
Improving Model-based Genetic Programming
for Symbolic Regression of Small Expressions

M. Virgolin marco.virgolin@cwi.nl
Life Science and Health group, Centrum Wiskunde & Informatica, Amsterdam, 1098
XG, the Netherlands.

T. Alderliesten t.alderliesten@lumc.nl
Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam,
Amsterdam, 1105 AZ, the Netherlands.
Department of Radiation Oncology, Leiden University Medical Center, Leiden, 2333
ZA, the Netherlands.

C. Witteveen c.witteveen@tudelft.nl
Algorithmics Group, Delft University of Technology, Delft, 2628 XE, the Netherlands.

P. A. N. Bosman peter.bosman@cwi.nl
Life Science and Health group, Centrum Wiskunde & Informatica, Amsterdam, 1098
XG, the Netherlands.
Algorithmics Group, Delft University of Technology, Delft, 2628 XE, the Netherlands.

Abstract
The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based
EA framework that has been shown to perform well in several domains, including Ge-
netic Programming (GP). Differently from traditional EAs where variation acts blindly,
GOMEA learns a model of interdependencies within the genotype, i.e., the linkage,
to estimate what patterns to propagate. In this article, we study the role of Linkage
Learning (LL) performed by GOMEA in Symbolic Regression (SR). We show that the
non-uniformity in the distribution of the genotype in GP populations negatively biases
LL, and propose a method to correct for this. We also propose approaches to improve
LL when ephemeral random constants are used. Furthermore, we adapt a scheme of
interleaving runs to alleviate the burden of tuning the population size, a crucial pa-
rameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a strict
limitation on solution size, to enable interpretability. We find that the new LL method
outperforms the standard one, and that GOMEA outperforms both traditional and se-
mantic GP. We also find that the small solutions evolved by GOMEA are competitive
with tuned decision trees, making GOMEA a promising new approach to SR.

Keywords
Genetic programming, symbolic regression, linkage, GOMEA, machine learning, in-
terpretability

1 Introduction

Symbolic Regression (SR) is the task of finding a function that explains hidden rela-
tionships in data, without prior knowledge on the form of such function. Genetic Pro-
gramming (GP) (Koza, 1992) is particularly suited for SR, as it can generate solutions
of arbitrary form using basic functional components.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

ar
X

iv
:1

90
4.

02
05

0v
4

 [
cs

.N
E

]
 5

 M
ar

 2
02

1

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Much work has been done in GP for SR, proposing novel algorithms (Krawiec,
2015; Zhong et al., 2018; De Melo, 2014), hybrids (Žegklitz and Pošı́k, 2017; Icke and
Bongard, 2013), and other forms of enhancement (Keijzer, 2003; Chen et al., 2015). What
is recently receiving a lot of attention is the use of so-called semantic-aware operators,
which enhance the variation process of GP by considering intermediate solution out-
puts (Pawlak et al., 2015; Chen et al., 2018; Moraglio et al., 2012). The use of semantic-
aware operators has proven to enable the discovery of very accurate solutions, but
often at the cost of complexity: solution size can range from hundreds to billions of
components (Pawlak et al., 2015; Martins et al., 2018). These solutions are consequently
impossible to interpret, a fact that complicates or even prohibits the use of GP in many
real-world applications because many practitioners desire to understand what a solu-
tion means before trusting its use (Lipton, 2018; Guidotti et al., 2018). The use of GP to
discover uninterpretable solutions can even be considered to be questionable in many
domains, as many alternative machine learning algorithms exist that can produce com-
petitive solutions much faster (Orzechowski et al., 2018).

We therefore focus on SR when GP is explicitly constrained to generate small-sized
solutions, i.e. mathematical expressions consisting of a small number of basic func-
tional components, to increase the level of interpretability. With size limitation, finding
accurate solutions is particularly hard. It is not without reason that many effective
algorithms work instead by growing solution size, e.g., by iteratively stacking compo-
nents (Moraglio et al., 2012; Chen and Guestrin, 2016).

A recurring hypothesis in GP literature is that the evolutionary search can be made
effective if salient patterns, occurring in the representation of solutions (i.e., the geno-
type), are identified and preserved during variation (Poli et al., 2008). It is worth study-
ing if this holds for SR, to find accurate small solutions.

The hypothesis that salient patterns in the genotype can be found and exploited is
what motivates the design of Model-Based Evolutionary Algorithms (MBEAs). Among
them, the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is recent EA
that has proven to perform competitively in different domains: discrete optimiza-
tion (Thierens and Bosman, 2011; Luong et al., 2014), real-valued optimization (Bouter
et al., 2017), but also grammatical evolution (Medvet et al., 2018a), and, the focus of
this article, GP (Virgolin et al., 2017, 2018). GOMEA embodies within each generation
a model-learning phase, where linkage, i.e. the inter-dependency within parts of the
genotype, is modeled. During variation, the linkage information is used to propagate
genotype patterns and avoid their disruption.

The aim of this article is to understand the role of linkage learning when dealing
with SR, and consequently improve the GP variant of GOMEA (GP-GOMEA), to find
small and accurate SR solutions for realistic problems. We present three main contri-
butions. First, we propose an improved linkage learning approach, that, differently
from the original one, is unbiased with respect to the way the population is initialized.
Second, we analyze how linkage learning is influenced by the presence of many differ-
ent constant values, sampled by Ephemeral Random Constant (ERC) nodes (Poli et al.,
2008), and explore strategies to handle them. Third, we introduce improvements upon
GP-GOMEA’s Interleaved Multistart Scheme (IMS), a scheme of multiple evolutionary
runs of increasing evolutionary budget that executes them in an interleaved fashion, to
better deal with SR and learning tasks in general.

The structure of this article is as follows. In Section 2 we briefly discuss related
work on MBEAs for GP. In Section 3, we explain how GP-GOMEA and linkage learn-
ing work. Before proceeding with the description of the new contributions and ex-

2 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

periments, Section 4 shows general parameter settings and datasets that will be used
along the article. Next, we proceed by interleaving our findings on current limitations
of GP-GOMEA followed by proposals to overcome such limitations, and respective ex-
periments. In other words, we describe how we improve linkage learning one step
at a time. In particular, Section 5 presents current limitations of linkage learning, and
describes how we improve linkage learning. Strategies to learn linkage efficiently and
effectively when ERCs are used are described in Section 6. We propose a new IMS for
SR in Section 7, and use it in Section 8 to benchmark GP-GOMEA with competing al-
gorithms: traditional GP, GP using a state-of-the-art semantic-aware operator, and the
very popular decision tree for regression (Breiman et al., 1984). Lastly, we discuss our
findings and draw conclusions in Section 9.

2 Related work

We differentiate today’s MBEAs into two classes: Estimation-of-Distribution Algo-
rithms (EDA), and Linkage-based Mixing EAs (LMEA). EDAs work by iteratively up-
dating a probabilistic model of good solutions, and sampling new solutions from that
model. LMEAs attempt to capture linkage, i.e., inter-dependencies between parts of the
genotype, and proceed by variating solutions with mechanisms to avoid the disruption
of patterns with strong linkage.

Several EDAs for GP have been proposed so far. (Hauschild and Pelikan, 2011) and
(Kim et al., 2014) are relatively recent surveys on the matter. Two categories of EDAs for
GP have mostly emerged in the years: one where the shape of solutions adheres to some
template to be able to estimate probabilities of what functions and terminals appear in
what locations (called prototype tree for tree-based GP) (Salustowicz and Schmidhuber,
1997; Sastry and Goldberg, 2003; Yanai and Iba, 2003; Hemberg et al., 2012), and one
where the probabilistic model is used to sample grammars of rules which, in turn,
determine how solutions are generated (Shan et al., 2004; Bosman and De Jong, 2004;
Wong et al., 2014; Sotto and de Melo, 2017). Research on EDAs for GP appears to be
limited. The review of (Kim et al., 2014) admits, quoting, that “Unfortunately, the latter
research [EDAs for GP] has been sporadically carried out, and reported in several different
research streams, limiting substantial communication and discussion”.

Concerning symbolic regression, we crucially found no works where it is at-
tempted on realistic datasets (we searched among the work reported by the surveys
and other recent work cited here). Many contributions on EDAs for GP have been val-
idated on hard problems of artificial nature instead, such as Royal Tree and Deceptive
Max (Hasegawa and Iba, 2009). Some real-world problems have been explored, but
concerning only a limited number of variables (Tanev, 2007; Li et al., 2010). When con-
sidering symbolic regression, at most synthetic functions or small physical equations
with only few (≤ 5) variables have been considered (e.g., by (Ratle and Sebag, 2001;
Sotto and de Melo, 2017)).

The study of LMEAs has emerged the first decade of the millennium in the field
of binary optimization, where it remains mostly explored to date (Chen et al., 2007;
Thierens and Bosman, 2013; Goldman and Punch, 2014; Hsu and Yu, 2015). Concerning
GP, GOMEA is the first state-of-the-art LMEA ever brought to GP (Virgolin et al., 2017).

GP-GOMEA was first introduced in (Virgolin et al., 2017), to tackle classic yet
artificial benchmark problems of GP (including some of the ones mentioned before),
where the optimum is known. The IMS, largely inspired on the work by (Harik and
Lobo, 1999), was also proposed, to relieve the user from the need of tuning the popu-
lation size. Population sizing is particularly crucial for MBEAs in general: the popula-

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 3

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

tion needs to be big enough for probability or linkage models to be reliable, yet small
enough to allow efficient search (Harik et al., 1999).

GP-GOMEA has also seen a first adaptation to SR, to find small and accurate so-
lutions for a clinical problem where interpretability is important (Virgolin et al., 2018).
There, GP-GOMEA was engineered for the particular problem, and no analysis of what
linkage learning brings to SR was performed. Also, instead of using the IMS, a fixed
population size was used. This is because the IMS was originally designed by (Virgolin
et al., 2017) to enable benchmark problems to be solved to optimality. No concern on
generalization of solutions to unseen test cases was incorporated.

As to combining LMEAs with grammatical evolution, (Medvet et al., 2018a) also
employed GOMEA, to attempt to learn and exploit linkage when dealing with different
types of pre-defined grammars. In that work, only one synthetic function was consid-
ered for symbolic regression, among other four benchmark problems.

There is a need of assessing whether MBEAs can bring an advantage to real-world
symbolic regression problems. This work attempts to do this, by exploring possible
limitations of GP-GOMEA and ways to overcome them, and validating experiments
upon realistic datasets with dozens of features and thousands of observations.

3 Gene-pool Optimal Mixing Evolutionary Algorithm for GP

Three main concepts are at the base of (GP-)GOMEA: solution representation (geno-
type), linkage learning, and linkage-based variation. These components are arranged
in a common outline that encompasses all algorithms of the GOMEA family.

Algorithm 1 shows the outline of GOMEA. As most EAs, GOMEA starts by ini-
tializing a population P , given the desired population size npop. The generational loop
is then started and continues until a termination criterion is met, e.g., a limit on the
number of generations or evaluations, or a maximum time. Lines 4 to 8 represent a
generation. First, the linkage model is learned, which is called Family of Subsets (FOS)
(explained in Sec. 3.2). Second, each solution Pi is used to generate an offspring solu-
tionOi by the variation operator Gene-pool Optimal Mixing (GOM). Last, the offspring
replace the parent population. Note the lack of a separate selection operator. This is be-
cause GOM performs variation and selection at the same time (see Sec 3.3).

For GP-GOMEA, an extra parameter is needed, the tree height (or, equivalently,
tree depth) h. This is necessary to determine the representation of solutions, as de-
scribed in the following Section 3.1.

