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Summary 
 

Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying 

generator of some observed measurements, is a profoundly ill-posed problem that commonly arises when modelling real 

world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled 

dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the 

comparison of competing models of network architectures – and implicit coupling functions – in terms of their Bayesian 

model evidence. These methods are collectively referred to as dynamic casual modelling (DCM). We focus on a relatively 

new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation 

and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through 

modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active 

focus of research in neurobiology and the imaging of coupled neuronal systems.  

 

Introduction 
 

This paper sets out a general method for addressing the problem of structure learning; namely, identifying a coupled 

dynamical system that best accounts for empirical observations (1,2). In this context, a hypothesis about the structure of a 

system, for example the connectivity architecture of a neural network, is expressed formally as a model (3). The objective 

is to search over models (e.g., by pruning redundant connections) to arrive at a network architecture that optimally explains 

the data. This approach rests upon dynamic casual modelling (DCM) (4), Bayesian model selection (BMS) (5) and Bayesian 

model reduction (BMR) (6), which are implemented in the freely available software called Statistical Parametric Mapping 

(SPM) (7) (see Table 1 for further description of terminology used in this paper). These methods have been developed for 

the analysis of large scale recordings of brain activity, however they could be conveniently applied in other domains, where 

mechanistic modelling based on empirical data is of interest. 

 

The basic idea behind DCM is to convert data assimilation, identification and structure learning problems into a generic 

inference problem – and then use variational Bayesian techniques to infer all the unknowns; ranging from unobservable or 
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latent states through to the structure or form of the dynamical system that best accounts for the data at hand. In other words, 

DCM enables qualitative and quantitative questions to be asked about the dynamical system generating data (usually 

timeseries). 

 

Formally, DCM is the Bayesian inversion of a biophysically informed dynamical (i.e., state space) model, given some 

timeseries data; usually, neuroimaging data (M/EEG, fMRI). The models that underwrite DCM are generally specified in 

terms of (ordinary, stochastic or delay) differential equations describing the coupling within and among dynamical systems. 

Hypotheses about the architecture of (directed) coupling are tested by comparing the evidence for the data under different 

models (4). DCM can be employed to infer coupling (within each node and between nodes) of a nonlinear dynamical 

system, given empirical responses of a system (i.e., the brain) to experimental inputs or different dynamical regimes. This 

proceeds by inferring condition-specific parameters, which explain/model how changes in experimental context (or 

different dynamical regimes) are mediated by changes in particular connections in the model. This ability to model context 

sensitive changes in coupling distinguishes DCM from other data assimilation and identification methods (e.g., parameter 

tracking (8), compressive sensing based dynamical system identification (9) and time-evolving dynamical Bayesian 

inference of coupled dynamical systems (10), to name a few). The outcomes of model inversion using DCM are a posterior 

probability density over model parameters (that parameterise coupling and context sensitive effects) and the relative 

probability of having observed the data under each model (model evidence). This model evidence or marginal likelihood 

can be used to draw conclusions by comparing the evidence for different models – known as Bayesian model comparison 

and selection (BMS).   

 

In the past two decades, DCM for functional magnetic resonance imaging (fMRI) has been applied in many studies in the 

field of cognitive neuroscience (e.g., aging (11), memory (12)) as well as psychiatric disorders (13–15). In parallel, using 

the same conceptual principles, DCM has also been applied to Magneto/Electroencephalography (M/EEG) data, to 

disambiguate neuronal causes of electromagnetic responses such as induced responses (16), phase coupling (17), event 

related potentials (18,19) and also to provide insights into underlying generators of neurological disorders (20–22). More 

recently, DCM has motivated and contributed to the development of research in theoretical neuroscience such as predictive 

coding (23), active inference (24) and, interestingly, the Bayesian brain hypothesis, which aims to establish the 

mathematical foundations of how the brain interacts with – and understands – its environment (25).  

 

In this paper, we review and illustrate recent developments in Bayesian inference that enable an efficient procedure for 

learning the structure of coupled dynamical systems. First, we present the theoretical foundations of structure learning – 

using DCM – in a general form that may have wider application in engineering, physics and mathematical biology. We 

then present an example that highlights the usefulness of structure learning in the field of neuroscience. All software 

developments relating to the results in this paper are freely available through the academic SPM software 

(https://www.fil.ion.ucl.ac.uk/spm/). A glossary of technical terms used in this paper is provided in Table 1.  

 

 

Dynamic Causal Modelling and structure learning  
 

The pipeline for studying the underlying generators of neuroimaging data using DCM is shown in Figure 1. The procedure 

begins by designing and conducting an experiment to study some particular function of the brain. Data features are then 

selected from the measured data and one or more hypotheses are formally expressed as (biophysically informed) coupled 
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dynamical systems. A Bayesian (variational Laplace) scheme is then used to infer the settings of the parameters for each 

model (e.g. coupling strengths) and to quantify each model’s evidence. Structure learning is then performed to compare the 

alternative model architectures, using BMS and BMR; in order to identify the best explanation for the underlying generators 

of the data. In the following sections we describe each of these steps in turn, before turning to a worked example. 

 

Figure 1. Structure learning using dynamic causal modelling. a) The pipeline begins by designing an experiment to study a functional 

aspect of the brain, b) followed by recording brain activity using neuroimaging devices, such as MEG or fMRI. c) Feature selection is 

performed on the neuroimaging data; for example, by calculating evoked responses by averaging over trials, or transforming 

neuroimaging data to the frequency domain. d) Having prepared the data, the experimenter postulates several hypotheses (specified as 

models) about the underlying generation of the neuroimaging data. These can be expressed in terms of connections between and within 

brain regions (effectivity connectivity). e) These models are fitted to the data by finding the setting of the parameters that optimise 

variational free energy (F). f) The evidence associated with each model is compared using Bayesian model selection and/or reduction, 

to identify the most likely structure that accounts for the data. Image credits: MRI scanner by Grant Fisher, TN, screen in (a) and (e) by 

Dinosoft Labs, PK, all from the Noun Project, CC BY 3.0. 

Experimental design 
 

A DCM study begins by carefully articulating hypotheses and designing an experiment to test them. Typically, to maximise 

efficiency, there will be two or more independent experimental manipulations at the within-subject level, forming a factorial 

design. There may be additional experimental factors at the between-subject level, for instance to investigate differences 

between patients and controls, which will inform the strategy for sampling participants from the wider population.  The 

hypotheses determine the choice of neuroimaging modality (e.g., M/EEG, fMRI), as well as the data features that will be 

selected and the type of dynamic causal model that will be used.  

 

Feature selection 
 

The next step is to select features in the collected data that are important (i.e., informative) from a modelling standpoint. 

This is known as feature selection or extraction. For example, averaging time series over trials in response to stimulation 



 
 

gives event related potentials (ERPs) (26), or neuroimaging data can be represented in the frequency (27,28) or time-

frequency domain (16). 

 

Model specification 
The hypotheses are then formally expressed in terms of 𝑘 distinct and biologically informed (state space) model 

architectures 𝑀 = {𝑚1, … , 𝑚𝑘}, each describing possible interactions between experimental inputs and neuronal dynamics. 

