
Unsupervised Progressive Learning and the STAM Architecture

James Smith∗ , Cameron Taylor∗ , Seth Baer and Constantine Dovrolis†
1Georgia Institute of Technology

{ jamessealesmith, cameron.taylor, cooperbaer.seth, constantine}@gatech.edu,

Abstract

We first pose the Unsupervised Progressive Learn-
ing (UPL) problem: an online representation learn-
ing problem in which the learner observes a non-
stationary and unlabeled data stream, learning a
growing number of features that persist over time
even though the data is not stored or replayed. To
solve the UPL problem we propose the Self-Taught
Associative Memory (STAM) architecture. Lay-
ered hierarchies of STAM modules learn based on a
combination of online clustering, novelty detection,
forgetting outliers, and storing only prototypical fea-
tures rather than specific examples. We evaluate
STAM representations using clustering and classi-
fication tasks. While there are no existing learning
scenarios that are directly comparable to UPL, we
compare the STAM architecture with two recent con-
tinual learning models, Memory Aware Synapses
(MAS) and Gradient Episodic Memories (GEM),
after adapting them in the UPL setting. 1

1 Introduction
The Continual Learning (CL) problem is predominantly ad-
dressed in the supervised context with the goal being to learn
a sequence of tasks without “catastrophic forgetting” [Good-
fellow et al., 2013]. There are several CL variations but a
common formulation is that the learner observes a set of ex-
amples {(xi, ti, yi)}, where xi is a feature vector, ti is a task
identifier, and yi is the target vector associated with (xi, ti)
[Lopez-Paz and Ranzato, 2017]. Other CL variations replace
task identifiers with task boundaries that are either given [Hsu
et al., 2018] or inferred [Zeno et al., 2018]. Typically, CL
requires that the learner either stores and replays some previ-
ously seen examples [Rebuffi et al., 2017] or generates exam-
ples of earlier learned tasks [Shin et al., 2017].

The Unsupervised Feature (or Representation) Learning
(FL) problem, on the other hand, is unsupervised but mostly
studied in the offline context: given a set of examples {xi},
the goal is to learn a feature vector hi = f(xi) of a given

∗These authors contributed equally to this work.
†Contact Author
1Code available at https://github.com/CameronTaylorFL/stam

dimensionality that, ideally, makes it easier to identify the
explanatory factors of variation behind the data [Bengio et al.,
2013], leading to better performance in tasks such as clustering
or classification. FL methods differ in the prior P (h) and the
loss function. A similar approach is self-supervised methods,
which learn representations by optimizing an auxiliary task
[Gidaris et al., 2018].

In this work, we focus on a new and pragmatic problem that
adopts some elements of CL and FL but is also different than
them – we refer to this problem as single-pass unsupervised
progressive learning or UPL for short. UPL can be described
as follows:
(1) The data is observed as a non-IID stream (e.g., different
portions of the stream may follow different distributions and
there may be strong temporal correlations between successive
examples), (2) the features should be learned exclusively from
unlabeled data, (3) each example is “seen” only once and the
unlabeled data are not stored for iterative processing, (4) the
number of learned features may need to increase over time, in
response to new tasks and/or changes in the data distribution,
(5) to avoid catastrophic forgetting, previously learned features
need to persist over time, even when the corresponding data
are no longer observed in the stream.

The UPL problem is encountered in important AI appli-
cations, such as a robot learning new visual features as it
explores a time-varying environment. Additionally, we argue
that UPL is closer to how animals learn, at least in the case
of perceptual learning [Goldstone, 1998]. We believe that in
order to mimic that, ML methods should be able to learn in a
streaming manner and in the absence of supervision. Animals
do not “save off" labeled examples to train in parallel with
unlabeled data, they do not know how many “classes” exist
in their environment, and they do not have to replay/dream
periodically all their past experiences to avoid forgetting them.

To address the UPL problem, we describe an architecture
referred to as STAM (“Self-Taught Associative Memory”).
STAM learns features through online clustering at a hierarchy
of increasing receptive field sizes. We choose online clustering,
instead of more complex learning models, because it can be
performed through a single pass over the data stream. Further,
despite its simplicity, clustering can generate representations
that enable better classification performance than more com-
plex FL methods such as sparse-coding or some deep learning
methods [Coates et al., 2011]. STAM allows the number of

ar
X

iv
:1

90
4.

02
02

1v
6

 [
cs

.L
G

]
 1

3
M

ay
 2

02
1

clusters to increase over time, driven by a novelty detection
mechanism. Additionally, STAM includes a brain-inspired
dual-memory hierarchy (short-term versus long-term) that en-
ables the conservation of previously learned features (to avoid
catastrophic forgetting) that have been seen multiple times at
the data stream, while forgetting outliers. To the extent of our
knowledge, the UPL problem has not been addressed before.
The closest prior work is CURL (“Continual Unsupervised
Representation Learning”) [Rao et al., 2019]. CURL however
does not consider the single-pass, online learning requirement.
We further discuss this difference with CURL in Section 7.

