
ar
X

iv
:1

90
4.

07
18

4v
4 

 [
m

at
h.

PR
] 

 2
6 

M
ar

 2
02

4

A monotone scheme for G-equations with application to the

explicit convergence rate of robust central limit theorem ∗

Shuo Huang† Gechun Liang‡

Abstract

We propose a monotone approximation scheme for a class of fully nonlinear PDEs called

G-equations. Such equations arise often in the characterization of G-distributed random vari-
ables in a sublinear expectation space. The proposed scheme is constructed recursively based
on a piecewise constant approximation of the viscosity solution to the G-equation. We estab-
lish the convergence of the scheme and determine the convergence rate with an explicit error
bound, using the comparison principles for both the scheme and the equation together with a
mollification procedure. The first application is obtaining the convergence rate of Peng’s robust
central limit theorem with an explicit bound of Berry-Esseen type. The second application is

an approximation scheme with its convergence rate for the Black-Scholes-Barenblatt equation.

Keywords: sublinear expectation, G-equation, G-distribution, robust central limit theorem,
Black-Scholes-Barenblatt equation, monotone scheme.
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1 Introduction

The theory of G-expectations (see [30, 31, 32, 33]) is a natural generalization of classical prob-
ability theory in the presence of Knightian uncertainty. That is, random outcomes are evaluated,
not using a single probability measure, but using the supremum over a range of possibly mutually
singular probably measures. One of the fundamental results in the theory is the celebrated central
limit theorem, dubbed as robust central limit theorem by Peng in [32]. It provides a theoretical
foundation for the widely used G-distributed random variables in nonlinear probability and statis-
tics. The theorem was first proved in [30] by applying the regularity theory of fully nonlinear PDEs
(see [22] and [37]) to G-equations, the latter of which characterize G-distributed random variables.
However, no convergence rate was derived in [30]. The corresponding convergence rate was subse-
quently obtained in [34] and [15] using Stein’s method and more recently in [25] using stochastic
control method under different model assumptions. However, an explicit formula for the constant
appearing in the convergence rate is still lacking.
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In this paper, we build a monotone approximation scheme for the G-equation, and determine
its convergence rate by obtaining an explicit error bound between the approximate solution and the
viscosity solution of the G-equation. This will in turn, for the first time, provide the convergence
rate for Peng’s robust central limit theorem with an explicit bound of Berry-Esseen type. The new
convergence rate improves all the existing ones obtained under different model assumptions in the
literature. Moreover, different from [15], [25] and [34], our method is analytical and is developed
under the framework of the monotone approximation schemes for viscosity solutions. Thus, it un-
veils an intrinsic connection between the convergence analysis of numerical schemes in PDEs and
the central limit theorem in probability. It also introduces new tools from the numerical analysis
for viscosity solutions to the study of G-expectations and especially its robust central limit theorem.

Let’s first introduce Peng’s G-equation. Let (Ω,H, Ê) be a sublinear expectation space, sup-
porting two d-dimensional random vectors X and Y . Recall that Ê is a sublinear expectation if it
satisfies monotonicity, constant preserving, sub-additivity and positive homogeneity properties (see
Chapter 1 in [32] or (5.1)-(5.4) in section 5 for further details). With the random vectors (X,Y )
and the sublinear expectation Ê, we introduce the nonlinear function G : Rd × S(d) → R as

G(p,A) := Ê

[
〈p, Y 〉+ 1

2
〈AX,X〉

]
, (1.1)

for (p,A) ∈ Rd × S(d), where S(d) is the collection of all d-dimensional symmetric matrixes.
For T ≥ 1, let QT := (0, T ]×Rd. We consider the fully-nonlinear parabolic PDE defined on the

parabolic domain QT ,
∂tu−G(Dxu,D

2
xu) = 0, (1.2)

with initial condition
u|t=0 = φ. (1.3)

In [30, 31, 32, 33], the PDE (1.2) is referred to as the G-equation, which is used to characterize
G-distribution. More specifically, let (ξ, ζ) be a pair of G-distributed d-dimensional random vectors

characterized by (1.2) under another sublinear expectation Ẽ (possibly different from Ê). That is,
the G-distributed random vectors (ξ, ζ) satisfies

Ẽ

[
〈p, ζ〉+ 1

2
〈Aξ, ξ〉

]
= G(p,A) (1.4)

for (p,A) ∈ Rd × S(d), and for a, b ∈ Rd and (ξ̃, ζ̃) as an independent copy of (ξ, ζ), the following
equality holds in distribution sense:

(
aξ + bξ̃, a2ζ + b2ζ̃

)
d
=
(√

a2 + b2ξ, (a2 + b2)ζ
)
.

Moreover, ζ is called maximal distributed in the sense that there exists a bounded, closed and
convex subset Q ⊂ Rd such that

Ẽ[ψ(ζ)] = max
q∈Q

ψ(q), (1.5)

for any continuous function ψ satisfying linear growth condition. Note that the existence of (ξ, ζ)
is guaranteed by Proposition 4.2 of [30]. Then, it has been proved in Proposition 4.8 of [30] that
(1.2)-(1.3) admits a unique viscosity solution u which admits the representation

u(t, x) = Ẽ[φ(x+
√
tξ + tζ)], (1.6)
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provided that the initial data φ satisfies some regularity condition. However, it is not clear how to
explicitly solve (1.2)-(1.3) in order to characterize the G-distributed random vectors (ξ, ζ) except
for some special cases, so a numerical scheme for (1.2)-(1.3) is needed.

In this paper, we propose a numerical scheme to approximate the viscosity solution u of (1.2)-
(1.3) by merely using the random vectors (X,Y ) under Ê as input. Note that (X,Y ) could follow
arbitrary distributions (one example is shown in section 3). For ∆ ∈ (0, 1), we introduce u∆ :
[0, T ]× Rd → R recursively as

u∆(t, x) = Ê[u∆(t−∆, x+
√
∆X +∆Y )]1{t≥∆} + φ(x)1{t<∆}. (1.7)

The above recursive approximation implies that, for any n ∈ N such that n∆ ≤ T and t ∈ [n∆, ((n+
1)∆) ∧ T ), u∆(t, ·) is a constant in t and is given by

u∆(t, ·) ≡ u∆(n∆, ·), (1.8)

and at time n∆, there is a jump of the size

u∆(n∆, ·)− u∆((n− 1)∆, ·) = Ê[u∆((n− 1)∆, ·+
√
∆X +∆Y )]− u∆((n− 1)∆, ·).

The main result of the paper is proving the convergence of u∆ to u and determining its con-
vergence rate by obtaining the explicit error bounds between the approximate solution and the
viscosity solution of the G-equation.

For this, we impose the following assumptions throughout the paper.

Assumption 1.1 (i) The initial data φ : Rd → R is bounded from below, and β-Hölder continuous
for some β ∈ (0, 1],

|φ(x) − φ(y)| ≤ Cφ|x− y|β ,
for x, y ∈ Rd.

(ii) The random vectors X and Y satisfy the moment conditions: M3
X <∞ and M2

Y <∞, with

Mp
ξ := Ê[|ξ|p]. Moreover, X has no mean uncertainty, i.e. Ê[X ] = Ê[−X ] = 0.

We make some comments on the above assumptions.

Remark 1.2 Assumptions (i) and (ii) are standard in the (robust) central limit theorem literature.
The regularity of the initial condition φ implies the regularity of the viscosity solution u (see Lemma
4.2). The bounded from below property of φ guarantees the Fatou’s property of Ê (see (5.5) or
Lemma 2.6 in [10]), which will in turn be used to establish an upper bound for the approximation
error (see (6.10) in section 6.2).

On the other hand, the moment conditions on X and Y are commonly used in the classical
central limit theorem and imply that Mp

X < ∞ and M q
Y < ∞ for 0 < p < 3 and 0 < q < 2. In our

setting, they are used to derive the consistency error estimates in section 5.
Finally, we emphasize that there are no independence assumptions made between X and Y . If

X and Y are mutually independent, then either (X,Y ) must be maximally distributed or one of
them is null (see [19]). The possible dependency between X and Y will be useful when applying the
proposed approximation scheme to the Black-Scholes-Barenblatt equation in section 3.
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Under the above assumptions, we prove the following results about the convergence of u∆ to u
and the corresponding convergence rate.

Theorem 1.3 Suppose that Assumption 1.1 is satisfied. Then, the following assertions hold.
(i) (Convergence) The approximate solution u∆ → u as ∆ → 0, (locally) uniformly in Q̄T .
(ii) (Degenerate case) For ∆ ∈ (0, 1), there exists a constant C depending only on d, T , Cφ, β,

M3
X and M2

Y such that
|u− u∆| ≤ C∆β/6 in Q̄T .

Furthermore, if the dimension d = 1 and T = 1, then the constant C has an explicit formula

C = 2124Cφ

[
1 + (M3

X)
β
3 + (M2

Y )
β
2

] [
1 + (M3

X)
2
3 +M3

X + (M2
Y )

1
2 +M2

Y

]
. (1.9)

(iii) (Non-degenerate case) Furthermore, if the second moment of the random vector X is non-
degenerate, i.e.

σ2 := −Ê[−|X |2] > 0,

and the initial data φ ∈ C1
b (R

d), i.e. φ is bounded and Lipschitz continuous, then there exists a

constant α ∈ (0, 1) depending on d, σ2 and M2
X such that u ∈ C1+α

2 ,2+α

b (QT ) (see the end of this
section for its definition). Moreover, for ∆ ∈ (0, 1), there exists a constant C depending only on T ,
Cφ, α, M

2+α
X and M2

Y such that

|u− u∆| ≤ C∆max{α
2 , 16} in Q̄T .

Assertion (i) is proved in section 5.3, assertion (ii) is proved in sections 6.1 and 6.2, and asser-
tion (iii) is proved in section 6.3. We prove them under the framework of monotone approximation
schemes for viscosity solutions. The first step is to rewrite the recursive approximation (1.7) as a
monotone scheme (see (5.7)), and then derive the key properties for the monotone scheme in section
5. It is precisely where the four axioms of the sublinear expectation Ê are used in an essential way.
Using the consistency error estimates derived in section 5.1 and the comparison principle for the
approximation scheme established in section 5.2, we obtain a lower bound for the approximation er-
ror by a mollification procedure. The upper bound for the approximation error is further obtained
by interchanging the roles of the monotone approximation scheme and the original G-equation.
This depends crucially on the regularity property of the approximate solution established in section
4. Finally, the non-degenerate situation (iii) is proved as a special case of the general (possibly
degenerate) situation established in (ii), together with an application of the regularity theory of
fully nonlinear PDEs.

Next, we give a literature review on monotone schemes followed by the comments on their
specification in our setup under G-expectations. Monotone approximation schemes for viscosity
solutions were first studied by Barles and Souganidis [5], who showed that any monotone, stable
and consistent approximation scheme converges to the correct solution, provided that there exists
a comparison principle for the limiting equation. The corresponding convergence rate had been
an open problem for a long time until late 1990s when Krylov introduced the shaking coefficients
technique to construct a sequence of smooth subsolutions/supersolutions in [23] and [24]. This
technique was further developed by Barles and Jacobsen in a sequence of papers (see [4] and [21]
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and more references therein), and has recently been applied to solve various problems (see, among
others, [6] [8] [14], [16] and [20]).

