
Abstract

A mechanism is proposed for increasing selectivity of olfactory bulb proje-
ction neurons as compared to the olfactory receptor neurons, which could
operate under low odor concentration, when the lateral inhibition mech-
anism becomes inefficient. The mechanism proposed is based on the
threshold-type reaction to stimuli a projection neuron receives from the
receptor neurons, the stochastic nature of those stimuli and electrical leak-
age in the projection neurons. The mechanism operates at the level of
individual projection neuron and does not require involvement of other
bulbar neurons.
Keywords: olfactory receptor neuron; projection neuron; selectivity;
stochastic process; theory
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1 Introduction

Primary reception of odors happens in the olfactory receptor neurons (ORN).
The ORNs synapse onto mitral and tufted cells of olfactory bulb. These cells,
known as bulbar projection neurons (PN), convey odor signals to olfactory cor-
tex.

Communication between ORNs and PNs is of convergent nature: many
ORNs synapse onto a single PN. The convergence degree depends on species
and can be fairly large, [1]. This can ensure high sensitivity to odors, [2, 3, 4].

It is known that discriminating ability in PN is better than that in ORN,
[5, 6]. An established point of view is that better selectivity in PN is due to
mechanism of lateral inhibition, [5, 7, 8], which is well studied for visual system,
where it increases contrast between domains of visual field [9, 10, 11]. In the
olfactory system, lateral inhibition is realized through granular cells, which are
stimulated by mithral cells and inhibit another PNs [12, 13]. As a result, the
system of PNs functions in accordance to “winner takes all” principle, and this
can be the reason of PN having better selectivity than ORN.

In recent studies, [14], it was realized that unlike in retina, lateral inhibition
in olfactory bulb is non-topographical. Such a possibility was discussed before,
[8]. If so, then is lateral inhibition able to ensure the same “contrast enhance-
ment” in olfaction as it does in vision? This question is discussed in [15]. A
final answer to this question requires additional experimental studies.

Lateral inhibition of PNs happens due to activity of inhibitory bulbar neu-
rons. Recruitment of inhibitory neurons takes place for high odor concentrations
and decreases with decreasing concentration, [5]. Therefore, efficacy of lateral
inhibition in improving selectivity of PNs should decrease for low concentrations.
Such a decrease has been observed, see e.g. [16].

In this paper, another mechanism is proposed for selectivity gain in PNs,
which is independent of lateral inhibition and could be as well efficient for low
concentrations. This mechanism takes place for individual PN without involve-
ment of other bulbar cells. The prerequisites of this mechanism are as follows:

(i) the random nature of stimuli obtained by PN from ORNs,
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(ii) the threshold-type response of PN on those stimuli,

(iii) the leakage in the PN’s membrane.

Similar mechanism is also possible for individual ORN, [17, 18], as well as in
“electronic nose” sensors based on adsorption-desorption of odors, [19].

In this theoretical paper, as a PN model the neuronal model is used, which
has been proposed before, [20]. Activity of single ORN is described as a Poisson
process. Communication between a set of ORNs and corresponding PN is char-
acterized by the convergence degree, N , and minimal number N0 of input spikes
required for triggering that PN (firing threshold). For this system, coefficient
of selectivity gain, g, is defined, which shows how much a PN’s selectivity is
improved as compared with that of ORN. Exact expression for g as a function
of system parameters is found. The expression’s behavior is analyzed for chang-
ing parameters. In particular, it is observed that for physiologically relevant
parameters PN’s selectivity can be several tens times better than that of ORN.

2 Methods

2.1 Neuronal model with random living time of obtained
excitatory impulses

As a model of PN the one proposed in [20] is used. In this model, the mem-
brane leakage is realized through random decay of individual input impulses.
Before the decay, each impulse is stored unchanged and disappears at the de-
cay moment. Thus, there is a finite set of possible values of depolarization.
The random living time of single obtained impulse has exponential distribution.
Therefore, decay of total depolarization is exponential as it should be, but the
depolarization decreases by finite jumps with height equal to the height of input
impulse. If the impulse height is small as compared with the firing threshold,
then this model satisfactorily describes membrane leakage.

