the top half of the cell and thick (thin) struts in
the bottom half, while those below the interface are mir-
ror symmetric, as shown in Fig. [2| (a) [(b)]. To confirm
the existence of interface states, we conduct a supercell
analysis. Each supercell consists of a finite strip of 12
cells: the top six cells belong to type A (B), while the
bottom six to type B (A), as shown in Fig. |2| (a) [(b)]. In
this way, the lattice resulting from the repetition of the
supercell along the z-axis displays a horizontal interface
along the zigzag direction. The asymmetry of the unit
cell allows two possible types of interface: we name an
interface where two thin struts meet a thin interface, Fig.
(a), and the other type thick interface, Fig. 2 (b). We
apply 1D Bloch conditions along the z-axis while leaving
the top and bottom boundaries free to mimic a finite-
width, infinitely long horizontal strip. From the supercell
band diagrams obtained for the two different interfaces,
superimposed in Fig. (c), we detect the emergence of
two new bands within the bandgap. The mode shapes
calculated at the valley K point (k; = 27/3) on these
new bands, reported in Section I of the SM [44], indicate
that the emerging bands are indeed interface modes.

III. EXPERIMENTAL EVIDENCE OF
TOPOLOGICALLY-PROTECTED IN-PLANE
WAVEGUIDING

An important feature of a TPES is that it allows waves
to propagate along sharp corners with negligible back-
scattering. Effective rationales for this phenomenon have
been proposed in the literature in the context of flexural
waves. In Section IT of the SM [44], we recall and extend
these considerations, providing additional insight in the
process that is germane to our specific problem of in-
plane wave propagation.

Here, we focus our attention on verifying this phe-
nomenon, both numerically and experimentally, for in-
plane phonons in our lattice of choice. To document the

(a) (b) (©)

Type A Type B
N
£
>
—— —— - E
S
g
=
Type B Type A

FIG. 2. (a) and (b): Supercells featuring the two types of non-
trivial interfaces along the zigzag directions, with (a) thin and
(b) thick interfaces connecting the two lattice types. (c¢) Band
diagram of the supercells. Blue and black curves refer to the
thin and thick interfaces shown in (a) and (b), respectively.
The thick curves denote the interface modes. The gray area
marks the non-trivial band gap. The dashed red lines indicate
the location of K’ (left) and K (right) points.

robustness against back-scattering, we model a Z-shape
thin interface with two 60° corners, shown in Fig. [3[ (a).
The interface splits the lattice into two sub-domains with
mirror symmetry about the interface. The dynamic re-
sponse is computed via full-scale dynamic FEA. A burst
excitation with frequency w = 8.707 x 10* Hz with 35 cy-
cles is applied in the form of a horizontal in-plane force
at left edge of the interface. As is evident from Fig.
(b), the wave indeed propagates along the interface
without significant back-scattering until it reaches the
right boundary. The back-scattering-immune behavior
can also be confirmed by plotting the displacement time
history of an arbitrary point located along the interface,
as shown in Fig. [3[(g). The presence of a single dominant
peak, associated with the incoming wave, indicates that
no appreciable reflections are generated at the corners.
Since the excitation frequency is within the bulk band
gap, no leakage into the bulk is observed.

An alternative strategy to realize a similarly-shaped
waveguide is by constructing a trivial interface. This can
be done starting from a uniform lattice (say type A) and
replacing the cells featuring thickness modulation with
regular hexagonal cells along the interface. Let us con-
sider two trivial Z-shaped domain walls with interface
widths spanning over one and two cells, as shown in Fig.
(c) and (e), respectively. Interestingly, when the trivial
interface is one cell in width, as in Fig. [3|(c), the wave re-
mains mostly localized around the excitation point, with
little energy propagating along the interface, as shown
in Fig. [3| (d). Therefore, a trivial interface with one-cell
thickness is not sufficient to effectively close the band gap
and establish efficient waveguide transport conditions.
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FIG. 3. Full-scale simulations of lattices with (a) nontrivial
(blue shade), (c¢) narrow trivial (green shade), and (e) wide
trivial (red shade) interfaces. The two regions, A and B,
separated by the nontrivial interface in (a) present a mirror
symmetry about the interface. For trivial interfaces in (c)
and (e) the two regions have the same lattice type. (b), (d)
and (f) are the wavefields for the (a) nontrivial, (¢) narrow
and (e) wide trivial interfaces, respectively. (g) Magnitude of
displacement at the locations marked by a star along the nar-
row trivial (yellow) and nontrivial (maroon) interfaces. (h)
Magnitude of displacement along the wide trivial (blue) in-
terface. The displacements in (g) and (h) are normalized by
the largest measured values.