Algorithm 1 Outline of GOMEA
1 procedure RUNGOMEA(npop)
2 P ←initializePopulation(npop)
3 while terminationCriteriaNotMet() do
4 F ←learnFOS(P)
5 O ← ∅
6 for i ∈ {1, . . . , npop} do
7 Oi ←GOM(Pi,P, F)
8 P ← O

3.1 Solution representation in GP-GOMEA

GP-GOMEA uses a modification of the tree-based representation (Koza, 1992) which is
similar to the one used by (Salustowicz and Schmidhuber, 1997). While typical GP trees

4 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

×

+ exp

x exp x /

x z y x z z x x

Figure 1: Example of tree for GP-GOMEA with h = 3 and r = 2. While 15 nodes are
present, the nodes that influence the output are only 7: the gray nodes are introns.

can have any shape, GP-GOMEA uses a fixed template, that allows linkage learning
and linkage-based variation to be performed in a similar fashion as for other, fixed
string-length versions of GOMEA.

All solutions are generated as perfect r-ary trees of height h, i.e., such that all non-
leaf nodes have exactly r children, and leaves are all at maximum depth h, with r
being the maximum number of inputs accepted by the functions (arity) provided in the
function set (e.g., for {+,−,×}, r = 2), and h chosen by the user. Note that, for any
node that is not at maximum depth, r child nodes are appended anyway: no matter
if the node is a terminal, or if it is a function requiring less than r inputs (in this case,
the leftmost nodes are used as inputs). Some nodes are thus introns, i.e., they are not
executed to compute the output of the tree. It follows that while trees are syntactically
redundant, they are not necessarily semantically so. All trees of GP-GOMEA have the
same number of nodes, equal to ` =

∑h
i=0 r

i = rh+1−1
r−1 . Figure 1 shows a tree used by

GP-GOMEA.

3.2 Linkage learning

The linkage model used by GOMEA algorithms is called the Family of Subsets (FOS),
and is a set of sets:

F = {F1, . . . , F|F |}, Fi ⊆ {1, . . . , l}.
Each Fi (called FOS subset) contains indices representing locations in the genotype. For
GP-GOMEA, these indices represent node locations. It is sufficient to choose a parsing
order to identify the same node locations in all trees, since trees share the same shape.

In GOMEA, linkage learning corresponds to building a FOS. Different types of FOS
exist in literature, however, the one recommended as default is the Linkage Tree (LT), by,
e.g., (Thierens and Bosman, 2013; Virgolin et al., 2017). The LT captures linkage on
hierarchical levels. An LT is learned every generation, from the population. To assess
whether linkage learning plays a key role, i.e. whether it is better than randomly choos-
ing linkage relations, we also consider the Random Tree (RT) (Virgolin et al., 2017).

3.2.1 Linkage Tree
The LT arranges the FOS subsets in a binary tree structure representing hierarchical
levels of linkage strength among genotype locations. The LT is built bottom-up, i.e.,
from the leaves to the root. The bottom level of the LT, i.e., the leaves, assume that all
genotype locations are independent (no linkage), and is realized by instantiating FOS
subsets to singletons, each containing a genotype location i,∀i ∈ {1, . . . , `}.

To build the next levels, mutual information is used as a proxy for linkage strength.
Mutual information is a sensible choice to represent linkage strength because it ex-
presses, considering e.g. the pair (i, j) of genotype locations as random variables, the

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 5

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

amount of information gained on i given observations on j (and vice versa). In this
light, the population can be considered as a set of realizations of the genotype. In partic-
ular, the realizations of each genotype location i are what symbols appear at location i in
the population. In a binary genetic algorithm, symbols are either ‘0’ or ‘1’, while in GP,
symbols correspond to the types of function and terminal nodes, e.g., ‘+’,‘−’,‘x1’,‘x2’.
In other words, random variables can assume as many values as there are possible
symbols in the instruction set1.

Now, the next step is to compute the mutual information between each and every
pair of locations in the genotype of the entire population. Mutual information between
a pair of locations can be computed after measuring entropy for single locations H(i),
and the joint entropy for locations pairs, H(i, j) (this aspect will be used in Sec. 5):

MI(i, j) = H(i) + H(j)−H(i, j),where

H(i) = −
∑

Pi logPi, H(i, j) = −
∑

Pij logPij ,
(1)

and Pi (Pij) is the (joint) probability distribution over the symbols at location(s) i (i, j),
which can be estimated by counting occurrences of symbol types in the population
genotype. This requires to loop over the entire population, and to use nested loops
over location pairs i ∈ {1, . . . , `} and j ∈ {i, . . . , `}, leading to a time complexity of
O(npop`2). The contribution to the entropy of null probability cases (−0 log 0) is set to 0.

Given mutual information between location pairs, we approximate linkage among
higher orders of locations using the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) (Gronau and Moran, 2007). To ease understanding, we now provide
an explanation of how UPGMA is used to build the rest of the LT that is primarily meant
to be intuitive. In practice, we do not use an implementation that strictly adheres to the
following explanation, but we use a more advanced algorithm that achieves the same
result while having lower time complexity, called the Reciprocal Nearest Neighbor al-
gorithm (RNN). For details on RNN, see (Gronau and Moran, 2007).

UPGMA operates in a recursive, hierarchical fashion. Consider each singleton con-
taining a different genotype location i as a cluster Ci, and the mutual information be-
tween location pairs as a measure of similarity S between clusters, i.e., S(Ci, Cj) :=
MI(i, j). Let C be the collection of clusters to be parsed, initially containing all location
singletons. Every iteration, firstly a new cluster Ci? ∪Cj? is formed by joining the clus-
ters Ci? , Cj? that have maximal similarity. Secondly, Ci? and Cj? are removed from C,
and Ci? ∪Cj? is inserted in C. When this happens, a FOS subset is added in the LT that
corresponds to (contains the same locations of) Ci? ∪ Cj? , as parent of the subsets that
represent Ci? and Cj? . Thirdly, the similarity between Ci? ∪Cj? and every other cluster
Ck is computed, with:

S(Ck, Ci? ∪ Cj?) =
|Ci? |

|Ci? |+ |Cj? |
S(Ck, Ci) +

|Cj? |
|Ci? |+ |Cj? |

S(Ck, Cj).

Iterations are repeated until no more merging is possible, i.e., C = ∅. This necessarily
happens in 2`− 1 iterations. Note that the last iterations sets the root of the LT, i.e., the
subset that contains all genotype locations: {1, . . . , `}. Note also that the structure of
the LT is related to the structure of the tree-like genotype of GP solutions only in the
sense that the LT contains 2` − 1 FOS subsets and the genotype has length `, but it is
not a one-to-one match to the structure of the genotype.

1More symbols can be possible than the number of instructions in case ERCs are used, since instantiating
an ERC in a solution results in a constant being randomly sampled.

6 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

×

+ exp

x x y x

Oi 1

2 5

3 4 6 7

+

x ×

y x x x

D 1

2 5

3 4 6 7

Fj = {3, 5}

Figure 2: Example of variation step performed by GOM for trees with h = 2. Squares
on top of each node indicate the node location according to pre-order traversal (depth-
first). GOM replaces the nodes of Oi of which the location is specified by Fj , with the
homologous nodes of D (blue contour).

With the efficient implementation of UPGMA by RNN, the time complexity to
build the LT remains bounded by O(npop`2).

3.2.2 Random Tree

While linkage learning assumes an inherent structural inter-dependency to be present
within the genotype that can be captured in an LT, such hypothesis may not be true.
In such a scenario, using the LT might be not better than building a similar FOS in a
completely random fashion. The RT is therefore considered to test this. The RT shares
the same tree-like structure of the LT, but is built randomly rather than using mutual
information (taking O(`)). We use the RT as an alternative FOS for GP-GOMEA.

3.3 Gene-pool Optimal Mixing

Once the FOS is learned, the variation operator GOM generates the offspring popula-
tion. GOM varies a given solution Pi in iterative steps, by overriding the nodes at the
locations specified by each Fj in the FOS, with the nodes in the same locations taken
from random donors in the population. Selection is performed within GOM in a hill-
climbing fashion, i.e., variation attempts that result in worse fitness are undone.

The pseudo-code presented in Algorithm 2 describes GOM in detail. To begin,
a backup Bi of the parent solution Pi is made, including its fitness, and similarly an
offspring solution Oi = Pi is created. Next, the FOS F is shuffled randomly: this is to
provide different combinations of variation steps along the run and prevent bias. For
each set of node locations Fj , a random donor D is then picked from the population,
and Oi is changed by replacing the nodes specified by Fj with the homologous ones
from D. This process is exemplified in Fig. 2. It is then assessed whether at least one
(syntactic) non-intron node of the tree has been changed by variation (indicated by
6=? in line 7). When that is not the case, Oi will have the same behavior as Bi, thus
the fitness is necessarily identical. Otherwise, the new fitness fOi

is computed: if not
worse than the previous one, the change is kept, and the backup is updated, otherwise
the change is reversed.

Note that if a change results in fOi
= fBi

, the change is kept. This allows random
walks in the neutral fitness landscape (Ebner et al., 2001; Sadowski et al., 2013). Note
also that differently from traditional subtree crossover and subtree mutation (Koza,
1992), GOM can change unconnected nodes at the same time, and keeps tree height
limited to the initially specified parameter h. Finally, GOM does not consider any FOS
subset that contains all node locations, i.e., Fj = {1, . . . , `}, as using such subset would
mean to entirely replace Oi with D.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 7

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Algorithm 2 Pseudocode of GOM
1 procedure GOM(Pi,P, F)
2 Bi ← Pi; fBi ← fPi ; Oi ← Pi

3 F ←randomShuffle(F)
4 for Fj ∈ F do
5 D ←pickRandomDonor(P)
6 Oi ←overrideNodes(Oi,D, Fj)
7 if Oi 6=? Bi then
8 fOi ←computeFitness(Oi)
9 if fOi

≤ fBi
then #Assumption: minimization of f

10 Bi ← Oi; fBi
← fOi

11 else
12 Oi ← Bi; fOi

← fBi

13 else
14 Bi ← Oi

4 General experimental settings

We now describe the general parameters that will be used in this article. Table 1 reports
the parameter settings which are typically used in the following experiments, unless
specified otherwise. The notation x represents the matrix of feature values. We use
the Analytic Quotient (AQ) (Ni et al., 2013) instead of protected division. This is be-
cause the AQ is continuous in 0 for the second operand: x1 ÷AQ x2 := x1/

√
1 + x2

2.
Albeit continuity is not needed by many GP variation operators (including GOM), it
is useful at prediction time: (Ni et al., 2013) show that using the AQ helps generaliza-
tion (whereas using protected division does not). However, the AQ may be considered
relatively hard to interpret.

As mentioned in the introduction, we focus on the evolution of solutions that are
constrained to be small, to enable interpretability. We choose h = 4 because this results
in relatively balanced trees with up to 31 nodes (since r = 2). We consider this size
limitation a critical value: for the given function set, we found solutions to be already
borderline interpretable for us (this is discussed further in Sec. 9). Larger values for h
would therefore play against the aim of this study. When benchmarking GP-GOMEA
in Sec. 8, we also consider h = 3 and h = 5 for completeness.

We consider 10 real-world benchmark datasets from literature (Martins et al., 2018)
that can be found on the UCI repository2 (Asuncion and Newman, 2007) and other
sources3. The characteristics of the datasets are summarized in Table 2.

We use the linearly-scaled Mean Squared Error (MSE) to measure solution fit-
ness (Keijzer, 2003), as it can be particularly beneficial when evolving small solutions.
This means a fast (cost O(n) with n number of dataset examples) linear regression is
applied between the target y and the solution prediction ỹ prior to computing the MSE.
We present our results in terms of variance-Normalized MSE (NMSE), i.e. 100×MSE(y,ỹ)

var(y) ,
so that results from different datasets are on a similar scale (the 100× factor is added
for readability).