Mathematically, the model can be formulated as follows. The neuron’s rest-
ing state is characterized by zero depolarization, V = 0. Obtaining input im-
pulse increases depolarization by h, the height of input impulse. The h is anal-
ogous to EPSP amplitude. Between the moments of obtaining two consecutive
impulses, depolarization does not change, V (t) = const. Therefore, at any mo-
ment of time, depolarization takes a value from the discrete set: V ∈ {0, h, 2h,
3h, . . . }. The neuron is characterized by a firing threshold V0: if depolariza-
tion is greater than V0, then the neuron generates output spike and appears
in its resting state. The triggering condition formulated in terms of V0 can be
reformulated in terms of the minimal number N0 of input spikes able to trigger:

N0 = [V0/h] + 1,

where brackets [x] denote the integer part of x.
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Until now, the model described corresponds with the model known as “per-
fect integrator”, [21]. It is additionally expected in [20] that any impulse ob-
tained by neuron has random living time. The living time is exponentially
distributed with constant µ. That means that any impulse may disappear dur-
ing small interval [t; t + dt[ with probability µdt. If, at moment t, the neuron
keeps k excitatory impulses, than depolarization is equal to V (t) = kh. Let
stimulation is absent after t. During short interval [t; t+ dt[, any of k impulses
can decay/disappear. Expect that the impulses decay independently. Then the
probability that depolarization decreases by h during dt is kµ dt. Thus, at the
end of interval [t; t+ dt[ one has depolarization V (t+ dt) = (k− 1)h with prob-
ability kµ dt, and V (t+ dt) = kh with probability 1− kµ dt. By averaging over
many realizations one has for the mean depolarization:

V (t+ dt) = (k − 1)hkµ dt+ kh(1− kµ dt) = kh(1− µdt) ≈ V (t)e−µ dt.

It is clear from the latter that on the average depolarization decreases exponen-
tially as it should be for electrical leakage, and constant µ has physical meaning
of inverse membrane relaxation time: µ = 1/τ .

2.2 Projection neuron stimulated by many ORN

The communication scheme between ORNs and PN is shown in Fig. 1. It is not
necessary to consider additional cells, in particular granular ones, and additional
dendrites possibly ending in other glomeruli or nearby for investigating how
randomness, threshold and leakage influence the PN’s selectivity.

λ
in

ORN

λin
ORN

λ in

ORN

λtot λo
PN

glomerulus

Figure 1: Schematic example of communication between ORNs and PN. Here
up to several thousands ORNs, [22], (concrete number depends on species) can
converge through a single glomerulus onto a single PN. All those ORNs express
the same receptor protein.

Let N denote the number of ORNs converging onto a single PN. When stim-
ulated with odor, each ORN generates a random stream of spikes contributing
to the compound stimulus applied to PN. Taking into account specifics of pri-
mary odor reception through the receptor proteins, it is natural to consider the
ORN’s output stream as a Poisson one with intensity λin, where subscript “in”
indicates that the stream is considered as an input to PN from a single ORN.
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The integral input stream to the PN will be a Poisson stream with intensity

λtot = Nλin.

2.3 Selectivity definition

In order to compare selectivity of individual ORN with that of PN one has to
have an exact quantitative definition of those selectivities. In order to give such
a definition, consider situation when in two separate experiments some ORN
is exposed to two different odors O and O′ applied at the same concentration.
This will result in spiking of the ORN with intensities λin and λ′in, correspond-
ingly. Assume that the odor O′ expresses more affinity with the ORN’s receptor
proteins than does O. Then λ′in > λin:

λ′in = λin + ∆λin,

where ∆λin > 0. Selectivity, or discriminating ability, s, between O and O′ of
the ORN chosen can be defined as the following quotient:

s =
∆λin
λin

. (1)

The PN this type of ORNs converge upon will as well generate more output
spikes per unite time for the odor O′:

λ′o = λo + ∆λo,

and selectivity of the PN, S, between O and O′ can be defined similarly:

S =
∆λo
λo

. (2)

The selectivity gain, g, can be defined as follows:

g =
S

s
.

Taking into account (1) and (2), the latter can be represented as derivative:

g =
d(log(λo))

d(log(λin))
. (3)

g can be called coefficient of selectivity gain. The selectivity improvement takes
place if g > 1.

2.4 Output intensity

It is clear from the definition (3) that in order to determine g one has to find λo
as a function of λin . Instead of output intensity λo it is possible to find mean
output inter-spike interval To. Then

λo =
1

To
. (4)
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In order to find To consider the PN as a system with N0 possible states labeled
with numbers k = 0, 1, 2, . . . , N0 − 1. A state with number k corresponds to
situation when the PN has k input impulses, see Fig. 2. Systems of this type are

0 1
λtot

µ

λtot

2µ

λtot

kµ

k

λtot

(N0 − 1)µ
N0 − 1

λtot 0

Figure 2: Different states of excitation of the PN. The inter-states transition
rates are specified near the arrows. If in state number N0 − 1 the PN obtains
one more impulse, it generates a spike and appears in its resting state.

known in the theory of stochastic processes as those with drain at the right end.
A theory has been developed, which gives for a system of this kind the mean
triggering waiting time in terms of the transition rates and other parameters.
One could use, e.g. [23, Eq. (1.69)]. The straightforward usage of that equation
with transition rates specified in the Fig. 2 results in the following expression
for To:

To =
1

λtot

∑
0≤l≤N0−1

∑
0≤k≤l

l!

k!