In effect, a model in DCM can be understood as a dynamical system distributed on a graph, where the neuroimaging data 

captures the activity of each node (either directly – as in fMRI or indirectly via some mapping to sensor space – as in EEG). 

Depending on the scale and fidelity of the neuroimaging measurement, each node could, in principle, correspond to a 

compartment of a neuron, or to an individual neuron, or (more typically) to the average activity of millions of neurons 

constituting a neuronal population or a brain region. At any given scale, connections between nodes in this graph are 

referred to as the effective connectivity; namely, the effect of one node on another.  

 

In general, partially observed discrete-continuous dynamical systems (which commonly arise in many mathematical and 

engineering applications) are well suited for modelling neural interactions (29). The generative (state space) model in DCM 

can be written as follows (30): 

 𝑧̇ = 𝑓(𝑧, 𝑈, 𝜃(𝑓)) 

𝑌 = 𝑔(𝑧, 𝜃(𝑔)) + 𝑐(𝛽0) + 𝜖 
(1) 

The first line in equation 1 governs dynamics of interactions (coupling) within and between nodes of the coupled dynamical 

system, where 𝑧 are (usually unobservable or hidden biological) states with a flow that depends upon parameters 𝜃(𝑓) and 

exogenous or experimental input 𝑈. When the exogenous inputs are random fluctuations or innovations, equation 1 becomes 

a stochastic differential equation. The choice of coupling function 𝑓 (parametrised in terms of extrinsic and intrinsic 

coupling) is usually motivated by biological principles e.g., (31,32). The second line in equation 1 is known as the observer 

function, and links (usually observable neuroimaging) data 𝑌 to the hidden or latent variables e.g., (33,34). In the second 

line of equation 1, the function 𝑔 models the contribution of the hidden states (depending upon parameters 𝜃(𝑔)) to the data. 

The second term in the observer equation, 𝑐(𝛽0), models confounding signal components (e.g., drift) where 𝑐(. ) is typically 

a general linear model with parameters 𝛽0 (e.g., mean of signal) (30,35). In the observer model, 𝜖, denotes the measurement 

error, which is conventionally modelled by a zero mean identically independent process (I.I.D), the covariance of which is 

estimated from the data. Hereinafter, unknown parameters in equation 1 are denoted by 𝜃 which includes model parameters 

𝜃(𝑓), observation function parameters, 𝜃(𝑔) , and parameters 𝜆 that model the covariance of the observation noise (detailed 

in the supplementary material). The dynamics of each node are governed by (a set of) differential equations and the nodes 

are connected to each other. In effect, DCM estimates the parameters associated with the dynamics (i.e., differential 

equations) of each node and the coupling between them. There are many forms of models that have been used in DCM, for 

example, biophysical hemodynamic models (4,33,36–38), neuronal mass (19,31,39) and field models (40), weakly coupled 

oscillators (17), etc.  
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Model identification 
 

Given a prior probability density over the unknown parameters, 𝑝(𝜃), initial states, 𝑧(0), and neuroimaging data 𝑌, DCM 

is used to infer the posterior probability of the parameters of each model, using a gradient descent on variational free energy, 

𝐹, as its cost function (please see supplementary material for further information). The free energy, also known as the 

evidence lower bound in machine learning, is a lower bound on the log model evidence (or marginal likelihood) 𝑝(𝑌|𝑚) 

(m denotes the model). In general, log model evidence is an unknown value, which can be decomposed as follows (30,41): 

 ln 𝑝(𝑌|𝑚) = 𝐹 + 𝐷𝑘𝑙(𝑞(𝜃), 𝑝(𝜃|𝑌)) (2)  

 

In equation 2, 𝐷𝑘𝑙(𝑞(𝜃), 𝑝(𝜃|𝑌)) is the Kullback-Leibler (KL) divergence between the approximate and true posterior over 

the parameters, which are denoted by 𝑞(𝜃) and 𝑝(𝜃|𝑌), respectively. F is (variational) free energy, defined as the difference 

between the accuracy of the model (i.e., expected log likelihood of the model, 𝐸𝑞(𝜃)[ln 𝑝(𝑌|𝑚)]) and the complexity of the 

model (i.e., KL divergence between the prior, 𝑝(𝜃|𝑚) and approximated posterior, 𝑞(𝜃), over the parameters, 

𝐷𝑘𝑙  (𝑝(𝜃|𝑚), 𝑞(𝜃)) (30,42):  

 𝐹 ≅ E𝑞(𝜃)[ln 𝑝(𝑌|𝑚)] − 𝐷𝑘𝑙(𝑞(𝜃), 𝑝(𝜃|𝑚)) (3) 

Given that the log-model evidence - the left hand side of equation 2 - is fixed (although unknown), by maximizing the free 

energy we minimize the divergence between the approximate and true posterior. The free energy 𝐹 scores the goodness of 

a hypothesis (i.e., model), which can be employed for model comparison and for inferring model parameters – where the 

approximate posterior density 𝑞(𝜃) quantifies beliefs about the parameters. To identify the setting of the parameters that 

maximises free energy, DCM uses an estimation scheme known as variational Laplace; namely, variational Bayes under 

the Laplace approximation (i.e., the prior and posterior densities of latent variables have Gaussian distributions). Intuitively, 

maximising the free energy offers a form of regularisation, because the KL divergence term (complexity) in equation 3 acts 

as a penalty. Therefore, as the number of parameters increases – or the (approximate) posterior over parameters deviates 

from the prior – the free energy decreases. This finesses the risk of overfitting or implausible parameter estimates. The KL 

term in equation 3 accounts for both the expected values of the parameters and their covariance, providing a closer 

approximation of the log evidence than the Akaike information criterion (AIC) or Bayesian information criterion (BIC), 

which define complexity as (effectively) the number of parameters, without considering their posterior covariance (43).  

 

To summarise, model identification in DCM is carried out by gradient descent of a variational free energy functional under 

the Laplace approximation (i.e., both prior and posterior densities over parameters have a Gaussian form) to identify the 

parameters of dynamical systems distributed on a graph. Usually, the form of the (ordinary, partial, stochastic or delay) 

differential equations and priors over their parameters are chosen to embody biophysical constraints. These constraints 

usually guarantee a degree of dynamical stability, which is important during model inversion; particularly when using 

approximate Bayesian inference. This is because brittle or highly nonlinear systems violate the Laplace assumption inherent 

in the inversion schemes commonly used in DCM. Generally, the dynamics on each node have simple point attractors 



 
 

(associated with low order Taylor expansions of nonlinear differential equations) (44). Having said this, it is possible to 

consider autonomous dynamics on each node using phase reduction techniques. For example, DCM for phase coupling 

uses hidden neuronal states that are the phase of weakly coupled oscillators, with implicit (quasi) periodic dynamics (17,45). 

