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Abstract

In this work we study biological neural networks from an algorithmic perspective, focusing
on understanding tradeoffs between computation time and network complexity. Our goal is
to abstract real neural networks in a way that, while not capturing all interesting features,
preserves high-level behavior and allows us to make biologically relevant conclusions. Towards
this goal, we consider the implementation of algorithmic primitives in a simple yet biologically
plausible model of stochastic spiking neural networks. In particular, we show how the stochastic
behavior of neurons in this model can be leveraged to solve a basic symmetry-breaking task in
which we are given neurons with identical firing rates and want to select a distinguished one.
In computational neuroscience, this is known as the winner-take-all (WTA) problem, and it is
believed to serve as a basic building block in many tasks, e.g., learning, pattern recognition, and
clustering. We provide efficient constructions of WTA circuits in our stochastic spiking neural
network model, as well as lower bounds in terms of the number of auxiliary neurons required to
drive convergence to WTA in a given number of steps. These lower bounds demonstrate that
our constructions are near-optimal in some cases.

This work covers and gives more in-depth proofs of a subset of results originally published
in [LMP17a]. It is adapted from the last chapter of C. Musco’s Ph.D. thesis [Mus18].

1 Background and Introduction to Results

Neural networks are studied in a number of academic communities from a wide range of perspec-
tives. Significant work in computational neuroscience focuses on developing somewhat realistic
mathematical models for these networks and generally studying their capacity to process informa-
tion [Izh04, Tra09]. On the more theoretical side, a variety of artificial network models such as
perceptron and sigmoidal networks, Hopfield networks, and Boltzmann machines have been de-
veloped. These models are tractable to theoretical analysis and studied in the context of their
computational power, and applications to general function approximation, classification, and mem-
ory storage [HSW89, MSS91, SS95, Maa97]. In practical machine learning, biological fidelity and
often theoretical tractability are put aside, and researchers study how neural-like networks and
learning rules can be used to efficiently represent and learn complex concepts [Hay09, LBH15].

In contrast to the common approach in computational neuroscience and machine learning, in
our work we focus not on general computation ability or broad learning tasks, but on specific
algorithmic implementation and analysis. We define a model of neural computation along with
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algorithmic problems that seem to be an important building blocks for higher level processing and
learning tasks. We then design neural networks in our model that solve these problems, rigorously
analyzing the complexity of our solutions in terms of asymptotic runtime and network size bounds.
We hope that this new paradigm will provide new insights about computational tradeoffs, the power
of randomness, and the role of noise in biological systems.

While focusing on somewhat different questions, our line of work is inspired by (1) work on the
computational power of spiking neural networks, most notably by Maass et al. [Maa97, Maa99,
Maa00] and (2) the work of Les Valiant [Val00a, Val00b, Val05], who defined the neuroidal model
of computation and investigated implementations of basic learning modules within this model.

1.1 Spiking Neural Networks

We consider a model of spiking neural networks (SNNs) [Maa96, Maa97, GK02, Izh04, HJM13],
defined formally in Section 2, in which neurons fire in discrete pulses, in response to a sufficiently
high membrane potential. This potential is induced by spikes from neighboring neurons, which can
have either an excitatory or inhibitory effect (increasing or decreasing the potential). Our model
is stochastic – each neuron functions as a probabilistic threshold unit, spiking with probability
given by applying a sigmoid function to the membrane potential. In this respect, our networks are
similar to the popular Boltzmann machine [AHS85], with the important distinction that synaptic
weights are not required to be symmetric and, as observed in nature, neurons are either strictly
inhibitory (all outgoing edge weights are negative) or excitatory. Additionally, in this work, we
focus on networks with fixed edge weights. The literature on Boltzmann machines tends to focus on
learning, in which edge weights are adjusted iteratively until the network converges to some desired
distribution on firing patterns. While a rich literature focuses on deterministic threshold circuits
[MP69, HT+86] we employ a stochastic model as it is widely accepted that neural computation is
inherently stochastic [AS94, SN94, FSW08], and that while this can lead to a number of challenges,
it also affords significant computational advantages [Maa14].

1.2 The Winner-Take-All Problem

In this work, we focus on the Winner-Take-All (WTA) problem, which is one of the most studied
problems in computational neuroscience. A WTA network has n input neurons, n corresponding
outputs, and a set of auxiliary neurons that facilitate computation. The goal is to pick a ‘winning’
input – that is, the network should produce a single firing output which corresponds to a firing
input. Often the winning input is the one with the highest firing rate, in which case WTA serves as
a neural max function. We focus on the case when all inputs have the same or similar firing rates,
in which case WTA serves as a leader election unit. A formal definition of the WTA problem is
given in Section 2.6.

WTA is widely applicable, including in circuits that implement visual attention via WTA com-
petition between groups of neurons that process different input classes [KU87, LIKB99, IK01]. It is
also the foundation of competitive learning [Now89, KK94, GL09], in which classifiers compete to
respond to specific input types. More broadly, WTA is known to be a powerful computational prim-
itive [Maa99, Maa00] – a network equipped with WTA units can perform some tasks significantly
more efficiently than with just linear threshold neurons (McCulloch-Pitts neurons or perceptrons).

Due to its importance, there has been significant work on WTA, including in biologically plau-
sible spiking networks [LRMM88, YG89, Tho90, CGL92, WS03, OL06, ODL09, ASNN+15]. This
work is extremely diverse – while mathematical analysis is typically given, different papers show
different guarantees and apply varying levels of rigor. To the best of our knowledge, prior to our
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work, no asymptotic time bounds (e.g., as a function of the number of inputs n) for solving WTA in
spiking neural networks have been established.1 Additionally, previous analysis often requires a spe-
cific initial network state to show convergence and does not show that the network is self-stabilizing
and converges from an arbitrary starting state, as is necessary in a biological system.

1.3 Our Contributions

We explore the tradeoff between the number of auxiliary neurons used in a WTA network (i.e.,
the complexity of the network) and the time required to select a winning output (to converge to a
WTA state).

1.3.1 Network Constructions and Runtime Bounds

One the upper bound side, in Section 3 we describe, for any input size n and failure probability
δ > 0, a family of networks using just two auxiliary inhibitory neurons which solve the WTA
problem in O(log n) steps in expectation, and with probability ≥ 1− δ in O(log n · log(1/δ)) steps
(see Theorems 3.2 and 3.3).

Our two-inhibitor construction is based on a simple random competition idea. Outputs that
fire in response to stimulation from their firing inputs excite two inhibitors, which, in turn, inhibit
all the outputs. When more than one output fires, both inhibitors are excited. This leads to high
levels of inhibition, causing firing outputs to stop firing and ‘drop out’ of the WTA competition.
When exactly one output fires, just one of the inhibitors, known as the stability inhibitor, is excited.
This inhibitor is responsible for maintaining a WTA steady-state: once a single output fires at a
time step it becomes the winner of the network. It has a positive feedback self-loop that allows it
to keep firing at subsequent times, while all other outputs do not fire due to inhibition from the
stability inhibitor.

The basic network construction described above employs biologically plausible structures. In
particular, convergence is driven using reciprocal excitatory-inhibitory connections, and stability is
maintained via excitatory self-loops. Both these structures are used in many biological models of
WTA computation [YG89, CGL92, RB15]. It is widely believed that inhibition is crucial for solving
WTA – outputs compete for activation via lateral inhibition or recurrent inhibition [CGL92, RB15].
In our network, this inhibition is achieved through the two auxiliary inhibitors. Previous work has
conjectured that widespread use of simple WTA implementations in the brain may explain how
complex computation is possible even when inhibition is relatively limited and localized [Maa00].
Our work shows that WTA can be achieved and maintained efficiently using very few inhibitors
and with a very simple connectivity structure.

We also demonstrate that, with a larger number of auxiliary neurons, it is possible to obtain
faster convergence. In particular, in Section 5, we describe, for any input size n and failure prob-
ability δ > 0, a family of networks using O(log n) auxiliary inhibitory neurons which solve the
WTA problem in O(1) steps in expectation, and with probability ≥ 1 − δ in O(log(1/δ)) steps
(see Theorems 5.2 and 5.3). At a high level, more auxiliary inhibitors allow for more fine-tuned
levels of inhibition which drive faster convergence. In Section 5.7 we sketch two constructions that
allow for more general runtime-inhibitor tradeoffs, interpolating between our two-inhibitor and
O(log n)-inhibitor constructions. See [LMP17a] for more details.

1Aside from immediate bounds for deterministic circuits using many (Ω(n)) auxiliary neurons [LRMM88, Maa00].
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1.3.2 Lower Bounds

Aside from the above network constructions and runtime analysis, we also prove lower bounds,
showing that these constructions are optimal or near optimal. In Section 4 we prove that no network
can solve WTA (in a reasonable parameter regime) using just a single auxiliary neuron (see Theorem
4.3). Roughly, it is not possible for a single neuron to both drive fast convergence and maintain
stability of a valid WTA configuration once one has been reached. The dual role that inhibition
plays in two-inhibitor construction of driving convergence and maintaining stability requires at
least two inhibitors. We also show that, considering a slightly restricted class of networks, our two-
inhibitor construction is near-optimal. No network with just two-auxiliary neurons can solve WTA

with constant probability in o
(

logn
log logn

)
steps (see Theorem 4.14). This matches the runtime of our

network up to a O(log log n) factor. See [LMP17a] for additional lower bounds on the convergence
time for networks using α > 2 inhibitors, in a similar model to the one presented here.

1.4 Road Map

In Section 2 we describe our spiking neural network model and specify the WTA problem. In
Section 3 we describe and analyze the convergence of our simple family of two-inhibitor WTA
networks. In Section 4 we prove lower bounds that show the near optimality of our two-inhibitor
construction. In Section 5 we show how to obtain faster convergence using a network construction
with O(log n) auxiliary inhibitors. This construction also requires generalizing our model to allow
for a history period, over which the firing of a neuron’s neighbors can affect its membrane potential.
Finally, in Section 6 we conclude by discussing open questions arising from our work and possible
directions for future work.

2 Spiking Neural Network Model

In this section we describe our basic neural network model, which consists of a set of neurons
connected by weighted synaptic connections. Each neuron fires (spikes) stochastically at each time
step, with probability dependent on the firing of its neighbors in the previous time step. These
neighbors may have either an excitatory (inducing more firing) or inhibitory (suppressing firing)
effect. In Section 5 we describe a variation on this model in which the probability that a neuron
spikes depends not just on the spiking of its neighbors in the previous time step, but on the spikes
during some history period preceding the current time.

2.1 Network Structure

We first describe the basic network structure and parameters. A Spiking Neural Network (SNN)
N = 〈N,w, b, f〉 consists of:

• N , a set of neurons, partitioned into a set of input neurons X, a set of output neurons Y ,
and a set of auxiliary neurons A. N is also partitioned into a set of excitatory and inhibitory
neurons E and I. All input and output neurons are excitatory. That is, X ∪ Y ⊆ E.

• w : N ×N → R, a weight function describing the weighted synaptic connections between the
neurons in the network. w is restricted in a few notable ways:

– w(u, x) = 0 for all u ∈ N , x ∈ X.
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– Each excitatory neuron v ∈ E has w(v, u) ≥ 0 for every u. Each inhibitory neuron v ∈ I
has w(v, u) ≤ 0 for every u.

• b : N → R, a bias function, assigning an activation bias to each neuron.

• f : R→ [0, 1], a spike probability function, satisfying a few restrictions:

– f is continuous and monotonically increasing.

– limx→∞ f(x) = 1 and limx→−∞ f(x) = 0.

2.1.1 Remarks on Network Structure

Before describing the dynamics of our neural network, we give a few remarks on, and explanations
of, the above parameters determining the network structure.

Weight Function (w): The weight function w describes the strength of the synaptic connections
between neurons in N . The restriction that w(u, x) = 0 for every input neuron x ∈ X is motivated
by the desire for networks to be composable. The input neurons in X may be output neurons of
another network, and so incoming connections are avoided to simplify definitions and analysis when
networks are composed in higher level modular designs.

The restriction that each neuron v is either inhibitory or excitatory is motivated by the ob-
servation, known as Dale’s principle, that neurons typically employ the same neurotransmitter
at each outgoing synapse, regardless of its target [Osb13]. Thus, all outgoing connections are
either inhibitory or excitatory, depending on the transmitter used. For example, inhibitory connec-
tions predominantly stem from inhibitory GABAergic neurons, which employ the neurotransmitter
gamma-Aminobutyric acid (GABA) [WMK+02, RFLHL11].

We often view the weight function as defining the edge weights of a directed graph, whose edges
are the synaptic connections. Formally we can define:

Definition 2.1 (Synaptic Connection Graph). Given spiking neural network N = 〈N,w, b, f〉, let
G(N ) be the weighted directed graph with vertex set N and a directed edge (u, v) with weight w(u, v)
for all u, v with w(u, v) 6= 0.

Note that the weight function w(u, v) need not be symmetric, and typically will not be. Addi-
tionally, we allow u ∈ N with w(u, u) 6= 0. That is, G(N ) may have self-loops.

Bias Function (b): The bias function, along with the spike probability function, determines how
large a neuron’s membrane potential must be for the neuron to spike with good probability. The
larger the bias, the more excited the neuron must be before it fires. We will see in Section 2.2
exactly how the bias affects the spiking probability.

Spike Probability Function (f): Common choices for the spike probability function f are
symmetric functions with f(0) = 1

2 . For example, we will typically set f to the sigmoid function
f(x) = 1

1+e−x/λ
for some temperature parameter λ > 0.

2.2 Network Dynamics

We now describe in detail the dynamics of our neural network model.
A configuration C : N → {0, 1} of an SNN N = 〈N,w, b, f〉 is a mapping from each neuron in

the network to a firing state. C(u) = 1 indicates that u fires (i.e., generates a spike). C(u) = 0
indicates that it does not fire. We similarly define an input configuration CX : X → {0, 1} to be
a mapping from each input neuron to a firing state and an output configuration CY : Y → {0, 1}
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to be a mapping from each output neuron to a firing state. For any configuration C and set of
neurons M ⊆ N , we let C(M) be the restriction of C to the domain M .

An SNN evolves in a sequence of discrete, synchronous times, which we label with integers
t = 0, 1, .... We denote the configuration at time t by N t. Similarly, we denote the input and

output configurations at time t by Xt def
= N t(X) and Y t def

= N t(Y ) respectively.
Formally, an execution is a finite or infinite sequence of configurations. The length of a finite

execution N0N1...N t is defined to be t+ 1. The length of an infinite execution N0N1... is defined
to be ∞. We analogously define an input execution and an output execution as a sequence of input
configurations X0X1... and output configurations Y 0Y 1... respectively.

For each neuron u ∈ N , we use the notation ut
def
= N t(u) to denote the firing state of neuron u

in the configuration N t. More generally, for any ordered set of neurons M = {m1, ...,mn} we let
M t ∈ {0, 1}n denote the binary vector with mt

j as its jth entry. For any configuration C, we let
‖C‖1 = |{u ∈ N : C(u) = 1}| denote the number of firing neurons in C.

We will typically use α to denote an execution, and αX , αY to denote an input or output
execution respectively. We will use a superscript to denote the length of a finite execution. For any
execution α let output(α) be the output execution of the same length obtained by restricting each
configuration in α to the output neurons Y .

The behavior of an SNN is determined as follows:

• Input Neurons: For each problem we consider, we will specify how the infinite input exe-
cution X0X1.... is determined. In this work, we will typically fix the input so that for each
u ∈ X, ut is constant for all t ≥ 0. However, we may also specify a distribution from which
X0X1.... is drawn. For example, this sequence may be generated by setting ut = 1 with some
probability pu and ut = 0 with probability 1 − pu, independently at random for each u ∈ X
and each time t.

• Initial Firing States: For each non-input u ∈ N \ X, the firing state u0 is arbitrary. In
this work, we typically show convergence results that hold for all possible settings of these
initial states, giving our networks a self-stabilizing property, since they will converge from
any arbitrary perturbation of the state (see e.g., Theorem 2.8).

• Firing Dynamics: For each non-input neuron u ∈ N \X and every time t ≥ 1, let pot(u, t)
denote the membrane potential at time t and p(u, t) denote the corresponding firing proba-
bility. These values are calculated as:

pot(u, t) =

(∑
v∈N

w(v, u) · vt−1

)
− b(u) and p(u, t) = f(pot(u, t)) (1)

where f is the spike probability function. At time t, each non-input neuron u fires indepen-
dently with probability p(u, t).

Any SSN N = 〈N,w, b, f〉, initial configuration N0, and infinite input execution αX define a
probability distribution over infinite executions, D(N , N0, αX). This distribution is the natural
distribution that follows from applying the stochastic firing dynamics of (1). Formally, for any
finite execution α, we define the cone of executions extending α, A(α), to be the set of all infinite
executions that start with α. D(N , N0, αX) : F → [0, 1] is a probability measure where the σ-
algebra F consists of all such cones, closed under complement, countable unions, and countable
intersections.

Given D(N , N0, αX) we can also define a distribution DY (N , N0, αX) on infinite output execu-
tions. Given any finite output execution αY , we define the cone A(αY ) to be the set of all infinite
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output executions extending αY . We define the σ-algebra FY to be the set of all such cones, closed
under complement, countable union, and countable intersection. Finally, for FY ∈ FY , we define
DY (N , N0, αX) : FY → [0, 1] by:

DY (N , N0, αX)[FY ] = D(N , N0, αX)[{α : output(α) ∈ FY }].

2.3 Problems and Solving Problems

A problem P is a mapping from an infinite input execution αX to a set of output distributions. A
network N is said to solve problem P on input αX if, for any initial configuration N0, the output
distribution DY (N , N0, αX) is an element of P (αX). A network N is said to solve problem P if
it solves P on every infinite input execution αX . For an example of such a problem definition see
Section 2.6, where we formally define the winner-take-all problem.

2.4 Basic Results and Properties of the Model

In this section we prove some basic properties of the spiking neural network model described in the
preceding sections. The first property is a simple Markov independence claim: conditioned on the
configuration at time t− 1, a network’s execution from time t on is independent of all times before
t− 1. Formally:

Lemma 2.2 (Markov Property). Let N = 〈N,w, b, f〉 be an SNN. For any time t ≥ 1, and finite
execution C0...Ct−1 of N , and any configuration C of N :

P[N t = C|N t−1N t−2...N0 = Ct−1Ct−2...C0] = P[N t = C|N t−1 = Ct−1].

Proof. The potential of every u ∈ N at time t as computed in (1) is determined by N t−1. Thus,
the spike probability p(u, t) = f(pot(u, t)) is fully determined by N t−1.

So, conditioned on N t−1 = Ct−1, p(u, t) is a deterministic function of Ct−1. We can compute:

P[N t = C|N t−1 = Ct−1] =
∏
u∈N

[C(u) · p(u, t) + (1− C(u)) · (1− p(u, t))] .

So P[N t = C|N t−1 = Ct−1] is a deterministic function of C and all the p(u, t) collectively and thus
of C and Ct−1. So for any C0...Ct−2,

P[N t = C|N t−1 = Ct−1] = P[N t = C|N t−1N t−2...N0 = Ct−1Ct−2...C0],

giving the lemma.

In our proofs, we will often bound the probability of some event Et occurring at time t, giving a
bound independent of the preceding network configuration N t−1. However, Et itself will depend on
N t−1, and there may be correlations between Et and Et′ for t 6= t′. Below, we give a useful lemma
which allows us to bound the number of times that Et occurs over a given time period by comparing
to the number of times that a coin tossed independently at each time would come up heads in the
same time period.

Lemma 2.3. For every t ∈ Z>0 let At ∈ A be a random variable in some domain A, f : A → {0, 1}
be any function, and Bt = f(At). Let Zt ∈ {0, 1} be a set of independent random variables. Suppose:

1. P[B1 = 1] ≥ P[Z1 = 1].
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2. For every t ≥ 2, P[Bt = 1|At−1, ..., A1] ≥ P[Zt = 1].

Then for every t and d ∈ Z≥0,

P

[
t∑
i=1

Bi ≥ d

]
≥ P

[
t∑
i=1

Zi ≥ d

]
. (2)

Lemma 2.3 and its proof are similar to Lemma 2.2 of [KKKL11]. However, we include a full
proof for completeness and since we are in a slightly different setting, where we condition on the
full past state, rather than just the preceding values of Bt = f(Xt).

Proof. We prove the result via induction on t. The base case with t = 1 is given by assumption
(1). For any t > 1, assuming that (2) holds for all t′ < t, we have:

P

[
t∑
i=1

Bi ≥ d

]
= P

[
Bt = 1 |

t−1∑
i=1

Bi = (d− 1)

]
· P

[
t−1∑
i=1

Bi = (d− 1)

]
+ P

[
t−1∑
i=1

Bi ≥ d

]

≥ P [Zt = 1] · P

[
t−1∑
i=1

Bi = d− 1

]
+ P

[
t−1∑
i=1

Bi ≥ d

]

= P [Zt = 1] ·

(
P

[
t−1∑
i=1

Bi ≥ d− 1

]
− P

[
t−1∑
i=1

Bi ≥ d

])
+ P

[
t−1∑
i=1

Bi ≥ d

]

= P [Zt = 1] · P

[
t−1∑
i=1

Bi ≥ d− 1

]
+ P [Zt = 0] · P

[
t−1∑
i=1

Bi ≥ d

]
.

By the inductive assumption we can then bound:

P

[
t∑
i=1

Bi ≥ d

]
≥ P [Zt = 1] · P

[
t−1∑
i=1

Zi ≥ d− 1

]
+ P [Zt = 0] · P

[
t−1∑
i=1

Zi ≥ d

]

= P

[
t∑
i=1

Zi ≥ d

]

which gives the lemma.

We next prove a related theorem, but in a more specialized setting. We consider a set of neurons
{u1, ..., us} for which we can lower bound the probability of each ui spiking at time t+ 1 given that
it spiked at time t (i.e., given that uti = 1). We show that, while the behavior of the neurons may be
highly correlated, the number of neurons in the set that spike for t consecutive times can be lower
bounded by comparing these neurons to a set of independent random variables with comparable
spiking probabilities.

Lemma 2.4. Let N = 〈N,w, b, f〉 be an SNN, and let {u1, ..., us} ⊆ N be any set of neurons in
the network. Let Zi,t ∈ {0, 1} be a set of independent random variables. Suppose that:

1. The initial configuration N0 of N has N0(ui) = 1 for every i ∈ {1, ..., s}.

2. For every i ∈ {1, ..., s}, any configuration C of N with C(ui) = 1, and any t ≥ 0:

P[ut+1
i = 1|N t = C] ≥ P[Zi,t+1 = 1].
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Let Ii(t) ∈ {0, 1} be an indicator variable for the event that u1
i = ... = uti = 1. Let Īi(t) ∈ {0, 1} be

an indicator variable for the event that Zi,1 = ... = Zi,t = 1. Then for every t and d ∈ Z≥0,

P

[
s∑
i=1

Ii(t) ≥ d

]
≥ P

[
s∑
i=1

Īi(t) ≥ d

]
. (3)

Proof. We prove the lemma via a coupling argument. At a high level, we define a set of auxiliary
random variables Îi(t) for i ∈ {1, ..., s}. We construct these random variables such that their joint
distribution is identical to that of the random variables Ii(t). Additionally, we correlate Îi(t) with
the variables {Zi,t} in such a way that we always have Îi(t) ≥ Īi(t). We thus have:

P

[
s∑
i=1

Ii(t) ≥ d

]
= P

[
s∑
i=1

Îi(t) ≥ d

]
≥ P

[
s∑
i=1

Īi(t) ≥ d

]
, (4)

which gives the lemma.

Definition of Coupled Random Variables Îi(t).

Given N , the distribution on executions of N with initial configuration N0 and input config-
uration αX , induced by the update rules described in Section 2.2 is given by D(N , N0, αX). We
define the distribution D̂(N , N0, αX), which is identical to D(N , N0, αX) except coupled to the
auxiliary random variables {Zi,t} in the following way:

For any t ≥ 0, execution αt = C0...Ct, and i ∈ {1, ..., s} with C0(ui) = .... = Ct(ui) = 1 let

εi,αt = P
D(N ,N0,αX)

[ut+1
i = 1|N0...N t = αt]− P[Zi,t+1 = 1]. (5)

By assumption (2) in the lemma statement and Lemma 2.2 we have εi,αt ≥ 0. Let Ei,αt ∈ {0, 1} be a

random variable which is independently set to 1 with probability
εi,αt

1−P[Zi,t+1=1] and 0 otherwise. The

distribution D̂(N , N0, αX) is given by iteratively drawing a configuration N t+1 in the same way
as in D(N , N0, αX), with spiking probabilities given by the potentials induced by N t. However, if
i ∈ {1, ..., s} and N0...N t = αt with N0(ui) = .... = N t(ui) = 1, we set

ut+1
i = max(Zi,t+1, Ei,αt). (6)

Using (5) and the definition of Ei,αt we can see that

P
D̂(N ,N0,αX)

[ut+1
i = 1|N0...N t = αt] = 1− P

D̂(N ,N0,αX)
[ut+1
i = 0|N0...N t = αt]

= 1− (1− P[Zi,t+1 = 1]) · (1− P[Ei,αt = 1])

= 1− (1− P[Zi,t+1 = 1]) ·
(

1−
εi,αt

1− P[Zi,t+1 = 1]

)
= P[Zi,t+1 = 1] + εi,αt

= P
D(N ,N0,αX)

[ut+1
i |N

0...N t = αt]. (By (5))

Thus, the probability that any neuron spikes at time t conditioned on the network configuration at
all times before t is identical in executions drawn from D̂(N , N0, αX) and D(N , N0, αX). So for any
t, if N0...N t is drawn from D(N , N0, αX) and N̂0...N̂ t from D̂(N , N0, αX), these two executions
are identically distributed. In particular, if Îi(t) ∈ {0, 1} is an indicator variable for the event that
N̂1(ui) = ... = N̂ t(ui) = 1, then Îi(t) and Ii(t) are identically distributed.
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Proof that Coupled Random Variables Upper Bound Independent Variables.

We can see that Îi(t) ≥ Īi(t) via an inductive argument. In the base case, since we as-
sume N0(ui) = 1 for all i ∈ {1, ..., s}, we apply (6) to generate N̂1(ui). We set N̂1(ui) =
max(Zi,1, Ei,α0) ≥ Zi,1 which gives Îi(1) ≥ Īi(1). For t ≥ 1, if Īi(t) = 0 the claim holds triv-

ially since Îi(t), Īi(t) ∈ {0, 1}. Otherwise, we have Īi(t) = 1 which implies that Īi(t − 1) = 1 and
so Îi(t− 1) = 1 by the inductive assumption. If Îi(t− 1) = 1 then again we apply (6) to generate
N̂ t(ui) and so have N̂ t(ui) = max(Zi,t, Ei,αt−1) ≥ Zi,t, giving Îi(t) ≥ Īi(t).

Since Îi(t) is identically distributed to Ii(t) this completes the lemma by (4).

Our next lemma pertains specifically to networks with a sigmoid spike probability function,
f(x) = 1

1+e−x/λ
, which we use throughout this work. We show that given a network with tempera-

ture parameter λ > 0, we can construct a network with an identical execution distribution for any
λ̂ > 0. Thus, we will always consider the case of λ = 1, which implies the existence of networks
satisfying all bounds given for all λ > 0.

Lemma 2.5 (Equivalence of Temperature Parameters). For λ, λ̂ > 0, let f(x) = 1
1+e−x/λ

and

f̂(x) = 1

1+e−x/λ̂
. Given N = 〈N,w, b, f〉, let N̂ = 〈N, ŵ, b̂, f̂〉 where for all u, v ∈ N , ŵ(u, v) =

w(u, v) · λ
λ̂

and b̂(u) = b(u) · λ
λ̂

. For any length initial configuration N0 and any infinite input
execution αX :

D(N , N0, αX) = D(N̂ , N0, αX).

Proof. For any t ≥ 1 and any configuration C, we can compute the probability that N is in this
configuration at time t conditioned on all past configurations as:

P
D(N ,N0,αX)

[N t = C|N t−1...N0] =
∏
u∈N

[C(u) · p(u, t) + (1− C(u)) · (1− p(u, t))] (7)

where p(u, t) = f(pot(u, t)). Fixing N t−1...N0, we can see that the potential computation (1) is a
linear function of w(u, v) and b(u) for all u, v ∈ N . Thus, letting p̂ot(u, t) be the potential of u at
time t in N̂ given N t−1...N0, since ŵ(u, v) = w(u, v) · λ

λ̂
and b̂(u) = b(u) · λ

λ̂
,

p̂ot(u, t) = pot(u, t) · λ
λ̂
.

This gives that the probability of u spiking at time t in N̂ given N t−1...N0 equals :

p̂(u, t) = f̂(p̂ot(u, t)) = f̂

(
pot(u, t) · λ

λ̂

)
= f(pot(u, t)) = p(u, t).

And since p̂(u, t) = p(u, t) for all u ∈ N we have using (7), for any C,

P
D(N ,N0,αX)

[N t = C|N t−1...N0] = P
D(N̂ ,N0,αX)

[N t = C|N t−1...N0]. (8)

Finally inducting on t we can show that for any finite execution C0...Ct:

P
D(N ,N0,αX)

[N0...N t = C0...Ct] = P
D(N̂ ,N0,αX)

[N0...N t = C0...Ct]. (9)

This holds trivially for t = 0 since

P
D(N ,N0,αX)

[N0 = C0] = P
D(N̂ ,N0,αX)

[N0 = C0] = 1

10



if N0 = C0. Both probabilities are zero otherwise. For t ≥ 1, assume that (9) holds for all t′ < t.
Combined with (8) this gives:

P
D(N ,N0,αX)

[N0...N t = C0...Ct] = P
D(N ,N0,αX)

[N0...N t−1 = C0...Ct−1]

· P
D(N ,N0,αX)

[N t = Ct|N0...N t−1 = C0...Ct−1]

= P
D(N̂ ,N0,αX)

[N0...N t−1 = C0...Ct−1]

· P
D(N̂ ,N0,αX)

[N t = Ct|N t−1...N0 = C0...Ct−1]

= P
D(N̂ ,N0,αX)

[N0...N t = C0...Ct].

This completes the lemma.

2.5 Potential Modifications to the Basic Model

There are many potential modifications to the basic network model described in Sections 2.1 and
2.2 which may be interesting to consider in future work. We present some below.

• One interesting extension is to add a history period h > 1 to the network, so that the
spiking probability of a neuron at time t depends on the configuration of the network at
times t− 1, ..., t− h. In Section 5, for example, we use a model with history period h = 2 to
design very fast WTA networks.

• We could consider a very general history model, defining

pot(u, t) = f(u,N t−1, ..., N t−h)

where f is any function.

• A history period h can be thought of as giving each neuron access to a length h queue of
firing patterns on which pot(u, t) depends. It may be interesting to model such a queue as
residing within the neuron’s state. We could also consider neurons with other types of state,
capturing various types of observed biological phenomena. For example, we could model a
refractory period, in which a neuron cannot fire again for a certain number of time steps after
firing [And03, Izh04].

• A history period may be used, for example, to model a universal decay in the influence of
spikes over time. We may specify a non-increasing weight vector = (c1, c2, ..., ch) ∈ R≥0 and
modify the potential computation of (1) such that for any t ≥ h:

pot(u, t) =

(
h∑
i=1

∑
v∈N

ci · w(v, u) · vt−i
)
− b(u).

• It may be interesting to consider networks with neurons of multiple types, with different
firing dynamics. The human brain contains as many as 10,000 distinct neuron types [Stu].
Understanding how important neuron specialization is and for what reasons it arises is a very
interesting question.

• Similarly, we note that there is evidence that Dale’s principal can be violated and that some
neurons do have both inhibitory and excitatory outgoing connections [Osb79]. Modeling such
neurons to better understand their role and importance is an interesting direction.
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2.6 The Winner-Take-All Problem

We now define the main problem that we consider in this work, the binary winner-take-all (WTA)
problem. In this problem, given n input neurons, the goal is to converge to a configuration in
which a single output neuron, corresponding to a firing input, fires. This neuron is referred to as
the ‘winner’ of the computation. We first define a valid WTA output configuration for a given
input configuration:

Definition 2.6 (Valid WTA Output Configuration). Consider any network N with n input neu-
rons, labeled x1, ..., xn, and n output neurons, labeled y1, ..., yn. For any input configuration CX of
N , a valid WTA output configuration for CX is any output configuration CY with CY (yi) ≤ CX(xi)
for all i ∈ {1, ..., n} and ‖CY ‖1 = min(1, ‖CX‖1).

Interpreting the above definition, the restriction that ‖CY ‖1 = min(1, ‖CX‖1) requires that if
at least one input fires, exactly one output fires. The condition CY (yi) ≤ CX(xi) for all i requires
that this firing output corresponds to a firing input. If no inputs fire (i.e., if ‖CX‖1 = 0), then no
outputs should fire. With this definition, we can define the WTA problem (see Section 2.3 for a
description of how problems are defined in our SNN model):

Definition 2.7 (Winner-Take-All Problem). Given input size n ∈ Z>0, convergence time tc ∈ Z>0,
stability time ts ∈ Z>0, and failure probability δ > 0, the winner-take-all problem WTA(n, tc, ts, δ)
is defined as follows:

• If αX is an input execution with Xt fixed for all t, the output distribution DY (N , N0, αX)
can be any distribution on executions of n output neurons satisfying:

– With probability ≥ 1 − δ, there exists some t ≤ tc such that the output configuration is
fixed at times t, t + 1, ..., t + ts and is a valid WTA output configuration for Xt (Def.
2.6).

• If αX is any other input execution, the output distribution is unconstrained.

Thus, to solve WTA(n, tc, ts, δ), with probability ≥ 1− δ, the network must converge to a valid
output configuration within tc time steps and maintain this configuration for ts time steps.

Due to the random firing behavior of our neurons, the network will eventually move to a
different configuration with some probability. However, if the network solves WTA(n, tc, ts, δ),
since convergence is required given any initial configuration N0, we can show that it must be
self-stabilizing. That is, once it leaves a valid output configuration, it will converge again with
probability ≥ 1 − δ within tc steps, and maintain the new valid configuration again for ts steps.
Formally:

Theorem 2.8 (Self Stabilization of Winner-Take-All Networks). If N solves
WTA(n, tc, ts, δ) for input execution αX with Xt fixed for all t, given any finite execution C0...Ct

of N , conditioned on N0...N t = C0...Ct, with probability ≥ 1− δ there is some time t′ ≤ t+ tc such
that the output configuration for N is fixed at times t′, t′ + 1, ..., t′ + ts and is a valid WTA output
configuration for Xt.

Proof. Consider the distribution on infinite executions N t+1N t+2... conditioned on N0...N t =
C0...Ct. Since the configuration at time t′ ≥ t + 1 depends only on the configuration at time
t′ − 1, this distribution is identical to DY (N , Ct, αX).

Thus, if N solves WTA(n, tc, ts, δ) on αX , conditioned on N0...N t = C0...Ct, with probability
1− δ, there is some time t′ ≤ t+ tc in which N reaches a valid WTA output configuration for Xt

and remains there for ts steps, giving the lemma.
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We can also define an expected-time version of the winner-take-all problem as follows:

Definition 2.9 (Expected-Time Winner-Take-All Problem). For any infinite input execution αX =
X0X1..., stability time ts ∈ Z>0, and infinite output execution αY = Y 0Y 1... define:

t(αX , ts, αY ) = min
{
t : Y t is a valid WTA output configuration and Y t = ... = Y t+ts

}
.

Given input size n ∈ Z>0, convergence time tc ∈ Z>0, stability time ts ∈ Z>0, the expected-time
winner-take-all problem WTA-EXP(n, tc, ts) is defined as follows:

• If αX is an input execution with Xt fixed for all t, the output distribution DY (N , N0, αX)
can be any distribution on executions of n output neurons satisfying:

E
DY (N ,N0,αX)

t(αX , ts, αY ) ≤ tc.

• If αX is any other input execution, the output distribution is unconstrained.

3 A Two-Inhibitor Solution to the WTA Problem

We now present a simple solution to the WTA problems in Definitions 2.7 and 2.9 in networks with
spike probability given by a sigmoid function. We begin by defining a family of networks Tn,γ for
any input size n and weight scaling parameter γ ∈ R+ that solve these problems.

3.1 Network Definition

We first give a full definition of our family of two-inhibitor WTA networks, before describing the
intuition behind why these networks solve the WTA problem (Definitions 2.7 and 2.9).

Definition 3.1 (Two-Inhibitor WTA Network). For any positive integer n and γ ∈ R+, let Tn,γ =
〈N,w, b, f〉 where the spike probability, weight, and bias functions are defined as follows:

• The spike probability function f is defined to be the basic sigmoid function:

f(x)
def
=

1

1 + e−x
. (10)

• The set of neurons N consists of a set of n input neurons X, labeled x1, ..., xn, a set of n
corresponding outputs Y , labeled y1, ..., yn, and two auxiliary inhibitor neurons labeled as, ac.

• The weight function w is given by:

– w(xi, yi) = 3γ, for all i.

– w(yi, yi) = 2γ, for all i.

– w(as, yi) = w(ac, yi) = −γ, for all i.

– w(yi, as) = w(yi, ac) = γ, for all i.

– w(u, v) = 0 for any u, v whose connection is not specified above.

• The bias function b is given by:

– b(yi) = 3γ for all i.

– b(as) = γ/2.

– b(ac) = 3γ/2.

A diagram of Tn,γ is shown in Figure 1. Note that the two inhibitors as and ac have identical
outgoing connections, and differ just in their bias.

13



Figure 1: Our two-inhibitor WTA network Tn,γ as described in Definition 3.1.

3.1.1 Intuition Behind the Two-Inhibitor Network

Before giving a formal analysis of the behavior of Tn,γ , we give some intuition behind why this
family of two-inhibitor networks solves the WTA problem. In the description below, we informally
refer to events that occur ‘with high probability’. We will quantify the meaning of such statements
in our full analysis.

In Tn,γ , each input is connected to its corresponding output with a positive weight. Thus, firing
inputs will initially cause their corresponding outputs to fire with high probability. For the network
to solve WTA, it must converge to a state in which just a single one of these outputs fires.

To ensure this convergence, Tn,γ has two inhibitors A = {as, ac}. The neuron as is a stability
inhibitor that maintains a valid WTA output configuration once it has been reached. It fires with
high probability at time t whenever at least one output fires at time t − 1. The neuron ac is a
convergence inhibitor that fires with high probability whenever at least two outputs fire at time
t− 1.

The weights connecting as and ac to the outputs are set such that when both fire at time t, any
output that fired at time t will fire with probability 1/2 at time t + 1. Any output that did not
fire at time t will not fire at time t+ 1 with high probability. This distinguished behavior between
previously firing and non-firing outputs is due to the self-loops on each output neuron, which allow
firing outputs to partially overcome the strong inhibition from as and ac.

In this way, if two or more outputs fire at time t, both inhibitors fire with high probability and
the high level of inhibition causes outputs to ‘drop out of contention’ for the winning position with
probability 1/2. After O(log n) time steps, nearly all the outputs stop firing and, with constant
probability, there is a time step in which exactly one output fires. Once this step occurs, with high
probability, ac ceases firing and just as fires. This decreased level of inhibition allows the winner to
keep firing with high probability, as the inhibition is fully offset by the winner’s excitatory self-loop.
However, with high probability, the inhibition prevents any other output whose excitatory self-loop
is inactive from firing. Thus the network remains in the valid WTA output configuration for a large
number of time steps with high probability.

In the event that a time in which a single output fires does not occur, then the network ‘resets’.
No outputs fire at some time, causing the inhibitors to both cease firing. Thus, all outputs with
firing inputs are able to fire, and convergence starts again. Within O(log 1/δ) of these resets each
reaching a valid WTA output state with constant probability, the network reaches a valid WTA
output state with probability ≥ 1− δ and so solves the WTA problem of Definition 2.7. Similarly,
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the network requires O(1) resets in expectation to reach a valid WTA output state, giving a solution
to the expected-time version of the problem in Definition 2.9. Formally, we will prove the following:

Theorem 3.2 (Two-Inhibitor WTA). For γ ≥ 4 ln((n+ 2)ts/δ) + 10, Tn,γ solves WTA(n, tc, ts, δ)
for any tc ≥ 72(log2 n+ 1) · (log2(1/δ) + 1).

Theorem 3.3 (Two-Inhibitor Expected-Time WTA). For γ ≥ 4 ln((n + 2)ts) + 10, Tn,γ solves
WTA-EXP(n, tc, ts) for any tc ≥ 108(log2 n+ 3).

Proof Roadmap. We prove Theorems 3.2 and 3.3 in in Sections 3.2-3.7. The analysis is broken
down as follows:

Section 3.2: Prove basic one-step lemmas which characterize single time step transitions of
Tn,γ , showing that the neurons behave as described in the above high-level description.

Section 3.3: Prove that, once in a valid WTA configuration, Tn,γ stays in this configuration
with high probability (that is, valid WTA configurations are stable).

Section 3.4: Show that all configurations of Tn,γ transition with high probability within two
time steps to a small set of good configurations, from which we will prove fast convergence.

Section 3.5 Show basic transition lemmas for this set of good configurations, characterizing
the network’s behavior at the times immediately following a good configuration.

Section 3.6 Use the above transition lemmas to show that the network converges, with constant
probability, from any good configuration (and hence any configuration by Section 3.4) to a
valid WTA configuration within O(log n) time steps.

Section 5.6 Complete the analysis, demonstrating with what parameters Tn,γ solves the
winner-take-all problem (Definitions 2.7 and 2.9).

3.2 Basic Results and One-step Lemmas

We begin with some basic results that will be important throughout our analysis, including a few
‘one-step’ lemmas, which characterize the transition probabilities from a set of configurations at
time t to a set of configurations at time t+ 1.

We first show that, unless a neuron has potential 0, either it fires with high probability (i.e.,
except with probability that is inverse exponential in γ) or it does not fire with high probability.

Lemma 3.4 (Characterization of Firing Probabilities). For any time t ≥ 1 and any u ∈ N :

If pot(u, t) = 0, then p(u, t) = 1/2.

If pot(u, t) < 0, then p(u, t) ≤ e−γ/2.
If pot(u, t) > 0, then p(u, t) ≥ 1− e−γ/2.

Proof. If pot(u, t) = 0, then by (1) p(u, t) = f(pot(u, t)) = 1
1+e0

= 1/2. Otherwise consider the
potential calculation of (1) in the case when h = 1:

pot(u, t) =
∑
v∈N

w(v, u) · vt−1 − b(u).
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By Definition 3.1, for all u, v, w(v, u) and b(u) are integer multiples of γ/2. Thus, since vt−1 ∈ {0, 1},
pot(u, t) is also an integer multiple of γ/2. So, if pot(u, t) < 0, then pot(u, t) ≤ −γ/2 and:

p(u, t) = f(pot(u, t)) ≤ f(−γ/2) =
1

1 + eγ/2
≤ e−γ/2.

Similarly, if pot(u, t) > 0, then pot(u, t) ≥ γ/2 and so:

p(u, t+ 1) = f(pot(u, t)) ≥ f(γ/2) =
1

1 + e−γ/2
≥ 1− e−γ/2.

We next show that if output yi does not correspond to a firing input (i.e., xti = 0), then starting
from any configuration of Tn,γ at time t, with high probability yi does not fire at time t+ 1. That
is, with high probability, outputs that are not valid winners of the WTA computation do not fire.

Lemma 3.5 (Correct Output Behavior). For any time t, any configuration C of Tn,γ, and any i
with C(xi) = 0,

P[yt+1
i = 1|N t = C] ≤ e−γ/2.

Proof. If N t = C then xti = C(xi). We can compute yi’s potential at time t+ 1, assuming xti = 0:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

≤ 0 + 2γ + 0 + 0− 3γ = −γ.

Thus, by Lemma 3.4, since pot(yi, t+ 1) < 0, p(yi, t+ 1) ≤ e−γ/2.

Applying Lemma 3.5 and a simple union bound over all n outputs yields the following corollary:

Corollary 3.6 (Correct Output Behavior, All Neurons). For any time t and configuration C of
Tn,γ,

P[yt+1
i ≤ xti for all i|N t = C] ≥ 1− ne−γ/2.

Proof. If C(xi) = 1 then conditioned on N t = C, xti = 1 and so yt+1
i ≤ xti always. Otherwise, by

Lemma 3.5, if C(xi) = 0, then P[yt+1
i = 0|N t = C] ≥ 1 − e−γ/2. Union bounding over all such

inputs (of which there are at most n) gives the corollary.

We next show that the inhibitors as and ac behave as expected with high probability.

Lemma 3.7 (Correct Inhibitor Behavior). For any time t and configuration C of Tn,γ,

1. If ‖C(Y )‖1 = 0, then P[at+1
s = at+1

c = 0|N t = C] ≥ 1− 2e−γ/2.

2. If ‖C(Y )‖1 = 1, then P[at+1
s = 1 and at+1

c = 0|N t = C] ≥ 1− 2e−γ/2.

3. If ‖C(Y )‖1 ≥ 2, then P[at+1
s = 1 = at+1

c = 1|N t = C] ≥ 1− 2e−γ/2.

Proof. We prove each case above separately. Note that, conditioned on N t = C, Y t = C(Y ).

Case 1: ‖C(Y )‖1 = 0.
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In this case, the inhibitors receive no excitatory signal from the outputs so,

pot(as, t+ 1) = −b(as) < 0 and pot(ac, t+ 1) = −b(ac) < 0.

Thus by Lemma 3.4 and a union bound over the two inhibitors,

P[at+1
s = at+1

c = 0|N t = C] ≥ 1− 2e−γ/2.

Case 2: ‖C(Y )‖1 = 1.

In this case we have:

pot(as, t+ 1) =
n∑
j=1

w(yj , as)y
t
j − b(as)

= γ − γ/2 = γ/2.

pot(ac, t+ 1) =
n∑
j=1

w(yj , ac)y
t
j − b(ac)

= γ − 3γ/2 = −γ/2.

Again by Lemma 3.4 and a union bound, P[at+1
s = 1 and at+1

c = 0|N t = C] ≥ 1− 2e−γ/2.

Case 3: ‖C(Y )‖1 ≥ 2

Finally, in this case:

pot(as, t+ 1) =

n∑
j=1

w(yj , as)y
t
j − b(as)

≥ 2γ − γ/2 = 3γ/2.

pot(ac, t+ 1) =

n∑
j=1

w(yj , ac)y
t
j − b(ac)

≥ 2γ − 3γ/2 = γ/2.

So by Lemma 3.4 and a union bound, P[at+1
s = at+1

c = 1|N t = C] ≥ 1 − 2e−γ/2, completing the
lemma.

Combined with Corollary 3.6, Lemma 3.7 conclusion (1) gives:

Lemma 3.8 (Quiescent Behavior). Assume the input execution αX of Tn,γ has Xt fixed for all t
and ‖Xt‖1 = 0. For any time t and configuration C with C(X) = Xt,

P[‖N t+2‖1 = 0|N t = C] ≥ 1− 2(n+ 1)e−γ/2.

Proof. Let E10 be the event that N t = C and ‖Y t+1‖1 = 0. Let E20 be the event that ‖N t+2‖1 = 0.
That is, that no neurons fire at time t + 2. Conditioned on E10, by Lemma 3.7 conclusion (1),
with probability ≥ 1 − 2e−γ/2, at+2

s = at+2
c = 0. Again by Corollary 3.6, conditioned on E10, with

probability ≥ 1− ne−γ/2, ‖Y t+2‖1 = 0. So, overall by a union bound,

P[E20|E10] ≥ 1− (n+ 2)e−γ/2.
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By Corollary 3.6, since ‖Xt‖1 = 0, P[E10|N t = C] ≥ 1− ne−γ/2. We can thus bound:

P[E20|N t = C] ≥ P[E10|N t = C] · P[E20|E10, N
t = C]

= P[E10|N t = C] · P[E20|E10] (Since, by definition, E10 implies N t = C.)

≥
(

1− ne−γ/2
)
·
(

1− (n+ 2)e−γ/2
)

≥ 1− 2(n+ 1)e−γ/2,

which gives the lemma.

We next show that the stability inhibitor, with high probability, induces exactly the outputs
that fired at the previous time step to fire in the next step. We show the lemma in fact for any
configuration in which exactly one inhibitor fires. Since as and ac have identical outgoing edges,
they have a symmetric effect on the firing probabilities of other neurons.

Lemma 3.9 (Stability Inhibitor Effect). For any time t and configuration C of Tn,γ with (C(as) =
1 and C(ac) = 0) or (C(as) = 0 and C(ac) = 1) and C(yi) ≤ C(xi) for all i,

P[Y t+1 = Y t|N t = C] ≥ 1− ne−γ/2.

Proof. For any configuration C with C(ac) = 1 and C(as) = 0, let C̄ denote the configuration
with C̄(ac) = 0, C̄(as) = 1, and C̄(u) = C(u) for all other u ∈ N \ {ac, as}. Since ac and as have
no self-loops and have identical outgoing connections, the distribution of N t+1 given N t = C is
identical to its distribution given N t = C̄. Thus, we can assume without loss of generality in the
proof of this lemma that C(as) = 1 and C(ac) = 0.

Conditioned on N t = C, yti ≤ xti by assumption. So for any output with yti = 1, we have xti = 1.
This gives:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

= 3γ + 2γ − γ + 0− 3γ

= γ.

In contrast, for any output with yti = 0:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

≤ 3γ + 0− γ + 0− 3γ

= −γ.

Thus, by Lemma 3.4, if yti = 1, then yt+1
i = 1 with probability ≥ 1−e−γ/2. If yti = 0, then yt+1

i = 0
with probability ≥ 1− e−γ/2. The lemma follows after union bounding over all n outputs.

Finally, we show that when both the stability and convergence inhibitors fire at time t, not
only do outputs not firing at time t not fire at time t+ 1 with high probability, but also, all firing
outputs at time t stop firing with probability 1/2 at time t+ 1. Conditioned on the configuration
at time t, these outputs fire independently, a property which will be useful in our eventual proof of
progress towards a valid WTA configuration in Lemma 3.23.
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Lemma 3.10 (Convergence Inhibitor Effect). For any time t and configuration C of Tn,γ with
C(as) = C(ac) = 1 and C(yi) ≤ C(xi) for all i,

1. P[yt+1
i ≤ yti for all i|N t = C] ≥ 1− ne−γ/2.

2. If yti = 1, P[yt+1
i = 1|N t = C] = 1/2.

3. For i 6= j, yt+1
i and yt+1

j are independent conditioned on N t = C.

Proof. Conditioned on N t = C, if yti = 1, by assumption xti = 1. We can thus compute:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

= 3γ + 2γ − γ − γ − 3γ

= 0.

We thus have P[yt+1
i = 1|N t = C] = 1/2 by Lemma 3.4. This gives conclusion (2). Conclusion (3)

holds trivially since, with N t fixed, ut+1 is independent of vt+1 for all u 6= v.
We can also bound if yti = 0:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

≤ 3γ + 0− γ − γ − 3γ

= −2γ.

Thus, by Lemma 3.4, P[yt+1
i = 1|N t = C] ≤ e−γ/2. By a union bound over at most n such outputs,

we have, with probability ≥ 1− ne−γ/2, yt+1
i ≤ yti for all i , completing the lemma.

3.3 Stability

In this section we extend our definition of a valid WTA output configuration (Definition 2.6), to
give a more restrictive notion of a valid WTA configuration, which additionally requires that the
auxiliary neurons as, ac are in a good state. We show that once the network is in such a state at
time t, it remains there with high probability at time t+ 1.

Definition 3.11 (Valid WTA Configuration). A valid WTA configuration of Tn,γ is a configuration
C with C(yi) ≤ C(xi) for all i ∈ {1, ..., n} and ‖C(Y )‖1 = min(1, ‖C(X)‖1) (i.e., the outputs satisfy
Definition 2.6) and further, C(ac) = 0 and C(as) = min(1, ‖C(X)‖1).

In the above we require C(as) = min(‖C(X)‖1, 1). That is, the stability inhibitor fires in a valid
WTA configuration, unless no inputs fire. If no inputs fire, a valid WTA configuration requires
that neither as nor ac fire and additionally, that no outputs fire.

Lemma 3.12 (Stability of Valid Configurations). Assume the input execution αX of Tn,γ has Xt

fixed for all t. For any time t and valid WTA configuration C with C(X) = Xt,

P[N t+1 = N t|N t = C] ≥ 1− (n+ 2)e−γ/2.

Proof. By Definition 3.11, since C is a valid WTA configuration, we have

‖C(Y )‖1 = min(1, ‖C(X)‖1) ∈ {0, 1}.
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We prove the lemma via a case analysis on ‖C(Y )‖1.

Case 1 : ‖C(Y )‖1 = 0

In this case, since C is a valid WTA configuration, according to Definition 3.11, conditioned on
N t = C, we must have ‖Xt‖1 = 0 and ats = atc = 0. By Corollary 3.6, since ‖Xt‖1 = 0,

P[‖Y t+1‖1 = 0|N t = C] ≥ 1− ne−γ/2.

By Lemma 3.7 conclusion (1), since ‖C(Y )‖1 = 0, P[at+1
s = at+1

c = 0|N t = C] ≥ 1 − 2e−γ/2.
By a union bound, recalling that Xt is fixed for all t by assumption, P[N t+1 = N t|N t = C] ≥
1− (n+ 2)e−γ/2.

Case 2 : ‖C(Y )‖1 = 1

In this case by Definition 3.11, we have C(yi) ≤ C(xi) for all i, C(as) = 1, and C(ac) = 0.
We can thus apply Lemma 3.9, giving that P[Y t+1 = Y t|N t = C] ≥ 1 − ne−γ/2. Additionally, by
Lemma 3.7 conclusion (2), since ‖C(Y )‖1 = 1, P[at+1

s = 1 and at+1
c = 0|N t = C] ≥ 1− 2e−γ/2. So

by a union bound,
P[N t+1 = N t|N t = C] ≥ 1− (n+ 2)e−γ/2,

giving the result in this case and completing the lemma.

Lemma 3.12 immediately implies a bound on the probability that Tn,γ remains in a valid WTA
configuration for ts consecutive times.

Corollary 3.13 (Stability of Valid WTA Configurations). Assume the input execution αX of Tn,γ
has Xt fixed for all t. For any time t and valid WTA configuration C with C(X) = Xt,

P[N t = N t+1 = ... = N t+ts |N t = C] ≥ 1− ts(n+ 2)e−γ/2.

Proof. Applying Lemma 3.12 for each time t+ 1, ..., t+ ts in succession gives the result.

3.4 Convergence to Good Configurations

Configuration Type C(yi) ≤ C(xi) ∀i? ‖C(Y )‖1 C(as) C(ac)

Valid WTA (Def. 3.11) X min(1, ‖C(X)‖1) 1 0

Near-Valid WTA (Def. 3.15) X min(1, ‖C(X)‖1) 1 1

Valid k-WTA (Def. 3.14) X k ≥ 2 1 1

Reset (Def. 3.16) – – 0 0

Table 1: Summary of good configuration types (Definition 3.17), from which we show rapid
convergence to a valid WTA configuration. We refer to the configuration types shaded in gray as
active configurations (Definition 3.18).

With the stability bound of Corollary 3.13 in place, it remains to prove that Tn,γ converges
quickly to a valid WTA configuration. We do this in two main steps:

1. In this Section, we define three additional good configuration types and show that all other
network configurations converge to a good configuration within just two time steps with high
probability.
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2. In Sections 3.5 and 3.6 we show that, in turn, each of these good configurations rapidly
converges to a valid WTA configuration with constant probability.

A high level illustration of our proof is shown in Figure 2.

Figure 2: A high level illustration of our proof that Tn,γ solves the WTA problem. We show that
all configurations converge to the set of good configurations. Once in a good configuration, Tn,γ
converges to a valid WTA state very rapidly, with constant probability. In the illustration, arrow
size corresponds to relative probability.

The first class of good configurations are valid k-WTA configurations. In such configurations the
network behaves as expected before convergence. Multiple outputs corresponding to firing inputs
fire and the inhibitors as and ac fire, driving convergence towards a valid WTA configuration.

Definition 3.14 (Valid k-WTA Configuration). For any k ≥ 2, a valid k-WTA configuration of
Tn,γ is a configuration C with C(yi) ≤ C(xi) for all i ∈ {1, ..., n}, ‖C(Y )‖1 = k and C(as) =
C(ac) = 1.

We next define a class of near-valid WTA configurations, each of which is a small perturbation
of a valid WTA configuration, with correct output but incorrect inhibitor behavior. We will show
in Section 3.6 that the network rapidly converges to a near-valid WTA configuration from any
configuration. In turn, it transitions with probability ≈ 1/2 from a near-valid WTA configuration
to a valid WTA configuration.

Definition 3.15 (Near-Valid WTA Configuration). A near-valid WTA configuration of Tn,γ is a
configuration C in which C(Y ) is a valid WTA output configuration for C(X) (Definition 2.6) but
C(as) = C(ac) = 1.

Finally, we define the class of reset configurations with C(as) = C(ac) = 0. Since there is
no inhibition in such a configuration, each output corresponding to a firing input will fire with
probability ≥ 1/2 at the next time. With probability ≈ 1/2, the network will transition to either a
valid k-WTA, a near-valid WTA, or a valid WTA configuration within three steps (Lemma 3.22).

Definition 3.16 (Reset Configuration). A reset configuration of Tn,γ is a configuration C with
C(as) = C(ac) = 0.

Definition 3.17 (Good Configuration). A good configuration is any configuration that is either a
valid WTA configuration (Definition 3.11), a valid k-WTA configuration (Definition 3.14), a reset
configuration (Definition 3.16), or a near-valid WTA configuration (Definition 3.15).
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For conciseness, we also give a name to the good configurations excluding reset configurations:

Definition 3.18 (Active Configuration). An active configuration is any configuration that is either
a valid WTA configuration (Definition 3.11), a valid k-WTA configuration (Definition 3.14), or a
near-valid WTA configuration (Definition 3.15).

We first give a simple lemma building on Lemma 3.9, which characterizes the network’s behavior
when a single inhibitor and at least one output corresponding to a firing input fire at time t:

Lemma 3.19. Assume the input execution αX of Tn,γ has Xt fixed for all t. For any time t and
any configuration C with C(X) = Xt, (C(as) = 1 and C(ac) = 0) or (C(as) = 0 and C(ac) = 1),
‖C(Y )‖1 ≥ 1, and C(yi) ≤ C(xi) for all i:

P[N t+1 is a valid WTA or valid k-WTA configuration |N t = C] ≥ 1− (n+ 2)e−γ/2.

Proof. If ‖C(Y )‖1 = 1, then C is a valid WTA configuration. Thus, by Lemma 3.12, conditioned
in N t = C, N t+1 is a valid WTA configuration with probability ≥ 1− (n+ 2)e−γ/2.

If ‖C(Y )‖1 ≥ 2, then by Lemma 3.7 conclusion (3),

P[at+1
s = at+1

c = 1|N t = C] ≥ 1− 2e−γ/2.

Further, by Lemma 3.9, P[Y t+1 = Y t|N t = C] ≥ 1 − ne−γ/2, which gives that N t+1 is a valid
k-WTA configuration since, by conditioned on N t = C, ‖Y t‖1 ≥ 2 and yti ≤ xti for all i. Thus,
by a union bound, conditioned on N t = C, N t+1 is a valid k-WTA configuration with probability
≥ 1− (n+ 2)e−γ/2, giving the lemma.

Theorem 3.20 (Convergence to a Good Configuration). Assume that the input execution αX of
Tn,γ has Xt fixed for all t. For any time t and configuration C with C(X) = Xt,

P[at least one of {N t+1, N t+2} is a good configuration |N t = C] ≥ 1− 2(n+ 1)e−γ/2.

Proof. Let E be the event that at least one of {N t+1, N t+2} is a good configuration. Let E1 be the
event that, N t = C and for all i, yt+1

i ≤ xt+1
i . By Corollary 3.6 and the fact that Xt is fixed

P[E1|N t = C] ≥ 1− ne−γ/2. (11)

We now give a simple case analysis, considering all values of at+1
c and at+1

s .

Case 1: at+1
c = at+1

s = 0.

In this case, N t+1 is a reset configuration (Definition 3.16). So we have:

P
[
E
∣∣E1, a

t+1
c = at+1

s = 0
]

= 1. (12)

Case 2: at+1
c = at+1

s = 1.

If ‖Y t+1‖1 = 0, then N t+2 is a reset configuration with probability ≥ 1 − 2e−γ/2 by Lemma 3.7
conclusion (1). If ‖Y t+1‖1 = 1 and E1 occurs, then N t+1 is a near-valid WTA configuration (Defi-
nition 3.15). If ‖Y t+1‖1 ≥ 2 and E1 occurs, then N t+1 is a valid k-WTA configuration (Definition
3.14). Thus:

P
[
E
∣∣E1, a

t+1
c = at+1

s = 1
]
≥ 1− 2e−γ/2. (13)
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Case 3: (at+1
s = 1 and at+1

c = 0) or (at+1
s = 0 and at+1

c = 1).

Let E2 be the event that (at+1
s = 1 and at+1

c = 0) or (at+1
s = 0 and at+1

c = 1). Again, if ‖Y t+1‖1 = 0,
then N t+2 is a reset configuration with probability ≥ 1− 2e−γ/2 by Lemma 3.7 conclusion (1).

If E2 and E1 occur and ‖Y t+1‖1 ≥ 1, we can apply Lemma 3.19, giving that N t+2 is either a
valid WTA or valid k-WTA configuration with probability ≥ 1− (n+ 2)e−γ/2. We thus have:

P[E|E1, E2] ≥ 1− (n+ 2)e−γ/2. (14)

Completing the lemma.

Combining (12), (13), and (14), by the law of total probability, P[E|E1] ≥ 1− (n+ 2)e−γ/2. We
can then use that P[E1|N t = C] ≥ 1− ne−γ/2 by (11) to give:

P[E|N t = C] ≥ P[E1|N t = C] · P[E|E1, N
t = C]

= P[E1|N t = C] · P[E|E1] (Since, by definition, E1 implies N t = C.)

≥ 1− 2(n+ 1)e−γ/2,

completing the lemma.

3.5 Transition Lemmas for Good Configurations

We now give a set of lemmas that characterize the transitions of Tn,γ when starting from a good
configuration. We first show that a near-valid WTA configuration transitions with probability≈ 1/2
to the adjacent valid WTA configuration (i.e., the configuration with the same output behavior,
but correct inhibitor behavior).

Lemma 3.21 (From Near-Valid to Valid Configurations). Assume that the input execution αX of
Tn,γ has Xt fixed for all t. For any time t and near-valid WTA configuration C with C(X) = Xt,

P[N t+1 is a valid WTA configuration |N t = C] ≥ 1/2− (n+ 2)e−γ/2.

Proof. We give a proof similar to that of Lemmas 3.9 and 3.12. We consider two cases:

Case 1: ‖C(Y )‖1 = 0.

In this case, for C to be a near-valid WTA configuration, according to Definition 3.15, we must
also have ‖C(X)‖1 = 0. So by Corollary 3.6,

P[‖Y t+1‖1 = 0|N t = C] ≥ 1− ne−γ/2.

Additionally, by Lemma 3.7 conclusion (1), since ‖C(Y )‖1 = 0, P[at+1
s = at+1

c = 0|N t = C] ≥
1− 2e−γ/2. By a union bound,

P[‖N t+1‖1 = 0|N t = C] ≥ 1− (n+ 2)e−γ/2.

By Definition 3.11, since ‖Xt+1‖1 = 0, if ‖N t+1‖1 = 0, then N t+1 is a valid WTA configuration.
So, conditioned on N t = C, N t+1 is a valid WTA configuration with probability ≥ 1− (n+2)e−γ/2,
giving the lemma in this case.

Case 2: ‖C(Y )‖1 = 1.
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In this case, for some i, C(yi) = 1 and C(yj) = 0 for all j 6= i. Further, we must have C(xi) = 1
and C(as) = C(ac) = 1 by the requirements of Definition 3.15. Define the event E1 by:

E1
def
=
(
yt+1
i = 1, at+1

s = 1, at+1
c = 0 and yt+1

j = 0 for all j 6= i
)
.

By Lemma 3.10, P[yt+1
i = 1|N t = C] = 1/2 and P[yti ≤ yt+1

i for all i|N t = C] ≥ 1 − ne−γ/2. By
Lemma 3.7 conclusion (2), since ‖C(Y )‖1 = 1, P[at+1

s = 1 and at+1
c = 0|N t = C] ≥ 1− 2e−γ/2. By

a union bound this gives,

P[E1|N t = C] ≥ 1/2− (n+ 2)e−γ/2.

If E1 occurs, then N t+1 is a valid WTA configuration, giving the lemma in this case.

We next show that a reset configuration transitions to some active configuration (Defintion
3.18) with probability ≈ 1/2.

Lemma 3.22 (From Reset to Active Configurations). Assume the input execution αX of Tn,γ has
Xt fixed for all t. For any time t and reset configuration C with C(X) = Ct,

P[at least one of {N t+1, N t+2, N t+3} is active |N t = C] ≥ 1/2− 3(n+ 2)e−γ/2.

Proof. Let E be the event that at least one of {N t+1, N t+2, N t+3} is an active configuration. We
consider two cases:

Case 1: ‖Xt‖1 = 0.

Let E20 be the event that ‖N t+2‖1 = 0. That is, that no neurons fire at time t+ 2. By Lemma
3.8, since ‖Xt‖1 = 0, P[E20|N t = C] ≥ 1− 2(n+ 1)e−γ/2.
E20 requires that no neurons fire in N t+2, which makes this a valid WTA configuration since

‖Xt‖1 = 0 and the input is fixed for all t. Thus, P[E|N t = C] ≥ P[E20|N t = C] ≥ 1−2(n+ 1)e−γ/2,
completing the lemma in this case.

Case 2: ‖Xt‖1 ≥ 1.

Let E11 be the event that N t = C and ‖Y t+1‖ ≥ 1 (i.e., at least one output fires at time t+ 1)
and yt+1

i ≤ xt+1
i for all i. For any yi with xti = 1, we have:

pot(yi, t+ 1) = w(xi, yi)x
t
i + w(yi, yi)y

t
i + w(as, yi)a

t
s + w(ac, yi)a

t
c − b(yi)

≥ 3γ + 0 + 0 + 0− 3γ = 0.

So, by Lemma 3.4, each output yi with xti = 1 fires with probability at least 1/2 at time t + 1.
Each with xti = 0 does not fire with probability ≥ 1− e−γ/2 by Lemma 3.5. Since, by assumption,
‖Xt‖1 ≥ 1, by a union bound, with probability ≥ 1/2 − ne−γ/2, at least one output with xti = 1
fires in N t+1, and no outputs with xti = 0 fire. That is,

P[E11|N t = C] ≥ 1/2− ne−γ/2. (15)

We now proceed with a case analysis on the inhibitor behavior at time t+ 1:

Sub-case 1: at+1
s = at+1

c = 1.
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In this case, assuming E11 occurs, N t+1 is either a valid k-WTA configuration for some k or a
near-valid WTA configuration. We thus have:

P
[
E
∣∣E11, a

t+1
s = at+1

c = 1
]

= 1. (16)

Sub-case 2: at+1
s = at+1

c = 0.

Let E21 be the event that ‖Y t+2‖1 ≥ 1, yt+2
i ≤ xt+2

i for all i, and at+2
s = 1. Assuming E11 occurs

and at+1
s = at+1

c = 0, any output with yt+1
i = 1 has

pot(yi, t+ 2) = w(xi, yi)x
t+1
i + w(yi, yi)y

t+1
j + w(as, yi)a

t+1
s + w(ac, yi)a

t+1
c − b(yi)

= 3γ + 2γ + 0 + 0− 3γ > 0.

Thus, any such output has yt+2
i = 1 with probability ≥ 1 − e−γ/2 by Lemma 3.4. Combined with

Corollary 3.5, with probability ≥ 1−ne−γ/2, at least one output fires in N t+2, and no outputs with
xt+1
i = 0 fire. Further by Lemma 3.7 conclusions (2) and (3), since E11 requires that ‖Y t+1‖ ≥ 1,

with probability ≥ 1− 2e−γ/2, at+2
s = 1. Thus,

P
[
E21

∣∣E11, a
t+1
s = at+1

c = 0
]
≥ 1− (n+ 2)e−γ/2. (17)

Assume that both E11 and E21 occur. E21 requires that at+2
s = 1 and ‖Y t+2‖1 ≥ 1. If we also

have at+2
c = 1, then N t+2 is a near-valid WTA or valid k-WTA configuration. If at+2

c = 0 and
‖Y t+2‖1 = 1, then N t+2 is a valid WTA configuration. If at+2

c = 0 and ‖Y t+2‖1 ≥ 2, then by
Lemma 3.7 conclusion (3), with probability ≥ 1− 2e−γ/2, at+3

s = at+3
c = 1. Further, we can apply

Lemma 3.9, giving that Y t+3 = Y t+2 with probability ≥ 1 − ne−γ/2. This ensures that N t+3 is a
valid k-WTA configuration. So we have by a union bound:

P
[
E
∣∣E11, E21, a

t+1
s = at+1

c = 0
]
≥ 1− (n+ 2)e−γ/2.

Combined with (17) the above gives:

P
[
E
∣∣E11, a

t+1
s = at+1

c = 0
]
≥ P

[
E21

∣∣E11, a
t+1
s = at+1

c = 0
]
· P
[
E
∣∣E11, E21, a

t+1
s = at+1

c = 0
]

≥
(

1− (n+ 2)e−γ/2
)
·
(

1− (n+ 2)e−γ/2
)

≥ 1− 2(n+ 2)e−γ/2. (18)

Sub-case 3: (at+1
s = 1 and at+1

c = 0) or (at+1
s = 0 and at+1

c = 1).

Let E13 denote the event that (at+1
s = 1 and at+1

c = 0) or (at+1
s = 0 and at+1

c = 1). Assuming E13

and E11, we can apply Lemma 3.19, which gives that N t+2 is either a valid WTA or valid k-WTA
configuration with probability ≥ 1− (n+ 2)e−γ/2. I.e.,

P
[
E
∣∣E11, E13

]
≥ 1− (n+ 2)e−γ/2. (19)

Completing Case 2.

Overall, combining (16), (18), and (19), by the law of total probability P[E|E11] ≥ 1 − 2(n +
2)e−γ/2. Recalling that by (15) P[E11|N t = C] ≥ 1/2− ne−γ/2:

P[E|N t = C] ≥ P[E11|N t = C] · P[E|E11, N
t = C]

= P[E11|N t = C] · P[E|E11] (Since, by assumption, E11 implies N t = C.)

≥ 1/2− 3(n+ 2)e−γ/2

which completes the lemma in this case.
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We next show that, in each time step, with high probability, the number of firing outputs k
does not increase. Further, with probability ≈ 1/2, k is reduced by a factor of 1/2. This ensures
rapid convergence towards having just a single firing output (i.e., a near-valid WTA state). While
there is some chance that the convergence will ‘overshoot’ the target and zero outputs will fire at
some time step, we show that the probability of this event is upper bounded by the probability of
the desired event – i.e., reaching a near-valid WTA configuration.

Lemma 3.23 (Progress from k-WTA Configurations). Assume the input execution αX of Tn,γ
has Xt fixed for all t. For any time t and any valid k-WTA configuration C with C(X) = Xt,

1. Letting E be the event that N t+1 is either a near-valid WTA configuration, a valid k-WTA
configuration with ‖Y t+1‖1 ≤ ‖Y t‖1, or has ‖Y t+1‖1 = 0.

P[E|N t = C] ≥ 1− (n+ 2)e−γ/2.

2. P
[
‖Y t+1‖1 ≤

⌈
‖Y t‖1

2

⌉ ∣∣N t = C
]
≥ 1/2− (n+ 2)e−γ/2.

3. P[‖Y t+1‖1 = 0|N t = C]− (n+ 2)e−γ/2 ≤ P[N t+1 is a near-valid |N t = C].

Proof. Since C is a valid k-WTA configuration, conditioned on N t = C, we have ‖Y t‖1 ≥ 2 and
ats = atc = 1. Event E in (1) above occurs if and only if at+1

s = at+1
c = 1, and yt+1

i ≤ yti for all i.
By Lemma 3.7 conclusion (3), since ‖Y t‖1 ≥ 2, both inhibitors remain firing at time t+ 1 with

high probability. That is,

P[at+1
s = at+1

c = 1|N t = C] ≥ 1− 2e−γ/2.

Further, by Lemma 3.10, P[yt+1
i ≤ yti for all i|N t = C] ≥ 1− ne−γ/2. By a union bound, this gives

that P[E|N t = C] ≥ 1− (n+ 2)e−γ/2, giving (1).
Let Ȳ ⊆ Y denote the set of all output neurons with yti = 1. Let k = ‖Y t‖1 = ‖Ȳ t‖1 and

k′ = ‖Ȳ t+1‖1. By Lemma 3.10 properties (2) and (3), conditioned on N t = C, k′ is distributed
according to the binomial distribution B(k, 1/2). That is, it is the number of successes in k
independent trials each with success probability 1/2. Since B(k, 1/2) is symmetric with mean k/2,
its median is upper bounded by dk/2e. Thus, P

[
k′ ≤ dk/2e|N t = C

]
≥ 1/2. This gives by a union

bound,
P
[
k′ ≤ dk/2e and E|N t = C

]
≥ 1/2− (n+ 2)e−γ/2.

Note that if E holds, then k′ = ‖Ȳ t+1‖1 = ‖Y t+1‖1, which thus gives conclusion (2).
Finally, we have P[k′ = 1|N t = C] = k · 1

2k
and P[k′ = 0|N t = C] = 1

2k
and so

P[k′ = 0|N t = C] ≤ P[k′ = 1|N t = C].

Let E1 be the event that N t+1 is a near-valid WTA configuration. Assuming E occurs, N t+1 is a
near-valid WTA configuration if and only if k′ = 1. That is,

P[E1|E , N t = C] = P[k′ = 1|E , N t = C] = P[k′ = 1|N t = C].

The second equality follows since E and k′ are independent conditioned on N t. k′ only depends on
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the firing of y ∈ Ȳ while E only depends on the firing of u ∈ {as, ac} ∪ (Y \ Ȳ ). Using the above:

P[E1|N t = C] ≥ P[E|N t = C] · P[E1|E , N t = C]

≥
(

1− (n+ 2)e−γ/2
)
· P[k′ = 1|N t = C]

≥ P[k′ = 0|N t = C]− (n+ 2)e−γ/2

≥ P[‖Y t+1‖1 = 0|N t = C]− (n+ 2)e−γ/2

where the last bound follows since ‖Y t+1‖1 ≥ ‖Ȳt+1‖1 = k′ so ‖Y t+1‖1 = 0 at least requires k′ = 0.
This gives conclusion (3), completing the lemma.

3.6 Convergence to WTA

We now use the good configuration transition probabilities given in Section 3.5, along with the
results of Section 3.4, to show that, if sufficiently large γ, starting from any configuration Tn,γ
converges with probability ≥ 1/18 to a valid WTA configuration within O(log n) steps (see Lemma
3.32). The proof is in four main parts, which we outline here. We first define:

Definition 3.24 (Terminal Configuration). For Tn,γ, a terminal configuration is any configuration
C which is either a near-valid WTA configuration or has ‖C(Y )‖1 = 0 (i.e., no outputs fire).

With this definition we can describe the general proof outline:

1. Monotonicity (Lemma 3.27). We prove that, starting from a k-WTA configuration, with
high probability, Tn,γ remains in a k-WTA configuration, with the number of firing outputs
consistently decreasing until it reaches a terminal configuration.

2. Convergence (Lemma 3.29). We prove that the number of firing outputs decreases rapidly.
That is, starting from a k-WTA configuration, with high probability, a terminal configuration
is reached within O(log n) steps.

3. Probability of valid WTA (Lemma 3.30, Corollary 3.31). We show that, starting from
a valid k-WTA configuration, with constant probability, the terminal configuration reached
is in fact a near-valid WTA configuration. By Lemma 3.21, with constant probability, this
configuration transitions to a valid WTA configuration.

4. Convergence from any starting configuration (Theorem 3.32). We show that, starting
in any configuration, with constant probability, the network reaches either a valid WTA
configuration or a k-WTA configuration in few steps. Combined with our convergence results
for k-WTA configurations, this proves fast convergence to a valid WTA state from any starting
configuration.

We begin with a few definitions which we use to formalize the high level description above.

Definition 3.25 (Termination Step). Given any infinite execution α = C0C1.... let term(α, t,∆) be
the minimum value in {t+1, ..., t+∆} for which Cterm(α,t,∆) is a terminal configuration (Definition
3.24). If no such time exists let term(α, t,∆) = t+ ∆.

Definition 3.26 (Monotonicity Until Termination). Let Emono(t,∆) be the event that the execution
of Tn,γ is in set of executions α = C0C1... satisfying:

{α| for all t′ ∈ {t+ 1, ..., term(α, t,∆)}, Ct′ is a valid k-WTA configuration

with ‖Y t′‖1 ≤ ‖Y t′−1‖1}.
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We begin by showing that, starting from any k-WTA configuration, with high probability Tn,γ
behaves monotonically as described above.

Lemma 3.27 (Monotonicity). Assume the input execution αX of Tn,γ has Xt fixed for all t. For
any time t, any valid k-WTA configuration C with C(X) = Xt, and any ∆ ≥ 1,

P[Emono(t,∆)|N t = C] ≥ 1−∆(n+ 2)e−γ/2.

Proof. Consider any ∆ ≥ 2. If Emono(t,∆ − 1) occurs, then either N t+(∆−1) is a valid k-WTA
configuration, or, for some t′ ∈ {t + 1, ..., t + ∆ − 1}, N t′ is a terminal configuration. Thus, by
conclusion (1) of Lemma 3.23 we have:

P[Emono(t,∆)|Emono(t,∆− 1), N t = C] ≥ 1− (n+ 2)e−γ/2. (20)

Using (20) we can show by induction that for any ∆ ≥ 1,

P[Emono(t,∆)|N t = C] ≥ 1−∆(n+ 2)e−γ/2. (21)

For any ∆ ≥ 2, assume by way of induction that (21) holds for all ∆′ < ∆. The assumption
holds in the base case when ∆ = 1 again by conclusion (1) of Lemma 3.23, since C is a valid

k-WTA configuration so P[Emono(t, 1)|N t = C] ≥ 1− (n+2)e−γ/2. Applying (20) and the inductive
assumption:

P[Emono(t,∆)|N t = C] ≥ P[Emono(t,∆− 1)|N t = C] · P[Emono(t,∆)|Emono(t,∆− 1), N t = C]

≥
(

1− (∆− 1)(n+ 2)e−γ/2
)
·
(

1− (n+ 2)e−γ/2
)

≥ 1−∆(n+ 2)e−γ/2.

which gives (21) for all ∆ ≥ 1, and so the lemma.

We next show that, starting from a k-WTA configuration, with high probability, Tn,γ reaches a
terminal configuration within O(log n) steps. This requires showing that for ∆ = O(log n) with high
probability, N term(α,t,∆) (where term(α, t,∆) is defined in Definition 3.25) is actually a terminal
configuration. We note that if the network does not reach a terminal configuration within ∆ steps
after time t, then, by definition, N term(α,t,∆) = N t+∆, which is some non-terminal configuration.

We first define a termination event:

Definition 3.28 (Termination by ∆). Let Eterm(t,∆) be the intersection of Emono(t,∆) (Definition
3.26) and the event that N term(α,t,∆) is a terminal configuration.

Lemma 3.29 (Convergence from k-WTA Configurations). Assume the input execution αX of
Tn,γ has Xt fixed for all t and that γ ≥ 4 ln(n+ 2) + 10. Let ∆ = 12(log2 n+ 2). For any time t
and valid k-WTA configuration C with C(X) = Xt,

P[Eterm(t,∆)|N t = C] ≥ 1−∆(n+ 2)e−γ/2 − 1

7n

Proof. Let Êterm(t,∆) be the event that Emono(t,∆) occurs but Eterm(t,∆) does not. For any
t′ ∈ {t+ 1, ..., t+ ∆}, define the indicator It′ ∈ {0, 1} with It′ = 1 if and only if either:

• N t′−1 is a valid k-WTA configuration and ‖Y t′‖1 ≤ dk/2e.
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• N t′−1 is not a valid k-WTA configuration for any k ≥ 2.

Êterm(t,∆) requires that each of N t, ..., N t+∆ is a valid k-WTA configuration and that

‖Y t‖1 ≥ ‖Y t+1‖1 ≥ ... ≥ ‖Y t+∆‖1 ≥ 2.

Otherwise, a terminal configuration with ‖Y t′‖1 = 0 would be reached and Eterm(t,∆) would occur.
Initially ‖Y t‖1 ≤ n. Since each time It′ = 1, either ‖Y t‖1 is cut in half or a configuration other

than a valid k-WTA configuration occurs, Êterm(t) can only occur if
∑t+∆

t′=t+1 It′ < log2 n+ 1. Thus
we can bound:

P[Êterm(t,∆)|N t = C] ≤ P

[
t+∆∑
t′=t+1

It′ < (log2 n+ 1)
∣∣N t = C

]
. (22)

We will show that this probability is low since It′ = 1 with good probability. Specifically, if
N t′−1 is not a valid k-WTA configuration, then It′ = 1 deterministically. If N t′−1 is a valid k-WTA
configuration, then by conclusion (2) of Lemma 3.23, It′ = 1 with probability ≥ 1/2− (n+ 2)e−γ/2.
Overall, we have: P[It′ = 1|N t′−1] ≥ 1/2 − (n + 2)e−γ/2. In fact, by Lemma 2.2, we can also
condition on all past configurations and have:

P[It′ = 1|N t′−1N t′−2...N t, N t = C] ≥ 1/2− (n+ 2)e−γ/2.

The above bound lets us use Lemma 2.3 to upper bound the probability that
∑t+∆

t′=t+1 It′ is
below any value d by the probability that a sum of ∆ independent coin flips, each with success
probability 1/2− (n+ 2)e−γ/2, is below d. Specifically, let Zt+1, ..., Zt+∆ be i.i.d. random variables
with Zt′ = 1 with probability 1/2− (n+ 2)e−γ/2 and Zt′ = 0 otherwise. Invoking (22) and Lemma
2.3,

P[Êterm(t,∆)|N t = C] ≤ P

[
t+∆∑
t′=t+1

It′ < (log2 n+ 1)
∣∣N t = C

]
(23)

≤ P

[
t+∆∑
t′=t+1

Zt′ < (log2 n+ 1)

]
. (24)

By our assumption that γ ≥ 4 ln(n+ 2) + 10 and our setting of ∆ = 12(log2 n+ 2) ≤ 14n:

E

[
t+∆∑
t′=t+1

Zt′

]
= ∆/2−∆(n+ 2)e−γ/2 ≥ ∆/3 = 4(log2 n+ 2).

By a standard Chernoff bound [MU05],

P

[
t+∆∑
t′=t+1

Zt′ ≤ (log2 n+ 1)

]
≤ e−

(3/4)2·4(log2 +2)
2 ≤ e−(log2 n+2) ≤ 1

7n
.

We thus have, by (23), P[Êterm(t,∆)|N t = C] ≤ 1
7n . Combined with Lemma 3.27 this gives:

P[Eterm(t,∆)|N t = C] = P[Emono(t,∆)|N t = C]− P[Êterm(t,∆)|N t = C]

≥ 1−∆(n+ 2)e−γ/2 − 1

7n
.

29



We next combine Lemma 3.29 with conclusion (3) of Lemma 3.23 and Lemma 3.21 to show
that, starting from a valid k-WTA configuration, not only does Tn,γ reach a terminal configuration
quickly, but also, if γ is large enough, this terminal configuration is a near-valid WTA configuration
with probability ≈ 1/2.

Lemma 3.30 (Constant Probability of Near-Valid WTA, from k-WTA Configurations). Assume
the input execution αX of Tn,γ has Xt fixed for all t and that γ ≥ 4 ln(n + 2) + 10. Let ∆ =
12(log2 n + 2) and E1(t) be the event that there is some t′ ∈ {t + 1, ..., t + ∆}, such that N t′ is a
near-valid WTA configuration. For any t and valid k-WTA configuration C with C(X) = Xt,

P[E1(t)|N t = C] ≥ 1

2
− ∆ + 1

2
(n+ 2)e−γ/2 − 1

14n
.

Proof. E1(t) is equivalent to the event that Eterm(t,∆) occurs and N term(α,t,∆) is a near-valid WTA
configuration. Let E0(t) be the event that Eterm(t,∆) occurs and ‖Y term(α,t,∆)‖1 = 0. E0(t) and
E1(t) are disjoint with E0(t) ∪ E1(t) = Eterm(t,∆). So by Lemma 3.29,

P[E0(t)|N t = C] + P[E1(t)|N t = C] = P[Eterm(t,∆)|N t = C]

≥ 1−∆(n+ 2)e−γ/2 − 1

7n
. (25)

We will use conclusion (3) of Lemma 3.23 to show that

P[E1(t)|N t = C] ≥ P[E0(t)|N t = C]− (n+ 2)e−γ/2, (26)

which combined with (25) gives the conclusion of the lemma, that

P[E1(t)|N t = C] ≥ 1

2
− ∆ + 1

2
(n+ 2)e−γ/2 − 1

14n
. (27)

For each t′ ∈ {t + 1, ..., t + ∆}, let Eterm(t, t′,∆) be the event that Eterm(t,∆) occurs and
term(α, t,∆) = t′. Define E0(t, t′) and E1(t, t′) analogously. Let E2(t, t′) be the event thatN t, ..., N t′−1

are all valid k-WTA configurations with ‖Y t‖1 ≥ ... ≥ ‖Y t′−1‖1 ≥ 2. Let Ē2(t, t′) be its complement.

P[E1(t, t′)|Ē2(t, t′)] = P[E0(t, t′)|Ē2(t, t′)] = 0 (28)

since both E1(t, t′) and E0(t, t′) require Emono(t,∆) to hold, which requires E2(t, t′) to hold if
term(α, t,∆) = t′. Further, by conclusion (3) of Lemma 3.23, since E2(t, t′) requires that N t′−1 is
a valid k-WTA configuration,

P[E1(t, t′)|E2(t, t′), N t = C] ≥ P[E0(t, t′)|E2(t, t′), N t = C]− (n+ 2)e−γ/2 (29)

By the law of total probability, (28) and (29) give

P[E1(t, t′)|N t = C] ≥ P[E0(t, t′)|N t = C]− (n+ 2)e−γ/2.

Again by the law of total probability, this gives

P[E1(t)|N t = C] ≥ P[E0(t)|N t = C]− (n+ 2)e−γ/2,

yielding (26) and thus (27) and the lemma.
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We next combine Lemma 3.30 with Lemma 3.21, which shows that any near-valid WTA configu-
ration transitions with probability ≈ 1/2 to a valid WTA configuration. This gives fast convergence
to a valid WTA configuration starting from any valid k-WTA configuration, with probability ≥ 1/8.

Corollary 3.31 (Constant Probability of Success, from k-WTA Configurations). Assume the
input execution αX of Tn,γ has Xt fixed for all t and that γ ≥ 4 ln(n + 2) + 10. Let E(t) be
the event that there is some t′ ∈ {t + 1, ..., t + 12 log2 n + 25}, such that N t′ is a valid WTA
configuration. For any t and valid k-WTA configuration C with C(X) = Xt,

P[E(t)|N t = C] ≥ 1/8.

Proof. As in Lemma 3.30, let ∆ = 12(log2 n + 2) and E1(t) be the event that there is some t′ ∈
{t + 1, ..., t + ∆}, such that N t′ is a near-valid WTA configuration. Let Eval(t) be the event that
N t′+1 is a valid WTA configuration. We have E(t) ⊆ Eval(t) (since t′ + 1 ∈ {t + 2, ..., t + ∆ + 1}
where t+ ∆ + 1 = t+ (12 log2 n+ 25)). Thus it suffices to show that P[Eval(t)|N t = C] ≥ 1/8.

By Lemmas 3.30 and 3.21, for any configuration C:

P[Eval(t)|N t = C] ≥ P[E1(t)|N t = C] · P[Eval(t)|E1(t), N t = C]

≥
(

1

2
− ∆ + 1

2
(n+ 2)e−γ/2 − 1

14n

)
·
(

1/2− (n+ 2)e−γ/2
)

≥ 1

4
− ∆ + 3

4
(n+ 2)e−γ/2 − 1

28n
.

We can loosely bound ∆+3
4 = 12(log2 n+2)+3

4 ≤ 12(n+2n)+3n
4 ≤ 10n. Further, by our assumption

that γ ≥ 4 ln(n+ 2) + 10 we have:

P[Eval(t)|N t = C] ≥ 1

4
− 10n(n+ 2)

(n+ 2)2 · e5
− 1

28
≥ 1

8

which gives the corollary.

Finally, we show that, starting from any configuration, with constant probability, Tn,γ converges
to a valid WTA configuration in O(log n) steps. Our proof combines Theorem 3.20 and Lemma
3.22 which show that any configuration transitions to an active configuration (Definition 3.18) in
few steps with constant probability. We then apply Corollary 3.31 to show convergence from such
a configuration.

Theorem 3.32. Assume the input execution αX of Tn,γ has Xt fixed for all t and that γ ≥
4 ln(n+ 2) + 10. Let E(t) be the event that there is some t′ ∈ {t+ 1, ..., t+ (12 log2 n+ 30)} such
that N t′ is a valid WTA configuration. For any time t and configuration C with C(X) = Xt,

P[E(t)|N t = C] ≥ 1/18.

Proof. Let Eact(t) be the event that N t = C and that at least one of {N t+1, ..., N t+5} is an active

configuration (Definition 3.18). Let N t̂ be the first active configuration in this set, or N t̂ = N t+5

if there is no such configuration.
By Theorem 3.20, conditioned on N t = C, with probability ≥ 1 − 2(n + 1)e−γ/2 one of

{N t+1, N t+2} is a good configuration. Let N t̃ be the first good configuration in this set or
N t̃ = N t+2 if neither are good. If N t̃ is also an active configuration then Eact(t) holds.
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If not, then N t̃ is a reset configuration. Let C ′ be any reset configuration. By Lemma 3.22,
conditioned on N t̃ = C ′, with probability ≥ 1/2−3(n+2)e−γ/2 at least one of {N t̃+1, N t̃+2, N t̃+3},
is an active configuration. Thus, overall we have:

P[Eact|N t = C] ≥
(

1− 2(n+ 1)e−γ/2
)
·
(

1/2− 3(n+ 2)e−γ/2
)

≥ 1

2
− 5(n+ 2)e−γ/2. (30)

We can define three disjoint events:

Eact,1(t)
def
= (N t̂ is a valid k-WTA configuration )

Eact,2(t)
def
= (N t̂ is a near-valid WTA configuration )

Eact,3(t)
def
= (N t̂ is a valid WTA configuration )

We have Eact(t) =
⋃3
i=1 Eact,i(t) and so by the law of total probability:

P[E(t)|Eact(t)] =
3∑
i=1

P[E(t)|Eact,i(t)] · P[Eact,i(t)|Eact(t)]

≥
3∑
i=1

min
i∈{1,2,3}

P[E(t)|Eact,i(t)] · P[Eact,i(t)|Eact(t)]

≥ min
i∈{1,2,3}

·P[E(t)|Eact,i(t)] (31)

where the last bound follows since the Eact,i(t) events are disjoint and
∑3

i=1 P[Eact,i(t)|Eact(t)] = 1.
We now bound this minimum via a case analysis:

Case 1: P[E(t)|Eact,1(t)]

In this case, N t̂ is a valid k-WTA configuration, so applying Corollary 3.31, conditioned on
Eact,1(t), with probability 1/8 there is some time t′ ∈ {t̂+ 1, ..., t̂+ (12 log2 n+ 25)} such that N t′

is a valid WTA configuration. Note that t̂ ≤ t+ 5 giving t′ ≤ (12 log2 n+ 30). We thus have:

P[E(t)|Eact,1(t)] ≥ 1/8. (32)

Case 2: P[E(t)|Eact,2(t)]

In this case, N t̂ is a near-valid WTA configuration, so applying Lemma 3.21, conditioned
on Eact,2(t), N t̂+1 is a valid WTA configuration with probability ≥ 1/2 − (n + 2)e−γ/2. By our
assumption that γ ≥ 4 ln(n+ 2) + 10:

P[E(t)|Eact,2(t)] ≥ 1/2− (n+ 2)e−γ/2 ≥ 1/3. (33)

Case 3: P[E(t)|Eact,3(t)]

If Eact,3(t) holds then N t̂ is a valid WTA configuration by definition, so trivially

P[E(t)|Eact,3(t)] = 1. (34)
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Completing the theorem:

Combining (32), (33), (34), and (31) we have P[E(t)|Eact(t)] ≥ 1/8. Using (30) we then have:

P[E(t)|N t = C] ≥ P[Eact(t)|N t = C] · P[E(t)|Eact(t), N t = C]

= P[Eact(t)|N t = C] · P[E(t)|Eact(t)] (Since Eact(t) ⊆ (N t = C) by definition.)

≥ 1

8
·
(

1

2
− 5(n+ 2)e−γ/2

)
≥ 1

18

where the last bound follows from our assumption that γ ≥ 4 ln(n+ 2) + 10.

3.7 Completing the Bounds

Given Theorem 3.32, it is easy to show that, with γ set large enough, Tn,γ solves the WTA problem
(Definitions 2.7 and 2.9), giving Theorem 3.2 and 3.3. We start with the basic WTA problem of
Definition 2.7. By Theorem 3.32, starting from any configuration, the network converges to a valid
WTA configuration in O(log n) steps. By applying this analysis in sequence to O(log 1/δ) sets of
O(log n) steps, we show that the network converges to a valid WTA state with probability ≥ 1− δ
within O(log n · log(1/δ)) steps. Further, if γ is large enough, by Lemma 3.13, it remains in this
state for ts steps with high probability.

Theorem 3.2 (Two-Inhibitor WTA). For γ ≥ 4 ln((n+ 2)ts/δ) + 10, Tn,γ solves WTA(n, tc, ts, δ)
for any tc ≥ 72(log2 n+ 1) · (log2(1/δ) + 1).

Proof. Consider Tn,γ starting from any initial configuration N0 and given an infinite input execution
αX with Xt fixed for all t. Let ∆ = (12 log2 n+ 30) and r = 6(log2(1/δ) + 1). Let E be the event
that there is some time t ≤ tc where N t is a valid WTA configuration.

For any i ≥ 0, let Ei be the event that there is some time t ∈ {i∆ + 1, ..., (i+ 1)∆} where N t is
a valid WTA configuration. By Theorem 3.32 and Lemma 2.2 we have:

P[Ei|N i∆] = P[Ei|N i∆, N i∆−1, ..., N1] ≥ 1/8.

Let Z0, ..., Zr−1 ∈ {0, 1} be independent coin flips, with P[Zi = 1] = 1/8. Applying Lemma 2.3:

P[E ] = P

[
r−1⋂
i=0

Ei

]
≥ P

[
r−1∑
i=0

Zi ≥ 1

]
= 1−

(
7

8

)r
.

Using that r = 6(log2(1/δ) + 1):

P[E ] ≥ 1−
(

7

8

)6(log2(1/δ)+1)

≥ 1− δ

2
.

Thus, with probability ≥ 1− δ
2 there is some time t ≤ r ·∆ ≤ 72(log2 n+ 1) · (log2(1/δ) + 1) ≤ tc in

which N t is a valid WTA configuration. By Corollary 3.13, if C is a valid WTA configuration then

P[N t = N t+1 = ... = N t+ts |N t = C] ≥ 1− ts(n+ 2)e−γ/2 ≥ 1− δ

e5
,

where the bound holds by our assumption that γ ≥ 4 ln((n + 2)ts/δ) + 10. We thus have that
the network reaches a valid WTA configuration within time tc and remains in it for time ts with
probability ≥

(
1− δ

2

)
·
(
1− δ

e5

)
≥ 1− δ, yielding the theorem.
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We conclude by showing with what parameters Tn,γ solves the expected-time WTA problem of
Definition 2.9.

Theorem 3.3 (Two-Inhibitor Expected-Time WTA). For γ ≥ 4 ln((n + 2)ts) + 10, Tn,γ solves
WTA-EXP(n, tc, ts) for any tc ≥ 108(log2 n+ 3).

Proof. Recall that in Definition 2.9 we defined the convergence time for any infinite input execution
αX and output execution αY :

t(αX , ts, αY ) = min
{
t : Y t is a valid WTA output configuration for Xt and Y t = ... = Y t+ts

}
.

Define the worst case expected convergence time of Tn,γ on input αX by:

tmax(αX) = max
N0

(
E

αY ∼DY (Tn,γ ,N0,αX)
t(αX , ts, αY )

)
.

To prove the lemma we must prove that for any αX with Xt fixed for all t, tmax(αX) ≤ 108(log2 n+
3). Fixing such an αX , for any starting configuration N0, let E

N0

and P
N0

denote the expectation and

probability of an event taken over executions drawn from D(Tn,γ , N0, αX).
Let ∆ = (12 log2 n + 30) and let E1 be the event that there is some t ∈ {1, ...,∆} where N t

is a valid WTA configuration. Let Estab be the event that there is some t ∈ {1, ...,∆} where N t

is a valid WTA configuration and additionally, where N t = ... = N t+ts . Let Ē1 and Ēstab be the
complements of these two events. By Theorem 3.32, for any initial configuration N0

P
N0

[E1] ≥ 1/8. (35)

Further, by Corollary 3.13, if C is a valid WTA configuration then,

P
N0

[N t = N t+1 = ... = N t+ts |N t = C] ≥ 1− ts(n+ 2)e−γ/2 ≥ 1− 1

ts · e5
(36)

where the bound holds since γ ≥ 4 ln((n+2)ts)+10 ≥ 2 ln((n+2)t2s)+10 and so e−γ/2 ≤ 1
(n+2)t2s·e5

.

Together (35) and (36) give that:

P
N0

[Estab] ≥ P
N0

[Estab|E1] · P
N0

[E1] ≥ 1

8
·
(

1− 1

ts · e5

)
≥ 1

8
− 1

ts · e5
.

We can write:

E
N0

[t(αX , ts, αY )] = E
N0

[t(αX , ts, αY )|Estab] · P
N0

[Estab]

+ E
N0

[t(αX , ts, αY )|E1, Ēstab] · P
N0

[E1, Ēstab]

+ E
N0

[t(αX , ts, αY )|Ē1] · P
N0

[Ē1] (37)

Conditioned on Estab (which also requires that E1 occurs), the network converges within ∆ steps
and stabilizes for ts steps. Thus, we have:

E
N0

[t(αX , ts, αY )|Estab] ≤ ∆.
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Conditioned on E1, Ēstab the network converges, but does not stabilize. We can bound

E
N0

[t(αX , ts, αY )|E1, Ēstab] ≤ (∆ + ts) + E
N∆+ts

[t(αX , ts, αY )]

≤ ∆ + ts + tmax(αX).

Finally, conditioned on Ē1, the network does not converge within ∆ steps. We have:

E
N0

[t(αX , ts, αY )|Ē1] ≤ ∆ + E
N∆

[t(αX , ts, αY )]

≤ ∆ + tmax(αX).

We can plug these bounds along with the probability bounds of (35) and (36) into (37) to
obtain:

E
N0

[t(αX , ts, αY )] ≤ ∆ ·
(

1

8
− 1

ts · e5

)
+ (∆ + tmax(αX) + ts) ·

1

ts · e5
+ (∆ + tmax(αX)) · 7

8

≤ ∆ + tmax

(
7

8
+

1

ts · e5

)
+

ts
ts · e5

≤ ∆ + tmax(αX) · 8

9
+

1

e5
.

Since this bound holds for all N0 we have:

tmax(αX) ≤ ∆ + tmax(αX) · 8

9
+

1

e5

which gives tmax(αX) ≤ 9∆ + 9
e5
≤ 9∆ + 1. This bound holds for all αX and so gives the lemma,

after recalling that ∆ = (12 log2 n+ 30) so 9∆ + 1 ≤ 108(log2 n+ 3).

4 WTA Lower Bounds

The simple family of two-inhibitor networks presented in Section 3 gives convergence to a valid
WTA output configuration in O(log n · log(1/δ)) steps with probability ≥ 1 − δ, as long as the
weight scaling parameter γ is set large enough. Specifically, by Theorem 3.2, these networks solve
WTA(n, tc, ts, δ) with tc = O(log n · log(1/δ)) and ts exponentially large in γ. In this section we
ask whether this is optimal, considering two questions:

1. Are there networks that achieve comparable convergence speed with just a single auxiliary
neuron?

2. Are there networks using two auxiliary neurons that converge faster?

We answer these questions for somewhat restricted classes of simple SNNs and symmetric SNNs,
described in Definitions 4.1 and 4.2 below. These classes of networks include, in particular, the
construction studied in Section 3.

We show that a simple SNN with just a single auxiliary neuron cannot solve WTA(n, tc, ts, δ)

with ts = Ω̃
(

tc
logn

)
. That is, the network cannot effectively converge to a valid WTA output state

and remain in this state for a significant time compared to its convergence time. Additionally, we
show that no symmetric SNN with two auxiliary neurons can improve on the convergence time of
the two-inhibitor network Tn,γ proven in Theorem 3.2 by more than a O(log log n) factor.

We define the restricted network classes we consider in our lower bounds below.
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Definition 4.1 (Simple SNN). A spiking neural network N = 〈N,w, b, f〉 is a simple SNN if it
contains n input neurons labeled x1, ..., xn and n output neurons labels y1, ...yn and satisfies:

• w(xi, yj) = 0 and w(yi, yj) = 0 for all j 6= i. I.e., each input does not connect to outputs,
other than its corresponding output, and outputs do not connect to each other.

Note that in a simple SNN, auxiliary neurons may connect to each other, may have incoming
edges from the input neurons, and may form unrestricted connections with the output neurons. In
our two-auxiliary neuron lower bound we consider a further restricted class of networks:

Definition 4.2 (Symmetric SNN). A simple SNN N = 〈N,w, b, f〉 is a symmetric SNN if it
contains n input neurons labeled x1, ..., xn and n output neurons labels y1, ...yn and satisfies:

• For all u, v ∈ A, w(u, v) = w(v, u) = 0. I.e., there are no connections between auxiliary
neurons.

• For all u ∈ A, w(yi, u) = w(yj , u). I.e., each auxiliary neuron is affected in the same way by
each output.

• For all i, j, w(xi, yi) = w(xj , yj), w(yi, yi) = w(yj , yj), w(u, yi) = w(u, yj) for all u ∈ A, and
b(yi) = b(yj). I.e., all outputs have identical incoming connections from their corresponding
inputs, themselves, and the auxiliary neurons, and have identical biases.

4.1 Single Auxiliary Neuron Lower Bound

We begin with our lower bound for simple SNNs with just a single auxiliary neuron.

Theorem 4.3 (One Neuron Lower Bound). For any n ≥ 20, δ ≤ 1/2, and any spike probability
function f : R → [0, 1] (satisfying the restrictions in Section 2.1), there is no simple SNN N =

〈N,w, b, f〉 with just a single auxiliary neuron that solves WTA(n, tc, ts, δ) with ts > 10tc · ln(2tc)
lnn .

We note that Theorem 4.3 applies to simple SNNs (Definition 4.1). However, we conjecture
that the result holds for any SNN, without structural restrictions. We leave proving a more general
bound as an open question, for now.

Proof Outline. We will prove Theorem 4.3 assuming that the single auxiliary neuron is an
inhibitor. It will be easy to see that a nearly identical proof goes through when the auxiliary
neuron is excitatory. At a high level, our proof shows that the convergence and stability inhibitors
employed by the two-inhibitor networks described Section 3 are necessary. A single auxiliary neuron
is not able to both drive fast convergence to a valid WTA output configuration and to maintain
stability once the network is in such a state. In more detail, our proof breaks into three steps:

1. We show in Lemma 4.4 that the network must be relatively ‘active’ if it solves WTA(n, tc, ts, δ).
Specifically, if the single inhibitor a does not fire, then any output corresponding to a firing
input must fire with probability ≥ 1−δ1/tc . Otherwise, starting from a configuration in which
no outputs fire, the network would take longer than tc steps to reach a valid WTA output
configuration with probability 1− δ.

2. Conversely, we show in Lemma 4.8 that if the inhibitor a does fire, then any output with

a firing input must cease firing at the next time with probability ≥ 1 − n−
1

10tc . Otherwise,
starting from a configuration in which Ω(n) outputs fire, with probability ≥ 1/2, the network
would take longer than tc steps to converge to a valid WTA output configuration (with a
single firing output).
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3. We combine these results a network with just one inhibitor cannot maintain a valid WTA
output configuration for ts = Ω

(
tc · ln tc

lnn

)
consecutive steps with probability ≥ 1/2 (i.e., the

network cannot achieve sufficient stability).

Consider any time t in which N is in a valid WTA output configuration. If a does not fire at
time t, then by (1), if there are Ω(n) active inputs, at least one output which did not fire at
time t fires with probability ≥ 1−δΩ(n/tc) at time t+1. If a does fire, then by (2) the winning

output stops firing at time t+ 1 with probability ≥ 1− n−
1

10tc . In any case, if δ ≤ 1/2, with

probability ≥ 1− n−
1

10tc , the output configuration changes, and stability is broken.

Since this relatively high probability of breaking stability holds at any time in which N is in
a valid WTA output configuration, it is enough to show that stability cannot be maintained

with probability ≥ ε for Ω
(
tc · ln 1/ε

lnn

)
steps. By setting ε = O(tc) and applying a union

bound, we can show that, with probability ≥ 1/2, in the first tc time steps, N never reaches
a valid WTA output configuration and remains in this configuration for ts consecutive steps.
Thus, N does not solve WTA(n, tc, ts, δ) for δ ≤ 1/2.

We start by showing that if the inhibitor a does not fire at time t, then any output corresponding
to a firing input must fire with reasonably high probability at time t+ 1. We in fact prove a more
general lemma, for networks containing any number of inhibitors, since this result will be useful in
our lower bound for two-inhibitor networks presented in Section 4.2. The proof is not complicated
by adding more inhibitors.

Lemma 4.4 (Output Firing Probability When No Inhibitors Are Active). Let N = 〈N,w, b, f〉
be any simple SNN which solves WTA(n, tc, ts, δ) and whose auxiliary neurons a1, ..., am are all
inhibitory. For any i, any configuration C with C(xi) = 1 and C(aj) = 0 for all j, and any t,

P[yt+1
i = 1|N t = C] ≥ 1− δ1/tc .

Proof. Consider any i ∈ {1, ..., n}. Assume for the sake of contradiction that there is some config-
uration C with C(xi) = 1, C(aj) = 0 for all j, and

P[yt+1
i = 1|N t = C] < 1− δ1/tc .

This assumption additionally implies three claims. First we can see that, since yi is excitatory,

Claim 4.5. There exists some configuration C with C(xi) = 1, C(aj) = 0 for all j and C(yi) = 0
with P[yt+1

i = 1|N t = C] < 1− δ1/tc .

From Claim 4.5 we can additionally conclude that, since, by Definition 4.1, yi can only have
connections from itself, xi, and a1, ..., am:

Claim 4.6. For any configuration C with C(xi) = 1, C(aj) = 0 for all j and C(yi) = 0, P[yt+1
i =

1|N t = C] < 1− δ1/tc .

Finally, Claim 4.6 implies that, since a1, ..., am are all inhibitors,

Claim 4.7. For any configuration with C(xi) = 1 and C(yi) = 0, P[yt+1
i = 1|N t = C] < 1− δ1/tc .

Consider input execution αX with Xt fixed for all t (i.e., Xt = Xt′ for any t, t′), xti = 1, and
xtj = 0 for all j 6= i. Let N0 be any initial configuration of N consistent with αX (i.e., N0(X) = X0)

and with y0
i = 0.
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Since N solves WTA(n, tc, ts, δ), an infinite output execution drawn from DY (N , N0, αX) must,
with probability ≥ 1− δ, reach a valid WTA output configuration (Definition 2.6) for some t ≤ tc.
In particular, with probability ≥ 1− δ, there must be some t ≤ tc in which yti = 1. So, letting E0(t)
be the event that yt

′
i = 0 for all t′ ≤ t, we have P[E0(tc)] ≤ δ.

Additionally, P[E0(0)] = 1 and using Claim 4.7 above and inducting on t, for any t ≥ 1:

P[E0(t)] = P[E0(t)|E0(t− 1)] · P[E0(t− 1)] (Since E0(t) ⊆ E0(t− 1).)

> (1− (1− δ1/tc))t = δt/tc .

We thus have

P[E0(tc)] > δtc/tc = δ

which contradicts that fact that P[E0(tc)] ≤ δ, giving the lemma.

We next show that if the inhibitor a does fire at time t, then any output must cease firing at
time t + 1 with reasonably large probability. Formally, we show this statement for roughly half
of the n outputs. It may be possible that some outputs fire with large probability at time t + 1
whenever their corresponding inputs fire at time t. However, for convergence to occur rapidly give
an input execution in which all inputs, this cannot be the case for most outputs.

Again, since it will be useful in the two-inhibitor lower bound proven in Section 4.2, we show a
more general result which pertains to networks with any number of auxiliary inhibitors.

Lemma 4.8 (Output Firing Probability When All Inhibitors Are Active). Let N = 〈N,w, b, f〉 be
any simple SNN which solves WTA(n, tc, ts, δ) for n ≥ 20 and δ ≤ 1/2 and whose auxiliary neurons
a1, ..., am are all inhibitory. There is some set S ⊆ {1, ..., n} with |S| ≥ dn/2e such that, for any
i ∈ S, any configuration C with C(xi) = 1 and C(aj) = 1 for all j, and any t,

P[yt+1
i = 0|N t = C] ≥ 1− n−

1
10tc .

Proof. Assume for the sake of contradiction that there is some set R ⊆ {1, ..., n} with |R| =
bn/2c+ 1 such that, for each i ∈ R, there exists some configuration C with C(xi) = 1, C(aj) = 1
for all j and

P[yt+1
i = 1|N t = C] > n−

1
10tc .

From this assumption we can deduce three claims. First, since each yi is excitatory,

Claim 4.9. For each i ∈ R there exists some configuration C with C(xi) = 1, C(aj) = 1 for all j

and C(yi) = 1 with P[yt+1
i = 1|N t = C] > n−

1
10tc .

Claim 4.9 further implies, since yi can only have connections from itself, xi, and a1, ..., am (see
Definition 4.1):

Claim 4.10. For any configuration C with C(xi) = 1, C(aj) = 1 for all j and C(yi) = 1,

P[yt+1
i = 1|N t = C] > n−

1
10tc .

Finally, from Claim 4.10 and the fact that a1, ..., am are all inhibitors we can conclude:

Claim 4.11. For any configuration with C(xi) = 1 and C(yi) = 1, P[yt+1
i = 1|N t = C] > n−

1
10tc .
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Let αX be any infinite input execution with Xt fixed for all t and Xt(xi) = 1 for all i. Let N0

be any initial configuration of N consistent with αX (i.e., N0(X) = X0) and with Y 0(yi) = 1 for
all i.

Since N solves WTA(n, tc, ts, δ), an infinite output execution drawn from DY (N , N0, αX) must,
with probability ≥ 1− δ, reach a valid WTA output configuration (Definition 2.6) for some t ≤ tc.
In particular, with probability ≥ 1− δ, there must be some t ≤ tc in which yti = 0 for at most one
i ∈ R.