(
µ

λtot

)l−k
. (5)

3 Results

3.1 Selectivity

After elementary transformations, instead of (5) one has the following:

To =
1

λtot

∑
0≤j≤N0−1

(
µ

λtot

)j
1

j + 1

N0!

(N0 − 1− j)!
. (6)

Expression for selectivity, (3), with (4) taken into account can be rewritten
as follows:

g = −λin
To

d To
d λin

.

Substituting here expression for To from (6) one gets after transformations:

g = 1 +

∑N0−1
j=0

j
j+1

(
µ

Nλin

)j
1

(N0−j−1)!∑N0−1
j=0

1
j+1

(
µ

Nλin

)j
1

(N0−j−1)!

. (7)

This expression is too complicated for exact analysis. In Sec. 3.2, numerical
estimates will be given. Here, it is possible to make some limiting conclusions.
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If the PN generates an output spike in response to each input impulse from
an ORN, then N0 = 1. In this case, each of two sums in (7) reduces to a single
term with j = 0, which gives no selectivity gain:

N0 = 1 ⇒ g = 1.

If more then one input impulse is required for triggering, then N0 > 1 and
(7) can be presented as follows:

g = 1 +

∑N0−1
j=1

j
j+1

(
µ

Nλin

)j
1

(N0−j−1)!

1
(N0−1)! +

∑N0−1
j=1

1
j+1

(
µ

Nλin

)j
1

(N0−j−1)!

(8)

Consider the perfect integrator case, (µ = 0). In this case, there is no leakage
and, as it can be seen from (8), there is no selectivity gain:

µ = 0 ⇒ g = 1.

Similarly, there is no selectivity gain for very intensive stimulation:

λin →∞ ⇒ g ≈ 1.

If the stimulation is very weak (λin → 0), the right-hand side of Eq. (8) turns
into N0. Thus, the selectivity gain equals to the threshold height measured in
the units of the amplitude of input impulses:

λin → 0 ⇒ g ≈ N0.

The latter example should be taken with caution since under weak stimulation
the output spikes will happen too rare to have a physiological meaning.

It is possible to prove that the derivative of right-hand side of (7) with
respect to λin is negative. Thus, g decreases with increasing λin. Therefore,
in all other cases, namely, with N0 > 1, µ > 0, and a moderate stimulation
applied, the selectivity gain will be in the following limits: 1 < g < N0, and a
certain selectivity improvement will be observed. Numerical examples are given
in the Sec. 3.2.

3.2 Numerical examples

In order to present numerical examples we have to chose values for quantities
which appear in the Eq. (8). Experimental data for figuring all required quan-
tities for a single species are absent. Therefore, approximate estimates and
analogy are used. The quantities used for calculations are given in the Tab. 1.
The EPSP amplitude, h produced in the PN by a single spike from a ORN seems
not reported. This value is required to determine the PN’s triggering threshold
in the h units: N0 ≈ V0/h. Therefore, the h for CA1 pyramidal neurons is used.
Actual amplitude for the PN may be substantially lower due to mutual dendrite
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threshold height ORN spikes PN membrane
depolarization, of EPSP, frequency, relaxation time,

V0, mV h, µV λin, 1/ms τ , ms
5 - 12, [13, 25] 30 - 665, 10−3, [26] 90, [27]

the mean is 131, [28]

Table 1: Experimental values for parameters, sources are indicated in brackets.

output
threshold frequency

N0 λo, 1/s g
300 10.3 1.78
400 5.3 3.15
500 0.67 30.3

Table 2: Results of numerical calculations. λo, g are calculated using Eqs. (4),
(7), respectfully. N0 is chosen in accordance with the data of Table 1.
.

shunting through the gap junctions, [24, 6]. The electrical leakage rate (the de-
cay rate of input impulses, Sec. 2.1, above) is calculated as µ = τ−1 = 0.0111
ms−1. The convergence degree is taken N = 5000, [1], for all cases. Resulting
selectivity gain, g, and corresponding output rate, λo are given in Tab. (2).

Dependence of the desired quantities on the stimulus intensity and threshold
are shown in Figs. 3 and 4, respectfully.

4 Conclusions and discussion

Higher selectivity of the secondary olfactory sensory neurons as compared to
the primary ones has been discussed regularly, [5, 29, 4, 16, 30]. The lateral
inhibition has been proposed as a sole mechanism explaining higher selectivity
of PNs, [5, 12, 7].