By sufficiently widening the interface, as in the case of
Fig. [3] (e), involving a two-cell interface, waves can even-
tually propagate along the trivial waveguide, as shown in
Fig. [3| (f). However, strong back-scattering is observed
at corners, significantly weakening the signal transmitted
and rendering this a very inefficient waveguide. This is
best seen by looking at Fig. [3[(h), which again shows the
time history of the response sampled at a point along the
first segment of the waveguide. A second peak at around
9 x 1073 s is clear evidence of a strong reflected wave.
In conclusion, only the topologically-protected interface
guarantees efficient and scattering-free waveguiding.

We then move on to perform a series of experiments
to confirm the topological attributes of the non-trivial
waveguide. To acquire the in-plane wavefields, we scan
the lattice with a 3D Scanning Laser Doppler Vibrom-
eter (SLDV, Polytec PSV-400-3D) using one scan point
per lattice node. The specimen is a water-jet-cut ABS
lattice, comprising 34 x 20 unit cells with the same dimen-
sions and parameters used in simulations, see Fig. [4] (a).

The green-shaded area denotes the Z-shape interface. For
convenience of setup, we rotate the lattice by 90° counter-
clockwise and frame it using clamps at the two sides, leav-
ing the top and bottom boundaries free. The excitation
is prescribed as an in-plane normal point force applied
on the boundary at the opening of the topological inter-
face. The force is exerted using an electrodynamic shaker
(Bruel & Kjaer Type 4809, powered by a Bruel & Kjaer
Type 2718 amplifier) placed at the bottom of the lattice,
as shown in Fig. 4| (b). We prescribe a burst excitation
at w = 8.707 x 10* Hz with 35 cycles in order to activate
a very narrow frequency interval falling entirely on the
topological edge mode branch within the bandgap, ap-
proximately at k, = 27/3. From visual inspection of the
wavefield, we observe that the wave indeed propagates
along the interface without appreciable backscattering,
see Fig. 4] (c), consistent with the numerical prediction
in Fig. [3](b). Note that the magnitude is here attenuated
along the propagation path due to unavoidable damping
in the physical specimen. The robustness against back-
scattering is eloquently captured by the spectral plane
representation of Fig. 4] (d), obtained by applying a dis-
crete Fourier transform (DFT) to the experimental data
sampled along the interface. Indeed, the spectral magni-
tude map presents a strong asymmetry between the +k,
and —k, directions, suggesting negligible reflection from
the corner. It can also be appreciated that the spec-
tral response features excellent agreement with the edge
mode branch obtained from supercell analysis.

IV. MULTI-INTERFACE JUNCTIONS FOR
ENERGY TRANSPORT MANIPULATIONS

In Section II of the SM [44], we offer a rationale for
how waves propagate around 60° and 120° corners with
or without changes of interface type, and the conclusions
align with what has been observed in out-of-plane coun-
terpart problems [34H42]. These considerations can be
fully leveraged for structural logic circuit designs with
unconventional energy transport capabilities. Inspired
by former theoretical studies of topological current split-
ters based on the valley Hall effect [45] [46], we devote our
attention to the wave manipulation and opportunities of
multi-interface junctions in cellular metastructures. Re-
cently, a study of topological junctions in phononic plates
has documented the potential of junctions as energy split-
ters and filters for flexural (out-of-plane) waves, intro-
ducing the notion of tessellated mechanical domains as
topological super networks [42]. Here, we provide a sys-
tematic exploration of analog opportunities available in
cellular configurations undergoing in-plane elastic wave
propagation using a suite of FEA and laser vibrometry
experiments.