To assess statistical significance when comparing the results of multiple executions
of two algorithms (or configurations) on a certain dataset, we use the Wilcoxon signed-

2https://archive.ics.uci.edu/ml/index.php
3https://goo.gl/tn6Zxv

8 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://archive.ics.uci.edu/ml/index.php
https://goo.gl/tn6Zxv
https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Table 1: General parameter settings for the experiments
Parameter Setting

Function set {+,−,×,÷AQ}
Terminal set x ∪ {ERC}
ERC bounds [minx,maxx]
Initialization for GP-GOMEA Half-and-Half as in (Virgolin et al., 2018)
Tree height h 4
Train-validation-test split 50%–25%–25%
Experiment repetitions 30

Table 2: Regression datasets used in this work
Name Abbreviation # Features # Examples

Airfoil Air 5 1503
Boston housing Bos 13 506
Concrete compres. str. Con 8 1030
Dow chemical Dow 57 1066
Energy cooling EnC 8 768
Energy heating EnH 8 768
Tower Tow 25 4999
Wine red WiR 11 1599
Wine white WiW 11 4898
Yacht hydrodynamics Yac 6 308

rank test (Demšar, 2006). This test is set up to compare competing algorithms based
on the same prior conditions. In particular, we employ pairs of executions where the
dataset is split into identical training, validation, and test sets for both algorithms being
tested. This is because the particular split of data determines the fitness function (based
on the training set), and the achievable generalization error (for the validation and
test sets). We consider a difference to be significant if a smaller p-value than 0.05/β
is found, with β the Bonferroni correction coefficient, used to prevent false positives.
If more than two algorithms need to be compared, we first perform a Friedman test
on mean performance over all datasets (Demšar, 2006). We use the symbols N, Nto
respectively indicate significant superiority, and inferiority (absence of a symbol means
no significant difference). The result next to the symbol N (N) signifies a result being
better (worse) than the result obtained by the algorithm that has the same color of
the symbol. Algorithms and/or configurations are color coded in each table reporting
results (colors are color-blind safe).

5 Improving linkage learning for GP

In previous work on GP-GOMEA, learning the LT was performed the same way it is
done for any discrete GOMEA implementation, i.e. by computing the mutual infor-
mation between pairs of locations (i, j) in the genotype (Eq. 1) (Virgolin et al., 2017).
However, the distribution of node types is typically not uniform when a GP popula-
tion is initialized (e.g., function nodes never appear as leaves). In fact, this depends on
the cardinality of the function and terminal sets, on the arity of the functions, and on
the population initialization method (e.g., Full, Grow, Half-and-Half, Ramped Half-and-
Half (Luke and Panait, 2001)). Note that it does not depend on the particular dataset in
consideration (except in that the number of features determines the size of the terminal
set). The lack of uniformity in the distribution leads to the emergence of mutual infor-
mation between particular parts of the genotype. Crucially, this mutual information is
natural to the solution representation, the sets of symbols and the initialization process.

If mutual information is used to represent linkage, then linkage will already be
observed at initialization. However, it is reasonable to expect no linkage to be present

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 9

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

MI, npop = 106

Figure 3: Mutual information matrix between pairs of locations in the genotype (x and y
labels). Darker blue represents higher values. The matrix is computed for an initialized
population of size 106. The values suggest the existence of linkage even though no
evolution has taken place yet.

in an initialized population, as evolution did not take place yet. Figure 3 shows the
mutual information matrix between pairs of node locations in an initial population of
1, 000, 000 solutions with maximum height h = 2, using Half-and-Half, a function set of
size 4 with maximum number of inputs r = 2, and a terminal set of size 6 (no ERCs are
used). Each tree contains exactly 7 nodes. We index node locations with pre-order tree
traversal, i.e., 1 is the root, 2 its first child, 5 its second child, 3, 4 are (leaves) children of
2, and 6, 7 are (leaves) children of 5. Nodes at locations 2 and 5 can be functions only
if a function is sampled at node 1. It can be seen that the mutual information matrix
of location pairs (correctly) captures the non-uniformity in the initial distribution (i.e.,
larger mutual information values are present between non-leaf nodes). Using mutual
information directly as a proxy for linkage may be undesirable.

5.1 Biasing mutual information to represent linkage

We propose to overcome the aforementioned problem by measuring linkage with a
modified version of the mutual information, such that no linkage is measured at ini-
tialization. Our hypothesis is that, if we apply such a correction so that no patterns
are identified at initialization, the truly salient patterns will have a bigger chance of
emerging during evolution, and better results will be achieved.

Let us consider the scenario where, at initialization, symbols are uniformly dis-
tributed. For example, this typically happens in binary genetic algorithms. The mutual
information between pairs of genotype locations that is expected at initialization, i.e.,
at generation g = 1 before variation and selection, will then correspond to the identity
matrix: MIg|g=1 = I (assuming binary symbols and mutual information in bits as well
as a sufficiently large population size). This mutual information matrix is suitable to
represent linkage as no linkage should be present at initialization.

We propose to adopt a biased mutual information matrix MIb(i, j) to represent the
linkage between a pair of genotype locations (i, j), that has the property:

MIgb(i, j)|g=1 = I,

no matter the actual distribution of the initial population.
To this end, we use Eq. 1, i.e., we manipulate the entropy terms, to represent maxi-

mal randomness to be present at initialization for each genotype location. In particular,
we propose to use biased entropy metrics such that Hg

b(i)|g=1 = 1 and Hg
b(i, j)|g=1 = 2

(for i 6= j) , since

10 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

MIgb(i, j)|g=1 = (Hg
b(i) + Hg

b(j)−Hg
b(i, j)) |g=1

= 1 + 1− 2 = 0 (for i 6= j, else 1).

We propose to use linear biasing coefficients βi (βi,j) to have the general biased en-
tropy for any generation g as Hg

b(i) = βiH(i) and Hg
b(i, j) = βi,jH(i, j), with βi =

(Hg
b(i)|g=1)

−1 and βi,j = 2 (Hg(i, j)|g=1)
−1 to enforce maximal randomness at initial-

ization.
To determine the beta coefficients exactly means to know the true distribution in-

ferred by the sampling process used to sample the initial population, and thus the true
initial entropy for each genotype location. However, this is generally not trivial to de-
termine for GP, since a number of factors need to be considered. E.g., if the Ramped
Half-and-Half initialization method is used, what symbol is sampled at a location de-
pends on the chance to use Full or Grow, the chance to pick the function or the terminal
set based on the depth, the size of these sets, and possibly other problem-specific fac-
tors. Hence, we propose to simply approximate the β coefficients by using the Hg(i)|g=1

measured on the initial population, assuming the population to be large enough.
Summing up, the pairwise linkage estimation we propose to use at generation g,

for a pair of locations (i, j), will be:

MIg
b̃
(i, j) = βiHg(i) + βjHg(j)− βi,jHg(i, j). (2)

The tilde in b̃ is to remark that this is an approximation.

5.2 Estimation of linkage by MIb̃
As a preliminary step, we observe what linkage values are obtained between pairs
of genotype locations by using MIb̃. For conciseness, in the following we denote
MIg

b̃
(i, j)|g=Γ with MIΓ

b̃
(i, j). We show the MI matrix computed at the second gener-

ation of a GP-GOMEA run on the dataset Yac (MI1
b̃
= I by construction). We do this for

two population sizes, npop = 10 and npop = 106. We expect that, the bigger npop is, the
closer MI2

b̃
is to I .

We use the parameters of Table 1, a terminal set of size 6 (the features of Yac, no
ERC) and h = 2, i.e. ` = 7 nodes per tree. Figure 4 shows the biased mutual information
matrix between location pairs, for the two population sizes. It can be seen that the
values can be lower than 0 or bigger than 1. However, while this is particularly marked
for npop = 10, with minimum of -0.787 and maximum of 1.032, it becomes less evident
for npop = 106, with minimum of -0.018 and maximum of 0.989. The fact that MI2

b̃
≈ I

for npop = 106 is because, with such a large population size, considerable diversity is
still present in the second generation.

5.3 Experiment: LT–MIb̃ vs LT–MI vs RT

We now test the use of MIb̃ over the standard MI for GP-GOMEA with the LT. We
denote the two configurations with LT–MIb̃ and LT–MI. We also consider the RT to see
if mutual information drives variation better than random information.

We set the population size to 2000 as a compromise between having enough sam-
ples for linkage to be learned, and meeting typical literature values, which range from
hundreds to a few thousands. We use the function set of Table 1, and a tree height
h = 4 (thus ` = 31). We set a limit of 20 generations, which corresponds to approx-
imately 1200 generations of traditional GP, as each solution is evaluated up to 2` − 2
times (size of the LT minus its root and non-meaningful changes, see Sec. 3.2 and 3.3).

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 11

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

MI2
b̃
, npop = 101 MI2

b̃
, npop = 106

Figure 4: Mutual information matrices at the second generation using our biasing
method to better represent linkage, with population size of 10 (left), and of 106 (right)
for a particular run of GP-GOMEA. The rightmost matrix is closest to the identity I .

Table 3: Median NMSE of 30 runs for GP-GOMEA with LT–MIb̃, LT–MI, and RT.
Training N N Test

Dataset LT–MIb̃ LT–MI RT LT–MIb̃ LT–MI RT

Air N29.9 NNN31.2 NNN32.7 NN N31.8 NNN34.8 NNN34.0 NN
Bos N15.4 NNN15.4 NNN17.5 NN N24.0 NNN23.0 NNN22.5 NN
Con N17.5 NNN18.5 NNN19.0 NN N18.7 NNN19.6 NNN20.1 NN

Dow N20.9 NNN20.3 NNN24.0 NN N22.6 NNN21.1 NNN26.0 NN

EnC N8.42 NNN9.68 NNN9.09 NN N9.18 NNN10.7 NNN10.3 NN
EnH N6.24 NNN6.44 NNN6.40 NN N6.50 NNN7.10 NNN6.70 NN
Tow N12.5 NNN12.5 NNN13.1 NN N13.0 NNN12.8 NNN13.2 NN

WiR N60.3 NNN60.9 NNN61.2 NN N62.5 NNN63.0 NNN63.1 NN
WiW N68.1 NNN68.4 NNN68.7 NN N69.1 NNN69.7 NNN69.5 NN
Yac N0.34 NNN0.37 NNN0.36 NN N0.58 NNN0.62 NNN0.62 NN

5.4 Results: LT–MIb̃ vs LT–MI vs RT

The training and test NMSE performances are reported in Table 3. The Friedman test
results in significant differences along training and test performance. GP-GOMEA with
LT–MIb̃ is clearly the best performing algorithm, with significantly lower NMSE com-
pared to LT–MI on 8/10 datasets when training, and 7/10 at test time. It is always
better than using the RT when training, and in 9/10 cases when testing. The LT–MI is
comparable with the RT for these problems.

The result of this experiment is that the use of the new MIb̃ to build the LT simply
enables GP-GOMEA to perform a more competent variation than the use of MI. Also,
using the LT this way leads to better results than when making random changes with
the RT. Figure 5 shows the evolution of the training NMSE for the dataset Yac. It can
be seen that the LT–MIb̃ allows to quickly reach smaller errors than the other two FOS
types. We observed similar training patterns for the other datasets (not shown here).

In the remainder, when we write “LT”, we refer to LT–MIb̃.

5.5 Experiment: assessing propagation of node patterns

The previous experiment showed that using linkage-driven variation (LT) can be favor-
able compared to random variation (RT). This seems to confirm the hypothesis that, in
certain SR problems, salient underlying patterns of nodes exist in the genotype that can
be exploited. Another aspect that can be considered w.r.t. such hypothesis is how final
solutions look: if linkage learning identifies specific node patterns, it can be expected
that their propagation will lead to the discovery of similar solutions over different runs.