Krylov’s technique depends crucially on the convexity/concavity of the underlying equation
with respect to its terms. As a result, unless the approximate solution has enough regularity (so
one can interchange the roles of the approximation scheme and the original equation), the shaking
coefficients technique only gives either an upper or a lower bound for the approximation error, but
not both. A further breakthrough was made by Barles and Jacobsen in [2] and [3], who combined the
ideas of optimal switching approximation of Hamilton-Jacobi-Bellman equations with the shaking
coefficients technique. They obtained both upper and lower bounds of the error estimate, but with
a lower convergence rate due to the introduction of another approximation layer. See also [9] for
its recent development in a bounded domain without any convexity/concavity assumptions.

In the setup of G-expectations, the sublinear expectation Ê and the possible dependency be-
tween random vectors X and Y bring in additional difficulties when applying the monotone scheme.
Specifically, the regularity properties of (approximate) solutions and the consistency error estimates
are derived under the framework of G-expectations (see section 4 and Proposition 5.1), where the
four axioms of the sublinear expectation Ê are used in an essential way (without any independency
assumption between X and Y ). On the other hand, since there are no variable coefficients to shake
in order to apply the mollification procedure to construct the smooth subsolutions/supersolutions,
the corresponding convergence rate for the approximate solution to the viscosity solution turns out
to be faster than the ones in the PDE literature (It is β/6 in our case). Moreover, by establishing
almost the same regularity property for the approximate solution u∆ as for the viscosity solution u
in Lemma 4.3, we are able to interchange the roles of the G-equation and its approximation scheme,
and thus obtain a symmetric upper bound and lower bound for the approximation error which is
rare in the PDE literature (see [4] and [21]). We also work out explicit formulae for all the constants
in our estimates. This enables us to derive an explicit error bound for the first time, which has a
nontrivial application to Peng’s robust central limit theorem.

We show two applications of Theorem 1.3. The first one is the derivation of the convergence
rate for the robust central limit theorem, which is discussed in section 2. Herein, the asymmetric
independency of random vectors {(Xi, Yi)}i≥1 means one cannot simply apply the tower property of
expectations as in the classical linear case. We overcome this difficulty by a mathematical induction
argument in Theorem 2.1. Thanks to the explicit formula for the error bound C in (1.9), we are
able to obtain an explicit convergence rate of Berry-Esseen type. To the best of our knowledge,
this is the first result about Peng’s robust central limit theorem with an explicit bound. The
constant C in (1.9) is not sharp, and it would be interesting to improve such an explicit bound in
the future. The second application is obtaining a numerical approximation scheme for the Black-
Scholes-Barenblatt (BSB) equation, which is widely used to model volatility uncertainty (see [1],
[29] and [36]). We first make a connection between the G-equation and the BSB equation, and
show that the proposed approximation scheme is a natural generalization of the well known Cox-
Ross-Rubinstein (CIR) binomial tree approximation to the case with model ambiguity (see section
3).

Theorem 1.3 may have potential applications to other problems in G-expectations. To name a
few, it could be applied to derive the convergence rates for generalized robust central limit theo-
rems as considered in [7], [26] and [38]. One of the key steps is to construct appropriate monotone
approximation schemes corresponding to the sequence of involved random variables. Another ap-
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plication of Theorem 1.3 is to approximate G-expectations as in [11] [12] and [27], which needs the
notion of G-Brownian motion developed in [31]. Finally, the convergence analysis of the mono-
tone approximation schemes may also offer new insight for the numerical solutions of (backward)
stochastic differential equations driven by G-Brownian motion (see [17], [18] and [28]).

The rest of the paper is organized as follows. Sections 2 and 3 are devoted to the applications
to the robust central limit theorem and the Black-Scholes-Barenblatt(BSB) equation, respectively.
Section 4 establishes the regularity properties of the viscosity solution and the approximate solu-
tion. Sections 5 and 6 are devoted to the monotone approximation scheme and its convergence rate.
Section 7 then discusses some special cases.

Notation. Let δ ∈ (0, 1]. The (semi)norms of a function g : Rd → R are defined as

|g|0 := sup
x∈Rd

|g(x)|, [g]0 := sup
x∈Rd

g(x)−, [g]Cδ := sup
x,x′∈R

d

x 6=x′

|g(x)− g(x′)|
|x− x′|δ .

Let Clb(Rd) be the space of lower bounded continuous functions g on Rd such that [g]0 <∞, Cδ
lb(R

d)
be the space of lower bounded continuous functions g on Rd such that [g]0+[g]Cδ <∞, and C2+δ

b (Rd)
be the space of bounded continuous functions g on Rd such that |Di

xg|0 < ∞ for 0 ≤ i ≤ 2 and
[D2

xg]Cδ <∞.
Similarly, for a function f : QT → R, we introduce its (semi)norms

|f |0 := sup
(t,x)∈QT

|f(t, x)|, [f ]0 := sup
(t,x)∈QT

f(t, x)−,

[f ]1,δ := sup
(t,x),(t′,x)∈QT

t6=t′

|f(t, x)− f(t′, x)|
|t− t′|δ , [f ]2,δ := sup

(t,x),(t,x′)∈QT

x 6=x′

|f(t, x)− f(t, x′)|
|x− x′|δ .

Furthermore, [f ]Cδ/2,δ := [f ]1,δ/2 + [f ]2,δ. Let Clb(QT ) be the space of lower bounded continuous

functions f on QT such that [f ]0 < ∞, Cδ/2,δ
lb (QT ) be the space of lower bounded continuous

functions f on QT such that [f ]0 + [f ]Cδ/2,δ < ∞, and C1+ δ
2 ,2+δ

b (QT ) be the space of bounded
continuous functions f such that |∂itDj

xf |0 < ∞ for 0 ≤ i ≤ 1, 0 ≤ j ≤ 2, and [∂1t f ]Cδ/2,δ +

[D2
xf ]Cδ/2,δ < ∞. Basically, Cδ/2,δ

lb (QT ) is the space of viscosity solutions and C1+ δ
2 ,2+δ

b (QT ) is the
space of classical solutions in this paper.

Finally, for S = R
d or QT , we denote by C∞

lb (S) be the spaces of lower bounded continuous
functions on S with bounded derivatives of any order.

2 Application to robust central limit theorem

In this section, we apply Theorem 1.3 to derive the convergence rate (with an explicit bound
of Berry-Esseen type) of the celebrated robust central limit theorem introduced in [30]. For this,
let {(Xi, Yi)}i≥1 be a sequence of Rd × Rd-valued random vectors defined on (Ω,H, Ê) such that

(X1, Y1) = (X,Y ), (Xi+1, Yi+1)
d
= (Xi, Yi) and (Xi+1, Yi+1) is independent of {(X1, Y1), ..., (Xi, Yi)}
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for each i ∈ N. Furthermore, assume that X and Y satisfy Assumption 1.1(ii). Then, Peng proved
that the sequence {Sn}n≥1 defined by

Sn :=
n∑

i=1

(
Xi√
n
+
Yi
n
) (2.1)

converges in law to (ξ + ζ):

lim
n→∞

Ê[φ(Sn)] = Ẽ[φ(ξ + ζ)]. (2.2)

for any continuous test function satisfying linear growth condition, where (ξ, ζ) follows G-distribution

under another sublinear expectation Ẽ possibly different from Ê. See Theorem 5.1 in [30] for its
proof.

Following Peng’s seminal work, a lot of efforts have been made to further obtain the various
convergence rates of (2.2) with additional model assumptions (see, for example, [15] [25] and [34]).
However, the existing literature on the convergence rates of (2.2) assumes that either Xi = 0 or
Yi = 0 and, to be best of our knowledge, the convergence rate of (2.2) for the general situation
(i.e. Xi 6= 0 and Yi 6= 0) and an explicit bound of Berry-Esseen type are still lacking. Our aim
is therefore to obtain a general result about the convergence rate of (2.2) with an explicit bound
using Theorems 1.3.

To illustrate how it works, we provide some preliminary informal arguments to highlight the
main ideas and build intuition. Consider d = 1 for simplicity. If we replace the sublinear expectation
Ê with the linear expectation E and let {(Xi, Yi)}i≥1 be a sequence of i.i.d. copies of (X,Y ) such
that E[X ] = 0, then the recursive approximation (1.7) reduces to

u∆(n∆, x) = E[φ(x +

n∑

i=1

(
√
∆Xi +∆Yi))].

On the other hand, the nonlinear functionG defined in (1.1) reduces toG(p,A) = 1
2E[|X |2]A+E[Y ]p,

so E[|X |2] and E[Y ] turn out to be the coefficients of the linear equation

∂tu− 1

2
E[|X |2]∂xxu− E[Y ]∂xu = 0.

The Feynman-Kac formula then implies that

u(t, x) = E[φ(x +
√
tξ + tζ)],

where ξ ∼ N(0,E[|X |2]) and ζ = E[Y ]. Taking ∆ = 1
n and using Theorem 1.3, we obtain

u∆(1, 0) = E

[
φ

(
n∑

i=1

(
Xi√
n
+
Yi
n
)

)]
→ u(1, 0) = E[φ(ξ + ζ)],

which is precisely the classical central limit theorem (for ξ) and law of large numbers (for ζ)

Theorem 2.1 Let {Sn}n≥1 be given as in (2.1), and suppose Assumption 1.1 is satisfied. Then,
the following assertions hold.

7



(i) (Degenerate case) There exists a constant C depending only on T , Cφ, β, M
3
X and M2

Y such
that ∣∣∣Ê[φ(Sn)]− Ẽ[φ(ξ + ζ)]

∣∣∣ ≤ Cn− β
6 . (2.3)

Moreover, if the dimension d = 1 and T = 1, then the constant C has an explicit formula given in
(1.9).

(ii) (Non-degenerate case) Moreover, if the second moment of the random vector X is non-
degenerate, i.e.

σ2 := −Ê[−|X |2] > 0,

and the initial data φ ∈ C1
b (R

d), i.e. φ is bounded and Lipschitz continuous, then there exists a
constant α ∈ (0, 1) depending on d, σ2 and M2

X and a constant C depending only on T , Cφ, α,
M2+α

X and M2
Y such that

∣∣∣Ê[φ(Sn)]− Ẽ[φ(ξ + ζ)]
∣∣∣ ≤ Cn−max{α

2 , 16}. (2.4)

Proof. We claim that, for all n ∈ N such that n∆ ≤ T and x ∈ Rd,

u∆(n∆, x) = Ê[φ(x +

n∑

i=1

(
√
∆Xi +∆Yi))]. (2.5)

If the representation formula (2.5) holds, then by letting ∆ = 1/n and x = 0, we obtain

u∆(1, 0) = Ê[φ(Sn)].

On the other hand, the representation formula (1.6) implies that

u(1, 0) = Ẽ[φ(ξ + ζ)].

Hence, the assertions (i) and (ii) follow from Theorem 1.3.
We are left to show (2.5). We prove by induction on n. Note that the case n = 1 follows directly

from (1.7). Next, we claim that for all n ∈ N and g ∈ Clb(Rd),

Ê

[
g

(
n∑

i=1

(
√
∆Xi +∆Yi)

)]
= Ê

[
g

(
n+1∑

i=2

(
√
∆Xi +∆Yi)

)]
, (2.6)

and suppose (2.5) holds for n ∈ N such that n∆ ≤ T . Then, if (n+1)∆ ≤ T , we use (2.6) to obtain

u∆((n+ 1)∆, x)

= Ê[u∆(n∆, x+
√
∆X +∆Y )]

= Ê



Ê
[
φ(x +

√
∆p+∆q +

n∑

i=1

(
√
∆Xi +∆Yi))

]

(p,q)=(X,Y )





= Ê



Ê
[
φ(x +

√
∆p+∆q +

n+1∑

i=2

(
√
∆Xi +∆Yi))

]

(p,q)=(X,Y )





= Ê[φ(x+

n+1∑

i=1

(
√
∆Xi +∆Yi))].
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In other words, (2.5) also holds for n+ 1.

Finally, to show (2.6), we prove again by induction on n. The case n = 1 follows from (X2, Y2)
d
=

(X1, Y1). Suppose (2.6) holds for n ∈ N, then

Ê

[
g

(
n+1∑

i=1

(
√
∆Xi +∆Yi)

)]
= Ê

[
g

(
n∑

i=1

(
√
∆Xi +∆Yi) +

√
∆Xn+1 +∆Yn+1

)]
.

Since (Xn+1, Yn+1) is independent of {(X1, Y1), ..., (Xn, Yn)}, The RHS of the above equality further
equals to

Ê



Ê
[
g

(
n∑

i=1

(
√
∆xi +∆yi) +

√
∆Xn+1 +∆Yn+1

)]

(xi,yi)=(Xi,Yi),i=1,...,n





= Ê



Ê
[
g

(
n∑

i=1

(
√
∆xi +∆yi) +

√
∆Xn+2 +∆Yn+2

)]

(xi,yi)=(Xi,Yi),i=1,...,n





= Ê

[
f

(
n∑

i=1

(
√
∆Xi +∆Yi)

)]
,

where f(x) := Ê

[
g
(
x+

√
∆Xn+2 +∆Yn+2

)]
and the first equality follows from (Xn+2, Yn+2)

d
=

(Xn+1, Yn+1). In turn, since (2.6) holds for n, we further have

Ê

[
g

(
n+1∑

i=1

(
√
∆Xi +∆Yi)

)]

= Ê

[
f

(
n+1∑

i=2

(
√
∆Xi +∆Yi)

)]

= Ê


Ê
[
g

(
n+1∑

i=2

(
√
∆xi +∆yi) +

√
∆Xn+2 +∆Yn+2

)]

(xi,yi)=(Xi,Yi),i=2,...,n+1




= Ê

[
g

(
n+2∑

i=2

(
√
∆Xi +∆Yi)

)]
,

which completes the proof.

3 Application to Black-Scholes-Barenblatt equation

In this section, we apply the approximation scheme (1.7) to the Black-Scholes-Barenblatt equa-
tion (see [1], [29] and [36] for the dimension d = 1), which often arises from option pricing models
with volatility uncertainty, namely

∂tu+ rx∂xu+
1

2
σ̄2x2∂xxu

+ − 1

2
σ2x2∂xxu

− − ru = 0, u|t=T = Φ, (3.1)

9



where r is the constant riskless interest rate, σ̄ ≥ σ > 0 are two constants representing upper
and lower bounds on the volatility of underlying price, and Φ : R → R represents some European
contingent claim payoff function. Note that when σ̄ = σ, the equation reduces to the classical
Black-Scholes equation.

To apply the approximation scheme (1.7), some transformations are needed firstly: let v(t, x) :=
u(T − t, ex)ert, then (3.1) becomes

∂tv − sup
σ∈[σ,σ̄]

{
(r − 1

2
σ2)∂xv +

1

2
σ2∂xxv

}
= 0, v|t=0 = Φ(ex). (3.2)

Comparing the equation (3.2) to the G-equation (1.1) and (1.2), we only need to construct a
sublinear expectation Ê and find random variables (X,Y ) with X having no mean uncertainty such
that

G(p,A) = Ê[pY +
1

2
AX2] = sup

σ∈[σ,σ̄]

{
(r − 1

2
σ2)p+

1

2
σ2A

}
. (3.3)

To this end, suppose we are given a measurable space (Ω,F) which supports a class of probability
measures Pσ for σ ∈ [σ, σ̄]. We can then define a random variable X such that Pσ(X = σ) = 1

2

and P
σ(X = −σ) = 1

2 for any σ ∈ [σ, σ̄], and a random variable Y := r − 1
2X

2. Consequently, a

sublinear expectation space (Ω,H, Ê) can be defined such that X,Y ∈ H and

Ê [ξ] = sup
σ∈[σ,σ̄]

E
P
σ

[ξ] for ξ ∈ H.

It is clear that Ê[X ] = Ê[−X ] = 0 and (3.3) holds. The approximation scheme (1.7) then has a
simple form:

v∆(t, x) = Ê[v∆(t−∆, x+
√
∆X +∆Y )]

= sup
σ∈[σ,σ̄]

E
P
σ

[v∆(t−∆, x+
√
∆X +∆(r − 1

2
X2))]

= sup
σ∈[σ,σ̄]

[
1

2
v∆
(
t−∆, x+ (r − 1

2
σ2)∆ + σ

√
∆

)
+

1

2
v∆
(
t−∆, x+ (r − 1

2
σ2)∆− σ

√
∆

)]

for ∆ ≤ t ≤ T and v∆(t, x) = Φ(ex) for t < ∆.

Remark 3.1 When σ̄ = σ = σ > 0, the above approximation scheme reduces to classical Cox, Ross
and Rubinstein (CRR) binomial tree approximation for Xt = ln(St), with St following the geometric
Brownian motion dSt = rStdt+σStdWt. Indeed, by Itô’s lemma, we have dXt = (r− 1

2σ
2)dt+σdWt.

The CRR binomial tree approximation for Xt is then given as follows (we only display one step
binomial tree approximation for simplicity):

X0 + (r − 1
2σ

2)∆t+ σ
√
∆t

X0

X0 + (r − 1
2σ

2)∆t− σ
√
∆t

1
2

1
2
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The approximation scheme for the approximation of v(t, x) then reduces to the CRR binomial tree
approximation

v∆(t, x) =
1

2
v∆
(
t−∆, x+ (r − 1

2
σ2)∆ + σ

√
∆

)
+

1

2
v∆
(
t−∆, x+ (r − 1

2
σ2)∆− σ

√
∆

)
.

Since Assumption 1.1(ii) clearly holds, if the composition function φ(x) := Φ(ex) satisfies As-
sumption 1.1(i), Theorem 1.3 then implies that v∆ converges to v locally uniformly. Notice that
with our construction of the sublinear expectation space (Ω,H, Ê) and our choice of the random
variable X , it also holds that

Ê[X ] = Ê[−X ] = Ê[X3] = Ê[−X3] = 0, M4
X = Ê[|X |4] <∞. (3.4)

Thanks to the above properties, we obtain a better convergence rate than that in Theorem 1.3(iii).

Proposition 3.2 Let (X,Y ) be the random variables constructed as above on the sublinear expec-
tation space (Ω,H, Ê). Then, for any test function φ(x) := Φ(ex) ∈ C1

b (R), there exists a constant

α ∈ (0, 1) depending on σ2 and M2
X such that v ∈ C1+α

2 ,2+α

b (QT ). Moreover, for ∆ ∈ (0, 1), there
exists a constant C depending only on T , Cφ, α, and M

2+α
X such that

|v − v∆| ≤ C∆max{α
2 , 14} in Q̄T . (3.5)

The proof follows along a similar argument and procedure used in Theorem 1.3 with a refinement
of the consistency error estimates in Proposition 5.1, and is therefore postponed to the Appendix.

Remark 3.3 In the general degenerate situation (i.e. without the assumption that σ > 0), the
convergence rate in (3.5) becomes 1

4 . Note that (3.4) is the only condition on X needed to obtain
the convergence rate 1

4 . The condition (3.4) is also imposed in [25] and the same convergence rate
is obtained in Theorem 4.1 therein. However, there is no Y component in [25], so the result therein
is only a special case of our situation.

4 Regularity estimates

We establish the space and time regularity properties of both u and u∆, which are crucial
for proving the convergence of u∆ to u and determining its convergence rate. In particular, the
regularity of u and u∆ will play a vital role in mollification procedures (see (6.3) in section 6.1 and
(6.8) in section 6.2).

Lemma 4.1 Suppose that Assumption 1.1(ii) is satisfied. Then,

(i) Ẽ[|ξ|2] = Ê[|X |2] =M2
X ,

(ii) Ẽ[|ζ|p] ≤ Ê[|Y |]p = (M1
Y )

p for p > 0,
where (ξ, ζ) is a pair of G-distributed random vectors characterized by (1.1) with the associated

sublinear expectation Ẽ.

Proof. Assertion (i) is obvious by combining (1.1) and (1.4), and letting p = 0, A = 2Id. By
(1.5), we further have

Ê[〈p, Y 〉] = G(p, 0) = Ẽ[〈p, ζ〉] = max
q∈Q

〈p, q〉
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for any p ∈ Rd. Then, for any q ∈ Q,

|q|2 ≤ max
q′∈Q

〈q, q′〉 = Ê[〈q, Y 〉] ≤ Ê[max
q∈Q

〈q, Y 〉]

= Ê

[
Ê[〈y, Y 〉]|y=Y

]
≤ Ê

[
Ê[|y||Y |] |y=Y

]
= Ê

[
|Y |Ê[|Y |]

]
= Ê [|Y |]2 .

Thus, we obtain from (1.5) again that Ẽ[|ζ|p] = maxq∈Q |q|p ≤ Ê[|Y |]p.
Lemma 4.2 Suppose that Assumption 1.1 is satisfied. Then, for any t, s ∈ [0, T ] and x, y ∈ Rd,

(i) |u(t, x)− u(t, y)| ≤ Cφ|x− y|β.
(ii) |u(s, x)− u(t, x)| ≤ CφK0|s− t|β/2, where the constant K0 is defined as

K0 := e
βT
2 [(M2

X)
β
2 + (M2

Y )
β
2 ]. (4.1)

Proof. Assertion (i) is a direct consequence of the representation formula (1.6), the sub-

additivity of Ẽ and the Hölder continuity of φ.
To prove (ii), we may assume t ≤ s. Note that the semigroup property of u implies that

u(s, x) = Ẽ[u(t, x+
√
s− tξ + (s− t)ζ)]. (4.2)

In turn, the sub-additivity of Ẽ and (i) yield

|u(s, x)− u(t, x)| ≤ Ẽ[|u(t, x+
√
s− tξ + (s− t)ζ)− u(t, x)|]

≤ Ẽ[|u(t, x+
√
s− tξ + (s− t)ζ)− u(t, x+

√
s− tξ)|]

+ Ẽ[|u(t, x+
√
s− tξ)− u(t, x)|]

≤ Ẽ[Cφ|(s− t)ζ|β ] + Ẽ[Cφ|
√
s− tξ|β ]

= Cφ(Ẽ[|ξ|β ] + |s− t|β/2Ẽ[|ζ|β ])|s− t|β/2

≤ Cφ((M
2
X)β/2 + |s− t|β/2(M1

Y )
β)|s− t|β/2.

where we used Lemma 4.1 and the fact that Ẽ[|ξ|β ] ≤ Ẽ[|ξ|2]β/2 in the last inequality. The conclusion
then follows from the inequalities

(M2
X)β/2 + |s− t|β/2(M1

Y )
β ≤ (M2

X)β/2 + T β/2(M2
Y )

β/2 ≤ K0.