2 STAM Architecture
In the following, we describe the STAM architecture as a se-
quence of its major components: a hierarchy of increasing
receptive fields, online clustering (centroid learning), novelty
detection, and a dual-memory hierarchy that stores prototyp-
ical features rather than specific examples. The notation is
summarized for convenience in the Supplementary Material
(SM)-A.
I. Hierarchy of increasing receptive fields: An input vector
xt ∈ Rn (an image in all subsequent examples) is analyzed
through a hierarchy of Λ layers. Instead of neurons or hidden-
layer units, each layer consists of STAM units – in its simplest
form a STAM unit functions as an online clustering module.
Each STAM unit processes one ρl×ρl patch (e.g. 8×8 subvec-
tor) of the input at the l’th layer. The patches are overlapping,
with a small stride (set to one pixel in our experiments) to
accomplish translation invariance (similar to CNNs). The
patch dimension ρl increases in higher layers – the idea is
that the first layer learns the smallest and most elementary fea-
tures while the top layer learns the largest and most complex
features.
II. Centroid Learning: Every patch of each layer is clustered,
in an online manner, to a set of centroids. These time-varying
centroids form the features that the STAM architecture gradu-
ally learns at that layer. All STAM units of layer l share the
same set of centroids Cl(t) at time t – again for translation
invariance.2 Given the m’th input patch xl,m at layer l, the
nearest centroid of Cl selected for xl,m is

cl.j = arg min
c∈Cl

d(xl,m, c) (1)

where d(xl,m, c) is the Euclidean distance between the patch
xl,m and centroid c.3 The selected centroid is updated based
on a learning rate parameter α, as follows:

cl,j = αxl,m + (1− α)cl,j, 0 < α < 1 (2)

A higher α value makes the learning process faster but less pre-
dictable. A centroid is only updated by at most one patch and
the update is not performed if patch is considered "novel" (de-
fined in the next paragraph). We do not use a decreasing value
of α because the goal is to keep learning in a non-stationary
environment rather than convergence to a stable centroid.

2We drop the time index t from this point on but it is still implied
that the centroids are dynamically learned over time.

3We have also experimented with the L1 metric with only minimal
differences. Different distance metrics may be more appropriate for
other types of data.

Figure 1: A hypothetical pool of STM and LTM centroids visualized
at seven time instants. From ta to tb, a centroid is moved from STM
to LTM after it has been selected θ times. At time tb, unlabeled
examples from classes ‘2’ and ‘3’ first appear, triggering novelty
detection and new centroids are created in STM. These centroids are
moved into LTM by td. From td to tg , the pool of LTM centroids
remains the same because no new classes are seen. The pool of
STM centroids keeps changing when we receive “outlier” inputs of
previously seen classes. Those centroids are later replaced (Least-
Recently-Used policy) due to the limited capacity of the STM pool.

III. Novelty detection: When an input patch xl,m at layer l
is significantly different than all centroids at that layer (i.e.,
its distance to the nearest centroid is a statistical outlier), a
new centroid is created in Cl based on xl,m. We refer to this
event as Novelty Detection (ND). This function is necessary
so that the architecture can learn novel features when the data
distribution changes.

To do so, we estimate in an online manner the distance
distribution between input patches and their nearest centroid
(separately for each layer). The novelty detection threshold at
layer l is denoted by D̂l and it is defined as the 95-th percentile
(β = 0.95) of this distance distribution.
IV. Dual-memory organization: New centroids are stored
temporarily in a Short-Term Memory (STM) of limited capacity
∆, separately for each layer. Every time a centroid is selected
as the nearest neighbor of an input patch, it is updated based
on (2). If an STM centroid cl,j is selected more than θ times,
it is copied to the Long-Term Memory (LTM) for that layer.
We refer to this event as memory consolidation. The LTM has
(practically) unlimited capacity and a much smaller learning
rate (in our experiments the LTM learning rate is set to zero).

This memory organization is inspired by the Complemen-
tary Learning Systems framework [Kumaran et al., 2016],
where the STM role is played by the hippocampus and the
LTM role by the cortex. This dual-memory scheme is neces-
sary to distinguish between infrequently seen patterns that can
be forgotten ("outliers”), and new patterns that are frequently
seen after they first appear ("novelty").

When the STM pool of centroids at a layer is full, the intro-
duction of a new centroid (created through novelty detection)
causes the removal of an earlier centroid. We use the Least-
Recently Used (LRU) policy to remove atypical centroids
that have not been recently selected by any input. Figure 1
illustrates this dual-memory organization.
V. Initialization: We initialize the pool of STM centroids

at each layer using randomly sampled patches from the first
few images of the unlabeled stream. The initial value of the
novelty-detection threshold is calculated based on the distance
distribution between each of these initial STM centroids and
its nearest centroid.

3 Clustering using STAM
We can use the STAM features in unsupervised tasks, such as
offline clustering. For each patch of input x, we compute the
nearest LTM centroid. The set of all such centroids, across
all patches of x, is denoted by Φ(x). Given two inputs x and
y, their pairwise distance is the Jaccard distance of Φ(x) and
Φ(y). Then, given a set of inputs that need to be clustered,
and a target number of clusters, we apply a spectral clustering
algorithm on the pairwise distances between the set of inputs.
We could also use other clustering algorithms, as long as they
do not require Euclidean distances.

4 Classification using STAM
Given a small amount of labeled data, STAM representations
can also be evaluated with classification tasks. We emphasize
that the labeled data is not used for representation learning –
it is only used to associate previously learned features with a
given set of classes.
I. Associating centroids with classes: Suppose we are given
some labeled examples XL(t) from a set of classes L(t) at
time t. We can use these labeled examples to associate existing
LTM centroids at time t (learned strictly from unlabeled data)
with the set of classes in L(t).