12 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Tr
ai

ni
ng

N
M

SE

Generations

Figure 5: Median fitness of the best solution of 30 runs on Yac, for LT–MIb̃, LT–MI, and
RT (10th and 90th percentiles in shaded area).

Table 4: Percentage of best solutions with duplicates found by GP-GOMEA with LT
and RT for different splits of Yac.

npop = 2000 N npop = 4000
Split LT RT LT RT

1 36 18 44 15
2 42 12 49 21
3 40 7 43 8
4 43 8 45 25
5 36 16 49 16

Avg. 39 12 46 17

Therefore, we now want to assess whether the use of the LT has a bigger chance to
lead to the discovery of a particular best-of-run solution, compared to the use of the RT.
We use the same parameter setting as described in Sec. 5.3, but perform 100 repetitions.
While each run uses a different random seed (e.g., for population initialization), we fix
the dataset split, as changing the training set results in changing the fitness function.
We repeat the 100 runs on 5 random dataset splits, on the smallest dataset Yac. Together
with npop = 2000 as in the previous experiment, we also consider a doubled npop =
4000.

Table 4 reports the number of best found solutions that have at least one duplicate,
i.e. their genotype is semantically equivalent (e.g., x1 + x2 = x2 + x1), along different
runs for 5 random splits of Yac (semantic equivalence was determined by automatic
tests4 followed by manual inspection). It can be seen that the LT finds more dupli-
cate solutions than the RT, by a margin of around 30% (difference between averages).
Figure 6 shows the distribution of solutions found for the second dataset split with
npop = 4000, i.e. where both the LT and the RT found a large number of duplicates.
The LT has a marked chance of leading to the discovery of a particular solution, up to
one-fourth of the times. When the RT is used, a same solution is found only up to 6
times out of 100.

This confirms the hypothesis that linkage-based variation can propagate salient
node patterns more than random variation should such patterns exist, enhancing the
likelihood of discovering particular solutions.

4Including the use of symbolic simplification with https://andrewclausen.net/computing/
deriv.html.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 13

https://andrewclausen.net/computing/deriv.html
https://andrewclausen.net/computing/deriv.html
https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

#
D

up
lic

at
es

Solutions Solutions
Figure 6: Distribution of best found solutions for 100 runs by using the LT (left) and the
RT (right) with npop = 4000 on the second dataset split of Yac.

Table 5: Median training NMSE and median test NMSE of 30 runs for GP-GOMEA
with the LT using the three strategies all-const, no-const, bin-const, and with the RT.

Training NMSE N N Test NMSE
Dataset all-const no-const bin-const RT all-const no-const bin-const RT

Air N 27.7 N NNN 28.0 N NNN 27.5 NNNN 31.4 NNN N 28.7 N NNN 29.6 NNNN 27.8 NNNN 32.5 NNN

Bos N 15.2 N NNN 15.3 NNNN 15.0 NNNN 17.6 NNN N 24.2 N NNN 23.2 N NNN 21.8 NNNN 24.2 NN N

Con N 17.2 N NNN 17.2 NNNN 17.0 NNNN 18.5 NNN N 18.5 NNNN 18.7 NNNN 18.8 NNNN 19.8 NNN

Dow N 21.4 N NNN 21.1 NNNN 20.7 NNNN 24.5 NNN N 22.8 NNNN 21.9 NNNN 22.5 N NNN 25.5 NNN

EnC N 5.51 NNNN 5.72 NNNN 5.76 NNNN 6.44 NNN N 6.18 NNNN 6.34 NNNN 6.00 NNNN 6.77 NNN

EnH N 3.00 N NNN 3.14 NNNN 2.80 NNNN 4.10 NNN N 3.28 N NNN 3.33 NNNN 3.11 NNNN 4.67 NNN

Tow N 12.3 N NNN 12.2 NNNN 12.3 NNNN 13.2 NNN N 12.9 NNNN 12.8 NNNN 12.8 NNNN 13.5 NNN

WiR N 60.3 NNNN 60.2 NNNN 60.2 NNNN 61.2 NNN N 63.6 NNNN 62.9 NNNN 62.9 NNNN 63.2 NN N

WiW N 67.6 NNNN 68.1 NNNN 68.0 NNNN 68.5 NNN N 68.9 NNNN 69.0 NNNN 69.4 NNNN 69.9 NNN

Yac N 0.32 NNNN 0.35 NNNN 0.34 NNNN 0.38 NNN N 0.55 NNNN 0.61 N NNN 0.52 NNNN 0.63 NNN

6 Ephemeral random constants & linkage

In many GP problems, and in particular in SR, the use of ERCs can be very benefi-
cial (Poli et al., 2008). An ERC is a terminal which is set to a constant only when instan-
tiated in a solution. In SR, this constant is commonly sampled uniformly at random
from a user-defined interval.

Because every node instance of ERC is a different constant, linkage learning needs
to deal with a large number of different symbols. This can lead to two shortcomings.
First, a very large population size may be needed for salient node patterns to emerge.
Second, data structures used to store the frequencies of symbols grow really big and
become slow (e.g., hash maps).

We explore three strategies to deal with this: (i) all-const: Ignore the shortcom-
ings, and consider all different constants as different symbols during linkage learning;
(ii) no-const: Skip all constants during linkage learning, i.e. set their frequency to zero.
This approximation is reasonable since all constants are unique at initialization, and
the respective frequency is almost zero. However, during evolution some constants
will be propagated while others will be discarded, making this approximation less and
less accurate over time; (iii) bin-const: Perform on-line binning. We set a maximum
number γ of constants to consider. After γ different constants have been encountered
in frequency counting, any further constant is considered to fall into the same bin as
the closest constant among the first γ. The closest constant can be determined with bi-
nary search in log2(γ) steps. Contrary to strategy no-const, we expect the error of this
approximation to lower over time, because selection lowers diversity, meaning that the
total number of different constants will be reduced as generations pass.

14 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Table 6: Median time of 30 runs for GP-GOMEA with the LT using the three strategies
all-const, no-const, bin-const, and with the RT.

Time (s)
Dataset all-const no-const bin-const RT

Air N 355.4 NNNN 71.4 NNN N 80.0 N NN N 80.1 N NN

Bos N 63.4 NNNN 29.4 NN NN 30.9 N NNN 24.5 NNN
Con N 154.9 NNNN 56.7 NNN N 59.8 N NN N 58.4 NNN
Dow N 53.8 NN NN 51.7 NN NN 54.9 NNNN 37.7 NNN
EnC N 147.2 NNNN 40.5 NNN N 43.5 N NN N 45.6 N NN

EnH N 145.0 NNNN 45.8 NNN N 49.4 N NNN 45.7 NNN
Tow N 255.9 NNNN 246.6 NN NN 245.6 NN NN 233.9 NNN
WiR N 126.1 NNNN 67.7 NNN N 80.2 N NNN 70.1 NNN
WiW N 285.0 NNNN 213.3 NNNN 237.2 N NNN 224.1 N NN
Yac N 236.5 NNNN 23.9 NN NN 24.8 N NNN 22.8 NNN

6.1 Experiment: linkage learning with ERCs

We use the same parameter setup of the experiment in Sec. 5.3, this time adding an
ERC terminal to the terminal set. We compare the three strategies to handle ERCs
when learning the LT. For this experiment and in the rest of the article, we use γ = 100
in bin-const. We observed that for problems with a small number of features (e.g.,
Air and Yac), i.e., where ERC sampling is more likely and thus more constants are
produced, this choice reduces the number of constant symbols to be considered by
linkage learning in the first generations by a factor of ∼ 50. We also report the results
obtained with the RT as a baseline, under the hypothesis that using ERCs compromises
linkage learning to the point that random variation becomes equally good or better.

The results of this experiment are shown in Table 5 (training and test NMSE) and
Table 6 (running time). The Friedman test reveals significant differences among the
configurations for train, test, and time performance. Note that the use of ERCs leads to
lower errors compared to not using them (compare with Table 3).

In terms of training error, the RT is always outperformed by the use of the LT, no
matter the strategy. The all-const strategy is significantly better than no-const in half
of the problems, and never worse. Overall, bin-const performs best, with 6 out of 10
significantly better results than all-const. The fact that all-const can be outperformed
by bin-const supports the hypothesis that linkage learning can be compromised by the
presence of too many constants to consider, which hide the true salient patterns. Test
results are overall similar to the training ones, but less comparisons are significant.

In terms of time, all-const is almost always significantly worse than the other meth-
ods, and often by a consistent margin. This is particularly marked for problems with a
small number of features (i.e., Air, Yac). There, more random constants are present in
the initial population, since the probability of sampling the ERC from the terminal set
is inversely proportional to the number of features.

Interestingly, despite the lack of a linkage-learning overhead, using the RT is not
always the fastest option. This is because random variation leads to a slower conver-
gence of the population compared to the linkage-based one, where salient patterns are
quickly propagated, and less variation attempts result in changes of the genotype that
require a fitness evaluation (see Sec. 3.3). The slower convergence caused by the RT can
also be seen in Figure 5 (for the previous experiment), and was also observed in other
work, in terms of diversity preservation (Medvet et al., 2018b).

Between the LT-based strategies, the fastest is no-const, at the cost of a bigger train-
ing error. Although consistently slower than no-const, bin-const is still quite fast, and
achieves the lowest training errors. We found bin-const to be preferable in test NMSE

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 15

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

as well. In the following, we always use bin-const, with γ = 100.

7 Interleaved Multistart Scheme

The Interleaved Multistart Scheme (IMS) is a wrapper for evolutionary runs largely
inspired by the work of (Harik and Lobo, 1999) on genetic algorithms. It works by in-
terleaving the execution of several runs of increasing resources (e.g., population size).
The main motivation for using the IMS is to make an EA much more robust to param-
eter settings, and alleviate the need for practitioners to tinker with parameters. In fact,
the whole design of GP-GOMEA attempts to promote the aspects of ease-of-use and
robustness: the EA has no need for parameters that specify how to conduct variation
(e.g., crossover or mutation rates), nor how to conduct selection (e.g., tournament size).
The IMS or similar schemes are often used with MBEAs (Lin and Yu, 2018; Goldman
and Punch, 2014), where population size plays a crucial role in determining the quality
of model building. Note that although the IMS has potential to be parallelized, here it
is used in a sequential manner.

An IMS for GP-GOMEA was first proposed in (Virgolin et al., 2017), and its outline
is as follows. A collection of parameter settings σbase is given as input, which will
be used in the first run R1. The IMS runs until a termination criterion is met (e.g.,
number of generations, time budget). The run Ri performs one generation if no run
that precedes it exists (e.g., because it is the first run or because all previous runs have
been terminated), or if the previous run Ri−1 has executed g generations. The first
time Ri is about to execute a generation, it is initialized using the parameter settings
σbase scaled by the index i. For example, the population size can be set to 2i−1n

pop
base

(i.e., doubling the population size of the previous run). Finally, when a run completes
a generation, a check is done to determine if the run should be terminated (explained
below).

7.1 An IMS for supervised learning tasks

The first implementation of the IMS for GP-GOMEA was designed to deal with GP
benchmark problems of pure optimization. That implementation therefore scaled both
the population size and the height of trees in an attempt to find the optimal solution (of
unknown size) (Virgolin et al., 2017).

In this work, we use the IMS as follows. (i) Scaling of parameter settings: We scale
only the population size. For run Ri, the population size is set to n

pop
i = 2i−1n

pop
base.

(ii) Run termination: A run Ri is terminated if the fitness of its best solution is worse
than the one of a runRj initialized later, i.e., with j > i, or if it converges to all identical
solutions.