The objective is to exploit the energy splitting prop-
erties of topological junctions to achieve a series of new
asymmetric wave transport and energy trapping effects,
thus expanding the gallery of technological potentials of
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FIG. 4. (a) Experimental specimen cut from a thin ABS
sheet. A Z-shape thin interface with two 60° corners high-
lighted in green. (b) Experimental setup showing the 3D
SLDV heads and the specimen rotated by 90° counter-
clockwise in order to facilitate excitation from the shaker. (c)
Snapshots of the wavefield induced through burst excitation
at w = 8.707 x 10* Hz. The point velocity magnitudes are
normalized by the largest measured value. The magnitude
is attenuated due to damping in the specimen. (d) DFT of
the experimental data sampled along the interface, matching
the interface mode (green) calculated from supercell analysis
and revealing the absence of appreciable back-scattering. The
magenta curves are bulk bands.

valleytronic concepts in mechanical systems. We start
by noting that, according to our previous discussion, the
lattice types on the two sides of a topologically-protected
interface must present a mirror symmetry. Hence, to en-
sure that all the interfaces converging at a junction are
topologically protected, it is necessary that the junction
connects an even number of interfaces. Here we illustrate
this idea through two examples.

The first design is a direction-selective elastic en-
ergy splitter intended to allow strongly asymmetric wave
transport at high frequencies. The FEA model and ex-
perimental specimen are shown in Fig. 5| (a) and (b),
respectively. Three “thin” and one “thick” interfaces
(according to the terminology introduced before) are con-
nected at point o, resulting in three ports on the left side
of the lattice and one on the right. The angle between
the three thin interfaces is 60°, while the one between the
thin and thick interfaces is 120°. A burst excitation with
carrier frequency falling inside the bandgap is applied at
port a on the left, and the simulated and experimentally
measured wavefields are shown in Fig. 5] (c) and (d), re-
spectively. It can be seen that the wave prefers to split
and steer at the junction and propagate back along ob
and oc, eventually localizing at the left edge of the lattice

without ever reaching the opposite edge. In contrast, the
simulated and experimental wavefields obtained exciting
at port d on the right are shown in Fig. [5| (e) and (f), re-
spectively. As we can see, the wave propagates along the
thick interface from right to left and, at junction o, splits
(with negligible reflections) into two transmitted signals
traveling to ports b and c¢. The characteristics of the in-
terfaces coalescing at junction o ensures that the wave
propagates along the two thin interfaces ob and oc that
form a 120° angle with the thick interface od. As a re-
sult, transmission form right to left is achieved efficiently.
Note that opposite group velocities between the thin oa
and the thick od interfaces prevent the wave from propa-
gating straight through the junction, despite the perfect
alignment between oa and od.

De facto, the lattice endowed with the internal multi-
path junction behaves dynamically as a medium with ef-
fective asymmetrical wave transport characteristics. It
works as an isolator for excitations prescribed at the left
edge and as a conductor for excitations prescribed at the
right edge. In this respect, it achieves a functionality
that is a high-frequency analog of what has been recently
shown experimentally for topological Maxwell structural
lattices (with ligaments with finite bending stiffness), see
Ref. [30]. In such systems we observe a similar behav-
ior whereby excitations prescribed at the floppy edge re-
main localized close to the excitation, while those pre-
scribed at the stiff boundary are transmitted across the
sample. Interestingly, despite the fact that the two ef-
fects are based on different mechanisms, they are both
edge phenomena that can be seen as manifestation of the
bulk-boundary correspondence, they both enjoy topolog-
ical protection and they are both described by topological
invariants (the valley Chern number here and the topo-
logical polarization vector in Ref. [30]). From an ap-
plication standpoint, the asymmetrical transport, more
specifically, the emergence of an isolating edge results in
high transmission efficiency, as the signal that has trav-
eled across the sample is prevented from traveling back
towards the input edge, even after scattering form the
output edge. Because of the trapping path formed by
segments ob, ba, ac and co, retro-transmission is not al-
lowed not only along the waveguide, but also along any
other propagation path.

For our second example, we arrange three thin and one
thick interfaces as shown in Fig. [f] (a) to realize a trian-
gular loop embedded in the lattice domain. The idea is
to create an energy sink that locally traps the energy in-
jected into the lattice from an edge and delays its release
at another edge. When a wave traveling from port a im-
pinges onto junction o, the energy splits, with a portion
propagating along the upper thin interface (which forms
a 60° angle with oa), and the other following the lower
thick interface at a 120° angle. The energy propagating
upwards circulates clockwise in the triangular loop, even-
tually coming back to junction o. Here the energy splits
again into a packet that enters the loop for a second cycle
and a second packet that travels along the thick interface
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FIG. 5. (a) FEA model and (b) experimental specimen of
a one-way elastic de-multiplexer. a-d are four ports on the
edges. Three thin interfaces, ao, ob, and oc, forming 60° an-
gles, are marked by blue shades. A thick interface od con-
necting the right boundary to junction o and forming a 120°
angle with two of the thin interfaces is denoted by a green
shade. (c) and (d): Snapshots of wavefields obtained from
(c¢) simulation and (d) experiment with burst excitation at
w = 8.707 x 10* Hz applied at port a. (e) and (f): Snapshots
of wavefields obtained from (e) simulation and (f) experiment
with excitation at port d. The velocity magnitudes are nor-
malized by the largest measured value. In the experimental
case, the magnitude is attenuated due to damping.

ob and eventually reaches the lower edge after some delay,
see Fig. @ (c). This process, which is repeated at every
cycle, breaks down the burst of energy and releases it at
port b after finite intervals, with a period that depends
on the geometric characteristics of the loop. As a re-
sult, in contrast with the input signal, which consists of
a single packet, the output signal is broken down into
multiple packets that are transmitted over an extended
time window, as shown in Fig. [6] (b).

The ability to create arbitrarily shaped and long
waveguiding loops has implications for the design of effi-
cient energy harvesting systems. Energy harvesting from
mechanical vibrations requires the activation of trans-
ducers embedded in mechanical systems that convert me-
chanical energy into electrical energy to provide an elec-
trical (e.g. voltage) output that can be harnessed and
stored. Placing harvesters must be carried out compro-
mising efficiency and parsimony: on one hand, one wants
to maximize the output of the system by deploying many
harvesters, on the other hand too many harvesters can
be an impractical and expensive solution, in addition

to detrimentally affecting the mechanical performance of
the host system. Moreover, in a conventional medium
subjected to a point excitation, the energy travels out-
wards from the excitation point with amplitude decreas-
ing with the distance from the source. Therefore, even
if harvesters were distributed densely in the domain, the
output of those located far form the source would become
progressively negligible. In contrast, one of the byprod-
ucts of waveguides is the ability to predict precisely where
the energy from an excitation propagates. As a result,
one could deploy harvesters along the waveguide path,
thus making sure that they are all going to be engaged by
the excitation and that the signal they experience over-
all maintains its amplitude (in the absence of significant
damping and ignoring some inevitable dispersion-induced
packet attenuation). In this respect, if the objective were
to maximize the harvesting output, one would want to
design long waveguides, whose total length may exceed
the sample size, which would therefore require tortuous
paths with corners and bends. The ability offered by
QVHE to manage backscattering at these points and,
more specifically, the possibility to create internal loops
becomes then an invaluable asset. It is important to note
that, for this kind of application, a closed loop confined
to the interior of the domain would be ideal, as it would
force the energy to remain confined along the path (un-
til the inevitable damping destroys the signal), thus al-
lowing multiple harvesting events per transducer. The
implementation of our junctions, however, requires the
existence of an extra leg (ob), along which part of the
signal is released in each period, and thus, from a strict
internal energy harvesting perspective, lost.

V. CONCLUSION

In this work, we have experimentally demonstrated
the in-plane dynamics of topologically-protected inter-
face modes in honeycomb lattices with a bi-valued strut
thickness pattern that breaks the space-inversion sym-
metry. We have documented similarities and differences
between topological interfaces formed by connecting thin
and thick portions of the unit cell. We have shown the
robustness against back-scattering of wave propagation
about 60° corners with identical types of interfaces and
about 120° with mixed interfaces. Exploiting this knowl-
edge, we have designed multi-interface junctions and used
them to realize different structural logic circuits and elas-
tic ports featuring unconventional wave manipulation ef-
fects at optical frequencies. Our results extend the appli-
cability of valley-Hall effects to in-plane elastic dynamics
and enrich the current understanding of these phenomena
in mechanical systems by providing a new interpretation
angle that blends topological and mechanistic arguments.
The presented modular interface design philosophy can
provide inspiration for a broad range of applications for
energy management, trapping, routing and harvesting.
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FIG. 6. (a) Full-scale simulation of a lattice with a triangu-
lar loop realized with topological interfaces. Thin and thick
interfaces are marked in blue and green, respectively. (b)
Magnitudes of displacements computed at the points marked
by maroon and yellow stars along the thin and thick inter-
faces, respectively, in (a). (c) Snapshots of wavefield induced
through a burst excitation at w = 8.707 x 10* Hz applied at
port a. The displacement magnitudes are normalized by the
largest value measured in the wavefield.
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I. QUANTUM VALLEY HALL EFFECT
THEORY