Given a labeled example of class k, suppose that there is
a patch x in that example for which the nearest centroid is
c. That patch contributes the following association between
centroid c and class k:

fx,c(k) = e−d(x,c)/D̄l (3)

where D̄l is a normalization constant (calculated as the average
distance between input patches and centroids). The class-
association vector gc between centroid c and any class k is
computed aggregating all such associations, across all labeled
examples in XL:

gc(k) =

∑
x∈XL(k) fx,c(k)∑

k′∈L(t)

∑
x∈XL(k′) fx,c(k′)

, k = 1 . . . L(t)

(4)
where XL(k) refers to labeled examples belonging to class k.
Note that

∑
k gc(k)=1.

II. Class informative centroids: If a centroid is associated
with only one class k (gc(k) = 1), only labeled examples
of that class select that centroid. At the other extreme, if a
centroid is equally likely to be selected by examples of any
labeled class, (gc(k) ≈ 1/|L(t)|), the selection of that centroid
does not provide any significant information for the class of
the corresponding input. We identify the centroids that are
Class INformative (CIN) as those that are associated with at
least one class significantly more than expected by chance.
Specifically, a centroid c is CIN if

max
k∈L(t)

gc(k) >
1

|L(t)|
+ γ (5)

Figure 2: An example of the classification process. Every patch (at
any layer) that selects a CIN centroid votes for the single class that has
the highest association with. These patch votes are first averaged at
each layer. The final inference is the class with the highest cumulative
vote across all layers.

where 1/|L(t)| is the chance term and γ is the significance
term.
III. Classification using a hierarchy of centroids: At test
time, we are given an input x of class k(x) and infer its class
as k̂(x). The classification task is a “biased voting” process in
which every patch of x, at any layer, votes for a single class as
long as that patch selects a CIN centroid.

Specifically, if a patch xl,m of layer l selects a CIN centroid
c, then that patch votes vl,m = maxk∈L(t) gc(k) for the class
k that has the highest association with c, and zero for all other
classes. If c is not a CIN centroid, the vote of that patch is
zero for all classes.

The vote of layer l for class k is the average vote across all
patches in layer l (as illustrated in Figure 2):

vl(k) =

∑
m∈Ml

vl,m

|Ml|
(6)

where Ml is the set of patches in layer l. The final inference
for input x is the class with the highest cumulative vote across
all layers:

k̂(x) = arg max
k′

Λ∑
l=1

vl(k) (7)

5 Evaluation
To evaluate the STAM architecture in the UPL context, we
consider a data stream in which small groups of classes appear
in successive phases, referred to as Incremental UPL. New
classes are introduced two at a time in each phase, and they are
only seen in that phase. STAM must be able to both recognize
new classes when they are first seen in the stream, and to also
remember all previously learned classes without catastrophic
forgetting. Another evaluation scenario is Uniform UPL,
where all classes appear with equal probability throughout the
stream – the results for Uniform UPL are shown in SM-G.

We include results on four datasets: MNIST [Lecun et
al., 1998] , EMNIST (balanced split with 47 classes) [Cohen
et al., 2017] , SVHN [Netzer et al., 2011] , and CIFAR-10

Figure 3: Clustering accuracy for MNIST (left), SVHN (left-center), CIFAR-10 (right-center), and EMNIST (right). The task is expanding
clustering for incremental UPL. The number of clusters is equal to 2 times the number of classes in the data stream seen up to that point in time.

[Krizhevsky et al., 2014] . For each dataset we utilize the
standard training and test splits. We preprocess the images by
applying per-patch normalization (instead of image normaliza-
tion), and SVHN is converted to grayscale. More information
about preprocessing can be found in SM-H.

We create the training stream by randomly selecting, with
equal probability, Np data examples from the classes seen dur-
ing each phase. Np is set to 10000, 10000, 2000, and 10000
for MNIST, SVHN, EMNIST, and CIFAR-10 respectively.
More information about the impact of the stream size can be
found in SM-E. In each task, we average results over three
different unlabeled data streams. During testing, we select
100 random examples of each class from the test dataset. This
process is repeated five times for each training stream (i.e., a
total of fifteen results per experiment). The following plots
show mean ± std-dev.

For all datasets, we use a 3-layer STAM hierarchy. In the
clustering task, we form the set Φ(x) considering only Layer-3
patches of the input x. In the classification task, we select a
small portion of the training dataset as the labeled examples
that are available only to the classifier. The hyperparameter
values are tabulated in SM-A. The robustness of the results
with respect to these values is examined in SM-F.

Baseline Methods: We evaluate the STAM architecture
comparing its performance to two state-of-the-art baselines for
continual learning: GEM and MAS. We emphasize that there
are no prior approaches which are directly applicable to UPL.
However, we have taken reasonable steps to adapt these two
baselines in the UPL setting. Please see SM-B for additional
details about our adaptation of GEM and MAS.

Gradient Episodic Memories (GEM) is a recent super-
vised continual learing model that expects known task bound-
aries [Lopez-Paz and Ranzato, 2017]. To turn GEM into an
unsupervised model, we combined it with a self supervised
method for rotation prediction [Gidaris et al., 2018]. Addition-
ally, we allow GEM to know the boundary between successive

phases in the data stream. This makes the comparison with
STAM somehow unfair, because STAM does not have access
to this information. The results show however that STAM per-
forms better even without knowing the temporal boundaries
of successive phases.

Memory Aware Synapse (MAS) is another supervised
continual learning model that expects known task boundaries
[Aljundi et al., 2018]. As in GEM, we combined MAS with
a rotation prediction self-supervised task, and provided the
model with information about the start of each new phase in
the data stream.