 

The scheme described above provides a systematic way of handling the many scenarios where model parameters change 

over time. The simplest example would be the condition specific effects modelled by bilinear coupled dynamical systems 

(37) which were first introduced in the context DCM for fMRI (4). With time varying inputs, bilinear effects entail that the 

coupling (effective connectivity) is itself a function of time and therefore context sensitive. Another important example 

arises in the case of modelling epileptic seizures; where a slow drift of physiological parameters might give rise to changes 

of brain states, from apparently normal to pathological conditions (e.g., via phase transitions and bifurcations) (22). In this 

case, hierarchical linear regression of the parameters, estimated over successive windows of data, can be employed to 

identify coupling that varies with specified experimental variables (46). The first level of the hierarchical model corresponds 

to the coupling estimated within each time window. The second level of the model uses the ensuing coupling (from the first 

level) to model changes (here fluctuations) of the parameters across windows. This approach has proven useful in the 

analysis of longitudinal resting state fMRI data in human neurosurgery patients (47) and for modelling seizure activity in 

rodent (48) and zebrafish (22) models. 

 

These model identification methods facilitate testing hypotheses in an experimental setting. They also enable the validation 

of new models using the DCM framework. Conventionally, models in DCM are validated in three ways; namely, (i) face 

validity, where simulated data is used to ensure known model parameters (and structures) can be recovered following model 

inversion (ii) construct validity, where the inferences from DCM are compared with other (comparable) approaches, (iii) 

predictive validity, which tests whether the posterior predictions of DCM reflect a known or expected effect e.g. a 

pharmacological effect or diagnostic group membership.  

  

 

Structure learning 
 

Having inverted a model to obtain its evidence and parameters, the next step is to ask whether the structure of the model 

could be simplified to further optimise the variational free energy. Recall that the free energy quantifies the trade-off 

between the accuracy and complexity of the model – so if a change to the network structure increases free energy, then the 

model has become more accurate (better fitting the data) and / or less complex (simpler in terms of its parameterisation). 

This process of selecting between network architectures (a.k.a. structure learning) depends on BMS; namely, the selection 

among different models based on their evidence. This process can be performed automatically and rapidly over potentially 

thousands of alternative models, using an approach called Bayesian model reduction. 

 

The hypotheses or models 𝑚1, 𝑚2,…,𝑚𝑘 with free energy 𝐹1, 𝐹2,…,𝐹𝑘, can be compared using Bayesian model 

comparison. For any two inverted models, 𝑚𝑖 and 𝑚𝑗 with free energies of  𝐹𝑖 and  𝐹𝑗 respectively, the log Bayes factor, 

log 𝐵𝑖𝑗  is defined as follows (5,49): 
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ln 𝐵𝑖𝑗 = ln 𝑝(𝑌|𝑚𝑖) − ln 𝑝(𝑌|𝑚𝑗) 

=  (𝐹𝑖 − 𝐷𝑘𝑙[𝑞(𝜃), 𝑝(𝜃|𝑌)]𝑖) − (𝐹𝑗 − 𝐷𝑘𝑙[𝑞(𝜃), 𝑝(𝜃|𝑌)]𝑗) 

≅ 𝐹𝑖 − 𝐹𝑗 

(4) 

 

By estimating the parameters of each model (thereby maximising the free energy), the Kullback-Leibler divergence between 

the approximate and true posterior of the parameters vanishes in the limit (42,43). Therefore, the log Bayes factor can be 

approximated as the difference between free energies of the models. Conventionally, a log Bayes factor above three 

indicates that there is ‘strong evidence’ for model 𝑚𝑖 over model 𝑚𝑗 (5,49). Bayesian model comparison thereby allows 

pairwise model comparison, which in turn can be used to identify which of two models best accounts for the data. The 

posterior probability for each model can then be computed by application of Bayes rule. Under equal priors for each model, 

this simplifies to a logistic (sigmoid) function of the log Bayes factor: 

 𝑝(𝑚𝑖|𝑌) =
1

1 + exp(− ln 𝐵𝐹𝑖𝑗)
 (5) 

This process is easily generalized to comparisons with more than two models, by computing the log Bayes factor of each 

model relative to any one of the models in the comparison set. In some studies, rather than one model corresponding to one 

hypothesis, it can make more sense for a set or family of models to represent a particular hypothesis. This generalisation of 

BMS – where the model space is grouped in several classes or families – is referred to as family-wise model comparison 

(5). To explain this, let model space  𝑀 = {𝑚1,𝑚2 , … . 𝑚𝑘} be grouped into 𝑟, disjoint model spaces  {𝑀𝑖}𝑖=1
𝑟 ∈ 2𝑀 where  

∑ |𝑀𝑖|
𝑟
𝑘=1 ≤ |𝑀|. In this case, the prior probability of each class is 

1

𝑟
. Consequently, the prior probability that a model 𝑗 

belongs to the class 𝑀𝑖 (with cardinal 𝑙) is 𝑃(𝑚𝑗) =
1

𝑟𝑙
. By applying Bayes’ rule over the space of all models, one can 

calculate the posterior probability of model 𝑚𝑗 with evidence p(𝑌|𝑚𝑗), as follows: 

 𝑝(𝑚𝑗|𝑌) =
𝑝(𝑌|𝑚𝑗)𝑝(𝑚𝑗)

∑ 𝑝(𝑌|𝑚𝑘)𝑝(𝑚𝑘)𝑟
𝑘=1

 (6) 

By definition, the posterior probability for each family (i.e., class) is the sum of the posterior probabilities of its constituent 

models. The ensuing family posterior probabilities can then be compared using Bayesian model comparison. One 

ubiquitous application of family comparison is to compare models with and without a common feature or property – for 

example, with or without a particular parameter. In this case, BMS can be performed on the model space comprising two 

groups of models, where the properties of interest appear in only one group. This can be used to establish whether such a 

property is necessary to explain the data at hand. 

 



 
 

By using the statistics detailed above, one can assign a probability to each of a pre-defined set of hypotheses about the 

structure of the neural network and draw conclusions based upon a small number of plausible architectures. An alternative 

approach to structure learning is to apply Bayesian model comparison in what can be called a discovery mode. By 

automatically searching over potentially thousands of alternative model architectures, one can ask whether eliminating any 

substructure (i.e., subset of parameters) of the model would increase the free energy relative to the original (full) model. 

This is made possible by a recent development known as Bayesian model reduction (BMR) (6,50). Assume a (full) model 

𝑚 is fitted to data 𝑌 with prior 𝑝(𝜃|𝑚) and posterior  𝑝(𝜃|𝑌, 𝑚) with the parameter vector 𝜃. Using Bayes’ rule (we have 

dropped the dependency on the model 𝑚 for clarity): 

 

 𝑝(𝜃|𝑌) =
𝑝(𝑌|𝜃)𝑝(𝜃)

𝑝(𝑌)
 (7) 

 

Where the model evidence is 𝑝(𝑌) = ∫ 𝑝(𝑌|𝜃)𝑝(𝜃), the log of which is approximated by the variational free energy. 

Crucially, the priors determine which parameters (e.g., connections) should be informed by the data. Having estimated the 

parameters and free energy of the model, which we will refer to as the ‘full’ model, BMR provides an analytic and rapid 

technique for evaluating the relative evidence for an alternative model, which differs only in terms of the priors 𝑝(𝜃̃). 

Typically, this alternative set of priors will fix certain parameters to their prior mean, thereby reducing or pruning the model 

structure. For this reduced model, the approximate posterior 𝑝(𝜃̃|𝑌) of the parameters under the reduced priors is again 

given by Bayes rule: 

 𝑝(𝜃̃|𝑌)  =
𝑝(𝑌|𝜃)𝑝(𝜃̃)

𝑝(𝑌)
 (8) 

The likelihood function 𝑝(𝑌|𝜃) for the reduced and full models is the same, which enables equations 7 and 8 to be linked 

as follows: 

 𝑝(𝜃̃|𝑌)  = 𝑝(𝜃|𝑌)
𝑝(𝑌) 𝑝(𝜃̃)

𝑝(𝑌) 𝑝(𝜃)
 (9) 

Next, to find the evidence of the reduced model, both sides of equation 9 are integrated over the parameter space. Using 

the fact that ∫ 𝑝(𝜃̃|𝑌) 𝑑𝜃 = 1, the model evidence for the reduced model is as follows: 

 𝑝(𝑌)  = 𝑝(𝑌)∫ 𝑝(𝜃|𝑌)
 𝑝(𝜃̃)

 𝑝(𝜃)
𝑑𝜃 (10) 

Equations 9 and 10 have analytic solutions given Gaussian forms for prior and posterior densities, meaning that the coupling 

parameters and evidence for reduced models can be derived from those of the full model in milliseconds, on a typical 
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desktop computer (51). This speed is leveraged in DCM for automatically discovering an optimal coupling structure for a 

network. In this setting, a greedy search is used, which iteratively generates candidate reduced models with different priors 

(52). Their evidence is evaluated using BMR, and Bayesian model comparison is used to assess whether they should be 

retained or discarded. The ensuing coupling parameters from the best candidate models are averaged (using Bayesian model 

averaging based upon the evidence for each model) and returned as the optimal network structure for those data. 

 

It is worth mentioning that, in our experience, a greedy search over reduced models performs well, and gives similar results 

to manually defined sets of reduced models (52). Nevertheless, other search/optimisation algorithms could be considered 

and their performance compared. The use of a greedy search is purely for computational expediency; in situations where 

the number of combinations of different parameters – that constitute distinct models – becomes prohibitive. When there are 

a reasonable number of models (e.g., in the hundreds), the model comparison (i.e., or reduction) can use an exhaustive 

search. 

 

Bayesian model comparison may be contrasted against another method in the modelling literature – surrogate data testing, 

where the statistics of different data are compared (for instance, the statistics of empirical timeseries are compared against 

a null set of timeseries, generated by a process that lacks a particular parameter) (53). However, Bayesian model comparison 

operates at the level of models rather than summary statistics of the data, to provide a straightforward and efficient method 

for comparing models (without the need for sampling, if variational methods are used). Bayesian model comparison 

properly accommodates both model accuracy and complexity, meaning that any conclusions one draws will adhere to 

Occam’s principle, i.e. the simplest explanation for the data should be favoured. 

 

Drawing conclusions 
 

Together, the procedures described above constitute all the necessary tools for learning the optimal structure of a coupled 

dynamical system – as evinced by some data. We started by defining the free energy, a scalar functional that quantifies the 

trade-off between the accuracy and complexity of a model. This quantity is estimated in the context of a ‘full’ model with 

all coupling parameters of interest. Then, using BMR, the free energy for reduced models are derived analytically – either 

based on a few specified models – or by performing an automatic greedy search over potentially thousands of reduced 

models. Bayesian model comparison is used in both cases, to evaluate which model(s) should be favoured as explanations 

for the underlying generators of the data.  

 

This concludes our overview of the basic approach to coupled dynamical systems. In what follows, we provide two worked 

examples to illustrate the sorts of inference and structure learning that is afforded. Although this example reflects our 

interest (i.e., physiological coupling in the brain) the analyses can, in principle, be applied to any coupled dynamical system 

that can be articulated in terms of (stochastic, ordinary or delay) differential equations. 

 

Worked Examples 
 

To illustrate the theory reviewed in this paper, we consider modelling the neurovascular coupling system, which ensures 

that brain cells (neurons) are adequately perfused with oxygenated blood in an activity-dependent fashion. This illustrates 

dynamical coupling on two levels; first, the coupling between two different physiological systems (neuronal and 



 
 

haemodynamic systems). Second, the coupling among remote neuronal populations that underwrites distributed neuronal 

processing and representations. Understanding the functional architecture of neurovascular coupling facilitates our 

understanding of ischaemic brain injury (i.e., stroke) and, in research, establishes the origin of fMRI time series used in 

brain mapping. In short, neurovascular coupling determines how blood dynamics are altered due to neuronal demands for 

energy (35,54). The challenge in this field is that it is not possible to measure the activity of this system noninvasively in 

the human brain, and therefore modelling-based approaches have been widely applied.  

 

In the following example, a coupled (biophysically informed) dynamical system that models the behaviour of neuronal 

responses and the vascular system was employed. This is illustrated for a single brain region (one node of the coupled 

system) illustrated in Figure 2. In this model, a canonical microcircuit (CMC) accounts for laminar-specific connections in 

a small area of cortex known as a cortical column. Dynamic causal models at this level of (neuronal) detail usually requires 

fast electrophysiological measurements such as M/EEG (17). Blood vessel dynamics caused by fast neuronal activity are 

captured by a haemodynamic model, the parameters of which are generally inferred using functional MRI (33). The 

intermediate system linking (fast) neuronal and (slow) haemodynamics is known as neurovascular coupling, which is the 

focus of the modelling work described below.  

 

It is worth emphasising that the kind of model inversion problem illustrated here is extremely challenging, which is why it 

has driven multiple technical and theoretical developments. The single region model presented here comprises 12 

unobserved biological states that operate on different time scales (the time resolution of the neuronal system and vascular 

dynamics are milliseconds and seconds respectively) with unknown coupling, as well as unknown parameters that link 

neuronal and vascular parameters to the observed fMRI and EEG recordings. The Bayesian methods reviewed here provide 

a useful basis for addressing profoundly ill posed problems in structure learning of coupled dynamical systems. 
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Figure 2. Macroscale model of neuronal to vascular pathway dynamics in a single brain region. This model (34) couples neuronal 

electrical activity (canonical micro circuit, CMC) with neurovascular units (e.g., astrocytes), which regulate / alter changes in blood 

flow and deoxygenation (the haemodynamic response). The CMC model comprises four populations: 1) spiny stellate cells, 2) superficial 

pyramidal cells, 3) inhibitory interneurons, and 4) deep pyramidal cells. Each population is coupled to other populations via excitatory 

or inhibitory connections. In addition, a self-inhibitory connection – illustrated as a circular arrow – exists for each population (including 

excitatory populations) that models the gain or sensitivity of each population to its inputs, which is an inherent property of the dynamics 

of neuronal populations. EEG or MEG capture neuronal responses (modelled by interconnected CMC models), which may be distorted 

by the scalp – and are typically mixed with the activity of other nodes or sources. The fMRI signal derives from the haemodynamic part 

of the model. Changes in activity of neuronal populations (pre- or post-synaptic potentials) excite neurovascular coupling that in turn 

causes (e.g. by the release of nitric oxide) changes in blood flow. This is accompanied by changes in blood volume and a reduction in 

the level of deoxyhaemoglobin (dHb) in blood vessels, which give rise to the Blood Oxygen-Level Dependent (BOLD) response, measured 

using fMRI. Image credits: MRI scanner by Grant Fisher, TN from the Noun Project, CC BY 3.0. 

 

Worked Example 1: Bayesian Model Reduction for structure 
learning 
 

The aim of the first example is to showcase an application of BMR to modelling the neurovascular system using fMRI time 

series (55). This analysis used an fMRI dataset from a previously conducted experiment, investigating the neural response 

to attention to visual motion (56). Three brain regions (i.e., nodes) were identified that showed significant experimental 



 
 

effects (visual areas V1, V5 and the frontal eye fields, FEF) and representative timeseries were extracted from each region 

(i.e., feature selection). To explain the underlying generators of these timeseries, a DCM was specified comprising three 

canonical microcircuits (modelling within-region connectivity) that were coupled by between-region connections, creating 

a hierarchy of distributed processing nodes. The (presynaptic) input signal to each neuronal population in the CMC model 

comprises three components: two signals that are received from excitatory and inhibitory populations, and a third that is 

the summation of extrinsic inputs from distal regions. A weighted sum of these three signals (per neuronal population) form 

the input to the haemodynamic model. The weights that are inferred using DCM and BMR are then used to identify the 

optimal reduced coupling structure – the minimal set of neurovascular parameters – that best explain the data. 

 

 

Figure 3. Structure learning of neurovascular coupling using BMR. Panel (a) shows the posterior density over the neurovascular 

coupling parameters, modelled as the scaled sum of inhibitory (negative), excitatory (positive) and extrinsic signals to each population 

(i.e., SP: superficial pyramidal neuron, SS: spiny stellate cell, II: inhibitory interneuron and DP: deep pyramidal neuron). In panel (b), 

Bayesian model reduction (BMR) was performed using the posterior estimates of the parameters to identify a subset of parameters that 

best accounted for the data.  The bar plots show the posterior expectations and 90% credible intervals of the neurovascular coupling 

parameters. Positive values indicate a positive contribution of a particular neuronal population to the overall vasodilatory signal, and 

negative values indicate a negative contribution of a neuronal population. The numbers associated with each population (1-4) correspond 

to the four neuronal populations in Figure 2. For this single subject’s data, inhibitory inputs to the superior and deep pyramidal 

populations had a negative influence on the haemodynamic response. Smaller positive influences on the haemodynamic response were 

due to inhibitory inputs to spiny stellate cells and extrinsic inputs to deep pyramidal cells. 

The parameters of this model were estimated using the fMRI data (model identification), and those relating to neurovascular 

coupling are shown in Figure 3 (left). Next, BMR was applied, using an automatic greedy search over reduced models, to 

ask whether there was any sub-structure in the neurovascular model parameter space that could that could equally well 

account for the data, relative to the full model. The optimal reduced model is shown in Figure 3 (right), where inhibitory 

signals to three of the neuronal populations played a predominate role. From this single subject data, one could conclude 
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that the origin of the BOLD signal can be primarily explained by the contribution of inhibitory inputs to superficial 

pyramidal cells, deep pyramidal cells and spiny stellate cells. In other words, the origin of the BOLD response is linked to 

the activity of inhibitory populations. This result was a technical illustration and confirming it would require a group study 

with a representative sample of the population. Nevertheless, it demonstrates that DCM and BMR enable the investigation 

of architectural questions about the underlying generators of fMRI time series using non-invasive recordings. In particular, 

the use of BMR with an automatic search allowed a fast and efficient search over a large model space.  

 

Worked Example 2: Bayesian fusion 
 

This second study focussed on Bayesian fusion across neuroimaging modalities - MEG and fMRI. Data were collected 

using each modality, under the same cognitive task (an auditory oddball paradigm), to inform the neuronal and 

neurovascular / haemodynamic parts of the model, respectively (57). In the previous example, the neuronal part of the 

model had various parameters fixed (e.g., synaptic time constants), to estimate the neurovascular parameters using only 

fMRI data. In this second study, the objective was to develop a modelling scheme that utilizes the high temporal resolution 

of MEG to infer the parameters of the neuronal part of the model, before using the fMRI data to infer parameters of the 

neurovascular / haemodynamic part. Bayesian model selection was then used to infer the optimal reduced structure of the 

combined MEG-fMRI-informed model. 

 

To enable flexible coupling of different neural and neurovascular models, this study introduced an interface between them 

called neuronal drive functions (Figure 4). These play a crucial role in the following analysis. First, active brain regions are 

identified from the fMRI data, using standard methods (i.e., statistical parametric mapping, SPM). The coordinates of 

activated regions are then used as spatial priors in the specification of the DCM for MEG model. By inverting this model, 

DCM for MEG identifies the generators of event related potentials (19) in terms of functional architectures; namely, 

condition-specific changes in intrinsic (within-region) and extrinsic (between-region) connectivity. Using the posterior 

expectations of the neuronal parameters, the canonical microcircuit DCM is then used to generate synaptic responses to 

each experimental condition (Figure 4b) – the neural drive functions. Finally, these functions (aligned to the timing of 

stimuli in the fMRI experiment) are used to drive a haemodynamic model of BOLD responses (Figure 4c) (57). The 

contribution of each population to the BOLD response is parameterised (βn), where these parameters are estimated from 

the fMRI data. By specifying models with different parametrisations, this procedure enables comparison of different models 

of neurovascular coupling (BMS).  

 



 
 

 

Figure 4. Multi-modal DCM for MEG-fMRI pipeline. a) The neural network is modelled with a canonical microcircuit (CMC) for each 

brain region (i.e., node). The parameters of the CMC model are estimated using DCM for MEG, with spatial priors determined by a 

mass-univariate regression analysis of the fMRI data. b) Condition specific neuronal response functions are simulated from the CMC 

model using the estimated parameters, associated with each population (P1,…,P4) and each experimental condition. The top row shows 

(impulse) response functions from neuronal populations SS and SP, and the bottom row shows (impulse) response functions from 

populations II and DP, for a single experimental condition. c) The inputs to the haemodynamic model are calculated by summing and 

temporally shifting (convolving) the neuronal response functions with the timeline of the experimental stimulation in the fMRI paradigm. 

The ensuing neuronal drives from each population are scaled by parameters β to form a neurovascular signal, s(t), which forms the input 

to the haemodynamic model. The haemodynamic model is fitted to the fMRI time series and hypotheses are tested by comparing the 

evidence for reduced models with different combinations of β parameters switched on or off. 

This study also provides an opportunity to illustrate the use of pre-defined model spaces. Whereas in the first example, an 

automatic search was conducted over reduced models; here, a set of carefully specified models were compared to test 

specific experimental questions or factors. The ensuing set of models – the model space – characterised neurovascular 

coupling in terms of four factors or questions. In brief, the factors were: (i) whether there were presynaptic (37) or 

postsynaptic (54) contributions to the neurovascular signal, (ii) whether neuronal responses from distal regions excite 

neurovascular coupling (38),  (iii) whether the neurovascular coupling function was the same across all regions or should 

be defined in a region-specific way (39), and finally (iv) whether a first or second order differential equation should be used 

for the dynamics of the neurovascular system, to determine if there was any delay between neuronal activity and the ensuing 

BOLD response (40,41). A total of 16 candidate models, with different combinations of these four factors, were evaluated 

using Bayesian model comparison. For each of the four experimental questions, the 16 models were grouped into families 

(e.g. all models with presynaptic vs postsynaptic input) and the probability for each family computed. 
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In this illustrative single subject study, the results of family wise BMS on each group of models identified strong evidence 

(with nearly 100% posterior confidence) for the following: 

 

 (i) The BOLD effect was caused by presynaptic signals, which is in line with the findings of (37), which found mean 

neuronal firing rates (presynaptic signals) induced BOLD signals. 

(ii) Regional neuronal drives to haemodynamic responses induced vascular perfusion. This is consistent with general 

opinion that local neuronal activity induces BOLD contrast. 

(iii) The strength of neurovascular coupling was region specific. This is in agreement with invasive recordings using 

animal studies suggesting that neurovascular coupling varies from brain region to region (39). 

(iv) The response of the BOLD response to neuronal activity was instantaneous, rather than delayed. 

 

This example illustrates some of the intricacies of structure learning using DCM and BMS. First, hypotheses about 

biophysical processes can be expressed formally as models, and in particular as a factorial design (i.e., a model space that 

can be partitioned among different factors or attributes). Second, data from different neuroimaging modalities can be 

combined using Bayesian fusion, where different parts of the model are informed by different modalities. For flexibility 

and efficiency of model inversion, neuronal drive functions were introduced to act as a bridge between neural and 

haemodynamic models. Finally, each experimental question can be addressed through family-wise Bayesian model 

comparison. In summary, these two example applications illustrate the application of DCM, BMR and BMS to structure 

learning based on multi-modal neuroimaging data.  

 

Discussion 
 

In this paper, we have reviewed a suite of recently developed methods for structure learning in the context of coupled 

dynamical systems. In particular, we showcased applications in neuroscience using dynamic causal modelling (DCM) – the 

Bayesian inversion of biophysically informed coupled dynamical systems, and Bayesian model selection (BMS) and 

reduction (BMR) for assessing the evidence for different models or hypotheses. To date, these tools have mainly been 

applied in the context of cognitive and clinical neuroscience – to unravel the functional architectures underlying 

neuroimaging data. DCM offers an efficient way to estimate the parameters of large-scale dynamical system based on a 

gradient descent of a variational free energy functional. This functional inherently scores different candidate architectures 

and coupling functions in terms of a trade-off between accuracy and model complexity.  

 

In a general setting, DCM, BMS and BMR offer efficient pipelines for modellers to identify coupled dynamic systems in 

an evidence-based fashion. DCM has been applied to a wide range of problems including parameter estimation for 

deterministic (58) and stochastic (36,59) dynamical systems using time, frequency or time-frequency domain information. 

In addition, DCM has been found to be useful for studying large networks, based on the centre manifold theorem (44) and 

parameter estimation of dynamical systems on a manifold (60). These examples demonstrate that structure learning based 

on DCM, BMR, and BMS provide a general and efficient method that can be applied to a wide range of modelling problems 

of real word physical systems.  

 

One might ask whether dynamic causal modelling has real word clinical applications, beyond research. For instance, would 

it be possible to use DCM as a part of biological control system, to suppress or prevent unwanted activity in a diseased 



 
 

brain (e.g., epileptic seizures, or the symptoms of Parkinson’s disease)? This question has been addressed in the setting of 

Parkinson’s disease (61); however, there is a long road ahead before these models are sufficiently well developed and 

validated to be used in the treatment of neurological disorders. In a research context, an avenue receiving much attention is 

how to validate theories of brain function based on predictive coding and more generally the Bayesian brain hypothesis – 

and in particular, how to identify the mechanisms of information transfer between layers of cortex (24,25,62). Here, tools 

such as the CMC model, variational Laplace and structure learning using BMS and BMR are likely to prove useful.  
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Table

Table 1: glossary of terms that are used in the paper and their description. 

 

Term General Description 

Bayesian belief updating 

Bayesian belief updating is the updating of probabilities as new data are acquired. An 

example is found in the context of inverting nonstationary EEG time series that 

undergoes transition into and out of paroxysmal activities (15).  In this case, EEG data 

is first divided into several locally (quasi) stationary segments. Then, DCM is 

performed on the first segment to infer posterior parameter estimates. The ensuing 

estimate becomes the prior for the subsequent segment and so on. This is Bayesian 

belief updating over time. A trajectory of parameters over segments can then be 

constructed to characterise the dynamics of the nonstationary data. 

Bayesian fusion and 

multimodal data  

integration 

Bayesian fusion makes combined inferences about a (physical) system based on 

different kinds of observation, in order to model the system’s dynamics. For instance, 

Bayesian fusion of models fitted to fMRI and M/EEG data can be used to understand 

the function of neurovascular coupling. The spatial specificity of fMRI is employed to 

localise active neuronal sources. This spatial information is used as a prior for source 

localisation within a model of M/EEG data, which is employed to estimate neuronal 
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parameters. The estimated neuronal parameters are taken as priors for the inversion of 

haemodynamic responses (i.e., Bayesian fusion) from fMRI time series. Therefore, 

combining these modalities provides a better understanding of neurovascular coupling 

than could be derived from either modality independently. 

Bayesian model 

comparison 

Quantification of the relative evidence for different models of the same data. Typically 

this is expressed as a Bayes factor, which is the ratio of the model evidence (marginal 

likelihood) for each model relative to a selected comparison model.  

Bayesian model reduction 

(BMR) 

A statistical method for rapidly computing the posterior probability density over 

parameters and the log model evidence for a reduced model, given the parameters and 

log model evidence of a full model. Here, reduced and full models differ only in their 

priors. Under Gaussian assumptions, this has an analytic form. 

Bayesian model selection 

(BMS) 

The selection of one or more of models with the highest evidence from a set of 

candidate models following Bayesian model comparison. 

Canonical micro circuit 

(CMC) 

The CMC is a biologically informed microcircuit model of laminar connectivity in the 

cortical column (17,34). It comprises four populations whose activity can replicate a 

realistic pattern of M/EEG signals. Each population generates postsynaptic potentials 

(modelled by second order differential equations) induced by presynaptic firing rates 

from external sources (interregional or distal populations, and/or exogenous inputs). 

These postsynaptic potentials generate presynaptic firing rates (via a sigmoid 

transformation), which in turn excite or inhibit other populations. 

Compressive sensing 

based dynamical system 

identification (9) 

Compressive sensing is a well-established signal processing method for reconstructing 

sparse signals from data. Recently it has been applied for identification of fully 

observed dynamical systems (i.e., all states of the system are measured) with the 

assumption that the evolution of states can be modelled using (linear in parameters) 

power series and that the underling structure (coupling between nodes) of the system 

has a sparse form. Given these assumptions, it can be shown that the relation between 

measured timeseries and model states can be formulated as a linear function, 

parametrised by unknown parameters. Compressive sensing is then applied to find the 

sparse parameter vector that best explains the data. 

Cortical column  

The human cortex can be approximately divided into cylinders of diameter 500 µm 

where neurons within each cylindrical column activate in response to a particular 

stimulus. 

Data assimilation (63) & 

model identification (64) 

Data assimilation is a term that was coined by meteorologists in the mid-20th century. 

It uses (and combines) a wide range of mathematical methods such as nonparametric 

statistical models (auto regressive models), nonlinear Kalman filters, statistical 

interpolation, nonlinear time series analysis and nonlinear system identification to 

establish models useful for weather prediction (65). Model identification is a more 

general term that accounts for constructing models describing a phenomenon, which 

includes model construction and parameter estimation. 

Data feature 

In general, quantities that are useful for distinguishing/discriminating different 

regimes of a system are referred to as data features. In DCM, conventionally, models 

are either fitted to the raw data directly, or to data features such as autoregressive 

coefficients that model the power spectrum, power spectral densities (from time-

frequency analyses) and principal components/modes and the phase of data. Extracting 

particular features of the data for modelling is known as feature selection, and is 

typically conducted as an initial step in the modelling pipeline. 

Effective connectivity 

Effective connectivity can be understood in relation to functional and structural 

connectivity (66). Functional connectivity is defined as a statistical dependency (such 

as correlation or transfer entropy) between multi-channel brain data (e.g., fMRI, 

M/EEG). Structural connectivity refers to the strength of anatomical connections 

between brain regions and can be estimated, for instance, using diffusion tensor 

imaging. Effective connectivity is the directed effect of neural populations on each 

other, under a particular experimental setting or task. Inferring effective connectivity 

typically requires combining brain imaging data with a biologically informed model 

of brain activity. This enables one to elucidate (i) underlying biological generators of 



 
 

the data (ii) how different experimental inputs (or conditions) alter the effective 

connectivity.   

Electroencephalography 

(EEG) and 

Magnetoencephalography 

(MEG) 

M/EEG are non-invasive neuroimaging techniques that capture dynamics of neuronal 

activity with millisecond temporal resolution (on the same order as the temporal 

dynamics of synaptic activity). EEG captures ensemble neuronal membrane potential 

voltages using grids of electrodes placed on the scalp, whereas MEG measures 

accompanying fluctuations in magnetic fields that can be captured using arrays of 

magnetometers (known as superconducting quantum interference devices). The MEG 

signal is subject to less distortion by the skull and scalp than EEG. 

Functional magnetic 

resonance imaging (fMRI) 

fMRI is a non-invasive neuroimaging technique that measures changes of blood flow 

and oxygenation with a fine spatial resolution (effectively up to 0.5 𝑚𝑚) due to 

neuronal activation and the neurons’ subsequent consumption of oxygen. fMRI 

measures the blood-oxygen-level dependent (BOLD) response to brain activity. 

Changes in the measurement at each location (voxel) forms a time series, which is 

analysed using the analytic techniques reviewed here. 

Haemodynamic response 

This describes the process by which neuronal activation causes changes in blood flow, 

blood vessel volume and the dynamics of deoxyhaemoglobin. It can be modelled by a 

dynamical system known as the extended Balloon model (33). 

Ill-posed problem and 

model identification in 

DCM 

The identification of biological mechanisms generating measurable brain data is, in 

general, an ill posed problem. This is predominately because (i) for most brain imaging 

techniques only partial, indirect, noisy and nonlinearly mixed data are available (e.g., 

EEG is mostly generated by the activity of a small proportion of pyramidal populations 

and has poor spatial resolution, fMRI is an indirect measure of neuronal activity with 

poor temporal resolution due to the smoothing effect of haemodynamics) and (ii) given 

the complexity of biological models, there are typically many parameters giving rise 

to similar data. With DCM, the ill-posed problem is addressed by setting suitable prior 

constraints on model parameters. 

Inhibitory, excitatory and 

pyramidal neuronal 

population (31) 

Intuitively, postsynaptic potentials generated by inhibitory interneurons reduce the 

depolarisation and subsequent activity of target populations. Conversely, excitatory 

interneurons increase the activity of target populations. Pyramidal cells are excitatory 

and can be found in superficial and deep layers of the cortical column.  

Kullback-Leibler (KL) 

divergence 

This is a measure of the difference between two distributions. However, it is not a 

metric since it is not commutative (62). As explained in this paper, it can be used to 

score the complexity of a model (the difference between posterior and prior probability 

densities over model parameters). 

Log likelihood 

The log probability of the observed data given the model, under a particular set of 

parameters (25,30). In this paper, it serves as the accuracy of a model in terms of the 

probability of producing the observed data features. Integrating over the unknown 

model parameters gives the model evidence (or marginal likelihood).  

Neurovascular coupling 

and neural drive function 

Neurovascular coupling refers to physiological pathways that enable communication 

between neurons and blood vessels (55). A neuronal drive function is the scaled sum 

of neuronal activity, which is estimated using DCM for electrophysiological (e.g., 

EEG/MEG) recordings, and forms the input to a model of the neurovascular system 

(56).    

Model architecture 

Model architecture – in this paper – refers to a dynamical system distributed on a 

graph, consisting of nodes (e.g., neuronal populations) and edges; i.e., coupling or 

connections between the nodes. The dynamics of each node are governed by 

differential equations. In DCM, connections are set as being present (informed by the 

data) or absent (fixed at zero) by specifying the variance of Gaussian prior probability 

densities. 

Statistical Parametric 

Mapping (SPM) (7) 

SPM is freely available software for analysing brain imaging data such as fMRI, MEG 

and EEG. It includes statistical routines (e.g., general linear model, random field 

theory, variational Bayes, voxel based morphometry, statistical hypothesis testing, 

statistical signal processing, to name but a few). SPM also refers to a method for 

producing maps of parametric statistics, to test for distributed neural responses over 

the brain. The SPM software package also includes the dynamic causal modelling 
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(DCM) toolbox, which enables the modelling of the underlying biological generators 

of neuroimaging data. 

Time-evolving dynamical 

Bayesian inference (10) 

A form of sequential Bayesian inference, developed to infer time-dependent coupling 

of noise-driven weakly coupled dynamical systems (e.g., coupled limit-cycle, phase, 

and chaotic oscillators). Given successive segments (in time) of data, the algorithm 

maximises the likelihood (and posterior probability density over unknown parameters) 

in the first segment. Then, a corrected form of posterior estimate of the parameters is 

considered as the prior of parameters in the next segment and so on. With this method, 

belief updating from one segment to the next is accompanied by applying a diagonal 

(correction) matrix to the covariance estimate of the parameters, preventing 

correlations among parameters propagating over time. 