To determine whether a band-crossing at the K point
for a lattice with Cf, point group symmetry is a Dirac
point, we calculate the Berry phase (or Berry flux) ®
around the K point:

@:édkA (S1)

where v denotes a close loop around the K point and
A = —i(yp(k)|Vk|p(k)) is the Berry connection, which
can be obtained from the eigenvectors of a phonon band
|#p(k)). For a 2D system that is invariant under time-
reversal and two-fold rotational (about z) symmetry, the
Berry flux is generally quantized to 0 or 7 (up to mod
27), with ® = 7 being the key signature of a Dirac point.

Numerically, an efficient way to compute the Berry
phase is via eigenvector overlap. Let us select N wavevec-
tor points along a closed loop, labeled ¢ = 1, ..., N, which
encapsulate the point of interest and such that the pe-
riodic boundary condition %y, = 1, is satisfied. The
inner product between eigenvectors at two neighboring
points can be computed as (9;]1;, ). When N is large
and the wavevector points are densely populated along
the loop, this inner product is in general a complex num-
ber with an absolute value close to unity. Multiplying
the inner products computed between all the available
pairs yields a complex number whose phase is the Berry
phase:

i=N
® = arg <H <¢1|’/’1+1>> (52)

i=1

As mentioned above, since our system preserves time-
reversal and Cg, point group symmetry, ® is quantized
to 0 or 7, and thus the product of eigenvectors appearing
on the right-hand-side of Eqn. is a real number. It
is then sufficient to look at the sign of this product: if it
is positive (negative), the corresponding Berry flux is 0
(), and thus a negative eigenvector overlap product is
smoking-gun evidence for the existence of a Dirac point.

Once the space inversion symmetry is broken, the
bandgap at the Dirac point is open. To describe the
topology of this gap, we calculate the valley Chern num-
ber C,:

1
C, = %// B(ky, ky)dkydk,, (S3)

where (kg, k) is an arbitrary point in the reciprocal
space located in the neighborhood of the valley K point,

and B(kg, k) is the Berry curvature calculated from the
eigenvectors of the upper or lower bands near the band
gap, which is expressed as:

9P
kg

B(ky, ky) =—2- imag<

o
)

where 1) is the normalized eigenvector, and M is the unit
cell mass matrix. A color map of the Berry curvature
for the upper band is shown in Fig. [SI} An analogous
Berry curvature map, albeit with opposite signs, can be
obtained for the lower band. The calculated Chern num-
ber at the valley K (K’) should be +(-)0.5 according to
classical quantum valley hall effect theory.
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FIG. S1. Berry curvature computed for the 6" band for the
modulated hexagonal lattice shown in Fig. 1 (c) in the article
showing peaks of amplitude approximately :I:% at the valley
points and featuring opposite signs between the K and K’
points.

II. TOPLOGICALLY-PROTECTED EDGE
STATES

The mode shapes calculated via finite element analysis
(FEA) at the valley K point (k, = 27/3) on the two
emerging bands in the band gap in Fig. 2 (¢) in the
article are shown in Fig. We can see that the two
new modes are indeed interface modes as the deformation
is mainly localized at the interface.

One important feature of a topoligically protected edge
states (TPES) is that it allows waves to propagate along
sharp corners without appreciable back-scattering. Here
we attempt to shed further light on the genesis of this
phenomenon by providing an intuitive mechanistic ex-
planation. To this end, we need to compute and plot the
eigenvector phase rotation for a TPES. Let us note that
TPES is, for all intents and purposes, a propagating wave



(b)

FIG. S2. Deformation patterns computed from the supercell
under 1D Bloch conditions with (a) thin and (b) thick inter-
faces, revealing localized modes at the interfaces.

concentrated near the interface boundary. Like any trav-
eling wave, its displacement field is fully characterized in
terms of an amplitude and a phase, i.e.,

u(r,t) = A(r)ekr—ivt (S5)

where the complex amplitude term A(r) is the Bloch
wave function and k - r is the phase, with r and k be-
ing the real space coordinate and the wavevector, respec-
tively. For a TPES, the amplitude function is concen-
trated along the interface and decreases exponentially as
we move away from the interface. The phase pattern of a
TPES contains important information which directly dic-
tates the wave propagation behavior at corners or junc-
tions of interface boundaries.