To satisfy the stream requirement of UPL, the number of
training epochs for both GEM and MAS is set to one. Deep
learning methods become weaker in this streaming scenario
because they cannot train iteratively over several epochs on
the same dataset. For all baselines, the classification task is
performed using a K = 1 Nearest-Neighbor (KNN) classifier
– we have experimented with various values of K and other
single-pass classifiers, and report only the best performing
results here. We have also compared the memory require-
ment of STAM (storing centroids at STM and LTM) with the
memory requirement of the two baselines. The results of that
comparison appear in SM-C.

Clustering Task: The results for the clustering task are
given in Figure 3. Given that we have the same number of test
vectors per class we utilize the purity measure for clustering
accuracy. In MNIST, STAM performs consistently better than
the two other models, and its accuracy stays almost constant
throughout the stream, only dropping slightly in the final phase.
In SVHN, STAM performs better than both deep learning base-
lines with the gap being much smaller in the final phase. In
CIFAR-10 and EMNIST, on the other hand, we see similar
performance between all three models. Again, we emphasize
that STAM is not provided task boundary information while
the baselines are and is still able to perform better, significantly
in some cases.

Figure 4: Classification accuracy for MNIST (left), SVHN (center), CIFAR-10 (right-center), and EMNIST (right). The task is expanding
classification for incremental UPL, i.e., recognize all classes seen so far. Note that the number of labeled examples is 10 per class (p.c.) for
MNIST and EMNIST and 100 per class for SVHN and CIFAR-10.

Classification Task: We focus on an expanding classifica-
tion task, meaning that in each phase we need to classify all
classes seen so far. The results for the classification task are
given in Figure 4. Note that we use only 10 labeled exam-
ples per class for MNIST and EMNIST, and 100 examples
per class for SVHN and CIFAR-10. We emphasize that the
two baselines, GEM and MAS, have access to the temporal
boundaries between successive phases, while STAM does not.

As we introduce new classes in the stream, the average
accuracy per phase decreases for all methods in each dataset.
This is expected, as the task gets more difficult after each
phase. In MNIST, STAM performs consistently better than
GEM and MAS, and STAM is less vulnerable to catastrophic
forgetting. For SVHN, the trend is similar after the first phase
but the difference between STAM and both baselines is smaller.
With CIFAR-10, we observe that all models including STAM
perform rather poorly – probably due to the low resolution
of these images. STAM is still able to maintain comparable
accuracy to the baselines with a smaller memory footprint.
Finally, in EMNIST, we see a consistently higher accuracy
with STAM compared to the two baselines. We would like to
emphasize that these baselines are allowed extra information
in the form of known tasks boundaries (a label that marks
when the class distribution is changing) and STAM is still
performs better both on all datasets.

6 A closer look at Incremental UPL
We take a closer look at STAM performance for incremental
UPL in Figure 6. As we introduce new classes to the incre-
mental UPL stream, the architecture recognizes previously
learned classes without any major degradation in classification
accuracy (left column of Figure 6). The average accuracy per
phase is decreasing, which is due to the increasingly difficult
expanding classification task. For EMNIST, we only show
the average accuracy because there are 47 total classes. In all
datasets, we observe that layer-2 and layer-3 (corresponding

to the largest two receptive fields) contain the highest fraction
of CIN centroids (center column of Figure 6). The ability to
recognize new classes is perhaps best visualized in the LTM
centroid count (right column of Figure 6). During each phase
the LTM count stabilizes until a sharp spike occurs at the start
of the next phase when new classes are introduced. This rein-
forces the claim that the LTM pool of centroids (i) is stable
when there are no new classes, and (ii) is able to recognize
new classes via novelty detection when they appear.

In the CIFAR-10 experiment, the initial spike of centroids
learned is sharp, followed by a gradual and weak increase in
the subsequent phases. The per-class accuracy results show
that STAM effectively forgets certain classes in subsequent
phases (such as classes 2 and 3), suggesting that there is room
for improvement in the novelty detection algorithm because
the number of created LTM centroids was not sufficiently high.

In the EMNIST experiment, as the number of classes in-
creases towards 47, we gradually see fewer “spikes" in the
LTM centroids for the lower receptive fields, which is expected
given the repetition of patterns at that small patch size. How-
ever, the highly CIN layers 2 and 3 continue to recognize new
classes and create centroids, even when the last few classes
are introduced.

Ablation studies: Several STAM ablations are presented in
Figure 5. On the left, we remove the LTM capability and
only use STM centroids for classification. During the first two
phases, there is little (if any) difference in classification accu-
racy. However, we see a clear dropoff during phases 3-5. This
suggests that, without the LTM mechanisms, features from
classes that are no longer seen in the stream are forgotten over
time, and STAM can only successfully classify classes that
have been recently seen. We also investigate the importance
of having static LTM centroids rather than dynamic centroids
(Fig. 5-middle). Specifically, we replace the static LTM with
a dynamic LTM in which the centroids are adjusted with the

Figure 5: Ablation study: A STAM architecture without LTM (left), a STAM architecture in which the LTM centroids are adjusted with the
same learning rate α as in STM (center), and a STAM architecture with removal of layers (right). The number of labeled examples is 100 per
class (p.c.).

same learning rate parameter α, as in STM. The accuracy suf-
fers drastically because the introduction of new classes “takes
over" LTM centroids of previously learned classes, after the
latter are removed from the stream. Similar to the removal of
LTM, we do not see the effects of “forgetting" until phases
3-5. Note that the degradation due to a dynamic LTM is less
severe than that from removing LTM completely.

Finally, we look at the effects of removing layers from
the STAM hierarchy (Fig. 5-right). We see a small drop in
accuracy after removing layer 3, and a large drop in accu-
racy after also removing layer 2. The importance of having a
deeper hierarchy would be more pronounced in datasets with
higher-resolution images or videos, potentially showing multi-
ple objects in the same frame. In such cases, CIN centroids
can appear at any layer, starting from the lowest to the highest.

7 Related Work
I: Continual learning: The main difference between most
continual learning approaches and STAM is that they are de-
signed for supervised learning, and it is not clear how to adapt
them for online and unlabeled data streams [Aljundi et al.,
2018; Aljundi et al., 2019; Lopez-Paz and Ranzato, 2017].
II. Offline unsupervised learning: These methods require
prior information about the number of classes present in a
given dataset and iterative training (i.e. data replay) [Bengio
et al., 2013].
III. Semi-supervised learning (SSL): SSL methods require
labeled data during the representation learning stage [Kingma
et al., 2014].
IV. Few-shot learning (FSL) and Meta-learning: These
methods recognize object classes not seen in the training set
with only a single (or handful) of labeled examples [Van-
schoren, 2018]. Similar to SSL, FSL methods require labeled
data to learn representations.
V. Multi-Task Learning (MTL): Any MTL method that in-
volves separate heads for different tasks is not compatible with
UPL because task boundaries are not known a priori in UPL
[Ruder, 2017]. MTL methods that require pre-training on a
large labeled dataset are also not applicable to UPL.
VI. Online and Progressive Learning: Many earlier meth-
ods learn in an online manner, meaning that data is processed
in fixed batches and discarded afterwards. These methods are
often designed to work with supervised datastreams, stationary
streams, or both [Venkatesan and Er, 2016].
VII. Unsupervised Continual Learning: Similar to the UPL
problem, CURL [Rao et al., 2019] focuses on continual unsu-

pervised learning from non-stationary data with unknown task
boundaries. Like STAM, CURL also includes a mechanism
to trigger dynamic capacity expansion as the data distribution
changes. However, a major difference is that CURL is not a
streaming method – it processes each training example multi-
ple times. We have experimented with CURL but we found
that its performance collapses in the UPL setting due to mostly
two reasons: the single-pass through the data requirement of
UPL, and the fact that we can have more than one new classes
per phase. For these reasons, we choose not to compare STAM
with CURL because such a comparison would not be fair for
the latter.

iLAP [Khare et al., 2021] learns classes incrementally by
analyzing changes in performance as new data is introduced –
it assumes however a single new class at each transition and
known class boundaries. [He and Zhu, 2021] investigate a
similar setting where pseudo-labels are assigned to new data
based on cluster assignments but assumes knowledge of the
number of classes per task and class boundaries.
VIII. Clustering-based representation learning: Clustering
has been used successfully in the past for offline representation
learning (e.g., [Coates et al., 2011]). Its effectiveness, however,
gradually drops as the input dimensionality increases [Beyer
et al., 1999]. In the STAM architecture, we avoid this issue
by clustering smaller subvectors (patches) of the input data.
If those subvectors are still of high dimensionality, another
approach is to reduce the intrinsic dimensionality of the input
data at each layer by reconstructing that input using represen-
tations (selected centroids) from the previous layer.
IX. Other STAM components: The online clustering com-
ponent of STAM can be implemented with a rather simple
recurrent neural network of excitatory and inhibitory spiking
neurons, as shown recently [Pehlevan et al., 2017]. The nov-
elty detection component of STAM is related to the problem
of anomaly detection in streaming data [Dasgupta et al., 2018].
Finally, brain-inspired dual-memory systems have been pro-
posed before for memory consolidation (e.g., [Parisi et al.,
2018; Shin et al., 2017]).

8 Discussion
The STAM architecture aims to address the following desider-
ata that is often associated with Lifelong Learning:

I. Online learning: STAMs update the learned features
with every observed example. There is no separate training
stage for specific tasks, and inference can be performed in
parallel with learning.

Figure 6: STAM Incremental UPL evaluation for MNIST (row-1), SVHN (row-2), EMNIST (row-3) and CIFAR-10 (row-4). Per-class (p.c.)
and average classification accuracy (left); fraction of CIN centroids over time (center); number of LTM centroids over time (right). The task is
expanding classification, i.e., recognize all classes seen so far.

II. Transfer learning: The features learned by the STAM
architecture in earlier phases can be also encountered in the
data of future tasks (forward transfer). Additionally, new
centroids committed to LTM can also be closer to data of
earlier tasks (backward transfer).

III. Resistance to catastrophic forgetting: The STM-
LTM memory hierarchy of the STAM architecture mitigates
catastrophic forgetting by committing to "permanent storage"
(LTM) features that have been often seen in the data during
any time period of the training period.

IV. Expanding learning capacity: The unlimited capacity
of LTM allows the system to gradually learn more features as
it encounters new classes and tasks. The relatively small size
of STM, on the other hand, forces the system to forget features
that have not been recalled frequently enough after creation.

V. No direct access to previous experience: STAM only
needs to store data centroids in a hierarchy of increasing re-
ceptive fields – there is no need to store previous exemplars or
to learn a generative model that can produce such examples.

Acknowledgements
This work is supported by the Lifelong Learning Machines
(L2M) program of DARPA/MTO: Cooperative Agreement
HR0011-18-2-0019. The authors acknowledge the comments
of Zsolt Kira for an earlier version of this work.

References
[Aljundi et al., 2018] Rahaf Aljundi, Francesca Babiloni,

Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to
forget. In ECCV, 2018.

[Aljundi et al., 2019] Rahaf Aljundi, Klaas Kelchtermans,
and Tinne Tuytelaars. Task-free continual learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11254–11263, 2019.

[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and
Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell.,
35(8):1798–1828, August 2013.

[Beyer et al., 1999] Kevin S. Beyer, Jonathan Goldstein,
Raghu Ramakrishnan, and Uri Shaft. When is ”nearest
neighbor” meaningful? In Proceedings of the 7th Interna-
tional Conference on Database Theory, ICDT ’99, pages
217–235, London, UK, UK, 1999. Springer-Verlag.

[Coates et al., 2011] Adam Coates, Andrew Ng, and Honglak
Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics,
pages 215–223, 2011.

[Cohen et al., 2017] Gregory Cohen, Saeed Afshar, Jonathan
Tapson, and André van Schaik. EMNIST: an extension
of MNIST to handwritten letters. ArXiv, abs/1702.05373,
2017.

[Dasgupta et al., 2018] Sanjoy Dasgupta, Timothy C Shee-
han, Charles F Stevens, and Saket Navlakha. A neural data
structure for novelty detection. Proceedings of the National
Academy of Sciences, 115(51):13093–13098, 2018.

[Gidaris et al., 2018] Spyros Gidaris, Praveer Singh, and
Nikos Komodakis. Unsupervised representation learning
by predicting image rotations. In International Conference
on Learning Representations, 2018.

[Goldstone, 1998] Robert L Goldstone. Perceptual learning.
Annual review of psychology, 49(1):585–612, 1998.

[Goodfellow et al., 2013] Ian J Goodfellow, Mehdi Mirza,
Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based
neural networks. arXiv preprint arXiv:1312.6211, 2013.

[He and Zhu, 2021] Jiangpeng He and Fengqing Zhu. Un-
supervised continual learning via pseudo labels. arXiv
preprint arXiv:2104.07164, 2021.

[Hsu et al., 2018] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ra-
masamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines.
In NeurIPS Continual learning Workshop, 2018.

[Khare et al., 2021] Shivam Khare, Kun Cao, and James
Rehg. Unsupervised class-incremental learning through
confusion. arXiv preprint arXiv:2104.04450, 2021.

[Kingma et al., 2014] Diederik P. Kingma, Danilo J.
Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pages 3581–3589, Cambridge, MA, USA, 2014.
MIT Press.

[Krizhevsky et al., 2014] Alex Krizhevsky, Vinod Nair, and
Geoffrey Hinton. The cifar-10 dataset. online: http://www.
cs. toronto. edu/kriz/cifar. html, 55, 2014.

[Kumaran et al., 2016] Dharshan Kumaran, Demis Hassabis,
and James L McClelland. What learning systems do in-
telligent agents need? complementary learning systems
theory updated. Trends in cognitive sciences, 20(7):512–
534, 2016.

[Lecun et al., 1998] Y. Lecun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324,
Nov 1998.

[Lopez-Paz and Ranzato, 2017] David Lopez-Paz and
Marc’Aurelio Ranzato. Gradient episodic memory for
continual learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pages 6470–6479, USA, 2017. Curran Associates
Inc.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

[Parisi et al., 2018] German I Parisi, Jun Tani, Cornelius We-
ber, and Stefan Wermter. Lifelong learning of spatiotem-
poral representations with dual-memory recurrent self-
organization. Frontiers in neurorobotics, 12:78, 2018.

[Pehlevan et al., 2017] Cengiz Pehlevan, Alexander Genkin,
and Dmitri B Chklovskii. A clustering neural network
model of insect olfaction. In 2017 51st Asilomar Confer-
ence on Signals, Systems, and Computers, pages 593–600.
IEEE, 2017.

[Rao et al., 2019] Dushyant Rao, Francesco Visin, Andrei
Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Had-
sell. Continual unsupervised representation learning. In
Advances in Neural Information Processing Systems 32,
pages 7645–7655. Curran Associates, Inc., 2019.

[Rebuffi et al., 2017] Sylvestre-Alvise Rebuffi, Alexander
Kolesnikov, Georg Sperl, and Christoph H. Lampert.
iCaRL: Incremental classifier and representation learning.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR’17, pages 5533–5542, 2017.

[Ruder, 2017] Sebastian Ruder. An overview of multi-
task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[Shin et al., 2017] Hanul Shin, Jung Kwon Lee, Jaehong Kim,
and Jiwon Kim. Continual learning with deep generative
replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages
2990–2999. Curran Associates, Inc., 2017.

[Vanschoren, 2018] Joaquin Vanschoren. Meta-learning: A
survey. arXiv preprint arXiv:1810.03548, 2018.

[Venkatesan and Er, 2016] Rajasekar Venkatesan and
Meng Joo Er. A novel progressive learning technique for
multi-class classification. Neurocomput., 207(C):310–321,
September 2016.

[Zeno et al., 2018] Chen Zeno, Itay Golan, Elad Hoffer, and
Daniel Soudry. Task agnostic continual learning using
online variational bayes. arXiv preprint arXiv:1803.10123,
2018.

SUPPLEMENTARY MATERIAL
A STAM Notation and Hyperparameters
All STAM notation and parameters are listed in Tables 1 - 5.

B Baseline models
The first baseline is based on the Gradient Episodic Memories
(GEM) model [Lopez-Paz and Ranzato, 2017] for continual
learning. We adapt GEM in the UPL context using the rotation-
prediction self-supervised loss [Gidaris et al., 2018]. We also
adopt the Network-In-Network architecture of [Gidaris et al.,
2018]. The model is trained with the Adam optimizer with a
learning rate of 10−4, batch size of 4 (the four rotations from
each example image), and only one epoch (to be consistent
with the streaming requirement of UPL). GEM requires knowl-
edge of task boundaries: at the end of each phase (time period
with stationary data distribution), the model stores the Mn

most recent examples from the training data – see [Lopez-Paz
and Ranzato, 2017] for more details. We set the size Mn of
the “episodic memories buffer” to the same size with STAM’s
STM, as described in SM-C.

The second baseline is based on the Memory Aware Synapse
(MAS) model [Aljundi et al., 2018] for continual learning. As
in the case of GEM, we adapt MAS in the UPL context using
a rotation-prediction self-supervised loss [Gidaris et al., 2018],
and the Network-In-Network architecture. At the end of each
Phase, MAS calculates the importance of each parameter on
the last task. These values are used in a regularization term
for future tasks so that important parameters are not forgotten.
Importantly, this calculation requires additional data. To make
sure that MAS utilizes the same data with STAM and GEM,
we train MAS on the first 90% of the examples during each
Phase, and then calculate the importance values on the last
10% of the data.

C Memory calculations
The memory requirement of the STAM model can be calcu-
lated as:

M =

Λ∑
l=1

ρ2
l ·∆ +

Λ∑
l=1

ρ2
l · |Cl| (8)

where the first sum term is equivalent to the STM size and the
second sum term is the LTM size.

We compare the LTM size of STAM with the learnable
parameters of the deep learning baselines. STAM’s STM, on
the other hand, is similar GEM’s a temporary buffer, and so
we set the episodic memory storage of GEM to have the same
size with STM.

Learnable Parameters and LTM: For the 3-layer SVHN
architecture with |Cl| ≈ 3000 LTM centroids, the LTM
memory size is ≈ 1860000 pixels. This is equivalent to
≈ 1800 gray-scale SVHN images. In contrast, the Network-
In-Network architecture has 1401540 trainable parameters,
which would also be stored at floating-point precision. Again,
with four bytes per weight, the STAM model would require

1860000
1401540×4 ≈ 33% of both GEM’s and MAS’s memory foot-
print in terms of learnable parameters. Future work can de-
crease the STAM memory requirement further by merging

similar LTM centroids. Figure 9(f) shows that the accuracy
remains almost the same when ∆ = 500 and |Cl| ≈ 1000.
Using these values we get an LTM memory size of 620000,
resulting in 620000

1401540×4 ≈ 11% of GEM’s and MAS’s memory
footprint.

Temporary Storage and STM: We provide GEM with the
same amount of memory as STAM’s STM. We set ∆ = 400
for MNIST, that is equivalent to 82 ∗ 400 + 132 ∗ 400 + 182 ∗
400 = 222800 floating point values. Since the memory in
GEM does not store patches but entire images, we need to
convert this number into images. The size of an MNIST image
is 282 = 784, so the memory for GEM on MNIST contains
222800/784 ≈ 285 images. We divide this number over the
total number of Phases – 5 in the case of MNIST – resulting in
Mt = 285/5 = 57 images per task. Similarly for SVHN and
CIFAR the ∆ values are 2000 and 2500 respectively, resulting
in Mt ≈ 1210/5 = 242, 1515/5 = 303, and 285/23 ≈ 13
images for SVHN, CIFAR-10, and EMNIST respectively.

D Generalization Ability of LTM Centroids
To analyze the quality of the LTM centroids learned by STAM,
we assess the discriminative and generalization capability of
these features. For centroid c and for class k, the term gc(k)
(defined in Equation 4) is the association between centroid
c and class-k, a number between 0 and 1. The closer that
metric is to 1, the better that centroid is in terms of its ability
to generalize across examples of class-k and to discriminate
examples of that class from other classes.

For each STAM centroid, we calculate the maximum value
of gc(k) across all classes. This gives us a distribution of
“max-g” values for the STAM centroids. We compare that dis-
tribution with a null model in which we have the same number
of LTM centroids, but those centroids are randomly chosen
patches from the training dataset. These results are shown Fig-
ure 7. We also compare the two distributions (STAM versus
“random examples”) using the Kolmogorov-Smirnov test. We
observe that the distributions are significantly different and the
STAM centroids have higher max-g values than the random
examples. While there is still room for improvement (par-
ticularly with CIFAR-10), these results confirm that STAM
learns better features than a model that simply remembers
some examples from each class.

E Effect of unlabeled and labeled data on
STAM

We next examine the effects of unlabeled and labeled data
on the STAM architecture (Figure 8). As we vary the length
of the unlabeled data stream (left), we see that STAMs can
actually perform well even with much less unlabeled data. This
suggests that the STAM architecture may be applicable even
where the datastream is much shorter than in the experiments
of this paper. A longer stream would be needed however if
there are many classes and some of them are infrequent. The
accuracy “saturation" observed by increasing the unlabeled
data from 20000 to 60000 can be explained based on the
memory mechanism, which does not update centroids after
they move to LTM. As showed in the ablation studies, this
is necessary to avoid forgetting classes that no longer appear

Table 1: STAM Notation

Symbol Description

x input vector.
n dimensionality of input data
Ml number of patches at layer l (index: m = 1 . . .Ml)
xl,m m’th input patch at layer l
Cl set of centroids at layer l
cl,j centroid j at layer l
d(x, c) distance between an input vector x and a centroid c
ĉ(x) index of nearest centroid for input x
d̃l novelty detection distance threshold at layer l
U(t) the set of classes seen in the unlabeled data stream up to time t
L(t) the set of classes seen in the labeled data up to time t
k index for representing a class
gl,j(k) association between centroid j at layer l and class k.
D̄l average distance between a patch and its nearest neighbor centroid at layer l.
vl,m(k) vote of patch m at layer l for class k
vl(k) vote of layer l for class k
k(x) true class label of input x
k̂(x) inferred class label of input x
Φ(x) embedding vector of input x

Table 2: STAM Hyperparameters
Symbol Default Description

Λ 3 number of layers (index: l = 1 . . .Λ)
α 0.1 centroid learning rate
β 0.95 percentile for novelty detection distance threshold
γ 0.15 used in definition of class informative centroids
∆ see below STM capacity
θ 30 number of updates for memory consolidation
ρl see below patch dimension

Table 3: MNIST/EMNIST Architecture

Layer ρl
∆

(inc)
∆

(uni)

1 8 400 2000
2 13 400 2000
3 20 400 2000

Table 4: SVHN Architecture

Layer ρl
∆

(inc)
∆

(uni)

1 10 2000 10000
2 14 2000 10000
3 18 2000 10000

Table 5: CIFAR Architecture

Layer ρl
∆

(inc)
∆

(uni)

1 12 2500 12500
2 18 2500 12500
3 22 2500 12500

in the stream. The effect of varying the number of labeled
examples per class (right) is much more pronounced. We see
that the STAM architecture can perform well above chance
even in the extreme case of only a single (or small handful of)
labeled examples per class.

F STAM Hyperparameter Sweeps
We examine the effects of STAM hyperparameters in Figure
9. (a) As we decrease the rate of α, we see a degradation

in performance. This is likely due to the static nature of the
LTM centroids - with low α values, the LTM centroids will
primarily represent the patch they were intialized as. (b) As
we vary the rates of γ, there is little difference in our final
classification rates. This suggests that the maximum gl,j(k)
values are quite high, which may not be the case in other
datasets besides SVHN. (c) We observe that STAM is robust
to changes in Θ. (d,e) The STM size ∆ has a major effect
on the number of learned LTM centroids and on classification

Figure 7: Comparison between the distribution of max-g values with STAM and random patches extracted from the training data. Note that
the number of labeled examples is 10 per class (p.c.) for MNIST and EMNIST and 100 per class for SVHN and CIFAR-10.

Figure 8: The effect of varying the amount of unlabeled data in the entire stream (left) and labeled data per class (right). The number of
labeled examples is 100 per class (p.c.).

accuracy. (e) The accuracy in phase-5 for different numbers
of layer-3 LTM centroids (and correspnding ∆ values). The
accuracy shows diminishing returns after we have about 1000
LTM centroids at layer-3. (g,h) As β increases the number
of LTM centroids increases (due to a lower rate of novelty
detection); if β ≥ 0.9 the classification accuracy is about the
same.

G Uniform UPL
In order to examine if the STAM architecture can learn all
classes simultaneously, but without knowing how many classes
exist, we also evaluate the STAM architecture in a uniform
UPL scenario (Figure 10). Note that LTM centroids converge
to a constant value, at least at the top layer, Each class is
recognized at a different level of accuracy, depending on the

similarity between that class and others.

H Image preprocessing
Given that each STAM operates on individual image patches,
we perform patch normalization rather than image normaliza-
tion. We chose a normalization operation that helps to identify
similar patterns despite variations in the brightness and con-
trast: every patch is transformed to zero-mean, unit variance
before clustering. At least for the datasets we consider in this
paper, grayscale images result in higher classification accuracy
than color.

We have also experimented with ZCA whitening and Sobel
filtering. ZCA whitening did not work well because it requires
estimating a transformation from an entire image dataset (and
so it is not compatible with the online nature of the UPL

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Hyperparameter sweeps for α, γ, θ, β, and ∆. The number of labeled examples is 100 per class (p.c.).

problem). Sobel filtering did not work well because STAM
clustering works better with filled shapes rather than the fine
edges produced by Sobel filters.

Figure 10: Uniform UPL evaluation for MNIST (row-1) and SVHN (row-2). Per-class/average classification accuracy is given at the left; the
number of LTM centroids over time is given at the center; the fraction of CIN centroids over time is given at the right. Note that the number of
labeled examples is 10 per class (p.c.) for MNIST and 100 per class for SVHN and CIFAR-10.

	1 Introduction
	2 STAM Architecture
	3 Clustering using STAM
	4 Classification using STAM
	5 Evaluation
	6 A closer look at Incremental UPL
	7 Related Work
	8 Discussion
	A STAM Notation and Hyperparameters
	B Baseline models
	C Memory calculations
	D Generalization Ability of LTM Centroids
	E Effect of unlabeled and labeled data on STAM
	F STAM Hyperparameter Sweeps
	G Uniform UPL
	H Image preprocessing