Differently from (Virgolin et al., 2017) we no longer scale the tree height h be-
cause in SR, and in supervised learning tasks in general, no optimum is known before-
hand, and it is rather desired to find a solution that generalizes well to unseen exam-
ples. Moreover, h bounds the maximum solution size, which influences interpretability.
Hence h is left as a parameter for the user to set, and we recommend h ≤ 4 to increase
the chance that solutions will be interpretable (see Sec. 9).

We set the run termination criteria to be based upon the fitness of best solutions
instead of mean population fitness as done by (Harik and Lobo, 1999) and (Virgolin
et al., 2017), because in SR it can happen that the error of a few solutions becomes so
large that it compromises the mean population fitness. This can trigger the termina-
tion criteria even if solutions exist that are competitive with the ones of other runs.
Also differently from the other versions of the IMS, when terminating a run, we do not

16 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

automatically terminate all previous runs. Indeed, some runs with smaller parameter
settings may still be very competitive (e.g., due to the fortunate sampling of particular
constants when using ERCs).

We lastly propose to exploit the fact that many runs are performed within the IMS
to tackle a central problem of learning tasks: generalization. Instead of discarding the
best solutions of terminating runs, we store them in an archive. When the IMS termi-
nates, we re-compute the fitness of each solution in the archive using a set of examples
different from the training set, i.e. the validation set, and return the new best perform-
ing, i.e., the solution that generalized best. The final test performance is measured on a
third, separate set of examples (test set).

8 Benchmarking GP-GOMEA

We compare GP-GOMEA (using the new LT) with tree-based GP with traditional sub-
tree crossover and subtree mutation (GP-Trad), tree-based GP using the state-of-the-art,
semantic-aware operator Random Desired Operator (GP-RDO) (Pawlak et al., 2015),
and Decision Tree for Regression (DTR) (Breiman et al., 1984).

We consider RDO because, as mentioned in the introduction, semantic-aware op-
erators have been studied with interest in the last years. Several works either built
upon RDO, or used RDO as a baseline for comparison (see, e.g., (Chen et al., 2018;
Pawlak and Krawiec, 2018; Virgolin et al., 2019)). Yet, consistently large solutions were
found. It is interesting to assess how RDO fares when rather strict solution size limits
are enforced. Because of such limits, we remark we cannot consider another popular
set of semantic-aware operators, i.e., the operators used by Geometric Semantic Genetic
Programming (GSGP) (Moraglio et al., 2012). These operators work by stacking entire
solutions together, necessarily causing extremely large solution growth (even if smart
simplifications are attempted (Martins et al., 2018)).

We consider DTR because it is considered among the state-of-the-art algorithms to
learn interpretable models (Doshi-Velez and Kim, 2017; Guidotti et al., 2018). We re-
mark that DTR ensembles (e.g., (Breiman, 2001; Chen and Guestrin, 2016)) are typically
markedly more accurate than single DTRs, but are considered not interpretable.

8.1 Experimental setup

For the EAs, we use a fixed time limit of 1, 000 seconds5. We choose a time-based
comparison because GP-GOMEA performs more evaluations per generation than other
GP algorithms (up to 2` − 2 evaluations per generation with the LT), and so that the
overhead of learning the LT (which does not involve evaluations) is taken into account.

We consider maximum solution sizes ` = 15, 31, 63 (tree nodes), i.e. corresponding
to h = 3, 4, 5 respectively, for full r-ary trees. The EAs are run with a typical fixed popu-
lation size npop = 1000 and also with the IMS, considering three values for the number
of generations in between runs g: 4, 6, and 8. For the fixed population size, if the pop-
ulation of GP-GOMEA converges before the time limit, since there is no mutation, it is
randomly re-started. Choices of g between 4 and 8 are standards from literature (Bouter
et al., 2017; Virgolin et al., 2017).

Our implementation of GP-Trad and GP-RDO mostly follows the one of (Pawlak
et al., 2015). The population is initialized with the Ramped Half-and-Half method, with
tree height between 2 and h. Selection is performed with tournament of size 7. GP-
Trad uses a rate of 0.9 for subtree crossover, and of 0.1 for subtree mutation. GP-RDO

5Experiments were run on an Intel® Xeon® Processor E5-2650 v2.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 17

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Table 7: Median validation and test NMSE of 30 runs with ` = 15 for GP-GOMEA (G),
GP-Tradh (T`), GP-Tradh (T`), GP-RDO (R) with npop = 1000 and IMS with g ∈ {4, 6, 8},
and DTR. Significance is assessed within each population scheme w.r.t. GP-GOMEA.
The last row reports the number of times the EA performs significantly better (B) and
worse (W) than GP-GOMEA.

Validation ` = 15
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N39.2NN40.6 NN35.0NN44.0 N N34.7NN38.3 NN31.4NN42.5 N N34.9NN39.7 NN33.6NN42.0 N N34.4NN39.4 NN32.0NN42.3 NN31.1N
Bos N21.1NN23.4NN25.3 NN25.7 N N18.2NN21.2 NN19.0 NN20.8 N N19.2NN21.2 NN20.4NN20.9 N N19.4NN21.6 NN19.9 NN22.5 NN22.9 N

Con N23.2NN25.3 NN23.4NN27.0 N N20.3NN23.1 NN19.4NN26.4 N N20.2NN23.3 NN19.9NN26.2 N N19.4NN23.2 NN19.3NN26.9 NN22.7 N

DowN26.7NN28.5 NN27.5NN30.6 N N24.2NN26.8 NN24.2NN32.3 N N24.6NN26.4 NN24.8 NN31.0 N N24.5NN26.3 NN25.2 NN31.0 NN30.6 N

EnC N8.72NN10.6 NN7.34NN11.0 N N5.86NN10.2 NN6.49 NN10.7 N N6.01NN10.3 NN6.24NN10.5 N N5.87NN10.2 NN6.10 NN10.8 NN4.23N
EnH N4.95NN7.45 NN3.83NN7.65 N N3.33NN7.19 NN3.74 NN7.34 N N3.28NN7.30 NN3.76 NN7.42 N N3.23NN7.24 NN3.72 NN7.54 NN0.43N
Tow N12.9NN14.4 NN13.9 NN20.1 N N12.8NN13.6 NN13.6 NN20.5 N N12.7NN14.0 NN13.5 NN20.4 N N13.0NN14.0 NN13.4 NN20.1 NN11.2N
WiR N65.3NN64.8NN64.9NN66.5 N N63.9NN64.7 NN64.4NN65.1 N N63.6NN63.9 NN64.4 NN64.9 N N63.9NN63.9 NN64.2NN65.7 NN71.7 N

WiWN71.4NN71.3NN70.9NN72.6 N N70.8NN71.2 NN70.7 NN72.3 N N70.7NN71.5 NN70.8 NN72.6 N N71.2NN71.4 NN71.2 NN72.6 NN72.2 N

Yac N1.25NN1.22NN0.70NN0.96N N0.89NN1.04 NN0.61NN0.67N N0.92NN1.01 NN0.61NN0.73N N0.95NN1.03 NN0.62NN0.76NN0.88N

B/W — 0/6 3/2 1/9 — 0/10 3/5 1/9 — 0/10 3/5 1/9 — 0/10 2/6 1/9 5/5

Test ` = 15
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N38.5NN40.7 NN35.3NN44.1 N N35.8NN39.5 NN32.5NN43.3 N N35.2NN39.3 NN33.2NN42.4 N N35.4NN39.7 NN32.8NN42.8 NN30.8N
Bos N22.7NN23.3 NN24.3 NN26.7 N N22.5NN23.1NN23.3 NN22.9 N N21.7NN23.6 NN22.6 NN25.0 N N22.1NN22.5 NN23.6 NN23.3 NN26.1 N

Con N23.1NN26.1 NN23.9NN27.0 N N20.8NN23.9 NN19.3NN27.7 N N21.2NN23.9 NN19.9NN26.4 N N20.4NN24.3 NN19.3NN27.8 NN21.3 N

DowN26.3NN27.5 NN26.4NN31.0 N N24.8NN26.1 NN24.7NN30.7 N N24.5NN26.6 NN24.5NN30.1 N N24.3NN26.8 NN25.1NN31.6 NN28.0 N

EnC N9.72NN11.2 NN7.86NN11.8 N N6.36NN10.6 NN6.80 NN11.5 N N6.37NN10.5 NN6.18NN10.9 N N6.02NN10.5 NN6.33 NN11.7 NN4.47N
EnH N5.03NN7.19 NN4.04NN7.85 N N3.45NN7.57 NN3.88 NN7.62 N N3.28NN7.64 NN3.88 NN7.59 N N3.51NN7.56 NN3.86 NN7.65 NN0.33N
Tow N13.4NN14.4 NN13.9 NN20.3 N N13.0NN14.1 NN14.0 NN20.8 N N12.9NN14.1 NN13.7 NN20.7 N N13.0NN14.3 NN13.3 NN20.5 NN11.2N
WiR N63.1NN63.7 NN62.4NN64.6 N N63.3NN63.4NN63.2NN64.4 N N63.6NN63.5NN63.2NN64.3 N N63.4NN63.8NN63.3NN63.7 NN72.6 N

WiWN70.5NN70.5NN70.1NN71.3 N N70.4NN70.0 NN70.3 NN71.6 N N69.7NN70.5 NN70.1 NN71.0 N N70.2NN70.5 NN70.3 NN71.8 NN72.2 N

Yac N1.23NN1.23NN0.78NN0.95N N1.16NN1.24 NN0.73NN0.77N N1.17NN1.24NN0.73NN0.77N N1.17NN1.23 NN0.71NN0.86NN0.91N

B/W — 0/8 4/2 1/9 — 0/8 4/5 1/9 — 0/8 4/4 1/9 — 0/9 3/5 1/9 5/5

uses the population-based library of subtrees, a rate of 0.9 for RDO, and of 0.1 for sub-
tree mutation. Subtree roots to be variated are chosen with the uniform depth mutation
method, which makes nodes of all depths equally likely to be selected (Pawlak et al.,
2015). Elitism is ensured by cloning the best solution into the next generation. All EAs
are implemented in C++, and the code is available at: https://goo.gl/15tMV7.

For GP-Trad we consider two versions, to account for different types of solution
size limitation. In the first version, called GP-Tradh, we force trees to be constrained
within a maximum height (h = 3, 4), as done for GP-GOMEA. This way, we can see
which algorithm searches better in the same representation space. In the second ver-
sion, GP-Trad`, we allow more freedom in tree shape, by only bounding the number of
tree nodes. This limit is set to the maximum number of nodes obtainable in a full r-ary
tree of height h (` = 15 for h = 3, ` = 31 for h = 4). As indicated by previous litera-
ture (Gathercole and Ross, 1996; Langdon and Poli, 1997), and as will be shown later
in the results, GP-Trad` outperforms GP-Tradh. We found that the same holds also for
GP-RDO, and present here only its best configuration, i.e., a version where the number
of tree nodes is limited like for GP-Trad`.

We use the Python Scikit-learn implementation of DTR (Pedregosa et al., 2011),
with 5-fold cross-validation grid-search over the training set to tune the following
hyper-parameters: splitter ∈ {‘best’,‘random’}; max features ∈ { 1

2 ,
3
4 , 1}; max depth ∈

{3,4,5,6} (documentation available at http://goo.gl/hbyFq2). We do not allow
larger depth values because, like for GP solutions, excessively large decision trees are
uninterpretable. The best generalizing model found by cross-validation is then used on
the test set.