Let Iact(t, i) ∈ {0, 1} be an indicator of the event that yt
′
i = 1 for all t′ ≤ t. If Iact(tc, i) = 1 for

more than one i ∈ R, then the network has not reached a valid WTA output state within time tc.
Thus, since N solves WTA(n, tc, ts, δ) we have:

P

[∑
i∈R
Iact(tc, i) ≥ 2

]
≤ δ. (38)

We can bound P
[∑

i∈R Iact(tc, i) ≥ 2
]

from below using Claim 4.11 above and Lemma 2.4.
Define for all i and t a random variable Zi,t ∈ {0, 1} which is set to 1 independently with probability

n−
1

10tc . Let Ī(tc, i) be an indicator of the event that Zi,1 = ... = Zi,tc = 1. Clearly the Ī(tc, i)

variables are independent and P[Ī(tc, i) = 1] =
(
n−

1
10tc

)tc
= n−

1
10 .

By (38) and Lemma 2.4 we thus have:

δ ≥ P

[∑
i∈R
Iact(tc, i) ≥ 2

]
≥ P

[∑
i∈R
Ī(tc, i) ≥ 2

]

= 1−
(

1− n−
1
10

)|R|
− |R|

(
1− n−

1
10

)|R|−1

≥ 1− n
(

1− n−
1
10

)n/4
where in the last step we bound |R| − 1 ≥ bn/2c ≥ n/4. Rearranging:

1− δ
n
≤
(

1− n−
1
10

)n/4
≤ e−

n9/10

4 . (39)

We can check that whenever n ≥ 20, e−
n9/10

4 < 1
2n <

1−δ
n , by our assumption that δ ≤ 1/2. This

contradicts (39), thus giving the lemma.

We conclude by combining Lemmas 4.4 and 4.8 to prove Theorem 4.3. We first show a simple
auxiliary lemma which lower bounds the probability that a valid WTA output configuration at
time t remains fixed at time t + 1 in terms of the network convergence time tc and stability time
ts. The smaller tc and the larger ts, the larger the lower bound on this probability is.

Note that the theorem only lower bounds the probability that the output Y t stays fixed for
some configuration C where C(Y ) is a valid WTA output. It does not bound this probability
for all such configurations, and in fact such a bound cannot be shown for all such configurations.
Recall, for example, that for our two-inhibitor networks in Section 3, both near-valid WTA config-
urations (Definition 3.15) and valid WTA configurations (Definition 3.11) have valid WTA output
configurations. However, the output of a near-valid configuration only remains fixed with constant
probability (Lemma 3.21).
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Lemma 4.12 (Single Step Stability Probability). If N = 〈N,w, b, f〉 is a simple SNN which solves
WTA(n, tc, ts, δ) for δ ≤ 1/2, then there must exist some configuration C with C(Y ) a valid WTA
output configuration such that:

P[Y t+1 = Y t|N t = C] ≥ 1

(2tc)1/ts
≥ 1− ln 2tc

ts
. (40)

Proof. The second inequality simply follows since e−x ≥ 1−x for all x. So we focus on proving the
first inequality. Assume for the sake of contradiction that for every configuration C with C(Y ) a
valid WTA output configuration,

P[Y t+1 = Y t|N t = C] <
1

(2tc)1/ts
.

For any t, i, let Estab(t, i) be the event that Y t = Y t+1 = ... = Y t+i. Trivially P[Estab(t, 0)] = 1 for
all t. Using the assumption of (40) and induction we can bound for any i ≥ 1:

P[Estab(t, i)|N t = C] = P[Estab(t, i)|Estab(t, i− 1), N t = C] · P[Estab(t, i− 1)|N t = C]

(Since Estab(t, i− 1) ⊆ Estab(t, i).)

<
1

(2tc)1/ts
· P[Estab(t, i− 1)|N t = C]

≤
(

1

(2tc)1/ts

)i
.

Thus, for any C with C(Y ) a valid WTA output configuration,

P[Estab(t, ts)|N t = C] <

(
1

(2tc)1/ts

)ts
<

1

2tc
. (41)

Let E be the event that N reaches a valid WTA output configuration within t ≤ tc steps
and remains in this output configuration for ts consecutive steps. Let Z1, ..., Ztc be i.i.d. random
variables with Zt = 1 with probability 1

2tc
and Zt = 0 otherwise. Invoking (41) and Lemma 2.3,

P[E ] < P

[
tc∑
t=1

Zt ≥ 1

]
= 1−

(
1− 1

2tc

)tc
< 1/2

< 1− δ (42)

for δ ≤ 1/2. This contradicts the fact that N solves WTA(n, tc, ts, δ), giving the lemma.

We can now combine Lemmas 4.4 and 4.8 to show that in a single-inhibitor network, for any
configuration C with C(Y ) a valid WTA output configuration P[Y t+1 = Y t|N t = C] cannot be too
large. This contradicts Lemma 4.12, giving our lower bound.

Proof of Theorem 4.3.

Consider any simple SNN N = 〈N,w, b, f〉 with just a single auxiliary neuron a, which solves

WTA(n, tc, ts, δ) for n ≥ 20, δ ≤ 1/2, ts > 10tc · ln(2tc)
lnn . Let S be the set of indices shown to exist

in Lemma 4.8, which do not fire with too high probability when all inhibitors in the network fire.
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Let αX be the infinite input execution with Xt fixed for all t, Xt(xi) = 1 for all i ∈ S and
Xt(xi) = 0 for all i /∈ S. Let N0 be any initial configuration of N consistent with αX .

Since N solves WTA(n, tc, ts, δ), an infinite output execution drawn from DY (N , N0, αX) must,
with probability ≥ 1−δ, reach a valid WTA output state (Definition 2.6) for some t ≤ tc and remain
in this state for ts consecutive steps. Let C be any configuration where C(Y ) is a valid WTA output
configuration for αX . We must have for exactly one i ∈ S, C(yi) = 1. Let Efail(t) be the event
that Y t+1 6= Y t. We consider two cases:

Case 1: C(a) = 0.

In this case, by Lemma 4.4, for all j ∈ S, yj fires with probability ≥ 1 − δ1/tc at time t + 1.

So, with probability ≥ 1− δ
|S|−1
tc ≥ 1− δ

n
4tc as least one output other than the winner fires at time

t+ 1. This gives:

P[Efail(t)|N t = C] ≥ 1− δ
n

4tc ≥ 1− n−
1

4tc , (43)

where the second inequality follows from the assumption that n ≥ 20 and δ ≤ 1/2.

Case 2: C(a) = 1.

In this case, Lemma 4.8 gives that, conditioned on N t = C, yi does not fire at time t+ 1 with

probability ≥ 1− n−
1

10tc . This gives:

P[Efail(t)|N t = C] ≥ 1− n−
1

10tc . (44)

So overall, combining (43) and (44) we have for C with C(Y ) a valid WTA output configuration,

P[Efail(t)|N t = C] ≥ 1− n−
1

10tc

and so

P[Y t+1 = Y t|N t = C] ≤ n−
1

10tc .

For ts > 10tc · ln(2tc)
lnn this gives

P[Y t+1 = Y t|N t = C] < n−
ln 2tc
ts·lnn <

1

(2tc)1/ts
. (45)

This contradicts Lemma 4.12, giving the theorem.

Remark on the Tightness of Theorem 4.3. We note that our proof of Theorem 4.3 is loose.
In bounding P[E ] in (42), we do not consider the time required to converge to a valid WTA output
state, or the time spent in this converged state before convergence is broken. We conjecture that
if this time were taken into account, it would be possible improve the ln(2tc) term, as well as add

a dependence on the failure probability δ, giving a lower bound of ts = O
(

tc
logn·log(1/δ)

)
.

We note that by simply removing the stability inhibitor from our two-inhibitor network family
presented in Section 3, we obtain a family of single inhibitor WTA networks with ts = 1 and
tc = O (log n · log(1/δ)). This matches the conjectured stronger lower bound above up to a constant

factor since for tc = O (log n · log(1/δ)) we have O
(

tc
logn·log(1/δ)

)
= O(1).
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Theorem 4.13 (Single-Inhibitor WTA Network). There exists a simple SNN with a single in-
hibitory auxiliary neuron which solves WTA(n, tc, ts, δ) for ts = 1 and tc = O(log n · log(1/δ)).

Proof Sketch. Let T ′n,γ be identical to Tn,γ as described in Section 3.1, but with as removed from
the network and with w(ac, yi) = −2γ for all i. In Tn,γ , w(ac, yi) = w(as, yi) = −γ so w(ac, yi) +
w(as, yi) = −2γ. Thus, in T ′n,γ , when atc = 1, the firing probabilities of all neurons at time t + 1
are identical to what they would be in Tn,γ assuming the same configuration at time t but with
atc = ats = 1.

Using this equivalence, it is tedious but easy to check that an analogous result to Theorem
3.32 holds, where a valid WTA configuration is redefined to be any configuration C where C(Y )
is a valid WTA output configuration and C(ac) = 1. By a similar to result to Lemma 3.21, with
probability 1/2 − ne−γ/2, if T ′n,γ is in such a configuration at time t, it is also in a valid WTA
output configuration at time t+ 1. Thus, with Θ(1) probability, a valid WTA output configuration
is reached and maintained for ts = 1 steps within O(log n) steps. We can then use an argument
similar to that of Theorem 3.2 to argue that in O(log n · log(1/δ)) steps a valid WTA output
configuration is reached and maintained for 1 step with probability ≥ 1− δ.

4.2 Two Auxiliary Neuron Lower Bound

We next give a convergence time lower bound for SNNs with two auxiliary neurons, showing that
the rate given by the family of two-inhibitor networks Tn,γ presented in Section 3 is optimal up to
a O(log log n) factor. To simplify our argument, we focus the further restricted class of symmetric
SNNs described in Definition 4.2, proving:

Theorem 4.14 (Two Neuron Lower Bound). For any n ≥ 341, δ ≤ 1/2, and any spike probability
function f : R → [0, 1] (satisfying the restrictions in Section 2.1), there is no symmetric SNN
N = 〈N,w, b, f〉 using two auxiliary neurons that solves WTA(n, tc, ts, δ) with tc ≤ lnn

30 ln lnn and
ts ≥ 32 lnn · ln 2tc.

As with Theorem 4.3, we conjecture that this result holds more generally, for any SNN with
two auxiliary neurons (i.e., without making the assumptions of Definition 4.2). In the theorem we
require ts ≥ 32 lnn · ln 2tc. However, we conjecture that the result holds even for ts = O(1).

Proof Outline. Our proof of Theorem 4.14 is similar in spirit to that of Theorem 4.3. We consider
the case when both auxiliary neurons are inhibitors and note that a similar proof applies when one
or both of the neurons are excitatory.

With two inhibitors we have to not only consider the cases when neither inhibitor fires (analyzed
in Lemma 4.4) and when both inhibitors fire (analyzed in Lemma 4.8), but also the cases in which
one of the inhibitors fires. Our analysis breaks down as follows:

1. By Lemma 4.4, if neither inhibitor fires at time t, then at time t+1 any output corresponding
to a firing input must fire with probability ≥ 1−δ1/tc = Ω( 1

lnn) when δ ≤ 1/2 and tc ≤ lnn
30 ln lnn .

By Lemma 4.8, if both inhibitors fire at time t, then at time t + 1, any output with a firing

input must not fire at time t + 1 with probability ≥ 1− n
1

10tc ≥ 1− 1
ln3 n

when tc ≤ lnn
30 ln lnn

and n is sufficiently large.

2. In Lemma 4.16 we show that, by the above bounds, if we consider an input with Θ(ln2 n)
firing inputs, then if either both inhibitors fire or neither inhibitor fires at time t, except with
probability ≤ 1

lnn , at time t + 1, either 0 or ≥ 2 outputs will fire, and so N will not be in a
valid WTA output configuration.
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3. In Lemma 4.18 we show that, in order for N to stabilize to a valid WTA output configuration
for ts steps, if Y t is a valid WTA output configuration, then exactly one inhibitor must fire
with good probability at time t+ 1. Otherwise, if neither or both inhibitors fire at time t+ 1,
by Lemma 4.16, Y t+2 is unlikely to be a valid WTA output configuration. So if ts is large,
over ts steps, stability is likely to be broken at some point.

4. In Lemma 4.20 we prove that, since the inhibitors fire independently at time t+1 conditioned
on N t, Lemma 4.18 in fact requires that one of the inhibitors fires with high probability at
time t+ 1 when Y t is a valid WTA output configuration and that the other inhibitor is silent
with high probability.

By our symmetry assumption (Definition 4.2), given a fixed input firing pattern, the proba-
bility that an inhibitor fires at time t + 1 depends only on the number of outputs that fire
at time t. So we can in fact show a stronger result: one inhibitor (assume without loss of
generality a1) fires with high probability at time t + 1 when ‖Y t‖1 = 1 while the other (as-
sume without loss of generality a2) remains silent with high probability at time t + 1 when
‖Y t‖1 = 1. Since all outputs are excitatory, this implies that a1 fires with high probability
whenever ‖Y t‖1 ≥ 1, while a2 does not fire with high probability whenever ‖Y t‖1 ≤ 1.

This result shows that, in any two-inhibitor network with fast convergence and a reasonably
long stability period ts, the inhibitors must exhibit separate behaviors. Neuron a1 fires with
high probability at time t + 1 whenever one output fires at time t, maintaining stability of
valid WTA configurations. Neuron a2 is silent with high probability at time t + 1, except
possibly when ‖Y t‖1 ≥ 2. We can see this separation, for example, in the behavior of as and
ac in the two-inhibitor Tn,γ networks analyzed in Section 3 (see Lemma 3.7). The stability
inhibitor, as, fires with high probability at time t+ 1 when at least one output fires at time
t (e.g., when the network is in a valid WTA configuration). The convergence inhibitor, ac,
only fires with high probability at time t+ 1 when at least two outputs fire at time t.

5. In Corollary 4.25 we use Lemma 4.18 to show that it is unlikely that a2 ever fires at a time
in which a1 does not, which will be useful in our eventual case analysis (see Step 7).

6. In Lemma 4.26 we show that, since when a1 fires alone it must maintain stability of a valid
WTA output configuration, when a1 fires at time t, any output with an active input which
fired at time t is likely to continue firing at time t+ 1. Any output that did not fire at time
t is unlikely to fire at time t+ 1. This result shows that a1 must act as a stability inhibitor,
reflecting the role of as in the two-inhibitor network family presented in Section 3.

In Corollary 4.27 we show that Lemma 4.26 implies that, if Y t is not a valid WTA output
configuration and just a1 fires at time t, since the output firing states are maintained with
high probability at time t+ 1, Y t+1 is unlikely to be a valid WTA output configuration.

7. We finally prove Theorem 4.14 via a case analysis. By Lemma 4.16, if 0 or 2 inhibitors fire
at time t, Y t+1 is unlikely to be a valid WTA output configuration (see Step 2 above). By
Corollary 4.27, if at1 = 1, at2 = 0, and Y t is not a valid WTA output configuration, then
Y t+1 is unlikely to be a valid WTA output configuration (see Step 6 above). Finally, it is
unlikely that we ever have at1 = 0, at2 = 1 (see Step 5 above). Thus, convergence to a valid
WTA output configuration is relatively unlikely at all times, letting us prove a lower bound
on convergence time.

We first define a hard input execution, based on Lemma 4.8, which shows that at least half of
the output neurons must not fire with too high probability when all inhibitors in the network fire.
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Specifically, Lemma 4.8 guarantees the existence of some set S with |S| ≥ dn/2e such that for any
i ∈ S, any configuration C of N with C(xi) = 1 and C(a1) = C(a2) = 1, and any time t,

P[yt+1
i = 0|N t = C] ≥ 1− n−

1
10tc .

Since in Theorem 4.14 we require n ≥ 341 we easily have dn/2e ≥ dln2 ne and so can construct a
hard input execution as follows:

Definition 4.15 (Hard Input Execution). Let N = 〈N,w, b, f〉 be any simple SNN with two
auxiliary inhibitory neurons a1, a2 which solves WTA(n, tc, ts, δ) for n ≥ 341 and δ ≤ 1/2. Fix
any set R ⊆ {1, ..., n} with |R| = bln2 nc such that for any i ∈ R, any C with C(xi) = 1 and
C(a1) = C(a2) = 1, and any time t,

P[yt+1
i = 0|N t = C] ