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A major goal in neuroscience is to understand how populations of neurons code for

stimuli or actions. While the number of neurons that can be recorded simultaneously

is increasing at a fast pace, in most cases these recordings cannot access a complete

population: some neurons that carry relevant information remain unrecorded. In

particular, it is hard to simultaneously record all the neurons of the same type in a

given area. Recent progress have made possible to profile each recorded neuron in a

given area thanks to genetic and physiological tools, and to pool together recordings

from neurons of the same type across different experimental sessions. However,

it is unclear how to infer the activity of a full population of neurons of the same

type from these sequential recordings. Neural networks exhibit collective behaviour,

e.g. noise correlations and synchronous activity, that are not directly captured by a

conditionally-independent model that would just put together the spike trains from

sequential recordings. Here we show that we can infer the activity of a full population

of retina ganglion cells from sequential recordings, using a novel method based on

copula distributions and maximum entropy modeling. From just the spiking response

of each ganglion cell to a repeated stimulus, and a few pairwise recordings, we could

predict the noise correlations using copulas, and then the full activity of a large

population of ganglion cells of the same type using maximum entropy modeling.

Remarkably, we could generalize to predict the population responses to different

stimuli and even to different experiments. We could therefore use our method to

construct a very large population merging cells’ responses from different experiments.

We predicted synchronous activity accurately and showed it grew substantially with

the number of neurons. This approach is a promising way to infer population activity

from sequential recordings in sensory areas.
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Introduction

A major goal of neuroscience is to understand how populations of neurons process sensory
stimuli. This understanding is limited because, among other reasons, accessing the activity
of all neurons of a sensory structure is very challenging. Most techniques only give access to
a small fraction of neurons [1, 2] (but see [3, 4]), leaving as hidden variables many neurons
that may play a role in information processing but are not recorded.

To overcome this issue, an emerging, ‘divide and conquer’ approach is to first classify
the neurons in a given area into different cell types, where neurons of the same type are
supposed to be functionally identical. Then, in a second step, one can characterize the
neuronal function of each cell type, to eventually predict how populations composed of all
the neurons of the same type will respond to sensory stimuli.

There has been tremendous progress recently in achieving the first step of this approach.
Several studies have shown that it is possible to cluster cells in different homogeneous types
[5]. This can be done using either the responses of each cell to several standard stimuli [6–8],
or using genetic tools [9, 10]. These methods have proven successful in isolating most cell
types in the retina [7, 11, 12] and there are several ongoing studies trying to apply these
approaches in the cortex [13].

For the second step, many studies have tried to model and predict how neurons of a
single type respond to complex stimuli. This strategy has been applied in the retina [14–
18] and in many low-level areas [19–21]. A complementary strategy is to use mouse lines
expressing GFP in specific cell types in order to record sequentially (i.e. repeatedly across
different experiments) from cells that are functionally identical. This has been performed in
the retina [6, 22] and enables one to present as many stimuli as desired to cells belonging to
the same type. It is thus possible to gather a lot of information about how single neurons
of a well-defined cell type will respond to many different sensory stimuli, using sequential
recordings of neurons of the same type taken from different experiments.

Extensive characterization of single cell responses to sensory stimuli is thus possible. The
next challenge is to infer how the entire ensemble of neurons of a single type responds together
to stimuli. Ideally, one would like to record from all the neurons of a given type, but this is
rarely possible.

One possible strategy is to use these sequential recordings from cells of the same type to
reconstruct how the entire population will respond. However, reconstructing the activity of
a full population from sequential recordings cannot be done by simply pooling the responses
to a given stimulus from many sequential recordings. In many cases, pairs of neurons are
correlated due to shared noise (noise correlation), which might significantly reshape the
neurons’ activity [23], and play an important role in information encoding and transmission
[15, 24–29]. Because these noise correlations cannot be predicted from sequential recordings,
a model is needed to predict them and therefore to infer the activity of a full population of
neurons of the same type.

Previous works have tried to model and predict the activity of ensembles of neurons in
the retina [15, 30–33]. However, they were fitted and tested on ensemble of neurons recorded
simultaneously, and it is unclear if they can generalize to predict correlated activity across
experiments, a critical feature necessary to reconstruct activity from sequential recordings.
Overall firing rates will vary between experiments, and this variation will make these models
unlikely to predict noise correlations across experiments.
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Here we address this issue and propose a method to infer the activity of an entire popu-
lation of neurons of the same type from sequential recordings in the retina. Our method as-
sumes that we have access to many single cell recordings gathered from different experiments
of neurons of the same type, where the same stimulus has been displayed, and additionally
to a few recordings of pairs of neurons of the same type. We used these data to reconstruct
the activity of a large population of neurons, with a shared noise consistent with the paired
recordings.

We applied this method in the rat retina, where the activity of many neurons of the same
type can be recorded through repetitions of multi-electrode array experiments [3], so that the
method can be validated. We first show that a copula-based analysis [34–37] of synchronous
activity allows a simple description of noise correlations, that is invariant across stimulus
identities and experimental preparations. This description depends only on the individual
activities of pairs of cells and on their physical distance. This result allowed us constructing
a model based on copulas and to predict -across experiments- the extent of pairwise noise
correlations from sequential recordings of neurons of the same type. From this estimation of
pairwise correlations we then used a time-dependent maximum entropy model [31–33] to infer
the activity of the full population of neurons of the same type. We show that this method
is accurate and reproduces several features of the recorded population activity. We then
applied our method to infer the activity of a large population of neurons of the same type,
beyond what can be currently recorded experimentally. Thanks to our inference method, we
could estimate the extent of synchronous firing in such a large population, and show that it
grows significantly for large populations.