Lemma 4.3 Suppose that Assumption 1.1 is satisfied. Then, for any ∆ ∈ (0, 1), t, s ∈ [0, T ] and
x, y ∈ Rd,

(i) |u∆(t, x)− u∆(t, y)| ≤ Cφ|x− y|β.
(ii) |u∆(s, x)− u∆(t, x)| ≤

√
3CφK0(|s− t|β/2 +∆β/2), where the constant K0 is given in (4.1).

Proof. We first establish the estimate (i) using induction. It is clear that the estimate holds for
t ∈ [0,∆). In general, suppose the estimate holds for t ∈ [(n − 1)∆, n∆) with n∆ ≤ T . Then, for
t ∈ [n∆, ((n+ 1)∆) ∧ T ), the sub-additivity of Ê yields

|u∆(t, x)− u∆(t, y)| =
∣∣∣Ê[u∆(t−∆, x+

√
∆X +∆Y )]− Ê[u∆(t−∆, y +

√
∆X +∆Y )]

∣∣∣

≤ Ê

∣∣∣u∆(t−∆, x+
√
∆X +∆Y )− u∆(t−∆, y +

√
∆X +∆Y )

∣∣∣

≤ Ê[Cφ|x− y|β] = Cφ|x− y|β.
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where we also used the constant preserving property in the last inequality.
To establish the time regularity for u∆ in (ii), we divide its proof into four steps.
Step 1. We lift the Hölder exponent β to 2 in the estimate (i). Note that the Young’s inequality

implies that

xy ≤ β

2
x

2
β +

2− β

2
y

2
2−β , x, y ≥ 0.

In turn, for α ≥ 0 and ε > 0, let x = αβ and y = 1
ε , and we have

αβ ≤ β

2
εα2 +

2− β

2
ε

−β
2−β ,

Hence, it follows from (i) that

u∆(t, x) ≤ u∆(t, y) + a|x− y|2 + b, x, y ∈ R
d, (4.3)

where a := Cφ
β
2 ε and b := Cφ

2−β
2 ε

−β
2−β .

Step 2. Define T∆ := {k∆ : k ∈ N}. Then, for τ ∈ [0, T )∩ T∆ and k ∈ N such that τ + k∆ ≤ T ,
we aim to show that

u∆(τ + k∆, x) ≤ u∆(τ, y) + a(1 + ∆)k|x− y|2 + aNeTk∆+ b, (4.4)

with a and b given in (4.3) and N := 2M2
X + 3M2

Y . Indeed, it is clear that (4.4) holds for k = 0.
Suppose (4.4) holds for some k ∈ N, then,

u∆(τ + (k + 1)∆, x) = Ê[u∆(τ + k∆, x+
√
∆X +∆Y )]

≤ u∆(τ, y) + a(1 + ∆)kÊ[|x− y +
√
∆X +∆Y |2]

+ aNeTk∆+ b. (4.5)

For the sublinear expectation on the RHS of (4.5), we have

Ê[|x− y +
√
∆X +∆Y |2]

≤ |x− y|2 + 2Ê[〈x− y,
√
∆X〉] + 2∆Ê[〈x− y, Y 〉] + ∆M2

X +∆2M2
Y + 2∆

3
2 Ê[〈X,Y 〉].

Since X has no mean uncertainty (cf. Assumption 1.1(ii)), it follows that Ê[〈x − y,
√
∆X〉] = 0.

Furthermore, since 2〈x− y, Y 〉 ≤ |x− y|2 + |Y |2 and 2〈X,Y 〉 ≤ |X |2 + |Y |2,

Ê[|x− y +
√
∆X +∆Y |2] ≤ (1 + ∆)|x− y|2 +∆(2M2

X + 3M2
Y ) = (1 + ∆)|x− y|2 +∆N. (4.6)

Combining (4.5)-(4.6) and the fact that (1 + ∆)k ≤ (1 + ∆)T/∆ ≤ eT , we have

u∆(τ + (k + 1)∆, x) ≤ u∆(τ, y) + a(1 + ∆)k+1|x− y|2 + aNeT (k + 1)∆+ b,

which shows that (4.4) also holds for (k + 1).
Step 3. We show that the estimate (ii) holds on t, s ∈ [0, T )∩T∆. Indeed, taking y = x in (4.4),

we obtain

u∆(τ + k∆, x) ≤ u∆(τ, x) + Cφ
β

2
εNeTk∆+ Cφ

2− β

2
ε

−β
2−β ,
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for any ε > 0. Minimizing the RHS of the above inequality over ε then yields

u∆(τ + k∆, x) ≤ u∆(τ, x) + Cφ(Ne
T )

β
2 (k∆)

β
2 .

Step 4. In general, for s, t ∈ [0, T ] such that s ≥ t, let δs, δt ∈ [0,∆) such that s−δs, t−δt ∈ T∆.
Then, from (1.8) we have

u∆(s, x) = u∆(s− δs, x) ≤ u∆(t− δt, x) + Cφ(Ne
T )

β
2 (s− t− δs + δt)

β/2

≤ u∆(t, x) + Cφ(Ne
T )

β
2 ((s− t)β/2 +∆β/2).

Similarly, we also have, for t ≥ s and s, t ∈ [0, T ],

u∆(t, x) ≤ u∆(s, x) + Cφ(Ne
T )

β
2 ((s− t)β/2 +∆β/2),

from which we then conclude by observing that (NeT )
β
2 ≤

√
3K0.

Remark 4.4 Note that u∆ is a piecewise constant approximation of u, so it is not continuous in
time (with jumps at the partition points τ ∈ T∆). The discontinuity leads to the additional term
∆β/2 in the time regularity of u∆. Such type of time regularity property also appears in Lemma 2.2
of [25] in a stochastic control setting. Our regularity result could be regarded as a generalization of
[25] to the sublinear expectation setting.

5 A monotone approximation scheme for the G-equation

The proof of Theorem 1.3 is based on the monotone schemes for viscosity solutions, the frame-
work of which was first introduced by Barles and Souganidis [5]. Hence, we first rewrite the recursive
approximation (1.7) as a monotone scheme, and then derive its consistency error estimates.

Recall that Clb(Rd) is the space of lower bounded continuous functions on Rd. We define a
forward operator on Clb(Rd) as

S(∆)ψ(x) = Ê[ψ(x +
√
∆X +∆Y )], ψ ∈ Clb(Rd).

Then, from the properties of the sublinear expectation Ê, we immediately deduce that the forward
operator S(∆) satisfies

(i) (Monotonicity) For any ψ′ ∈ Clb(Rd) with ψ′ ≥ ψ,

S(∆)ψ′ ≥ S(∆)ψ. (5.1)

(ii) (Constant preserving) For any c ∈ R,

S(∆)(ψ + c) = S(∆)ψ + c. (5.2)

(iii) (Sub-additivity) For any ψ′ ∈ Clb(Rd),

S(∆)(ψ′ + ψ) ≤ S(∆)ψ′ + S(∆)ψ. (5.3)

(iv) (Positive homogeneity) For any λ ≥ 0,

S(∆)(λψ) = λS(∆)ψ. (5.4)
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Note that (iii) and (iv) imply that S(∆)ψ is convex in ψ. On the other hand, the lower boundedness
of ψ guarantee the Fatou’s property (see Lemma 2.6 in [10]): Let ψn ∈ Clb(Rd) converges uniformly
to ψ, then

S(∆)ψ(x) ≤ lim inf
n

S(∆)ψn(x). (5.5)

The following error estimates play a vital rule to derive the consistency error estimates for the
monotone approximation scheme introduced in section 5.1 (see Proposition 5.2(iii)).

Proposition 5.1 Suppose that Assumption 1.1(ii) is satisfied. For ∆ ∈ (0, 1), define

E(∆, ψ) :=
∣∣∣∣
S(∆)ψ − ψ

∆
−G(Dψ,D2ψ)

∣∣∣∣
0

. (5.6)

(i) If ψ ∈ C2+α
b (Rd) for some α ∈ (0, 1), then

E(∆, ψ) ≤ ∆α/2[D2ψ]CαM2+α
X +

√
∆|D2ψ|0(M2

X +M2
Y ).

(ii) If ψ ∈ C∞
lb (R

d), then

E(∆, ψ) ≤
√
∆|D3ψ|0M3

X +
√
∆|D2ψ|0(M2

X +M2
Y ).

Proof. We only consider the case d = 1, since the general case follows along similar albeit more
complicated arguments. Note that for any x ∈ R,

S(∆)ψ(x) − ψ(x) −∆G(Dψ(x), D2ψ(x))

≤ Ê[ψ(x +
√
∆X +∆Y )− ψ(x)−∆Dψ(x)Y − 1

2
∆D2ψ(x)X2]

≤ Ê[ψ(x +
√
∆X)− ψ(x) − 1

2
∆D2ψ(x)X2]

+ Ê[ψ(x+
√
∆X +∆Y )− ψ(x+

√
∆X)−∆Dψ(x)Y ] := (I) + (II).

Next, we obtain upper bounds for terms (I) and (II). To this end, Taylor’s expansion and the
assumption that Ê[X ] = Ê[−X ] = 0 yield

(I) = Ê

[
√
∆Dψ(x)X +

∫ x+
√
∆X

x

∫ s

x

(D2ψ(u)−D2ψ(x))duds

]

= Ê

[∫ x+
√
∆X

x

∫ s

x

(D2ψ(u)−D2ψ(x))duds

]
.

In case (i), |D2ψ(u)−D2ψ(x)| ≤ [D2ψ]Cα |u− x|α, thus,

(I) ≤ [D2ψ]Cα Ê

[∫ x+
√
∆X

x

∫ s

x

|u− x|αduds
]

≤ [D2ψ]Cα Ê
[
∆1+α

2 |X |2+α/(1 + α)(2 + α)
]
≤ ∆1+α

2 [D2ψ]CαM2+α
X .
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In case (ii), |D2ψ(u)−D2ψ(x)| ≤ |D3ψ|0|u− x|, thus,

(I) = |D3ψ|0Ê
[∫ x+

√
∆X

x

∫ s

x

|u− x|duds
]

≤ |D3ψ|0Ê
[
∆

3
2 |X |3/6

]
≤ ∆

3
2 |D3ψ|0M3

X .

Regarding term (II), for both cases (i) and (ii), we have

(II) = Ê

[∫ x+
√
∆X+∆Y

x+
√
∆X

(Dψ(s)−Dψ(x))ds

]

= Ê

[∫ x+
√
∆X+∆Y

x+
√
∆X

∫ s

x

D2ψ(u)duds

]

≤ |D2ψ|0Ê
[∣∣∣∣∣

(
√
∆X +∆Y )2 − (

√
∆X)2

2

∣∣∣∣∣ 1{
√
∆X(

√
∆X+∆Y )≥0}

+
(
√
∆X +∆Y )2 + (

√
∆X)2

2
1{

√
∆X(

√
∆X+∆Y )<0}

]

≤ |D2ψ|0Ê
[
(∆Y )2/2 + ∆

3
2 |X ||Y |

]

≤ |D2ψ|0Ê
[
(∆Y )2/2 + ∆

3
2 (|X |2 + |Y |2)/2

]
≤ ∆

3
2 |D2ψ|0(M2

X +M2
Y )

Combining the two estimates for terms (I) and (II), we obtain, for any x ∈ R, that

S(∆)ψ(x) − ψ(x)

∆
−G(Dψ(x), D2ψ(x)) ≤ ∆α/2[D2ψ]CαM2+α

X +
√
∆|D2ψ|0(M2

X +M2
Y ),

in case (i), and that

S(∆)ψ(x) − ψ(x)

∆
−G(Dψ(x), D2ψ(x)) ≤

√
∆|D3ψ|0M3

X +
√
∆|D2ψ|0(M2

X +M2
Y ),

in case (ii). Similarly, we obtain lower bounds of E(∆, ψ), and this completes the proof.

5.1 The monotone approximation scheme

For ∆ ∈ (0, 1), we let Q∆
T := (∆, T ] × Rd. Then, based on (1.7) and S(∆), we introduce the

approximation scheme as
{
S(∆, x, u∆(t, x), u∆(t−∆, ·)) = 0 in Q̄∆

T ,

u∆(t, x) = φ(x) in Q̄T \Q̄∆
T ,

(5.7)

where S : (0, 1)× Rd × R× Clb(Rn) → R is defined by

S(∆, x, p, v) =
p− S(∆)v(x)

∆
. (5.8)

From the properties of the forward operator S(∆) and Proposition 5.1, we obtain the following
key properties of the approximation scheme (5.7).
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Proposition 5.2 Suppose that Assumption 1.1(ii) is satisfied. Then, the following properties hold
for the approximation scheme S(∆, x, p, v) given in (5.7).

(i) (Monotonicity) For any c1, c2 ∈ R, and any function u ∈ Clb(Rn) with u ≤ v,

S(∆, x, p+ c1, u+ c2) ≥ S(∆, x, p, v) +
c1 − c2

∆
.

(ii) (Concavity) S(∆, x, p, v) is concave in (p, v).

(iii) (Consistency) (a) If ψ ∈ C1+α
2 ,2+α

b (QT ) for some α ∈ (0, 1), then

|∂tψ −G(Dxψ,D
2
xψ)− S(∆, x, ψ, ψ(t−∆, ·))|

≤ Kα

(
∆α/2

(
[D2

xψ]Cα/2,α + [∂tψ]
Cα/2,α

)
+
√
∆|D2

xψ|0 +∆
(
|∂tD2

xψ|0 + |∂tDxψ|0
))

in Q∆
T , (5.9)

where the constant Kα is given by

Kα := 1 +M1
Y +M2

Y +M2
X +M2+α

X . (5.10)

(b) If ψ ∈ C∞
lb (QT ), then

|∂tψ −G(Dxψ,D
2
xψ)− S(∆, x, ψ, ψ(t−∆, ·))|

≤ K1

(√
∆
(
|D3

xψ|0 + |D2
xψ|0

)
+∆

(
|∂2t ψ|0 + |∂tD2

xψ|0 + |∂tDxψ|0
))

in Q∆
T . (5.11)

where the constant K1 is given by

K1 := 1 +M1
Y +M2

Y +M2
X +M3

X (5.12)

Proof. Parts (i)-(ii) are immediate, so we only prove (iii). To this end, we split the consistency
error into three parts. Specifically, for (t, x) ∈ Q∆

T ,

|∂tψ −G(Dxψ,D
2
xψ)− S(∆, x, ψ, ψ(t−∆, ·))|

≤ E(∆, ψ(t −∆, ·)) + |ψ(t, x)− ψ(t−∆, x)−∆∂tψ(t, x)|∆−1

+ |G(Dxψ(t, x), D
2
xψ(t, x))−G(Dxψ(t−∆, x), D2

xψ(t−∆, x))| := (I) + (II) + (III),

where E is defined in (5.6). Here we only consider the case (b); the case (a) only requires minor
modification that is similar to the proof of Proposition 5.1(i). For term (I), Proposition 5.1 (ii)
yields

E(∆, ψ(t−∆, ·)) ≤ (M3
X +M2

Y +M2
X)

√
∆
(
|D3

xψ|0 + |D2
xψ|0

)
. (5.13)

For term (II), Taylor’s expansion gives

|ψ(t, x)− ψ(t−∆, x)−∆∂tψ(t, x)|∆−1

≤ |
∫ t

t−∆

(∂tψ(s, x)− ∂tψ(t, x)) ds|∆−1

≤ ∆−1|∂2t ψ|0
∫ t

t−∆

(t− s) ds ≤ ∆|∂2t ψ|0. (5.14)
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Finally, for term (III), we have

|G(Dxψ(t, x), D
2
xψ(t, x))−G(Dxψ(t−∆, x), D2

xψ(t−∆, x))|

≤ Ê[|Dxψ(t, x)−Dxψ(t−∆, x)||Y |+ 1

2
|D2

xψ(t, x)−D2
xψ(t−∆, x)||X |2]

≤ ∆(M1
Y |∂tDxψ|0 +M2

X |∂tD2
xψ|0), (5.15)

Combining estimates (5.13)-(5.15), we easily conclude.

Remark 5.3 Due to the monotonicity property (i) in Proposition 5.2, the approximation scheme
(5.7) is also referred to as the monotone (approximation) scheme in the sequel.

5.2 Comparison principle for the monotone approximation scheme

The monotonicity property (i) in Proposition 5.2 also implies the following comparison principle
for the monotone scheme (5.7), which will be used throughout this paper. Most of the arguments
follow from Proposition 2.9 of [20] (and Lemma 3.2 of [3]), but we highlight some key steps for the
reader’s convenience.

Proposition 5.4 Suppose that Assumption 1.1(ii) is satisfied, and that v, v̄ ∈ Clb(Q̄T ) are such
that

S(∆, x, v, v(t−∆, ·)) ≤ h1 in Q∆
T ,

S(∆, x, v̄, v̄(t−∆, ·)) ≥ h2 in Q∆
T ,

for some h1, h2 ∈ Clb(Q∆
T ). Then, for any (t, x) ∈ Q̄T .

v(t, x)− v̄(t, x) ≤ sup
Q̄T \Q∆

T

(v(t, x)− v̄(t, x))+ + t sup
Q∆

T

(h1(t, x) − h2(t, x))
+. (5.16)

Proof. Without loss of generality, we assume that

v ≤ v̄ in Q̄T \Q∆
T and h1 ≤ h2 in Q∆

T , (5.17)

since, otherwise, the function w := v̄+ supQ̄T \Q∆
T
(v − v̄)+ + t supQ∆

T
(h1 − h2)

+ satisfies that v ≤ w

in Q̄T \Q∆
T and by the monotonicity property (i) in Proposition 5.2,

S(∆, x, w, w(t −∆, ·)) ≥ S(∆, x, v̄, v̄(t−∆, ·)) + sup
Q∆

T

(h1 − h2)
+

≥ h2 + sup
Q∆

T

(h1 − h2)
+ ≥ h2 in Q∆

T .

Thus, it suffices to prove v ≤ v̄ in Q̄T when (5.17) holds.
To this end, for b ≥ 0, let ψb(t) := bt and M(b) := supQ̄T

{v − v̄ − ψb}. Then our aim is to
prove M(0) ≤ 0 and we prove by contradiction. Assume M(0) > 0, then by the continuity of M ,
we must have M(b) > 0 for some b > 0. For such b, take a sequence {(tn, xn)}n≥1 in Q̄T such that
δn := M(b)− (v − v̄ − ψb)(tn, xn) ↓ 0, as n → ∞. Since M(b) > 0 but v − v̄ − ψb ≤ 0 in Q̄T \Q∆

T ,
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we must have tn > ∆ for sufficiently large n. Then for such n, we use the monotonicity property
(i) in Proposition 5.2 again to obtain

h1(tn, xn) ≥ S(∆, xn, v(tn, xn), v(tn −∆, ·))
≥ S(∆, xn, v̄(tn, xn) + ψb(tn) +M(b)− δn, v̄(tn −∆, ·) + ψb(tn −∆) +M(b))

≥ S(∆, xn, v̄(tn, xn), v̄(tn −∆, ·)) + b− δn∆
−1

≥ h2(tn, xn) + b− δn∆
−1,

Since h1 ≤ h2 in Q∆
T , we then must have b− δn∆

−1 ≤ 0. Thus, we deduce b ≤ 0 by letting n→ ∞,
which is a contradiction.

5.3 Convergence of the monotone approximation scheme

We prove Theorem 1.3(i) by showing the convergence of the approximate solution u∆ to the
viscosity solution u. It is based on the monotone schemes for viscosity solutions introduced by
Barles-Souganidis in [5], where they show that any monotone, stable and consistent numerical
scheme converges, provided that there exists a comparison principle for the limiting equation.

To this end, define the semi-relaxed limits of u∆ by

u(t, x) = lim sup
(t′,x′)→(t,x),

∆→0

u∆(t′, x′); u(t, x) = lim inf
(t′,x′)→(t,x),

∆→0

u∆(t′, x′).

We show that u is a viscosity subsolution of (1.2)-(1.3). A symmetric argument will imply that
u is a viscosity supersolution of (1.2), which proves that u = u = u, so u∆ converges to u locally
uniformly.

Let φ ∈ C∞(Q̄T ) and (t0, x0) ∈ QT be such that

0 = (u− φ)(t0, x0) = max
(t′,x′)

(u − φ)(t′, x′).

By the definition of u, there exists a sequence {(tn, xn,∆n)}n≥1 such that

(tn, xn,∆n) → (t0, x0, 0), and u∆n(tn, xn) → u(t0, x0).

Moreover, by extracting a subsequence if necessary, (tn, xn) is also the maximum point of u∆n −φ:

δ∆n := (u∆n − φ)(tn, xn) = max
(t′,x′)

(u∆n − φ)(t′, x′) → 0.

Since t0 > 0 and ∆ → 0, we have tn > ∆n for large enough n. The monotonicity property (i) in
Proposition 5.2 further implies that

0 = S(∆n, xn, u
∆n(tn, xn), u

∆n(tn −∆n, ·))
≥ S(∆n, xn, φ(tn, xn) + δ∆n , φ(tn −∆n, ·) + δ∆n)

=
φ(tn, xn)− S(∆n)φ(tn −∆n, ·)(xn)

∆n
.

In turn, using the consistency property (iii) in Proposition 5.2 and letting (tn, xn,∆) → (t0, x0, 0),
we obtain

∂tφ(t0, x0)−G(Dxφ(t0, x0), D
2
xφ(t0, x0)) ≤ 0.
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Next, we show that u(0, x) = φ(x) for x ∈ Rd. Let {(tn, xn,∆n)}n≥1 be a sequence such that

(tn, xn,∆n) → (0, x, 0), and u∆n(tn, xn) → u(0, x).

Since u∆n(s, xn) = φ(xn) for s ∈ Q̄T \Q̄∆n

T , by the time regularity of u∆ in Lemma 4.3(ii), we have

|u∆n(tn, xn)− u∆n(s, xn)| ≤
√
3CφK0(|tn − s|β/2 +∆β/2

n ).

Letting s = 0 and sending n → ∞ yield that |ū(0, x) − φ(x)| = 0, from which we conclude that
u(·, ·) is a viscosity subsolution of (1.2)-(1.3).

6 Convergence rate of the monotone approximation scheme

In this section, we prove Theorem 1.3(ii) by establishing the (uniform) convergence rate of the
approximate solution u∆ to the viscosity solution u, and keeping track of all the involved constants.
We start with the approximation error in the first time interval Q̄T \Q∆

T , where u
∆ = φ = u|t=0

except at t = ∆. Therefore, the bound for the approximation error in this interval can be easily
obtained by the regularity property of u in Lemmas 4.2. This is demonstrated in the following
lemma.

Lemma 6.1 Suppose that Assumption 1.1 is satisfied. Then, for ∆ ∈ (0, 1),

|u− u∆| ≤ 2CφK0∆
β/2 in Q̄T \Q∆

T , (6.1)

where the constant K0 is given in (4.1).

Proof. Since u∆ = φ = u|t=0 in Q̄T \Q̄∆
T , we have, for (t, x) ∈ Q̄T \Q∆

T ,

|u(t, x)− u∆(t, x)| ≤ |u(t, x)− u(0, x)|+ |u∆(∆, x)− u∆(0, x)|1{t=∆}.

When t = ∆, we further obtain

|u∆(∆, x) − u∆(0, x)| ≤ Ê[|u∆(0, x+
√
∆X +∆Y )− u∆(0, x)|]

= Ê[|φ(x +
√
∆X +∆Y )− φ(x)|]

≤ Ê[Cφ|
√
∆X +∆Y |β ]

≤ Cφ(M
β
X +∆β/2Mβ

Y )∆
β/2

≤ Cφ((M
2
X)β/2 + (M1

Y )
β)∆β/2 ≤ CφK0∆

β/2.

The conclusion then follows from Lemma 4.2(ii).

6.1 Lower bound for the approximation error

For u ∈ C
β
2 ,β

lb (Q̄T ), we aim to derive a lower bound for the approximation error u − u∆ within
the whole domain Q̄T . To this end, for ε ∈ (0, 1), we extend the domain of the G-equation (1.2)
from QT to QT+ε2 := (0, T + ε2]× Rd and still denote the solution as u. Next, we regularize u by
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a standard mollification procedure: let ρ(t, x) be a nonnegative smooth function with support in
(−1, 0)×B(0, 1) and mass 1, and introduce the sequence of mollifiers ρε for ε ∈ (0, 1),

ρε(t, x) :=
1

ε2+d
ρ

(
t

ε2
,
x

ε

)
. (6.2)

For (t, x) ∈ Q̄T , we then define

uε(t, x) = u ∗ ρε(t, x) =
∫

−ε2<τ<0

∫

|e|<ε

u(t− τ, x− e)ρε(τ, e)dedτ.

Lemma 4.2 implies that

|u(t, x)− u(s, y)| ≤ Cφ

[
|x− y|β +K0|s− t|β/2

]
.

In turn, standard properties of mollifiers (see C.4 in [13]) imply that uε ∈ C∞
lb (Q̄T ),

|u− uε|0 ≤ Cφ(1 +K0)ε
β , (6.3)

and, moreover, for positive integer i and multiindex j,

|∂itDj
xuε|0 ≤ Cφ(1 +K0)ε

β−2i−|j|||∂itDj
xρ||1, (6.4)

where the constant K0 is given in (4.1) and

||∂itDj
xρ||1 =

∫

(−1,0)

∫

B(0,1)

∣∣∂itDj
xρ(τ, e)

∣∣ d(τ, e) <∞.

We observe that the function u(t− τ, x − e) is still a viscosity solution of the G-equation (1.2)
in QT for any (τ, e) ∈ (−ε2, 0)×B(0, ε). On the other hand, a Riemann sum approximation shows
that there exists a sequence {In}n≥1 ∈ Clb(Q̄T ) such that each In is a convex combination of the
functions u(·−τ, ·−e) for different (τ, e) ∈ (−ε2, 0)×B(0, ε) and that In converges uniformly to uε.
Since the nonlinear term G(p,X) is convex in p and X , each In becomes a supersolution of (1.2)
in QT . Using the stability of viscosity solutions, we deduce that uε(t, x) is still a supersolution of
(1.2) in QT , namely,

∂tuε −G(Dxuε, D
2
xuε) ≥ 0. (6.5)

We are now in a position to establish a lower bound for the approximation error.

Theorem 6.2 Suppose that Assumption 1.1 is satisfied. Then, for ∆ ∈ (0, 1), there exists a
constant CLB depending only on T , Cφ, β, M

3
X and M2

Y such that

u− u∆ ≥ −CLB∆
β/6 in Q̄T .

Moreover, the constant CLB has an explicit formula CLB := Cφ(1 + K0) (4 +K1CρT ) with the
constants K0, K1 and Cρ given in (4.1), (5.12) and (6.7), respectively.
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Proof. Since uε ∈ C∞
lb (Q̄T ) is smooth with bounded derivatives of any order, we substitute uε

into the consistency error estimate (5.11) and use (6.5) and (6.4) to obtain

S(∆, x, uε(t, x), uε(t−∆, ·))
≥ − Cφ(1 +K0)K1

×
[√

∆(εβ−3||D3
xρ||1 + εβ−2||D2

xρ||1) + ∆(εβ−4(||∂2t ρ||1 + ||∂tD2
xρ||1) + εβ−3||∂tDxρ||1)

]

≥ − Cφ(1 +K0)K1

×
[√

∆εβ−3(||D3
xρ||1 + ||D2

xρ||1) + ∆εβ−4(||∂2t ρ||1 + ||∂tD2
xρ||1 + ||∂tDxρ||1)

]

=: − Cφ(1 +K0)K1c(β, ε), (6.6)

for (t, x) ∈ Q∆
T , where the constants K0 and K1 are given in (4.1) and (5.11), respectively. The

comparison principle in Proposition 5.4 then implies that in Q̄T ,

u∆ − uε ≤ sup
Q̄T \Q∆

T

(u∆ − uε)
+ + c(β, ε)TCφ(1 +K0)K1.

Next, using (6.3), we further obtain

u∆ − u = (uε − u) + (u∆ − uε)

≤ Cφ(1 +K0)ε
β + sup

Q̄T \Q∆
T

(u∆ − uε)
+ + c(β, ε)TCφ(1 +K0)K1

≤ sup
Q̄T \Q∆

T

(u− u∆)+ + 2Cφ(1 +K0)ε
β + c(β, ε)TCφ(1 +K0)K1 in Q̄T .

By choosing ε = ∆1/6, we conclude that

u∆ − u ≤ sup
Q̄T \Q∆

T

(u− u∆)+ + 2Cφ(1 +K0)∆
β/6 + c(β,∆1/6)TCφ(1 +K0)K1

≤ Cφ(1 +K0) (4 +K1CρT )∆
β/6 in Q̄T ,

where the last inequality follows from the estimate (6.1) in Lemma 6.1 and the fact that c(β,∆1/6) ≤
Cρ∆

β/6 with

Cρ := ||D3
xρ||1 + ||D2

xρ||1 + ||∂2t ρ||1 + ||∂tD2
xρ||1 + ||∂tDxρ||1 <∞. (6.7)

Remark 6.3 A typical example of ρ is given by

ρ(t, x) = K exp(− 1

1− |x|2 ) exp(−
1

1− (2t+ 1)2
)1{|x|<1,−1<t<0},

where K is given such that the mass of ρ is 1. One can always compute Cρ using this example and
in the one-dimension case, Cρ < 103e−1. In turn, when T = 1, it follows from the formulae for K0

and K1 (c.f. (4.1) and (5.12)) that

CLB ≤ Cφ

[
1 + e

β
2 ((M2

X)
β
2 + (M2

Y )
β
2 )
] [

4 + (1 +M1
Y +M2

Y +M2
X +M3

X)
103

e

]

≤ 613Cφ

[
1 + (M3

X)
β
3 + (M2

Y )
β
2

] [
1 + (M3

X)
2
3 +M3

X + (M2
Y )

1
2 +M2

Y

]
.
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6.2 Upper bound for the approximation error

To obtain an upper bound for the approximation error, we are not able to construct approximate
smooth subsolutions of (1.2) due to the convexity of the function G. Instead, we interchange the
roles of the G-equation (1.2) and the monotone scheme (5.7) (as in [16] and [21]).

To this end, for ε ∈ (0, 1), we extend the domain of the monotone scheme (5.7) from Q̄T to
Q̄T+ε2 := [0, T+ε2]×Rd and still denote the scheme solution as u∆. Then, using the same mollifiers
ρε as in section 6.1, we define, for (t, x) ∈ Q̄T ,

u∆ε (t, x) = u∆ ∗ ρε(t, x) =
∫

−ε2<τ<0

∫

|e|<ε

u∆(t− τ, x− e)ρε(τ, e)dedτ.

The regularity property of u∆ in Lemma 4.3 implies that

|u∆(t, x)− u∆(s, y)| ≤ Cφ

[
|x− y|β +

√
3K0(|s− t|β/2 +∆β/2)

]
.

In turn, standard properties of mollifiers imply that u∆ε ∈ C∞
lb (Q̄T ),

|u∆ − u∆ε |0 ≤ Cφ(1 +
√
3K0)(ε

β +∆β/2), (6.8)

and, moreover, for positive integer i and multiindex j,

|∂itDj
xu

∆
ε |0 ≤ Cφ(1 +

√
3K0)ε

−2i−|j|(εβ +∆β/2)||∂itDj
xρ||1, (6.9)

where the constant K0 is given in (4.1) and

||∂itDj
xρ||1 =

∫

(−1,0)

∫

B(0,1)

∣∣∂itDj
xρ(τ, e)

∣∣ d(τ, e) <∞.

Next, let {I∆n }n≥1 ∈ Clb(Q̄T ) be a sequence such that each I∆n is a convex combination of the
functions u∆(· − τ, · − e) for different (τ, e) ∈ (−ε2, 0)×B(0, ε) and that I∆n converges uniformly to
u∆ε . Since

S(∆, x, u∆(t− τ, x− e), u∆(t− τ −∆, · − e)) = 0 in Q̄∆
T ,

for any (τ, e) ∈ (−ε2, 0)× B(0, ε), the concavity of the monotone scheme (cf. Proposition 5.2 (ii))
yields that for any n ∈ N and (t, x) ∈ Q̄∆

T ,

S(∆, x, I∆n (t, x), I∆n (t−∆, ·)) ≥ 0.

Since I∆n is lower bounded, we use Fatou’s property of the sublinear expectation Ê (see (5.5)) to
deduce that, for (t, x) ∈ Q̄∆

T ,

S(∆, x, u∆ε (t, x), u
∆
ε (t−∆, ·))

=
(
u∆ε (t, x)− Ê[u∆ε (t−∆, x+

√
∆X +∆Y )]

)
∆−1

≥
(
u∆ε (t, x)− lim

n→∞
Ê[I∆n (t−∆, x+

√
∆X +∆Y )]

)
∆−1

= lim
n→∞

S(∆, x, I∆n (t, x), I∆n (t−∆, ·)) ≥ 0. (6.10)

We are now in a position to establish an upper bound for the approximation error.
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Theorem 6.4 Suppose that Assumption 1.1 is satisfied. Then, for ∆ ∈ (0, 1), there exists a
constant CUB depending only on T , Cφ, β, M

3
X and M2

Y such that

u− u∆ ≤ CUB∆
β/6 in Q̄T .

Moreover, the constant CUB has an explicit formula CUB := 2
√
3CLB = 2

√
3Cφ(1+K0) (4 +K1CρT )

with the constants K0, K1 and Cρ given in (4.1), (5.11) and (6.7), respectively.

Proof. We first consider the above error estimate in Q∆
T . Since u∆ε ∈ C∞

lb (Q̄T ) is smooth with
bounded derivatives of any order, we substitute u∆ε into the consistency error estimate (5.11) and
use (6.10) and (6.9) to obtain

∂tu
∆
ε −G(Dxu

∆
ε , D

2
xu

∆
ε ) ≥ −Cφ(1 +

√
3K0)K1(ε

β +∆β/2)c(0, ε)

for (t, x) ∈ Q∆
T , where c(0, ε) is defined in (6.6). Then, the function

v̄(t, x) := u∆ε (t, x) + Cφ(1 +
√
3K0)K1(ε

β +∆β/2)c(0, ε)(t−∆)

becomes a (classical) supersolution of the G-equation (1.2) in Q∆
T with initial condition v̄(∆, x) =

u∆ε (∆, x). On the other hand, from (6.8) and (6.1), we know that

v(t, x) := u(t, x)− Cφ(1 +
√
3K0)(ε

β +∆β/2)− 2CφK0∆
β/2

is a (viscosity) solution of the G-equation (1.2), and from (6.1) and (6.8), we further have

v(∆, x) = u(∆, x)− Cφ(1 +
√
3K0)(ε

β +∆β/2)− 2CφK0∆
β/2

= u(∆, x)− u∆(∆, x) + u∆(∆, x)− u∆ε (∆, x) + u∆ε (∆, x)

− 2CφK0∆
β/2 − Cφ(1 +

√
3K0)(ε

β +∆β/2) ≤ u∆ε (∆, x) = v̄(∆, x).

Thus, the comparison principle for the G-equation (see Theorem 6.3 in [30]) implies that v ≤ v̄ in
Q̄∆

T , i.e.

u−u∆ε ≤ Cφ(1+
√
3K0)(ε

β+∆β/2)+2CφK0∆
β/2+Cφ(1+

√
3K0)K1(ε

β+∆β/2)c(0, ε)(t−∆) in Q̄∆
T .

Finally, using the estimates (6.8) again, we obtain by choosing ε = ∆1/6 that

u− u∆ = (u− u∆ε ) + (u∆ε − u∆)

≤ 4Cφ(1 +
√
3K0)∆

β/6 + 2CφK0∆
β/6 + 2Cφ(1 +

√
3K0)K1CρT∆

β/6 in Q̄∆
T ,

where we used the fact that c(0,∆1/6) ≤ Cρ. The conclusion then follows by combining the above
estimate with (6.1).

6.3 The non-degenerate case

We prove part(iii) in Theorem 1.3. When the non-degeneracy assumption and more regularity
on the initial data φ are imposed as in part(iii), the solution u of (1.2)-(1.3) becomes a classical
solution with enough regularity. This will significantly simplify the previous proof for the general
case with possible degeneracy.
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First, the monotonicity property of Ẽ, the boundedness of φ and (1.6) yield that u is bounded.

Lemma 4.2 further implies that u ∈ C1/2,1
b (Q̄T ). In turn, the regularity theory of fully nonlinear

PDEs implies the Hölder continuity of the derivatives of u, i.e. there exists a constant α ∈ (0, 1)

depending only on d, σ2 and M2
X such that u ∈ C1+α

2 ,2+α

b (Q̄ε
T ) for any ε > 0 (see Theorem 4.5 in

Appendix C of [32], or [22] and [37] for more details). The consistency error estimate (5.9) then
yields

|S(∆, x, u(t, x), u(t−∆, ·))|
≤ Kα

(
∆α/2

(
[D2

xu]Cα/2,α + [∂tu]Cα/2,α

)
+
√
∆|D2

xu|0 +∆
(
|∂tD2

xu|0 + |∂tDxu|0
))

≤ C∆α/2,

for (t, x) ∈ Q∆
T and some constant C. On the other hand, since

S(∆, x, u∆(t, x), u∆(t−∆, ·)) = 0,

the comparison principle in Proposition 5.4 implies

|u− u∆| ≤ sup
Q̄T \Q∆

T

|u− u∆|+ Ct∆α/2 in Q̄T . (6.11)

Since Assumption 1.1(i) holds with β = 1, it follows from Lemma 6.1 that

sup
Q̄T \Q∆

T

|u− u∆| ≤ 2CφK0∆
1/2.

The conclusion follows by plugging the above estimate into (6.11) and combining with part(ii) in
Theorem 1.3.

Remark 6.5 Since there is no explicit formula for the Hölder constant α, we are not able to write
down the explicit error bound as for the general case with possible degeneracy in part(ii) of Theorem
1.3.

On the other hand, if the solution u has more regularity, say u ∈ C∞
b (QT ), then we can replace

the consistency error estimate (5.9) in the above proof by (5.11), and obtain the convergence rate
∆1/2.

7 Some special cases

In this section, we improve the convergence rates in Theorem 2.1 by imposing further model
assumptions, and compare our results with the existing literature. For the latter use, we state the
following property (see Proposition 4.1 in [30]) of the nonlinear function G(p,A) given by (1.1).

Proposition 7.1 Let the nonlinear function G(p,A) be given in (1.1). Then, there exists a bounded,
closed and compact subset Θ ⊂ Rd × Rd×d such that

G(p,A) = sup
(q,Q)∈Θ

{
1

2
tr[AQQT ] + 〈p, q〉

}
, (p,A) ∈ R

d × S(d).
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7.1 Law of large numbers: Comparison with [15]

Assume that X = 0. With this extra assumption, we can obtain a better convergence rate by
refining the consistency error estimates in Proposition 5.1 and Proposition 5.2.

Corollary 7.2 Suppose that Assumption 1.1 is satisfied with X = 0 and β = 1, i.e. there is no
volatility uncertainty, and the initial data φ is Lipschitz continuous bounded from below. Then,
there exists a constant C depending only on T , Θ and M2

Y such that

|u− u∆| ≤ C∆
1
2 in Q̄T .

Before proving Corollary 7.2, we show its application to the law of large numbers. To this end,
let ∆ = 1

n , then by the representation formula (2.5), we have

u1/n(1, 0) = Ê[φ(

n∑

i=1

Yi
n
)],

where Y1 = Y , Yi+1
d
= Yi and Yi+1 is independent of (Y1, ..., Yi) for each i = 1, ..., n − 1. On the

other hand, if we further let φ(y) := dΘ(y) = inf{|x − y| : x ∈ Θ}, where the subset Θ ⊂ R
d is

given in G(p, 0) in Proposition 7.1, then dΘ(y) ≥ 0 is Lipschitz continuous bounded from below. It
follows from Example 4.3 in [30] that

u(1, 0) = sup
θ∈Θ

φ(θ) = sup
θ∈Θ

dΘ(θ) = 0.

In turn, Corollary 7.2 yields the following form of law of large numbers

0 ≤ Ê[dΘ(

n∑

i=1

Yi
n
)] ≤ Cn−1/2. (7.1)

Note that the above convergence rate is better than the convergence rate n−2/5 in Fang et al [15]
for the law of large numbers under sublinear expectations (See Remark 2.3 in [15]).

Remark 7.3 1 If we choose any bounded and Lipschitz continuous φ ∈ C1
b (R

d) as the test function
(which clearly satisfies the assumption in Corollary 7.2), then we also obtain the following general
form of law of large numbers

∣∣∣∣∣Ê[φ(
n∑

i=1

Yi
n
)]− sup

θ∈Θ
φ(θ)

∣∣∣∣∣ ≤ Cn−1/2. (7.2)

We proceed to prove Corollary 7.2. Since it is a special case of Theorem 1.3, we only highlight
its main steps and differences compared to the proof of Theorem 1.3. Unless otherwise specified, C
will represent a generic constant in the following.

1While revising this work, we came across the working paper [35] by Song posted on arXiv in April 2019. He
also considers this special case, and obtains the convergence rate n

−1/2 using the Stein’s method and a mollification
procedure.
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Step 1. Since X = 0 and β = 1, a revisit of Lemmas 4.2 and 4.3 shows that u and u∆ satisfy

|u(t, x)− u(s, y)| ≤ Cφ[|x− y|+M1
Y |s− t|];

|u∆(t, x) − u∆(s, y)| ≤ Cφ[|x− y|+M1
Y (|s− t|+∆)].

Thus, from Lemma 6.1, the error bound between u and u∆ in the interval [0,∆] can be refined as

sup
Q̄T \Q∆

T

|u− u∆| ≤ C∆. (7.3)

Step 2. Next, we refine the consistency error estimates. From Proposition 5.1, since X = 0,
term (I) disappears and (II) ≤ 1

2∆
2|D2ψ|0M2

Y . Thus, E(∆, ψ) ≤ C∆|D2ψ|0. Plugging it into
Proposition 5.2(iii) yields

|∂tψ −G(Dxψ, 0)− S(∆, x, ψ, ψ(t−∆, ·))| ≤ C∆
(
|D2

xψ|0 + |∂2t ψ|0 + |∂tDxψ|0
)
. (7.4)

Step 3. We modify the mollifiers ρε in (6.2) by

ρε(t, x) :=
1

ε1+d
ρ

(
t

ε
,
x

ε

)
, (7.5)

and redefine uε as

uε(t, x) = u ∗ ρε(t, x) =
∫

−ε<τ<0

∫

|e|<ε

u(t− τ, x− e)ρε(τ, e)dedτ.

Thus, the regularity of u implies that |u − uε| ≤ Cε, and |∂itDj
xuε|0 ≤ Cε1−i−|j|.

Step 4. Substituting uε with ψ in the consistency error estimate (7.4) and using the fact that
∂tuε −G(Dxuε, 0) ≥ 0 yield

S(∆, x, uε(t, x), uε(t−∆, ·)) ≥ −C∆ε−1.