Tracking based parameter 

identification in dynamical 

system (8) 

Constant parameters in a dynamical system have zero temporal evolution. Therefore, 

they can be considered as state variables with trivial dynamics. The trivial dynamics 

of parameters can be absorbed into a state space model by augmenting the original 

equations of the system (thereby named an augmented dynamical system). A filtering 

method (e.g., nonlinear Kalman filter) can then be applied to reconstruct (estimate) the 

dynamics the augmented system that includes slowly fluctuating parameters. The 

mean and variance of the resulting parameter estimates can be taken as posterior 

estimates of constant parameters of the original dynamical system. 

Variational Laplace 

Variational Bayes under the Laplace assumption. A scheme for approximate Bayesian 

inference in which the priors and approximate posteriors are (multivariate) normal. In 

contrast to most variational schemes, variational Laplace uses a gradient ascent on 

variational free energy. This is important because it eschews the need for analytic 

solutions and the use of conjugate priors. This means that model inversion uses exactly 

the same optimisation scheme for any given generative model. 
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This brief note explains the parameter estimation routine in DCM. Detailed explanation can be found in (1,2). A generic 

form of a nonlinear model with unknown parameter vector 𝜃 is as follows: 

 𝑦 = 𝑔(𝜃) + 𝑒 (A1) 

In equation (A1),  𝑒 is an additive error term with Gaussian distribution 𝑒~𝑁(0, 𝐶𝑦) (where 𝐶𝑦 is a covariance matrix). The 

inverse of the error covariance matrix is called the precision matrix and is denoted by Π𝑦. The precision matrix can be 

decomposed using known precision basis functions 𝑄𝑖  as follows: 

 

 Π𝑦 = 𝐶𝑦
−1 = ∑ exp(𝜆𝑖) 𝑄𝑖

𝑖

          (A2) 

In equation (A2),  scalar 𝜆𝑖 is called a hyperparameter (since it is used to define the distribution of the error term) and 𝑖 is 

the number of the precision component. The aim of model inversion is to infer the posterior probability of parameters 𝜃 

and hyperparameters 𝜆 given their (normal) prior densities which are denoted by 𝑝(𝜃) = 𝑁(𝜃; 𝜇𝜃 , 𝐶𝜃) and 𝑝(𝜆) =

𝑁(𝜆; 𝜇𝜆, 𝐶𝜆), respectively. An iterative optimisation scheme is used in DCM that searches for settings of the parameters 

that maximise the log model evidence ln 𝑝(𝑦) (1,2). However, since in practice the log model evidence cannot be computed 

exactly, and an approximation called the negative variational free energy functional 𝐹 (or evidence lower bound) is used 

and is returned by DCM. The negative variational free energy, hereafter the free energy, is used as the basis for comparing 

the evidence for different candidate models (Bayesian model selection).  

 

The scheme for estimation of model parameters in DCM is called variational Bayes method under Laplace approximation 

(a.k.a, variational Laplace), and is employed to approximate posterior densities of parameters with Gaussian distributions. 

The approximation can be evaluated in terms of the difference (𝐾𝐿 divergence) between the true posterior 𝑝(𝜃, 𝜆|𝑦) and 

the approximated Gaussian posterior 𝑞(𝜃, 𝜆) over the parameters. However, since the true posterior is not known, the 

difference cannot be computed directly, and the goodness of the approximation needs to be evaluated indirectly through 

optimisation of the free energy. This follows because the log model evidence can be expressed as the algebraic sum of the 

negative free energy 𝐹 and the KL divergence, given in Equation 2 of the main text and re-expressed here for convenience: 

 ln 𝑝(𝑦) = 𝐹 + 𝐾𝐿[𝑞(𝜃, 𝜆)||𝑝(𝜃, 𝜆|𝑦)] (A3) 

As the left hand side of this equation - the log model evidence log 𝑝(𝑦) – is a fixed value, maximising the free energy 𝐹 

will minimize the difference between the approximate and true parameter densities.  

 

Estimation of the densities in DCM rests upon a mean field approximation, meaning that probability densities over the 

parameters and hyperparameters are treated as independent and can therefore be factorised. The posterior density over the 

parameters 𝑞(𝜃, 𝜆) factorise as follows: 
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𝑞(𝜃, 𝜆) = 𝑞(𝜃)𝑞(𝜆) 

 𝑞(𝜃) = 𝑁(𝜃, 𝑚𝜃 , 𝑆𝜃) 

𝑞(𝜆) = 𝑁(𝜆, 𝑚𝜆, 𝑆𝜆) 

(A4) 

This allows estimation of parameters and hyperparameters to be carried out separately. Under the mean field approximation, 

the free energy functional can be written as follows: 

 𝐹 = ∫ ∫ 𝑞(𝜃)𝑞(𝜆) ln 𝑝 (𝑦, 𝜃, 𝜆)𝑑𝜃𝑑𝜆 − ∫ 𝑞(𝜃) ln 𝑞(𝜃) 𝑑𝜃 − ∫ 𝑞(𝜆) ln 𝑞(𝜆) 𝑑𝜆 (A5) 

In DCM, to calculate the free energy in equation (A5), the function ln 𝑝 (𝑦, 𝜃, 𝜆) is approximated around the estimated 

posterior mean of unknown parameters using a second order Taylor series expansion - formally known as a Laplace 

approximation (1). In effect, equation (A5) can be expressed in a closed form (i.e., analytically) in terms of Gaussian 

functions.  

 

To find the posterior density over the parameters, iterative maximization of the Laplace approximation of the following 

energy integrals is performed by the DCM software:    

 
𝐼𝜃 = ∫ 𝐿(𝜃, 𝜆)𝑞(𝜆)𝑑𝜆 

𝐼𝜆 = ∫ 𝐿(𝜃, 𝜆)𝑞(𝜃)𝑑𝜃 
(A6) 

In equation (A6), 𝐿(𝜃, 𝜆) = log[𝑝(𝑦|𝜃, 𝜆)𝑝(𝜃)𝑝(𝜆)] is the likelihood function. During the ensuing iterations, the posterior 

mean of the parameters (in the same way for hyperparameters) are updated using the following rule: 

 𝜇𝜃
𝑛𝑒𝑤 = 𝜇𝜃

𝑜𝑙𝑑 + 𝛿𝜇𝜃 (A7) 

In the equation (A7), 𝛿𝜇𝜃is the step size for updates to the model parameters. This is defined as 𝛿𝜇𝜃 = −𝐻𝜃
−1𝐽𝜃 where 𝐽 

and 𝐻  are the gradient (𝐽𝜃 =
𝛿𝐼𝜃

𝛿𝜇𝜃
) and Hessian (𝐻𝜃 =

𝛿2𝐼𝜃

𝛿𝜇𝜃𝑖
𝛿𝜇𝜃𝑗

 ) of the free energy functional. In effect, equation (A7) 

resembles a Newton update method. Intuitively, in the region that the gradient changes slowly, changes to the parameters 

are large to avoid an unnecessary search, making the proposed algorithm efficient. The posterior covariance of the 

parameters is defined as negative inverse curvature 𝑆𝜃 =  −𝐻𝜃  (for hyperparameters  𝑆𝜆 =  −𝐻𝜆). The estimation scheme 

iterates over the parameters and hyperparameters until the free energy quantity ceases to change significantly.  
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