As soon as sequential recordings of many cells of the same type will be available also in
cortical systems, it will be possible to apply our method to reconstruct the activity of large
populations even beyond the retina.
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Results

Overview of the inference method

The purpose of our method is to reconstruct the activity of a population of neurons of the
same type from their individual responses to a same stimulus. Part of this population activity
is directly accessible from sequential recordings, but another part needs to be predicted. For
example, if we have recorded sequentially two neurons responding to the same stimulus, a
naive solution is to pool together their responses as if they had been recorded at the same
time. If the noise present in these responses is independent between the two neurons, this
is indeed equivalent to record them together. However, in many cases, the noise between
different neurons is correlated. In that case, pooled sequential recordings are not equivalent to
simultaneous recordings [23], and the difference is what is usually termed the noise correlation
between these two neurons.

Our method aims at inferring these noise correlations from parsimonious pairwise record-
ings of a few cells, and use them to predict how noise will be correlated across an entire
population of hundreds of neurons. From this we can reconstruct how a large population of
neurons would respond if they were recorded simultaneously, based on sequential recordings.

Our method is divided in three steps. First, we infer the parameter of a model based
on copulas [34–36] from simultaneous recordings of few cells. Second, we used the inferred
model to predict noise correlations between pairs of neurons from sequential recordings, using
only information on the distance between the recorded cells. Our method allows predicting
noise correlations for the same pair of neurons responding to a different type of stimulus,
and can generalize to predict noise correlations for another pair of neurons of the same type
recorded in a different experiment. Third, we use a time-dependent maximum entropy model
[31–33] to generalize from pairs of neurons to a full population. This step does not require
any additional empirical informationwith respect to the second step. Note that simultaneous
recordings are necessary only for model inference (and validation), yet sequential recording
are sufficient for making prediction.

Here we applied this method to cells of the same type in the rat retina. These data allowed
us testing if our reconstruction of the population activity is accurate. Finally, we used our
method to infer the synchronous activity of a large neuronal population, much larger than
what is nowadays experimentally accessible.

Strong noise correlations between nearby OFF retinal ganglion cells.

We recorded rat retinal ganglion cells (RGCs) in response to different visual stimuli.
We used a previously described method [18] to divide them in different types. Briefly,
we clustered their responses to a full field flicker and isolated a single type of OFF-alpha
ganglion cells. All these cells responded reliably to a checkerboard stimulus (Fig. 1A). The
cell responses to random checkerboard have been used to estimate their receptive fields and
to find their location. The receptive fields of these cells tiled regularly the visual field (mosaic
in Fig. 1B).
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FIG. 1: High noise correlation between nearby RGCs subject to checkerboard
stimulation. A) Raster plots of two example cells in response to checkerboard stimulation.
Each line corresponds to a repetition of the same visual stimulation. Black line: averaged
firing rate of the cell. B) Receptive field mosaic of the recorded OFF cell population. Cyan
receptive fields refer to the cells showed in panel A. C) Cross-correlation for the two cyan cells
(green, dt = 17ms), superimposed to the cross-correlation of their firing rates (black). Inset:
Cross-correlation at finer time scales (dt = 1ms). D) Zero-lag (dt = 17ms) noise-correlation
plotted against the distant between cells.

To estimate noise correlation between pairs of cells, we computed the cross-correlation
of their spike count and the cross-correlation of their firing rate (the mean over stimulus
repetitions of the spike count, respectively green and black lines in Fig. 1C inset). At short
time-scales, spike-count correlation is larger than that of firing rates , but only for nearby
pair of cells (see Fig. 1C). We term noise-correlation the difference between the zero-lag cross-
correlation of spike counts and firing rate (see Methods). We observed a similar behavior for
all visual stimulations and experiments.

In the following we used these data to test our method. We first used copulas to predict
the noise correlations between pairs of cells. We then used maximum entropy model to
reconstruct the activity of a large population of ganglion cells from sequential recordings.
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Copula model predicts pairwise response from sequential recordings.

A copula is a method to build pairwise probability distributions from pairs of single-
variable distributions (see Fig. 2 and Methods). We used this approach to build the joint
spike count distribution of pairs of neurons, that, if marginalized, reproduces the empirical
single neuron distributions. For each time-bin, for each recorded neuron, we first estimated
the distribution of spike count from its response to stimulus repetitions, and from this we
obtained its cumulative distribution function. Next, for each pair of neurons, we fitted one
copula distribution to the collection of joint cumulative functions of activity. We then drew
samples from the inferred copula distribution, i.e. pairs of real numbers between 0 and
1 ((u1, u2) ∈ [0, 1]2) with uniform marginal distribution. Finally, we used the inverse the
cumulative distribution functions to transform these samples into pair of integers, which
followed the predicted joint spike-count distribution.

A copula is characterized by a parameter that tunes the interaction strength of the two
variables, and that can be inferred from data. We found that this copula parameter only
depended on the distance between the two cells, and can be fitted using a function with just
three parameters (θ = exp(a+ bx+ cx2), where x is the distance between the two cells, see
Fig. 2B, suppl. sect. S2 and Fig. S1). We could thus describe the joint activity between
all pair of neurons using copulas characterized by only three parameters across the entire
population of cells. Once applied on the same response to checkerboard stimulation used
for training, our model predicted noise correlations with high accuracy (Pearson’s ρ = 0.99,
n = 300 pairs, larger than ρ = 0.92 obtained by fitting directly noise correlations, see
supplementary sect. S3).

We have built a model with only 3 parameters, that can predict the noise correlation
between any pair of neurons from the activity of single cells. We then tested if this model
can generalize and predict noise correlations measured in response to different stimuli. We
first inferred the copula model from the response to checkerboard stimulation (that of Fig. 1).
Then, from the response to repetitions of another type of stimulus, we estimated the spike-
count distributions of each neuron in each time-bin. Finally, we used our copula model to first
build the joint distribution, and then compute the mean noise-correlations of each neuron
pair. We applied this strategy to the RGCs’ response to full-field and moving-bar stimuli,
see Fig. 2. In both cases, the copula model was able to reproduce the empirical estimates
of noise-correlations with high accuracy (Pearson’s ρ = 0.96 for full-field and ρ = 0.97 for
moving-bar, n = 300 pairs).

To further demonstrate the robustness of our method we tested if our copula model could
predict noise correlations in a different RGC population of the same type, recorded in a
different experimental preparation. We used the model inferred from the data of the first
experiment to predict noise correlations between the same type of RGC, but recorded during
a second experiment. Using only single cell responses, our model predictions were accurate
(Fig. 3B, Pearson’s ρ = 0.96, n = 496 pairs), and accounted for how noise correlations
decrease with distance (Fig. 3C). The functional dependence of the copula parameter with
respect to inter-cell distances is thus robust across experiments, and hence corresponds to a
general property of OFF-Alpha cells in the rat retina. We obtained similar results for all the
8 testing experiments (averaged Pearson’s ρ = 0.949± 0.017, for a total of n = 1632 pairs).

Note that in order to predict noise correlations (Fig. 3) our model never accessed to the
simultaneous recordings, but only to the collection of single neuron responses. We could
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FIG. 2: Copula model predicts noise correlations across stimulus ensembles. A)
Illustration of our copula model: first step. Spike counts are estimated across stimulus repe-
tition for a given pair of cells, in a given time-bin. Empirical histogram of the spike counts are
then estimated and later used to compute the empirical cumulative distribution function. B)
Second step. A parametric function allows to estimate the copula parameter θ as a function
of the cells’ distance. A copula distribution then accounts for the mutual dependency of two
random variables. From it we draw many samples of pairs of real numbers (u1, u2) ∈ [0, 1]2

with uniform marginals. Inverse of the cumulative distribution functions transform these
samples into pairs of positive integer numbers, whose distribution matches the empirical
spike count marginals by construction and accounts for their mutual dependency. C) Scat-
terplot of the empirical and model predicted noise correlations fro the response to full-field
stimulation. D) As C but for the moving-bar stimulation. In both case the model has been
inferred from the response to checkerboard stimulation.

have thus predicted the noise correlation between pairs of neurons in these new experiments
using only the sequential recording of each neuron. Our approach thus allows predicting
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FIG. 3: Copula model predicts noise correlations across experimental prepara-
tions. A) Receptive field mosaic of the recorded OFF cell population for a new dataset,
different from the one used for training the model. B) Scatterplot of the empirical and model
predicted noise correlations from the response to checkerboard stimulation. C) Behavior of
the empirical and model predicted noise correlations plotted against the distance between
cells. Data from a second dataset (#2), different from the one used for training the model
(#1).

pairwise noise correlations across experiments without requiring simultaneous recordings.

Time-dependent maximum entropy model reconstructs the activity of large

population from the copula’s pairwise predictions.

Our copula model predicted pairwise synchronous firing. To reconstruct the activity of
a large population of neurons from single cell recordings, we then used a time-dependent
Maximum Entropy population model.

Standard Maximum Entropy models [30] aim at predicting the probability of any spike
pattern from the mean firing rate of each neuron and the correlations between each pair of
cells. Here we use a recent generalization of this approach [32, 33] that takes into account
a time-varying firing rate. This approach built a collection of pairwise Maximum Entropy
models (one for each time-bin), which share the same couplings, but with OMdifferent ex-
ternal inputs (fields) for each cell and each time bin [32, 33] (see Methods). Time-dependent
Maximum Entropy modelling thus disentangles intrinsic interaction, due to network effects,
from extrinsic correlations, due to common inputs [33].

We inferred the time-dependent Maximum Entropy population model from the activity
of single neurons and the pairwise correlations predicted by the copula model. The inferred
couplings are large only between nearby cells, see Fig. 4A, and the model reconstructs a
“nearest-neighbor” interaction network, see Fig. 4B. As expected the model reproduced well
the pairwise noise correlation (Fig. 4C, Pearson’s ρ = 0.96, n = 496 pairs), which were
already finely predicted by the copula model (Fig. 3B). Remarkably, Fig. 4D shows that
the model also accounts for the triplet noise correlation (see Methods) (Pearson’s ρ = 0.6,
n = 4960 triplets). In order to show that our model captures the synchronous behavior of the
neuronal population, we compute the probability distribution of the population rate, i.e. the
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FIG. 4: Time-dependent Maximum Entropy model predicts population syn-
chronous firing across experimental preparations. A) Behavior of the inferred cou-
plings with the distance between cells. Grey dotted line threshold for identifying stong
couplings (see panel B). B) Position of the cells on the retinal surface, and stong couplings
linking them. In the model, only nearest neighbor cells are directly interacting C) Noise
correlation prediction of the model against empirical value. As expected by construction,
the model reproduces the copula estimations, and hence the empirical values (see Fig. 3B).
D) Model prediction of triplet noise correlations against empirical value (Pearson correlation
' 0.6, n = 4960). E) Empirical, shuffled (cond. independent) and model distributions of the
population activity averaged over all time-bins. F) Same as E but for the 5% of time-bins
with the highest mean population firing rate. Data from a second dataset (#2), different
from the one used for training the model (#1).

total number of spikes emitted by the entire population in a given time-bin. We compared
this distribution with the “shuffled” distribution, which destroys noise correlations, and is
equivalent to the prediction made by a conditionally-independent model (i.e. a model that
would assume there are no noise correlations). The distribution computed after shuffling
the data overestimated the probability of number of spikes close to the average population
rate, and underestimated the occurrence of transients of very large or very low activity (see
Fig. 4E and F). Remarkably, our model captured the empirical behavior of the population
rate averaged over the whole recording (see Fig. 4E). It also performed well when focusing
only on highly active time-bins (Fig. 4F).
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FIG. 5: Large population model. A) Synthetic mosaic of n = 256 cells. Blue: example of
sub-population. B) Probability distribution of the population activity for the time-bin with
the highest firing rate. C) Average over time of the population activity variance for many
sub-populations. D) Behavior of Synchrony with the number of cell in the sub-population.

High synchrony in a large population of ganglion cells reconstructed from multiple

experiments

Thanks to our model, we could reconstruct the activity of a large population of neurons
using only single cell activity. Since the model can generalize across experiments, it means
that the activity of the different single cells can be taken from different experiments. Our
method only needs a few pairs of neurons recorded simultaneously to fit the three parameters
of the model. In the following we illustrate how this model can be used to reconstruct
the activity from a very large population of neurons, bigger than what could be recorded
experimentally. We illustrate how this inference of the activity of a large population of cells
can be useful by measuring synchronous activity over increasing number of cells.

We collected the (marginal) response of many cells recorded during multiple experiments,
and constructed a large population of n = 256 cells. We first built a synthetic lattice repre-
senting the positions of the cells reproducing the empirical statistics of inter-cells distances
(Fig. 5A and Methods). Then, we associated to each lattice position the response to the
checkerboard stimulus of a randomly chosen cell among the ones recorded in all experiments
(excluding those from the experiment used to learn the model parameters). Finally we ap-
plied our two-step approach to predict how this large population of cell would have responded
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to a checkerboard stimulus.
At first, we looked at the population rate as previously defined. In comparison with

shuffled data, our model predicted a more frequent occurrence of transients with either
very high or very low population activity (Fig. 5B). This is a signature that synchronous
activity extends up to large populations. To study how correlated firing grows with the
population size, we sub-sampled the synthetic model (Fig. 5A) and computed the variance of
the population rate. The variance predicted by the model grows with the number of neurons
(Fig. 5C) and saturates at ∼ 200 neurons ( population activity variance is 0.24 ± 0.02 at
N ' 30 cells and 0.299±0.002 at N ' 200 cells , mean ± s.d.), much larger than the typical
number of cells recorded in an experimental session. On the contrary, in the reshuffled
control, the variance is smaller and roughly constant when the number of neurons increases.
Next we estimated the synchrony in the population as the probability of observing a transient
with large population activity (see Methods). This synchrony grew fast for small number of
cells and stopped increasing at ∼ 200 cells ( synchrony is 0.221± 0.004 at N ' 30 cells and
0.257± 0.001 at N ' 200 cells , mean ± s.d., Fig. 5D) .
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Discussion

We have shown that our new method allows for reconstructing the population activity of
large populations of neurons of the same type in the retina, based on sequential recordings
and a few pairwise recordings. We have first developed a model to predict noise correlations
across experiments. Thanks to this, once the model parameters are learned with paired
recordings, we can take any pair of cells taken from new experiments, and predict the noise
correlations from the activity of each single cell. Thanks to this prediction we could then
reconstruct the activity of large populations of neurons of a single type at a scale beyond
what can be recorded experimentally. Using this method, we have shown that synchrony
in the population of OFF-alpha ganglion cells grows with the number of cells, and become
large for large populations. Understanding how the collective behaviour of neural ensembles
scales with the number of neurons is a crucial issue, and our tool is a key method for this
purpose, because it allows accurate inference of population activity, at a scale currently not
accessible with experimental recordings.

Previous works have shown how different methods can be used to model and predict
noise correlations. The Generalised Linear Model [15] uses spike history filters to couple the
spiking activity between different neurons. Stimulus dependent maximum entropy models
[32, 33] have coupling terms to model synchronous activity between pairs of neurons. These
models have been successfully used to model how a population of neurons responds to a
stimulus ensemble. However, they usually fail in trying to predict the population activity
in responses to different stimuli. This is because the parameters generating the correlations
usually change when learned on different stimulus statistics [38]. Moreover, they were never
used to predict the activity of a population across different experiments. A main obstacle
for this is that firing rates can vary from experiments to experiments, which would induce
parameter changes in most of these models, and make generalization difficult. Here we have
found that the noise correlation could be predicted using our model knowing just the distance
between the two cells and their individual activity. We could then predict noise correlations
across experiments. Having a model that generalizes across experiments is crucial to pool
together recordings from neurons of the same type and reconstruct activity of large neural
ensembles.

Our ability to generalize across stimuli and even experiments demonstrates that the cou-
plings between the recorded ganglion cells are insensitive to the context. This means that
these couplings reflect an intrinsic property of the retinal circuit, and that the mechanism
generating these noise correlations in not influenced by changes in the stimulus or in overall
firing rate. Since the timescale of the observed noise correlations is very fast (few ms), the
most likely mechanism is gap junctions, which create direct electrical connections between
ganglion cells [39]. Noise correlations might be more dependent on the context if they are
generated by a shared noise source, e.g. the photoreceptor noise [40]. Nevertheless, our
results suggest that the strength of gap junctions are tuned to a value that seems preserved
between different experiments.

Our approach to model noise correlations is based on copula distributions, and asssumes
that the copula parameter is constant across experiments. An alternative, simpler approach
could have been to assume that noise correlations themselves remain similar across exper-
iments. We constructed this simpler model by fitting an exponential function over noise
correlations in our training dataset. This approach, however, gave significantly worse results
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than our method based on copulas (see supplementary sect. S3), demonstrating that our
approach captures non-trivial properties of the correlated firing, i.e. its dependence on the
firing rate of each cell.

Remarkably, our description of noise correlation depends only on the physical distance
between the pair (see supplementary sect. S2). We have relaxed these assumptions and found
that the copula parameter did not vary much with time, cell identity or stimulus. First, if
we assume one copula parameter per time bin for a given pair of neurons, it varied little with
time, and approached a constant value when the pairs’ firing rate were large enough (see
supplementary Fig. S1A and B). Second, when we inferred one parameter for each pair of cells
to account for cell identities, their values still followed closely our parametric function (see
supplementary Fig. S1C). Finally, when we inferred copula parameters from the response to
different stimulus ensembles, we obtained very similar values (see supplementary Fig. S1D).
This shows that the same copula distribution accounts well for the correlation between the
two cells, independently of their firing rate, identities and of the stimulus ensemble.

Copulas have rarely been used in neuroscience studies [35–37, 41–43], but none of them
applied this method to predict noise correlations. In [35], Pillow and co-workers proposed
for the first time discrete copula distributions to model the total spike-count correlation in
pre-motor cortex neurons. However, they did not distinguish stimulus from noise correlations
as we have done here.

An interesting outcome of our method is the possibility to construct models of arbitrary
large populations, as long as enough sequential recordings are available. This possibility
opens for testing a number of hypotheses on how correlated firing affects the overall pop-
ulation activity. Previous studies [30, 44] have made conjectures on the behavior of the
retinal synchronous activity at large scale by extrapolating their results from the smaller
number of cells experimentally available. The validity of these extrapolations has been re-
cently questioned [45], pointing out how the observed correlation pattern of small systems
must be different from that of larger ones. Here we build a large population model (Fig. 5)
pooling together real data and using our validated model to infer noise correlations between
cells. Our synthetic model thus provide the framework to further test the conjectures on the
system’ behavior for large numbers of neurons, beyond what can be done experimentally.

Our approach is general and could be applied in any sensory area, provided that sequen-
tial recordings of the same type of cells are available, as well as some pairwise recordings to
fit the model parameters. We applied it in the retina, where it is possible to have recordings
of many neurons of the same type. We could thus validate our method and show that ex-
cess synchrony (i.e. beyond what could be predicted by a conditionally-independent model)
increased with the number of neurons, and becomes more and more significant at larger pop-
ulation sizes. Recent technological advances will make this method relevant to understand
cortical populations, where it should be soon possible to define the cell type of each recorded
cell using genetic (e.g. single cell transcriptomics [9, 10]) and physiological (e.g. clustering
of responses [7]) tools. One issue could arise if noise correlations strongly depend on the
stimulus, as it has, for example, been reported for V1 [46]. In our data, noise correlations
depend very little on the stimulus, which allowed us to reduce our model and let copula
parameters depend only on the distance between cells. However, if noise correlations depend
largely on the stimulus, the model can be extended. The simplest solution would be to
make the copula parameters depend on the stimulus. If this stimulus dependence can be
explicitly modeled, our method would still manage to predict the activity of large ensembles
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of neurons.
Finally, here we predicted the responses of a population of neurons to a stimulus for which

we have access to single cell responses across stimulus repetitions. If a model is available to
predict the responses of single cell to other stimuli, it could be used to predict the marginal
probability distribution of each individual neuron, and then combined with our approach
to predict the activity of the whole population. This makes our method complementary
to recent efforts trying to model and predict accurately the response of single neurons to
complex stimuli in sensory areas [17, 47, 48].
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Methods

a Multi-electrode array recordings. We analyze the response of rat RGCs to visual
stimulation recorded in 9 multi-electrode array ex-vivo experiments [3], and spike sorted
with SpyKING CIRCUS [49]. This dataset and the experimental methods have been already
previously described [18]. In one experiment we probed the retinal response to three different
visual stimuli: (i) a random black and white checkerboard, with spatio-temporal uncorrelated
checkers; (ii) a full-field stimulus with fluctuating luminance and (iii) two gray horizontal
bars performing an independent Brownian motion along the vertical direction [18]. In the
other 8 experimental sessions, only the response to random black and white checkerboard
and full-field was retained and analyzed here. Each of these stimulations lasted about 10sec
and have been repeated at least R = 79 times. Spiking times have been binned with a
window of about 17ms, corresponding to a bin rate of 60Hz. With a custom algorithm [18]
-similar to that of [7]- we used the cell’s response to the full-field stimulation to identify the
type of the recorded RGCs. Across the 9 experiments, we identified populations of 20 ± 6
(mean ± s.d.) OFF-Alpha cells.

b Stimulus and noise correlations. After binning the spiking response of each cell,

we estimate n
(t,r)
i , the number of emitted spikes by cell i, in the time-bin t, during repetition

r, and its mean across repetitions µ
(t)
i . Then we calculate the total covariance between two

neurons (i, j) as follows:

Covtotal(ni, nj) =
1

T

T∑
t=1

1

R

R∑
r=1

(n
(t,r)
i − µi)(n(t,r)

j − µj) (1)

Where µi =
∑T

t=1 µ
(t)
i /T is the mean number of spikes across repetitions, and then averaged

in time. It is possible to decompose the total covariance into a sum of the so called “stimulus”
and “noise” covariances. We calculated these quantities as follows

Covnoise(ni, nj) =
1

T

T∑
t=1

1

R

R∑
r=1

(n
(t,r)
i − µ(t)

i )(n
(t,r)
j − µ(t)

j ) (2)

Covstimulus(ni, nj) =
1

T

T∑
t=1

1

R

R∑
r=1

(µ
(t)
i − µi)(µ

(t)
j − µj) (3)

Noise correlations are then estimated as:

Corrnoise(ni, nj) =
Covnoise(ni, nj)√

ViVj
(4)

where Vi = Covtotal(ni, ni).

Triplet noise correlations are instead defined as:

Corrnoise(ni, nj, nk) =
1
T

∑T
t=1

1
R

∑R
r=1(n

(t)
i − µ

(t)
i )(n

(t)
j − µ

(t)
j )(n

(t)
k − µ

(t)
k )√

ViVjVk
(5)
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c Copulas. Copula-based modeling allows for disentangling the marginal distributions
of two random variables from their mutual dependency, that can therefore be modeled alone,
without the additional difficulties due to potentially complicated marginal distributions.
Consider two random variables X and Y , with joint distribution fX,Y , marginal distributions
fX and fY and marginal cumulative density function (c.d.f.) FX and FY respectively. By
construction, the random variables UX ≡ FX(X), X ∼ fX and UY ≡ FY (Y ), Y ∼ fY have
uniform distributions over [0, 1]. Consequently the joint distribution of (UX , UY ) has uniform
marginals, yet it contains all the information about the mutual dependence between X and
Y . This property allows us to model the dependency of UX and UY instead of that of X
and Y . Specifically, a copula is the c.d.f. of the joint variable (UX , UV ), i.e. a function
C(·, ·) : [0, 1]2 → [0, 1]. and it can be used to reconstruct the joint distribution of (X, Y ),
via its c.d.f.:

FX,Y (x, y) = C (FX(x), FY (y)) . (6)

Sklar’s theorem (see supplementary sect. S1) ensures the existence and uniqueness of C,
and this allows for modeling the mutual dependency between X and Y , independently from
their marginal distributions.

In most practical situations, the copula C is chosen from a parametric copula family. In
this work we chose to work with Frank copulas:

CFrank(u, v|θ) = −θ−1 log
(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, (7)

where θ ∈ R is the copula parameter, that can be estimated by log-likelihood maximization.
We chose the Frank copula because this family has already been showed to perform well in
modeling spike counts [35]. Once θ has been inferred, the marginal distributions can in turn
be approximated either with some model, or, as we will do in this work, empirically. We
refer to the Mathematics section, the literature and textbooks (see, for example, [34]) for
more explanations and details on copula models and/or other copula families.

d Copula-based model. We constructed a copula model able to predict P (n
(t)
i , n

(t)
j ),

the joint distribution of pair of spike counts in time:

P
(
{n(t)

i , n
(t)
j }Tt=1

)
=

T∏
t=1

cFrank

(
F

(t)
i (n

(t)
i ), F

(t)
j (n

(t)
j )
∣∣∣ θ̂(dij) ) , (8)

where cFrank is the copula density function, corresponding to the c.d.f. of Eq. (7), and

F
(t)
i (n

(t)
i ) is the empirical c.d.f. n

(t)
i , that we estimate across repetitions, dij is the distance

between neurons i and j, and θ̂(dij) is a parametric function: θ̂(d) = exp(a + bd + cd2)

and θ̂(d) = 0 if d > 1mm. To infer this function from data, we first inferred a copula
parameter for each pair of neurons, θij, by log-likelihood maximization, and then we obtained
a = 3.2,b = −0.013µm−1 and c = 7 10−6µm−2 by fitting the behavior of θij with respect to
the distance dij. See supplementary sect. S2 for further information.
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e Time-dependent Maximum Entropy model. The time-dependent maximum
entropy model we used is:

P
({
{n(t)

i })Ni=1

}T
t=1

)
=

T∏
t=1

(
exp

{∑
i

h
(t)
i n

(t)
i +

∑
i≤j

n
(t)
i Jijn

(t)
j −

∑
i

ln(n
(t)
i !)

}/
Z(t)

)
(9)

where n
(t)
i ∈ [0, 1, . . . , nMax] is an integer spike-count, with nMax matched from data. The

index “(t)” expresses the time dependence. Z(t) is a normalization constant (the partition

function). h
(t)
i is the local field for neuron i at time t imposing the firing probability and Jij

is the couplings network that allows for reproducing the system’s correlations. Note that Jij
does not depend on time and it includes also the diagonal terms Jii which set each neurons
variance equal to its empirical value [33, 50]. The log-factorial term allows for matching
the single neurons statistics [50], as by taking J = 0 the model reduces to a collection of
independent Poisson distributions.

The inference of the model (9) is done by log-likelihood maximization using an iterative
algorithm with adaptive learning rate similar to that of [51]. Thanks to its exponential form,

the model inference requires only the average value of n
(t)
i across repetitions and the value

of the noise covariances (see Methods). In our case we estimate the first from the marginal
response of each neurons and we used the copula model to predict the second.

f Synthetic lattice. In order to construct a synthetic lattice that respects the inter-
cells distance of empirical recordings, we started by a triangular regular lattice with side
194µm, and then we added a Gaussian noise with a standard deviation of 22µm to the x and
y coordinate of each cells. These parameters are optimized in order to match the distribution
of cells distances measured in real experimental recordings.

g Population activity variance and synchrony. In this paper we compute the
population activity as the sum of all spike-counts,

∑
i ni(t). To compute the “population

activity variance” of Fig. 5C we first estimate the variance of the population activity for
each time-bin. Then we averaged over time and finally we normalized by the population size.
“Synchrony” of Fig. 5D is instead the probability of observing an event with a population
activity larger than the mean plus one standard deviation of the population activity of the
shuffled model. We compute this for each time-bin and then we averaged over time.
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S1. Supplementary mathematics

a Copula’s definition. A copula function is the c.d.f. of a bi-variate distribution with
Uniform(0, 1) marginals. This mathematical construct allows to model the dependency
structure of bi-variate random variables separately from their marginal distributions, as the
following theorem shows.

b Sklar’s theorem. Let X and Y be any two, mutually dependent, real random
variables. Let FX , FY , and F(X,Y ) be the c.d.f.s of X, Y , and (X, Y ) respectively. Note that
for any X we have FX(X) ≡ Uniform(0, 1), idem for Y . The Sklar theorem asserts that
given such X, and Y :

∃! a copula C, such that FX,Y (x, y) = C(FX(x), FY (y)) (10)

c Discrete copulas. The proof of existence of Sklar’s theorem holds for both contin-
uous, and discrete random variables (as is our case). However, in practice, to apply copula
models in the discrete case we need to make adjustments. In particular we turn a continu-
ous copula, into a discrete distribution that may take values in a countable set of points in
[0, 1]. By doing so we define a so called “pseudo density” function, that describes a discrete
counterpart to copulas. Assuming that (X, Y ) ∈ N 2, without loss of generality, the “pseudo
density” of a copula defined by a copula density c is given by:

fpseudo(FX(x), FY (y)) =

∫ FX(x)

FX(x−1)

∫ FY (y)

FY (y−1)

c(u, v) du dv (11)

S2. Supplementary information: model construction

Here we fully justify how we simplified the copula model, from its bare version with
one parameter for each neuron pair in each time-bin, to the final version with just three
parameters in total.

As explained in the Methods section, our starting point is a copula model where for each

neuron pair (i, j) and each time-bin t a copula parameter θ
(t)
ij accounts for the correlation

between the two spike-counts. Despite being very accurate, this model has little capacities to
generalize across stimulus conditions or experiments. Moreover, because of the large number
of parameters is potentially pruned to overfitting. In Fig. S1A, for an example neuron pair,
we show the values of the inferred parameters in all time-bins plotted against the mean
firing rate of the two cells -in the corresponding time-bin and computed across repetitions.
As can be observed, at high firing rate, that is when the statistics is large and the inference
error is small, the inferred parameters tend to accumulate around a single value. This result
suggested us that a model where the copula parameters does not depend on time could have
a similar performance, yet requiring much less parameters.