Furthermore, choosing ε = ∆1/2 and following along the similar arguments as in the proof for
Theorem 6.2, we obtain that

u∆ − u ≤ sup
Q̄T \Q∆

T

(u− u∆)+ + C∆1/2 ≤ C∆1/2,

where we used (7.3) in the last inequality.
Step 5. To prove the other side inequality, we mollify u∆ with ρε(t, x) given in (7.5), i.e.

u∆ε (t, x) = u∆ ∗ ρε(t, x). Then, the regularity of u∆ implies that

|u∆ − u∆ε |0 ≤ C(ε+∆),

and
|∂itDj

xu
∆
ε |0 ≤ Cε−i−|j|(ε+∆),

Step 6 Substituting u∆ε with ψ in the consistency error estimate (7.4) and using the fact that
S(∆, x, u∆ε (t, x), u

∆
ε (t−∆, ·)) ≥ 0 yield

∂tu
∆
ε −G(Dxu

∆
ε , 0) ≥ −C(ε+∆)∆ε−2,

In turn, u− u∆ε ≤ C(ε+∆)(1 + ∆ε−2), and by choosing ε = ∆1/2 and following along the similar
arguments as in the proof for Theorem 6.4, we obtain

u− u∆ = (u− u∆ε ) + (u∆ε − u∆) ≤ C∆1/2,

which is the desired convergence rate.
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7.2 Central limit theorem: Comparison with [25] and [34]

Assume that Y = 0, we obtain the central limit theorem as in [25] and [34], but with an improved
convergence rate. To this end, choosing ∆ = 1/n, by the representation formula (2.5), we have

u1/n(1, 0) = Ê[φ(

n∑

i=1

Xi√
n
)],

where X1 = X , Xi+1
d
= Xi and Xi+1 is independent of (X1, ..., Xi) for each i = 1, ..., n− 1. On the

other hand, since G(p,A) = Ê[ 12 〈AX,X〉] and ζ = 0, by (1.6), we have

u(1, 0) = Ẽ[φ(ξ)] = NG(φ),

where NG denotes the corresponding G-normal distribution. Under Assumption 1.1, Theorem 2.1
then yields the following central limit theorem in the degenerate case

∣∣∣∣∣Ê[φ(
n∑

i=1

Xi√
n
)]−NG(φ)

∣∣∣∣∣ ≤ Cn−β/6. (7.6)

Moreover, if the second moment of the random vector X is non-degenerate, i.e. σ2 := −Ê[−|X |2] >
0, and the initial data φ ∈ C1

b (R
d), i.e. φ is bounded and Lipschitz continuous, then

∣∣∣∣∣Ê[φ(
n∑

i=1

Xi√
n
)]−NG(φ)

∣∣∣∣∣ ≤ Cn−max{α
2 , 16 }. (7.7)

Note that the above convergence rate in (7.6) for the degenerate case improves Theorem 1.1 of
Krylov [25], where the author considers a one-dimensional stochastic control problem and obtains

the convergence rate β2

4+2β (≤
β
6 ). Moreover, the convergence rate in (7.7) for the non-degeneate

case improves Theorem 4.5 of Song [34], where the author obtains the convergence rate α
2 .

7.3 Linear central limit theorem

We conclude the paper with a brief discussion of the convergence rate of the linear central limit
theorem via a monotone scheme. First, we consider the smooth test function φ ∈ C2+1

b (R), meaning
it is twice differentiable, with its second-order derivative being uniformly Lipschitz continuous. In
this case, we obtain the following central limit theorem. The proof is similar to the proof of Theorem
2.1 and is omitted.

Corollary 7.4 Let {Xi}i≥1 be a sequence of real-valued i.i.d. random variables with finite third
moment M3

X <∞ and Sn =
∑n

i=1
Xi√
n
. Then, for φ ∈ C2+1

b (R),

|E [φ (Sn)]− E[φ(ξ)]| ≤
(
1 +M3

X

)
[φxx]C1 n

− 1
2 , (7.8)

where ξ follows standard normal distribution.
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However, the linear central limit theorem requires the test function φ to a step function, denoted
as φ(·) = 1·≤x parameterized by x ∈ R. Therefore, the above convergence rate result does not apply
directly to such a test function φ(·). To obtain the convergence rate for this test function φ(·), it is
noteworthy that, by integration by parts, we have

∫
φx(x) [G(x) − Fn(x)] dx

=

∫
φ(x)dFn(x) −

∫
φ(x)dG(x)

= E [φ (Sn)]− E[φ(ξ)], (7.9)

where Fn(x) = E[1{Sn≤x}] and G(x) = E[1{ξ≤x}].

Proposition 7.5 Let {Xi}i≥1 be a sequence of real-valued i.i.d. random variables with finite third
moment M3

X <∞ and Sn =
∑n

i=1
Xi√
n
. Then,

|Fn −G|0 ≤
(
M3

X + 5
)
n− 1

8 .

Proof. Let h : R → R be such that h(0) = 0 and

hx(x) = x21{0≤x≤1} +
(
2− (x− 2)2

)
1{1<x≤3} + (x− 4)21{3<x≤4}.

Then, it is clear that h ∈ C2+1
b (R) with [hxx]C1 = 2. Define for any a ∈ R and ε > 0,

φa,ε(x) := h

(
x− a

ε

)
.

We then have φa,ε ∈ C2+1
b (R) with [(φa,ε)xx]C1 = 2ε−3. Applying φa,ε to (7.8) and (7.9) yields

∣∣∣∣
∫
(φa,ε)x(x) [G(x) − Fn(x)] dx

∣∣∣∣ ≤ 2
(
M3

X + 1
)
ε−3n− 1

2 . (7.10)

Focussing on the integral of the above left hand side, we further have that by change of variable
y = x−a

ε ,

∫
(φa,ε)x(x) [G(x)− Fn(x)] dx

=

∫
hx(y) [G(a+ εy)− Fn(a+ εy)] dy

≤ [G(a)− Fn(a) + 4ε]

∫ 4

0

hx(y)dy

= 4 [G(a)− Fn(a) + 4ε] , (7.11)

where we use that hx ≥ 0, [G]C1 ≤ 1 and that Fn is monotone. Combining (7.10) and (7.11), we
have

Fn(a)−G(a) ≤ 1

2

(
M3

X + 1
)
ε−3n− 1

2 + 4ε ≤
(
M3

X + 5
)
n− 1

8
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by letting ε = n−1/8. Similarly,

∫
hx(y) [G(a+ εy)− Fn(a+ εy)] dy

≥ [G(a+ 4ε)− Fn(a+ 4ε)− 4ε]

∫ 4

0

hx(y)dy

= 4 [G(a+ 4ε)− Fn(a+ 4ε)− 4ε] ,

and thus
G
(
a+ 4n−1/8

)
− Fn

(
a+ 4n−1/8

)
≤
(
M3

X + 5
)
n− 1

8 .

By the arbitrary of a, we conclude that

|Fn −G|0 ≤
(
M3

X + 5
)
n− 1

8 .

Although the rate of 1/8 we established is slower than that of 1/2 in the Berry-Esseen theorem
due to the introduction of an approximation to step functions by C2+1

b functions (φa,ε in the proof
above), we have demonstrated a much simpler way to establish a rate of Berry-Esseen type con-
vergence. In fact, this also addresses the challenge encountered by Stein’s method when applied to
establish a lower convergence rate than 1/2. Establishing the convergence rate of 1/2 for the linear
central limit theorem is more challenging and will be left for future research.

A Proof of Proposition 3.2

The convergence rate α
2 follows immediately from Theorem 1.3(iii). To establish the other

convergence rate 1
4 , we only need to prove the following consistency error estimate

E(∆, ψ) :=
∣∣∣∣
S(∆)ψ − ψ

∆
−G(Dψ,D2ψ)

∣∣∣∣
0

≤ C∆(|D4ψ|0 + |D3ψ|0 + |D2ψ|0), (A.1)

for any test function ψ ∈ C∞
b (R). Note that (A.1) is a refinement of the consistency error estimate

in Proposition 5.1. The rest of the proof then follows along a similar argument and procedure used
in the proof of Theorem 1.3. To establish (A.1), with Y = r − 1

2X
2, we have

S(∆)ψ(x) − ψ(x) −∆G(Dψ(x), D2ψ(x))

≤ Ê[ψ(x+
√
∆X +∆Y )− ψ(x) −∆Dψ(x)Y − 1

2
∆D2ψ(x)X2]

≤ Ê[ψ(x+
√
∆X)− ψ(x)− 1

2
D2ψ(x)∆X2]

+ Ê[ψ(x+
√
∆X +∆Y )− ψ(x+

√
∆X)−Dψ(x +

√
∆X)∆Y ]

+ Ê[Dψ(x+
√
∆X)∆Y −Dψ(x)∆Y ] := (I) + (II) + (III).
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Since Ê[X ] = Ê[−X ] = Ê[X3] = Ê[−X3] = 0, we have

(I) = Ê

[
√
∆Dψ(x)X +

∫ x+
√
∆X

x

∫ s

x

(D2ψ(u)−D2ψ(x))duds

]

= Ê

[∫ x+
√
∆X

x

∫ s

x

∫ u

x

D3ψ(p)dpduds

]

= Ê

[
1

6
∆3/2D3ψ(x)X3 +

∫ x+
√
∆X

x

∫ s

x

∫ u

x

(D3ψ(p)−D3ψ(x))dpduds

]

= Ê

[∫ x+
√
∆X

x

∫ s

x

∫ u

x

(D3ψ(p)−D3ψ(x))dpduds

]

≤ |D4ψ|0Ê
∣∣∣∣∣

∫ x+
√
∆X

x

∫ s

x

∫ u

x

|p− x|dpduds
∣∣∣∣∣ ≤ ∆2|D4ψ|0M4

X .

Likewise, Taylor’s expansion yields that

(II) = Ê

[∫ 1

0

(1− s)D2ψ(x +
√
∆X + s∆Y )∆2Y 2ds

]

≤ Ê

[∫ 1

0

(1− s)ds|D2ψ|0∆2Y 2

]
≤ 1

2
∆2|D2ψ|0M2

Y ,

and

(III) = Ê

[∫ 1

0

D2ψ(x + s
√
∆X)

√
∆Xds∆Y

]

= Ê

[∫ 1

0

[D2ψ(x+ s
√
∆X)−D2ψ(x)]ds∆

3
2XY +D2ψ(x)∆

3
2XY

]

≤ Ê

[∫ 1

0

[D2ψ(x+ s
√
∆X)−D2ψ(x)]ds∆

3
2XY

]
+ Ê

[
D2ψ(x)∆

3
2XY

]

= Ê

[∫ 1

0

∫ 1

0

D3ψ(x + us
√
∆X)s

√
∆Xduds∆

3
2XY

]

≤ Ê

[∫ 1

0

∫ 1

0

sduds|D3ψ|0∆2|X |2|Y |
]
≤ 1

4
∆2|D3ψ|0(M4

X +M2
Y ),

where we also used the fact that Ê[XY ] = Ê[−XY ] = 0. The consistency error estimate (A.1) then
follows by combining (I)-(III).
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