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Abstract 
 
In a recent article [1], Brette argues that coding as a concept is inappropriate for explanations of 
neurocognitive phenomena. Here, we argue that Brette’s conceptual analysis mischaracterizes 
the structure of causal claims in coding and other forms of analysis-by-decomposition. We argue 
that analyses of this form are permissible, conceptually coherent, and offer essential tools for 
building and developing models of neurocognitive systems like the brain. 
 
1. Coding and Causing 
 
Brette argues that coding is an inappropriate concept for explanations of neurocognitive 
phenomena. Brette identifies three properties of coding: correspondence, representation, and 
causality. Brette grants correspondence but rejects both representation and causality for the 
neural code. While we disagree with his analyses of representation and causality, we limit our 
critique to the latter. 
 
Brette’s argument against causality focuses on two points. First, coding assumes that the parts 
of a cognitive system have separate functions. However, Brette claims that function cannot be 
attributed to the brain’s parts. Second, coding implies linear causality for the brain. Brette 
argues instead that the brain features circular, coupled causality. 
 
We argue that functions can be attributed to the parts of brains and, though brains are                
dynamical systems with circular causality, linear causality may still apply. We contend that the              
rejection of functions for parts of the brain constitutes a direct attack on the nature of                
explanation in cognitive neuroscience. Furthermore, the causality claim commits a category           
mistake, as the linear structure of the concept need not be mimicked by the causal structure of                 
the brain. Finally, linear approximations are immensely successful in neuroscientific          
explanations. 
 
2. Analysis by Decomposition 
 
Brette first argues against the assignment of decoding and encoding functions to parts of the               
brain. Such assignment requires the analysis of behavior “...independently of the system in             
which the neurons are embedded” (p. 29). But such an analysis “… determines a neural code                
that... depends neither on the goals of the animals nor on the effect of spikes on the organism’s                  
actions” (p. 29-31). He concludes that the analysis of the brain by decomposition cannot              



proceed because “…function can be meaningfully ascribed to the organism as a system, but              
not... to the components of this system” (p. 31). Since such coding functions are defined               
independently of the organism’s goals, Brette rejects the possibility of assigning coding            
functions to parts of the brain. 
 
Brette's analysis relies on several misleading claims. First, some notions of function that do not               
rely on goals, such as causal role functions [2, 3], can be attributed to parts of organisms.                 
Second, nothing about goals prevents function ascription to the organism’s parts while            
permitting function ascription to the whole organism. As part of a larger system, the function of                
the part could share the goal of the organism. Indeed, this is typical for biology, where functions                 
are often assigned to organs--such as the circulation of blood for the heart or cleaning the blood                 
of toxins for the kidneys--even though the goals of these functions might be for the organism.                
Third, encoding and decoding can be specified with goals in mind. In particular, encoding and               
decoding can take into account variables relevant to the organism’s biological fitness [4], and              
goal-oriented functions are defined and ascribed with respect to those fitness-relevant variables. 
 
Furthermore, we contend that coding and other analysis-by-decomposition models are          
indispensable to explanations of brain function that integrate with psychology. These models            
break down psychological phenomena into their analytic subfunctions for explanation [cf. 5, 6,             
7]. Decomposition requires that the psychological properties of subfunctions be reduced or            
removed when ascribing those subfunctions to component parts and proceeds recursively with            
finer decompositions with fewer psychological properties. At the lowest levels, functional           
descriptions are completely bare of psychology, yielding a reduction to neuroscience. Coding is             
a perfect example of such decomposition. The concept of coding implies encoding and             
decoding functions with reduced intentional implications, as those functions are grounded purely            
in probabilistic terms [8]. While message contents still need to be determined, coding analyses              
of systems like the brain can result in parts that carry weaker intentional properties. 
 
3. Approximating Causal Structure 
 
Brette next argues that the causality implied by coding does not apply to the brain. The neural                 
code has linear causality (viz., input->encoder->decoder->output) whereas the brain possesses          
circular, coupled causality . The brain is like a tent, where “...different elements are             

1

co-determined…. In addition to the coupling of neurons, the brain itself is coupled to its               
environment, i.e., there is circular and not linear causality” (p. 35). Linear causality refers to a                
temporally sequential, pairwise causally related sets of states whereas tent-like causality refers            

1  Brette states two further causal structure problems that, while we disagree with both, considerations of 
length prevent addressing. First, the neural code is based on causally inefficacious properties (viz., spike 
rates and statistical quantities like averages) whereas only spatiotemporal particulars like individual 
spikes can be causally efficacious. Second, the properties identified by the neural code such as spike 
rates “abstract time away” (p. 35) whereas properties that set the brain’s state occur at a time. 
 



simultaneously occurring, jointly causally related sets of states. In short, the causal structure             
implied by the neural code fails to match the causal structure of the brain . 
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We first note that tent-like causality is consistent with linear causality. Linear encoding-decoding             
relationships between each pair of elements is consistent with an overall picture of a circular,               
coupled causal system. Indeed, Brette arguably commits a category mistake [9]: while the             
conceptual analysis of coding involves a linear structure [8], the implementations of encoding             
and decoding functions need not. This category mistake is further illustrated by Brette’s claim              
that the temporal properties of coding structures are the “...discrete temporality of an algorithm,              
...disconnected from physical time…. But… dynamical systems cannot in general be mapped to             
algorithmic descriptions” (p. 35). However, nothing about the coding metaphor entails discrete            
time, and one variable may encode another in the sense of carrying Shannon information              
without being part of an algorithm . 
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Brette's argument also ignores the utility of linearity and discrete time for analyzing complex 
systems. It is well known that continuous-time systems can be well approximated by 
discrete-time systems [10], and a host of equivalences exist between dynamical systems with 
circular causality and approximators with iterated linear causality [e.g.11, 12]. In practice, 
systems with tent-like causality can be iteratively or recurrently approximated by linear causal 
elements, such as by iteratively computing local relationships [e.g. 13, 14, 15]. Deep learning 
research uses discrete-time architectures to model many forms of continuous behavior as well 
(e.g. handwriting [16], speech synthesis [17], video prediction [18], robotic control [19], 
humanoid running [20]). Hence, complicated, ethologically relevant behavior can be analyzed 
with linear causality and discrete time, and this analysis is likely to remain a crucial part of 
building and designing models of this behavior [21]. 
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