18 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://goo.gl/15tMV7
http://goo.gl/hbyFq2
https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Table 8: Median validation and test NMSE of 30 runs with ` = 31. Details as in Table 7.
Validation ` = 31

npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N26.4NN33.8 NN32.1 NN36.0 N N24.9NN25.9 NN23.2NN37.0 N N25.0NN27.1 NN24.9NN37.6 N N24.8NN28.4 NN24.8NN37.1 NN31.1 N

Bos N22.3NN21.1NN19.2NN24.8 N N16.7NN18.8 NN16.2 NN20.4 N N17.4NN18.3 NN17.3 NN20.6 N N17.3NN18.4 NN17.6 NN20.4 NN22.9 N

Con N17.3NN18.6 NN17.9 NN20.8 N N16.0NN17.6 NN16.7 NN20.5 N N16.6NN18.1 NN16.4 NN20.1 N N16.1NN18.3 NN17.2 NN20.2 NN22.7 N

DowN21.3NN22.6 NN22.6NN24.3 N N19.4NN21.6 NN19.2NN25.6 N N19.4NN21.2 NN19.4 NN25.4 N N19.2NN21.9 NN20.1 NN25.8 NN30.6 N

EnC N5.14NN5.60 NN4.99NN7.62 N N4.62NN5.51 NN4.82 NN8.04 N N4.35NN6.04 NN4.56 NN8.48 N N4.37NN5.65 NN4.73 NN7.81 NN4.23N
EnH N2.29NN2.54 NN1.75NN6.21 N N1.95NN3.05 NN1.72NN4.97 N N2.00NN2.84 NN1.65NN5.93 N N1.88NN3.10 NN1.62NN6.11 NN0.43N
Tow N12.0NN13.0 NN12.6 NN17.5 N N11.8NN12.3 NN11.9NN17.8 N N11.7NN12.2 NN12.2 NN16.6 N N12.0NN12.4 NN11.8NN17.6 NN11.2N
WiR N64.2NN64.7 NN64.7 NN65.9 N N62.8NN62.4 NN62.6NN64.5 N N62.3NN63.6 NN62.1NN64.1 N N62.6NN62.9 NN61.8NN64.6 NN71.7 N

WiWN70.2NN70.4 NN70.9NN71.4 N N69.6NN69.7NN69.7NN71.1 N N70.0NN70.2 NN70.0NN71.0 N N70.0NN70.1 NN69.6NN71.2 NN72.2 N

Yac N0.46NN0.59 NN0.42NN0.57 N N0.37NN0.51 NN0.40 NN0.59 N N0.38NN0.56 NN0.38NN0.54 N N0.40NN0.54 NN0.42 NN0.52 NN0.88 N

B/W — 0/9 3/4 0/10 — 0/9 2/4 0/10 — 0/10 1/5 0/10 — 0/10 0/5 0/10 3/7

Test ` = 31
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N26.4NN33.5 NN30.8 NN37.1 N N25.9NN26.5 NN23.3NN37.6 N N24.9NN27.1 NN24.7NN39.2 N N24.9NN28.8 NN26.1NN38.2 NN30.8 N

Bos N21.4NN22.8NN21.6 NN26.2 N N20.1NN21.3NN21.8 NN23.4 N N20.9NN21.2 NN22.2 NN23.2 N N20.2NN22.3 NN22.6 NN26.0 NN26.1 N

Con N17.6NN18.7 NN17.8 NN21.5 N N16.9NN18.1 NN17.1 NN21.2 N N16.7NN18.8 NN16.9NN21.1 N N17.2NN18.3 NN17.0NN21.5 NN21.3 N

DowN20.3NN21.9 NN22.2 NN24.4 N N19.2NN20.7 NN19.1NN24.4 N N18.9NN21.4 NN18.6NN24.4 N N18.7NN22.2 NN20.2 NN25.5 NN28.0 N

EnC N5.28NN5.91 NN4.76NN7.00 N N4.43NN5.76 NN4.79 NN7.69 N N4.44NN6.05 NN4.71NN8.73 N N4.60NN5.62 NN4.77 NN7.94 NN4.47N
EnH N2.29NN2.49 NN1.83NN5.98 N N2.05NN3.20 NN1.58NN5.12 N N2.10NN3.07 NN1.75NN5.77 N N2.00NN2.91 NN1.55NN6.51 NN0.33N
Tow N12.2NN13.2 NN13.1 NN18.7 N N12.1NN12.6 NN12.0NN18.2 N N12.1NN12.4 NN12.3NN16.8 N N12.2NN12.7 NN12.0NN17.2 NN11.2N
WiR N62.1NN63.1NN62.1NN63.5 N N62.7NN63.1 NN61.9NN63.9 N N62.4NN62.9 NN63.3 NN64.2 N N61.9NN63.0 NN62.9 NN63.4 NN72.6 N

WiWN69.0NN69.7 NN69.8 NN70.2 N N69.4NN69.3NN69.2NN70.6 N N69.1NN69.4 NN69.2 NN70.7 N N69.1NN69.6 NN69.3NN70.5 NN72.2 N

Yac N0.52NN0.66 NN0.49NN0.66 N N0.50NN0.58 NN0.47NN0.67 N N0.50NN0.64 NN0.48NN0.63 N N0.53NN0.63 NN0.48NN0.70 NN0.91 N

B/W — 0/8 3/6 0/10 — 0/8 3/3 0/10 — 0/10 2/3 0/10 — 0/10 2/4 0/10 3/7

8.2 Results: benchmarking GP-GOMEA

We consider validation and test NMSE. We now show validation rather than training
error because the IMS returns the solution which better generalizes to the validation
set among the ones found by different runs (same for DTR due to cross-validation).
Tables 7, 8, and 9 show the results for maximum sizes ` = 15, 31, 63 (h = 3, 4, 5) respec-
tively. On each set of results, the Friedman test reveals significant differences among the
algorithms. As we are only interested in benchmarking GP-GOMEA, we test whether
significant performance differences exist only between GP-GOMEA and the other al-
gorithms (with Bonferroni-corrected Wilcoxon signed-rank test).

We begin with some general results. Overall, error magnitudes are lower for larger
values of `. This is not surprising: limiting solution size limits the complexity of rela-
tionships that can be modeled. Another general result is that errors on validation and
test set are generally close. Likely, the validation data is a sufficiently accurate surro-
gate of the test data in these datasets, and solution size limitations make over-fitting
unlikely. Finally, note that the results for DTR are the same in all tables.

We now compare GP-GOMEA with GP-Tradh, focusing on statistical significance
tests (see rows “B/W” of the tables), over all size limit configurations. Recall that these
two algorithms work with the same type of limitation, i.e., based on maximum tree
height. No matter the population sizing method, GP-GOMEA is almost always sig-
nificantly better than GP-Tradh. GP-GOMEA relies on the LT with improved linkage
learning, which we showed to be superior to using the RT, i.e., blind variation, in the
previous series of experiments (Sec. 5.3, 6.1). Subtree crossover and subtree mutation
are blind as well, and can only swap subtrees, which may be a limitation.

GP-GOMEA and GP-Trad` are compared next. Recall that GP-Trad` is allowed to
evolve any tree shape, as long as the limit in number of nodes is respected. Having
this extra freedom, GP-Trad` performs better than GP-Tradh (not explicitly reported
in the tables), which confirms previous literature results (Gathercole and Ross, 1996;

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 19

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Langdon and Poli, 1997). No marked difference exists between GP-GOMEA and GP-
Trad` along different configurations. By counting the number of times one EA is found
to be significantly better than the other along all 240 comparisons, GP-GOMEA beats
GP-Trad` by a small margin: 87 significantly lower error distributions vs. 65 (88 draws).

For the traditional use of a single population (npop = 1000), GP-Trad` is slightly
better than GP-GOMEA for ` = 15 (Table 7), slightly worse for ` = 31 (Table 8), and
similar for ` = 63 (Table 9), on both validation and test errors. The performance of the
two (and also of the other EAs) improves when using the IMS. Although not explicitly
shown in the tables, using the IMS is typically significantly better than not using it.
When using a single fixed population size and a single run, only a single best-found
solution is found. Depending on the configuration of that run, in particular the size
of the population, that final solution may be underfitted or overfitted. When using a
scheme such as the IMS, multiple solutions are marked best in the different interleaved
runs. These solutions can subsequently be compared more in terms of generalization
merits, i.e., by observing the associated performance on the validation set. The best
performing solution can then ultimately be returned. Essentially, this thus provides a
means to mitigate to some extent the problem of underfitting or overfitting. It should
be noted, however, that the extent to which the setup of the IMS, particularly in terms
of growing population sizes, contributes to this is not immediately clear. This could be
studied by comparing with a scheme in which multiple runs are also performed, but all
with a single population size. The final results of these runs can then also first be tested
against the validation set. Likely, the use of a scheme like the IMS has an advantage
because multiple population sizes will be tried. Therefore, likely a larger variety of
results will be produced to test against the validation set, but a closer examination of
this impact is left for future work.

The comparisons between GP-Trad` and GP-GOMEA tend to shift in favor of the
latter when using the IMS, particularly for larger values of g. For g = 4, outcomes are
still overall mixed along different ` limits. For g = 8, GP-GOMEA is preferable, with
moderately more significant wins for ` = 15, several more wins for ` = 31, and slightly
more wins for ` = 63.

To investigate further the comparison between GP-GOMEA and GP-Trad`, we con-
sider the effect of g of the IMS for ` = 31 (similar results are found for the other size
limits). Figure 7 shows the median maximum population size reached by the IMS for
different values of g in GP-GOMEA and GP-Trad`. As can be expected, the bigger
g, the less runs and the smaller populations at play. GP-Trad` reaches much bigger
population sizes than GP-GOMEA when g = 4 (on average 3 times bigger). This is
because GP-Trad` executes generations much faster than GP-GOMEA: it does not learn
a linkage model, and performs npop evaluations per generation. GP-GOMEA performs
(2` − 2)npop variation steps (size of LT excluding its root times the population size)
and up to (2`− 2)npop evaluations per generation (only meaningful variation steps are
evaluated).

GP-Trad` performs well for small values of g due to huge populations being in-
stantiated with trees of various shape, i.e., expensive random search. Note that this
behavior may be problematic when limited memory is available, especially if caching
mechanisms are desirable to reduce the number of expensive evaluations (e.g., caching
the output of each node as in (Pawlak et al., 2015; Virgolin et al., 2017)). On the other
hand, GP-GOMEA works fairly well with much smaller populations, as long as they
are big enough to enable effective linkage learning (the fixed npop = 1000 is smaller
than the population sizes reached with the IMS). Despite the disadvantage of adhering

20 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

M
ax

po
pu

la
ti

on
si

ze

Time
Figure 7: Maximum population size reached (vertical axis) in time (seconds, horizontal
axis) with the IMS for GP-GOMEA (h = 4 limit) and GP-Trad` (` = 31 limit), for g ∈
{4, 6, 8}. The median among problems and repetitions is shown.

to a specific tree shape, GP-GOMEA is typically preferable than GP-Trad` for larger
values of g. Furthermore, Figure 7 shows that GP-GOMEA population scaling behaves
sensibly w.r.t. g, i.e., it does not grow abruptly when g becomes small, nor shrink exces-
sively when g becomes larger. This latter aspect is because in GP-GOMEA populations
ultimately converge to a same solution, and are terminated, allowing for bigger runs
to start. In GP-Trad` this is unlikely to happen, because of the use of mutation and
stochastic (tournament) selection, stalling the IMS. For the larger g = 8, GP-GOMEA
reaches on average 1.6 times bigger populations than GP-Trad`.

GP-RDO, although allowed to evolve trees of different shape like GP-Trad`, per-
forms poorly on all problems, with all settings. It performs significantly worse than
GP-GOMEA almost everywhere (it is also worse than GP-Trad`). It is known that GP-
RDO normally finds big solutions, and it is also reasonable to expect that it needs big
solutions to work well, e.g., to build a large set of diverse subtrees for the internal li-
brary queried by RDO (Virgolin et al., 2019). The strict size limitation basically breaks
GP-RDO. However, we remark that this EA was never designed to work under these
circumstances. In fact, when solution size is not strictly limited, GP-RDO achieves ex-
cellent performance (Pawlak et al., 2015).

DTR is compared with GP-GOMEA using the IMS with g = 8. Although GP-
GOMEA is not optimized (e.g., by tuning the function set), it performs on par with
tuned DTR for ` = 15, and better for ` = 31, 63, on both validation and test sets. Where
one algorithm outperforms the other, the magnitude of difference in errors are rela-
tively large compared to the ones between EAs. This is because GP and DTR synthesize
models of completely different nature (decision trees only use if-then-else statements).

9 Discussion & Conclusion

We built upon previous work on model-based GP, in particular on GP-GOMEA, to find
accurate solutions when a strict limitation on their size is imposed, in the domain of SR.
We focused on small solutions, in particular much smaller solutions than typically re-
ported in literature, to prevent solutions becoming too large to be (easily) interpretable,
a key reason to justify the use of GP in many practical applications.

A first limitation of this work is that to truly achieve interpretability may well re-
quire different measures. Interpretation is mostly subjective, and many other factors
besides solution size are important, including the intuitiveness of the subfunctions
composing the solution, potential decompositions into understandable repeating sub-
modules, the number of features considered, and the meaning of these features (Lipton,

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 21

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Table 9: Median validation and test NMSE of 30 runs with ` = 63. Details as in Table 7.
Validation ` = 63

npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N22.6NN25.3 NN25.0 NN33.0 N N20.6NN22.4 NN20.8NN35.1 N N20.7NN23.3 NN21.3 NN34.3 N N20.8NN24.5 NN20.1NN34.2 NN31.1 N

Bos N21.1NN19.5NN21.9NN22.1N N16.5NN16.8 NN15.7NN19.7 N N16.3NN17.6 NN15.4NN18.9 N N16.2NN18.5 NN16.7 NN21.2 NN22.9 N

Con N16.6NN17.4 NN16.6NN18.5 N N15.2NN16.1 NN15.7 NN18.5 N N15.5NN16.5 NN15.6 NN19.6 N N15.3NN16.3 NN15.9 NN19.0 NN22.7 N

DowN18.6NN19.0NN18.8 NN21.7 N N17.4NN17.8 NN16.7NN24.1 N N17.7NN18.2 NN17.0NN24.3 N N17.8NN19.8NN17.6NN22.4 NN30.6 N

EnC N4.66NN5.15 NN4.26NN5.55 N N3.67NN4.37 NN4.14 NN6.92 N N3.85NN4.50 NN4.02 NN7.08 N N3.76NN4.88 NN3.99 NN6.78 NN4.23 N

EnH N1.65NN1.52 NN1.13NN2.63 N N0.69NN1.54 NN0.84 NN4.02 N N0.92NN1.78 NN1.02 NN3.81 N N0.87NN1.78 NN0.80NN3.68 NN0.43N
Tow N11.5NN11.7 NN11.7 NN15.7 N N11.3NN10.9NN11.1NN16.1 N N11.4NN11.3NN10.9NN17.0 N N11.3NN11.9 NN11.2NN16.6 NN11.2N
WiR N64.4NN64.6NN65.2 NN64.3N N63.0NN62.4NN62.5NN63.8 N N62.3NN62.9NN62.8NN64.6 N N62.7NN62.9 NN62.5 NN64.5 NN71.7 N

WiWN70.1NN70.1NN68.8NN70.9 N N69.2NN69.2NN68.7NN71.1 N N68.9NN69.3 NN69.4NN71.6 N N69.1NN69.7 NN69.6NN71.4 NN72.2 N

Yac N0.46NN0.45NN0.37NN0.46N N0.32NN0.38 NN0.33NN0.40 N N0.32NN0.39 NN0.33NN0.44 N N0.33NN0.40 NN0.33NN0.48 NN0.88 N

B/W — 1/5 4/4 1/7 — 0/7 2/3 0/10 — 0/8 3/4 0/10 — 0/9 3/4 0/10 2/8

Test ` = 63
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G Th T` R G Th T` R G Th T` R G Th T` R D

Air N23.0NN25.5 NN25.9 NN31.5 N N21.1NN22.5 NN19.6NN34.9 N N21.7NN22.4 NN21.9 NN33.8 N N21.2NN23.4 NN21.6NN34.1 NN30.8 N

Bos N22.0NN20.0NN21.2NN21.9N N19.2NN20.7 NN20.4 NN24.1 N N21.5NN20.3NN20.3NN25.0 N N19.8NN19.7 NN21.4 NN25.8 NN26.1 N

Con N15.9NN17.1 NN16.5 NN18.3 N N15.3NN16.2 NN15.5NN19.1 N N15.3NN16.3 NN15.8 NN19.9 N N15.3NN16.6 NN16.1 NN18.9 NN21.3 N

DowN18.3NN18.6 NN17.4NN22.3 N N17.5NN17.9NN17.0NN23.7 N N17.6NN18.2 NN17.2NN24.6 N N17.7NN18.2NN17.9NN22.6 NN28.0 N

EnC N4.49NN4.70 NN4.24NN5.63 N N3.77NN4.37 NN3.99 NN6.94 N N3.93NN4.42 NN3.95 NN7.42 N N3.95NN4.85 NN4.20 NN7.37 NN4.47 N

EnH N1.60NN1.59 NN1.12NN2.74 N N0.80NN1.52 NN0.89 NN3.73 N N0.88NN1.67 NN0.94NN4.12 N N0.89NN1.92 NN0.93 NN3.71 NN0.33N
Tow N11.6NN12.2 NN12.1 NN15.9 N N11.5NN11.4NN11.4NN16.8 N N11.6NN11.5NN11.2NN16.7 N N11.4NN12.2 NN11.4NN17.1 NN11.2N
WiR N63.1NN63.0NN64.4 NN62.9N N62.9NN62.5 NN61.7NN62.5 N N62.5NN63.0NN62.3NN63.6 N N62.7NN63.0NN61.8NN63.2 NN72.6 N

WiWN68.7NN69.0NN68.0NN69.9 N N68.3NN68.6NN68.3NN70.2 N N69.1NN69.4NN68.2NN70.6 N N68.2NN69.3 NN69.0NN70.3 NN72.2 N

Yac N0.44NN0.46NN0.40NN0.46N N0.41NN0.49 NN0.40NN0.45 N N0.41NN0.45 NN0.42NN0.52 N N0.46NN0.46NN0.44NN0.50 NN0.91 N

B/W — 0/6 5/4 0/7 — 0/7 3/3 0/10 — 0/6 4/3 0/10 — 0/7 2/4 0/10 2/8

2018; Doshi-Velez and Kim, 2017). Nonetheless, much current research on GP for SR is
far from delivering any interpretable results precisely because the size of solutions is
far too large (see, e.g., the work of (Martins et al., 2018)).

We considered solution sizes up to ` = 63 (corresponding to h = 5 for GP-GOMEA
with subfunctions of arity ≤ 2). In our opinion, the limit of ` = 31 (h = 4) is particu-
larly interesting, as interpreting some solutions at this level can already be non-trivial
at times. For example, we show the (manually simplified) best test solution found by
GP-GOMEA (IMS g = 8) for Tower and Yacht, i.e. the biggest and smallest dataset re-
spectively, in Figure 8. The solution for Tower is arguably easier to understand than the
one for Yacht. We found solutions with ` = 63 (h = 5) to be overly long to attempt inter-
preting, and solutions with ` = 15 (h = 3) to be mostly readable and understandable.
We report other example solutions at: http://bit.ly/2IrUFyQ.

We believe future work should address the aforementioned limitation: effort
should be put towards reaching some form of interpretability notions, that go beyond
solution size or other custom metrics (e.g., (Vladislavleva et al., 2009)). User studies in-
volving the end users of the model (e.g., medical doctors for a diagnosis model) could
guide the design of notions of interpretability. If an objective that represents inter-
pretability can be defined, the design of multi-objective (model-based) GP algorithms
may lead to very interesting results.

Another limitation of this work lies in the fact that we did not study how link-
age learning behaves in GP for SR in depth. In fact, it would be interesting to assess
when linkage learning is beneficial, and when it is superfluous or harmful. To this
end, a regime of experiments where linkage-related outcomes are predefined, such as
emergence of specific patterns, needs to be designed. Simple problems where the true
function to regress is known may need to be considered. Studies of this kind could
provide more insights on how to improve linkage learning in GP for SR (and other
learning tasks), and are an interesting direction for future work.

22 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

http://bit.ly/2IrUFyQ
https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Tower:
4668.49− 3.56((662.77 + x21)x12 ÷AQ x16 − x1 − x15 + x5 + 4x12 − x23(x6 ÷AQ x1 + 1))

Yacht:

0.73 + 33004.40
(
((x2

6 ÷AQ (x5x2))÷AQ (x3x2 ÷AQ (x2 ÷AQ x1)))(x6 + 0.30)x5
6x5

)
Figure 8: Examples of best solution found by GP-GOMEA (` = 31, IMS g = 8).

Another crucial point to base future research upon is enabling linkage learning
and linkage-based mixing in GP with trees of arbitrary shape. In fact, GP-GOMEA
was not found to be markedly better than GP-Trad`, and a large performance gap was
found between GP-Trad` and GP-Tradh. This is indicative that there is added value
to perform evolution directly on non-templated trees, which, from this perspective,
may be considered a limitation of GP-GOMEA. Going beyond the use of a fixed tree
template, while still enabling linkage identification and exploitation, is a challenging
open problem that could bring very rewarding results. On the other hand, we believe
it is interesting to see that when GP-GOMEA and GP-Trad are set to work on the same
search space, i.e., when GP-Tradh is used, then GP-GOMEA performs markedly better.

In summary and conclusion, we have identified limits and presented ways to im-
prove a key component of a state-of-the-art model-based EA, i.e. GP-GOMEA, to com-
petently deal with realistic SR datasets, when small solutions are desired. This key
component is linkage learning. We showed that solely and directly relying on mu-
tual information to identify linkage may be undesirable, because the genotype is not
uniformly distributed in GP populations, and we provided an approximate biasing
method to tackle this problem. We furthermore explored how to incorporate ERCs into
linkage learning, and found that on-line binning of constants is an efficient and effective
strategy. Lastly, we introduced a new form of the IMS, to relieve practitioners from set-
ting a population size, and from finding a good generalizing solution. Ultimately, our
contributions proved successful in improving the performance of GP-GOMEA, leading
to the best overall performance against competing EAs, as well as tuned decision trees.
We believe our findings set an important first step for the design of better model-based
GP algorithms capable of learning interpretable solutions in real-world data.

Acknowledgment

The authors thank the Foundation Kinderen Kankervrij for financial support (project
no. 187), and SURFsara for granting access to the Lisa Compute Cluster.

References

Asuncion, A. and Newman, D. (2007). UCI machine learning repository.

Bosman, P. A. N. and De Jong, E. D. (2004). Learning probabilistic tree grammars for genetic
programming. In International Conference on Parallel Problem Solving from Nature (PPSN) 2004,
pages 192–201. Springer.

Bouter, A., Alderliesten, T., Witteveen, C., and Bosman, P. A. N. (2017). Exploiting linkage in-
formation in real-valued optimization with the real-valued gene-pool optimal mixing evolu-
tionary algorithm. In Genetic and Evolutionary Computation Conference (GECCO) 2017, pages
705–712. ACM.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees.
Wadsworth and Brooks.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 23

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Chen, Q., Xue, B., and Zhang, M. (2015). Generalisation and domain adaptation in gp with
gradient descent for symbolic regression. In IEEE Congress on Evolutionary Computation (CEC)
2015, pages 1137–1144. IEEE.