In Fig. we plot the phase of displacement u(r,t)
(when t=0) for each node in the FEA model and we mon-
itor the values at the nodes located along the interface
defined in Fig. 2 (a) in the main article. Here, we focus
our attention on a TPES with wavevector k, = 27/3, i.e.,
the K valley. As previously shown in Fig. 2 (c) in the
article, this mode has a positive group velocity and thus
corresponds to a mode that transports energy from left to
right, as denoted by the green arrow in Fig. From the

Possible routes
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FIG. S3. Map of phase angles for the lattices with thin inter-
face at k; = 2w /3. The color bar denotes the phase angle in °.
The propagation routes R1 to R4 denote possible zigzag inter-
face paths that can be realized in the lattice. The green arrows
denote the group velocity directions. The nodes marked with
?X” are the reference nodes compared to determine compat-
ibility (or lack thereof) between pairs of directions.

colormap in Fig. as can be seen, along the horizontal
interface, the phase angle returns to the same value after
every three unit cells following a high-zero-low sequence,
which we term “clockwise” (the opposite low-zero-high
sequence will be called “counter-clockwise”). The 3-cell
periodicity and clockwise pattern are obtained for the
selected wavenumber k, = +27/3, while the TPES at
ky = —2m/3 (not shown) has the same periodicity but
counter-clockwise pattern. Now, let us consider other
lattice directions along which possible domain interfaces
can be realized. Along R1 and R2, which form a 60° angle
with the horizontal interface, we observe that the phase
also propagates clockwise. In other words, the phase
pattern for a right-propagating TPES is fully consistent
with TPES modes propagating along R1 and R2. "max-
imize phase consistency, i.e., a wave will usually choose
the propagation direction such that the in-coming and
out-going waves have the highest phase coherence and
therefore the most efficient energy transfer. For exam-
ple, in a 3D homogeneous medium, the phase pattern of
a plane wave is best matched by itself, and thus a wave
will choose to maintain its wave-vector such that per-
fect phase match is preserved. However, if the wave im-
pinges on a 2D interface, because phase coherence cannot
be maintained in the whole 3D space anymore, the next
best option is selected, i.e., to maintain the phase pat-
tern along the 2D interface, leading to the mechanisms
behind the well-known reflection and refraction patterns.

We can apply the same principle to the TPES. First,
we consider a multi-segment interface which switches di-
rection from the horizontal to either R1 or R2. At a cor-
ner, a wave packet propagating from left to right along
the x-axis has two options: (a) being reflected towards
the left or (b) propagation along R1 or R2. The phase
pattern is fully preserved (clockwise in this case) for op-
tion (b), while in option (a), the phase will have to change



its pattern to counter-clockwise, failing to match that
of the incoming wave. Therefore, the wave will prefer
traveling around the 60° sharp corner, rather than being
scattered back, which explains why a TPES can transmit
through such a corner with nearly zero back-scattering.
Let us consider now the propagation path that switches
from the horizontal interface to R3 or R4, which form a
120° angle with the horizontal direction, Note that for
a 120 corner, the segment of R3 or R4 must involve the
other interface type, otherwise the lattice cannot be prop-
erly completed. In this case, the landscape of phase rota-

tion is reversed. Naively, we could conclude that R3 and
R4 are unfavorable directions. However, it is important
to note that the TPES along this new interface features a
negative group velocity [see the black curve in Fig. 2 (c)
in the main article], opposite to that along the horizon-
tal interface. Thus, for a wave packet propagating along
R3 or R4, the phase pattern is also clockwise along the
group velocity direction, consistent with the scenario of
the incoming wave. As a result, waves can still propagate
along such a 120° angle, rather than being scattered back,
provided that we switch to a different type of interface.
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