In order to infer such time-independent copula parameters, for each neuron pair, we
first select the “active” time-bins where the two neurons spiked synchronously in at least
one repetition:

∑R
r=1 n

t
i,rn

t
j,r > 0, where nti,r is the number of spikes emitted by neuron

i ∈ [1, . . . , N ], in time bin t ∈ [1, . . . , T ] during repetition r ∈ [1, . . . , R]. Once the inactive
time bins are filtered out, we estimate the model parameter by maximizing the likelihood:
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FIG. S1: Stimulus-conditioned copula model is robust across different stimulus
ensembles. A) Values of the inferred copula parameter in all time-bins for an example
neuron pair, plotted against the mean firing rate of the two cells. Horizontal line corre-
spond to the inferred parameter in the time-independent copula model (see text) B) As A,
but for another example pair. C) Inferred Frank copula’s parameters plotted against the
distance between cells for checkerboard stimulation. Parameters of each pairs are inferred
independently. Orange: exponential fit used for estimating the copula parameter from the
cell distance in the final version of the model. D) Scatterplot of the time-independent (see
text) parameters inferred from checkerboard and full-field stimulations E) Scatterplot of the
parameters inferred from checkerboard and two-bar stimulations

l(θ|X) =
∑
t

R∑
r=1

log(f
(t)
pseudo(n

(t)
i,r , n

(t)
j,r|θ)) =

∑
t

R∑
r=1

log

∫ F
(t)
i (n

(t)
i,r)

F
(t)
i (n

(t)
i,r−1)

∫ F
(t)
j (n

(t)
j,r)

F
(t)
j (n

(t)
j,r−1)

cθ(u, v) du dv

(12)
where the summation over t runs over the active time-bins for the neuron pair. Note how F ,
and thus fpseudo, depends on t, as the empirical marginals are estimated separately for every
time bin. We infer the time-independent copula parameters θij by log-likelihood maximiza-
tion for each neurons’ pair and for checkerboard, full-field and two-bar stimuli. Figs. S1B and
C compare the parameters inferred from different stimuli and show how the inference is ro-
bust across changes of visual stimulation. The copula parameter thus reflect some properties
of the retinal network, independent of the current stimulus ensemble.

Fig. S1C show the behavior of the inferred checkerboard parameters with respect to
the physical distance between cells. Furthermore these parameters are independent of the
visual stimulus (see Figs. S1D and E). These results suggested us that a simple fit of copula
parameters may account for most of the variability of the parameter values across neuron
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pairs.
To further simplify our copula model, and reduce the number of its parameters, we hence

fitted the inferred copula parameters with a parametric function of the inter-cell distance d:
θ(d) = exp(a + bd + cd2). The copula model takes now as input only the distance between
the cells, uses it to estimate the copula parameter, and then construct the joint spike-count
distribution using Eq. (8).

S3. Supplementary information: simplest model for noise correlations

In this section we compare the performance of our copula-based approach in predict-
ing noise correlations with a straightforward model that assumes distant-dependent noise
correlations.
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FIG. S2: Copula model outperforms simpler model with distant dependent noise-
correlations. A) Construction of the model: noise correlations observed in one experiment
(Exp. #1) are fitted with an exponential function of the distance between neurons. Such fit
is then used to predict noise correlations in other experiments. B) Performance in predict-
ing noise correlation for our copula model against the model presented here. Blue points:
performance for the first dataset with three different stimulus ensembles. Yellow points:
performance for the other experimental sessions.

Noise correlations decrease with the distance between the corresponding neurons (see
Fig. 1 and Fig. S2A). We fit this relation with an exponential function, and we asked to
what extent this behavior is conserved across experiments. To estimate this, we used this
simple method to predict noise correlations in all the experiments described before. Although
the predictions were accurate, our copula model outperforms this simpler approach (see
Fig. S2B).
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[39] Stewart A Bloomfield and Béla Völgyi. The diverse functional roles and regulation of neuronal

gap junctions in the retina. Nature Reviews Neuroscience, 10(7):495, 2009.

[40] P. Ala-Laurila, M. Greschner, E.J. Chichilnisky, and F. Rieke. Cone photoreceptor contribu-

tions to noise and correlations in the retinal output. Nature neuroscience, 14(10):1309–1316,

2011.

[41] Laura Sacerdote, Massimiliano Tamborrino, and Cristina Zucca. Detecting dependencies be-

tween spike trains of pairs of neurons through copulas. Brain research, 1434:243–256, 2012.

[42] Arno Onken and Stefano Panzeri. Mixed vine copulas as joint models of spike counts and local

field potentials. In Advances in Neural Information Processing Systems, pages 1325–1333,

2016.

[43] Siwei Wang, Alexander Borst, Noga Zaslavsky, Naftali Tishby, and Idan Segev. Efficient

encoding of motion is mediated by gap junctions in the fly visual system. PLoS computational

biology, 13(12):e1005846, 2017.

[44] G. Tkacik, O. Marre, D. Amodei, E. Schneidman, W Bialek, and Berry M.J. Searching for

collective behaviour in a network of real neurons . PloS Comput. Biol., 10(1):e1003408, 2014.

[45] Marcel Nonnenmacher, Christian Behrens, Philipp Berens, Matthias Bethge, and Jakob H

Macke. Signatures of criticality arise from random subsampling in simple population models.

PLoS Computational Biology, 13(10):e1005718, 2017.
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Singer, and Gergő Orbán. Stimulus complexity shapes response correlations in primary visual

cortex. Proceedings of the National Academy of Sciences, page 201816766, 2019.

[47] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,

Matthias Bethge, and Alexander S Ecker. Deep convolutional models improve predictions of

macaque v1 responses to natural images. BioRxiv, page 201764, 2018.

[48] D.L.K. Yamins and J.J. DiCarlo. Using goal-driven deep learning models to understand sensory

cortex. Nature neuroscience, 19(3):356–365, 2016.

[49] Pierre Yger, Giulia LB Spampinato, Elric Esposito, Baptiste Lefebvre, Stéphane Deny,
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