In this paper a different mechanism is proposed, which is based exclusively
on the stochastic nature of the stimuli received by PNs, the threshold-type
reaction to those stimuli and electrical leakage in the PN’s membrane. This
mechanism does not depend on lateral inhibition and is able to function at
low odor concentrations. A coefficient of selectivity gain, g is defined in order
to get quantitative description. Possible values of g for physiologically real
parameters are obtained. The coefficient of selectivity gain is characterized by
the following. There is no selectivity gain if the secondary neuron is triggered by
each single input impulse, g = 1. The selectivity gain increases with increasing
triggering threshold, N0. Also, there is no gain if electrical leakage is absent.
Similar situation takes place if input stimulation is very high, when in spite of
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the leakage every N0 input impulses trigger the secondary neuron. For very
low intensity of input stimulation (low concentration of odor) g approaches its
maximal value, g ≈ N0. Under moderate odor concentration 1 < g < N0. For
parameters taken from physiological range, the mechanism proposed can ensure
several tens times better selectivity of secondary neuron as compared with that
of the primary ones.

Earlier, an idea has been proposed that the convergent nature of communi-
cation between ORNs and PN as well might improve PN’s selectivity, [3]. As
to my knowledge, no physical mechanism for such an improvement has been
proposed. The mechanism proposed in this paper also does not base on conver-
gence. Indeed, it can be seen from Eqs. (7), (8) that the degree of convergence
N is only used to calculate the intensity of compound stimulation from the set
of ORNs, λtot = Nλin. The same value of λtot can be ensured either by large
number of low-active ORNs, or small number of high-active ones. In both cases
the same selectivity gain will be obtained provided other parameters are the
same. Here, it should be mentioned that spontaneous activity of ORNs has
been excluded from consideration. This activity can worsen detection of weak
olfactory stimuli, [31]. At the same time, due to high degree of convergence, un-
correlated spontaneous noise can be averaged out, [3, 8]. Therefore, convergence
plays indirectly some role in the mechanism proposed.

To finish with the ORN’s spontaneous activity, it should be mentioned that
that can be quite low, [32, 26], whereas the time required for odor perception
can be quite short, [33], actually, much shorter than the mean interspike interval
in spontaneous activity. Thus, it may so happen that, during odor perception
time, influence of spontaneous activity is minimal.

An interesting feature to discuss is the selectivity dependence on the odor
concentration. With the concentration increasing, the ORN’s spiking frequency
λin increases as well. In this case, the proposed mechanism predicts a decrease
of PN’s selectivity. This is in concordance with some experimental observations,
[26]. In other experiments, it was observed either selectivity increase with odor
concentration increase, [16], or it was independent of concentration, [29]. This
contradiction could be resolved if odor concentration applied in [26] is lower than
that in [4, 16]. Indeed, in [4, 16] also a progressive recruitment of bulbar neu-
rons with increasing odor concentration is observed. In this process, the number
of active inhibitory neurons grows faster than that of excitatory ones, [5, 32].
This is a prerequisite for lateral inhibition. The latter, at higher concentrations
could be more efficient in improving PN’s selectivity. This explains selectivity
increase with increasing odor concentration, observed in [16]. At the lowest con-
centrations, proportion of inhibitory neurons among all active in the olfactory
bulb is considerably lower than at the high ones, or inhibitory activity is absent
at all, [5]. In this case, the lateral inhibition does not work, whereas mechanism
discussed here predicts selectivity improvement with decreasing concentration.

It should be mentioned that the possible mechanism for selectivity gain is
proposed here based on theoretical analyses of a considerably simplified picture.
In particular, the model used to describe a projection neuron corresponds to the
widely used leaky integrate-and-fire one only on the average. This model was
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proposed in [20]. It is used here because for this model it is possible to obtain ex-
act mathematical expressions characterizing stochastic triggering process. This
model can be a suitable approximation of the leaky integrate-and-fire model. At
the same time, processing of input spikes could happen at the level of dendritic
tree, [34, 35]. This fact can be taken into account in the current approach, but
requires a sizable extension and can be done in further publications. Another
simplification is that individual ORNs are considered as identical, whereas they
can differ from each other in sensitivity and response speed, [36]. When estimat-
ing an ORN’s activity (firing rate λin) it is not accounted that communication
from ORN to PN is inhibited presynaptically, [37]. This may result in decreas-
ing ORN’s effective activity and corresponding increase of the firing threshold
N0. Also, axon from single ORN arborizes and forms several synapses [38]. This
could increase ORN’s effective activity and cause a corresponding decrease of
the firing threshold N0.

Acknoledgements. The numerical calculations have been made by means of free
computer algebra system Maxima, http://maxima.sourceforge.net. This paper was
supported by the Programs ”Structure and Dynamics of Statistical and Quantum-
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