Chen, Q., Xue, B., and Zhang, M. (2018). Improving generalization of genetic programming
for symbolic regression with angle-driven geometric semantic operators. IEEE Transactions on
Evolutionary Computation, 23(3):488–502.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
ACM.

Chen, Y., Yu, T.-L., Sastry, K., and Goldberg, D. E. (2007). A survey of linkage learning techniques
in genetic and evolutionary algorithms. IlliGAL report, 2007014.

De Melo, V. V. (2014). Kaizen programming. In Genetic and Evolutionary Computation Conference
(GECCO) 2014, pages 895–902. ACM.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Ebner, M., Shackleton, M., and Shipman, R. (2001). How neutral networks influence evolvability.
Complexity, 7(2):19–33.

Gathercole, C. and Ross, P. (1996). An adverse interaction between crossover and restricted tree
depth in genetic programming. In Genetic and Evolutionary Computation Conference (GECCO)
1996, pages 291–296. MIT Press.

Goldman, B. W. and Punch, W. F. (2014). Parameter-less population pyramid. In Genetic and
Evolutionary Computation Conference (GECCO) 2014, pages 785–792. ACM.

Gronau, I. and Moran, S. (2007). Optimal implementations of upgma and other common cluster-
ing algorithms. Information Processing Letters, 104(6):205–210.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A
survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5):93.

Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253.

Harik, G. R. and Lobo, F. G. (1999). A parameter-less genetic algorithm. In Genetic and Evolu-
tionary Computation Conference (GECCO) 1999, pages 258–265. Morgan Kaufmann Publishers
Inc.

Hasegawa, Y. and Iba, H. (2009). Latent variable model for estimation of distribution algorithm
based on a probabilistic context-free grammar. IEEE Transactions on Evolutionary Computation,
13(4):858–878.

Hauschild, M. and Pelikan, M. (2011). An introduction and survey of estimation of distribution
algorithms. Swarm and evolutionary computation, 1(3):111–128.

Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan, C., and O’Reilly, U.-M. (2012). An
investigation of local patterns for estimation of distribution genetic programming. In Genetic
and Evolutionary Computation Conference (GECCO) 2012, pages 767–774. ACM.

Hsu, S.-H. and Yu, T.-L. (2015). Optimization by pairwise linkage detection, incremental linkage
set, and restricted/back mixing: DSMGA-II. In Genetic and Evolutionary Computation Conference
(GECCO) 2015, pages 519–526. ACM.

24 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Icke, I. and Bongard, J. C. (2013). Improving genetic programming based symbolic regression
using deterministic machine learning. In IEEE Congress on Evolutionary Computation (CEC)
2013, pages 1763–1770. IEEE.

Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear scaling. In
European Conference on Genetic Programming, pages 70–82. Springer.

Kim, K., Shan, Y., Nguyen, X. H., and McKay, R. I. (2014). Probabilistic model building in genetic
programming: A critical review. Genetic Programming and Evolvable Machines, 15(2):115–167.

Koza, J. R. (1992). Genetic Programming: On the programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA.

Krawiec, K. (2015). Behavioral program synthesis with genetic programming. Springer.

Langdon, W. B. and Poli, R. (1997). An analysis of the max problem in genetic programming.
Genetic Programming, 1(997):222–230.

Li, X., Mabu, S., Zhou, H., Shimada, K., and Hirasawa, K. (2010). Genetic network programming
with estimation of distribution algorithms for class association rule mining in traffic predic-
tion. In IEEE Congress on Evolutionary Computation (CEC) 2010, pages 1–8. IEEE.

Lin, Y.-J. and Yu, T.-L. (2018). Investigation of the exponential population scheme for genetic
algorithms. In Genetic and Evolutionary Computation Conference (GECCO) 2018, pages 975–982.
ACM.

Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3):30:31–30:57.

Luke, S. and Panait, L. (2001). A survey and comparison of tree generation algorithms. In Ge-
netic and Evolutionary Computation Conference (GECCO) 2001, pages 81–88. Morgan Kaufmann
Publishers Inc.

Luong, N. H., La Poutré, H., and Bosman, P. A. N. (2014). Multi-objective gene-pool optimal
mixing evolutionary algorithms. In Genetic and Evolutionary Computation Conference (GECCO)
2014. ACM.

Martins, J. F. B. S., Oliveira, L. O. V. B., Miranda, L. F., Casadei, F., and Pappa, G. L. (2018).
Solving the exponential growth of symbolic regression trees in geometric semantic genetic
programming. In Genetic and Evolutionary Computation Conference (GECCO) 2018, pages 1151–
1158, New York, NY, USA. ACM.

Medvet, E., Bartoli, A., De Lorenzo, A., and Tarlao, F. (2018a). GOMGE: Gene-pool optimal
mixing on grammatical evolution. In International Conference on Parallel Problem Solving from
Nature (PPSN) 2018, pages 223–235. Springer.

Medvet, E., Virgolin, M., Castelli, M., Bosman, P. A. N., Gonçalves, I., and Tušar, T. (2018b).
Unveiling evolutionary algorithm representation with DU maps. Genetic Programming and
Evolvable Machines, 19(3):351–389.

Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Geometric semantic genetic programming.
In International Conference on Parallel Problem Solving from Nature (PPSN) 2012, pages 21–31.
Springer.

Ni, J., Drieberg, R. H., and Rockett, P. I. (2013). The use of an analytic quotient operator in genetic
programming. IEEE Trans. Evol. Comput., 17(1):146–152.

Orzechowski, P., La Cava, W., and Moore, J. H. (2018). Where are we now?: A large bench-
mark study of recent symbolic regression methods. In Genetic and Evolutionary Computation
Conference (GECCO) 2018, pages 1183–1190, New York, NY, USA. ACM.

Pawlak, T. P. and Krawiec, K. (2018). Competent geometric semantic genetic programming for
symbolic regression and Boolean function synthesis. Evolutionary Computation, 26(2):177–212.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 25

https://doi.org/10.1162/evco_a_00278

M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman

Pawlak, T. P., Wieloch, B., and Krawiec, K. (2015). Semantic backpropagation for designing search
operators in genetic programming. IEEE Trans. Evol. Comput., 19(3):326–340.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in Python.
Journal of machine learning research, 12(Oct):2825–2830.

Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R. (2008). A field guide to genetic programming.
Lulu. com.

Ratle, A. and Sebag, M. (2001). Avoiding the bloat with stochastic grammar-based genetic pro-
gramming. In International Conference on Artificial Evolution (Evolution Artificielle), pages 255–
266. Springer.

Sadowski, K. L., Bosman, P. A. N., and Thierens, D. (2013). On the usefulness of linkage process-
ing for solving MAX-SAT. In Genetic and Evolutionary Computation Conference (GECCO) 2013,
pages 853–860. ACM.

Salustowicz, R. and Schmidhuber, J. (1997). Probabilistic incremental program evolution. Evolu-
tionary Computation, 5(2):123–141.

Sastry, K. and Goldberg, D. E. (2003). Probabilistic model building and competent genetic pro-
gramming. In Genetic Programming Theory and Practice, pages 205–220. Springer.

Shan, Y., McKay, R. I., Baxter, R., Abbass, H., Essam, D., and Nguyen, H. (2004). Grammar model-
based program evolution. In IEEE Congress on Evolutionary Computation (CEC) 2004, volume 1,
pages 478–485. IEEE.

Sotto, L. F. D. P. and de Melo, V. V. (2017). A probabilistic linear genetic programming with
stochastic context-free grammar for solving symbolic regression problems. In Genetic and Evo-
lutionary Computation Conference (GECCO) 2017, pages 1017–1024. ACM.

Tanev, I. (2007). Genetic programming incorporating biased mutation for evolution and adapta-
tion of snakebot. Genetic Programming and Evolvable Machines, 8(1):39–59.

Thierens, D. and Bosman, P. A. N. (2011). Optimal mixing evolutionary algorithms. In Genetic
and Evolutionary Computation Conference (GECCO) 2011, pages 617–624. ACM.

Thierens, D. and Bosman, P. A. N. (2013). Hierarchical problem solving with the linkage tree
genetic algorithm. In Genetic and Evolutionary Computation Conference (GECCO) 2013, pages
877–884. ACM.

Virgolin, M., Alderliesten, T., Bel, A., Witteveen, C., and Bosman, P. A. N. (2018). Symbolic regres-
sion and feature construction with GP-GOMEA applied to radiotherapy dose reconstruction
of childhood cancer survivors. In Genetic and Evolutionary Computation Conference (GECCO)
2018, pages 1395–1402. ACM.

Virgolin, M., Alderliesten, T., and Bosman, P. A. N. (2019). Linear scaling with and within se-
mantic backpropagation-based genetic programming for symbolic regression. In Genetic and
Evolutionary Computation Conference (GECCO) 2019, New York, NY, USA. ACM.

Virgolin, M., Alderliesten, T., Witteveen, C., and Bosman, P. A. N. (2017). Scalable genetic pro-
gramming by gene-pool optimal mixing and input-space entropy-based building-block learn-
ing. In Genetic and Evolutionary Computation Conference (GECCO) 2017, pages 1041–1048, New
York, NY, USA. ACM.

Vladislavleva, E. J., Smits, G. F., and Den Hertog, D. (2009). Order of nonlinearity as a complexity
measure for models generated by symbolic regression via Pareto genetic programming. IEEE
Transactions on Evolutionary Computation, 13(2):333–349.

Wong, P.-K., Lo, L.-Y., Wong, M.-L., and Leung, K.-S. (2014). Grammar-based genetic program-
ming with bayesian network. In IEEE Congress on Evolutionary Computation (CEC) 2014, pages
739–746. IEEE.

26 Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278

https://doi.org/10.1162/evco_a_00278

Improving Model-based GP for Symbolic Regression

Yanai, K. and Iba, H. (2003). Estimation of distribution programming based on bayesian network.
In IEEE Congress on Evolutionary Computation (CEC) 2003, volume 3, pages 1618–1625. IEEE.

Žegklitz, J. and Pošı́k, P. (2017). Symbolic regression algorithms with built-in linear regression.
arXiv preprint arXiv:1701.03641.

Zhong, J., Feng, L., Cai, W., and Ong, Y.-S. (2018). Multifactorial genetic programming for sym-
bolic regression problems. IEEE Trans. Syst. Man Cybern. Syst., (99):1–14.

Accepted in Evolutionary Computation https://doi.org/10.1162/evco_a_00278 27

https://doi.org/10.1162/evco_a_00278

	1 Introduction
	2 Related work
	3 Gene-pool Optimal Mixing Evolutionary Algorithm for GP
	3.1 Solution representation in GP-GOMEA
	3.2 Linkage learning
	3.2.1 Linkage Tree
	3.2.2 Random Tree

	3.3 Gene-pool Optimal Mixing

	4 General experimental settings
	5 Improving linkage learning for GP
	5.1 Biasing mutual information to represent linkage
	5.2 Estimation of linkage by MI
	5.3 Experiment: LT–MI vs LT–MI vs RT
	5.4 Results: LT–MI vs LT–MI vs RT
	5.5 Experiment: assessing propagation of node patterns

	6 Ephemeral random constants & linkage
	6.1 Experiment: linkage learning with ERCs

	7 Interleaved Multistart Scheme
	7.1 An IMS for supervised learning tasks

	8 Benchmarking GP-GOMEA
	8.1 Experimental setup
	8.2 Results: benchmarking GP-GOMEA

	9 Discussion & Conclusion

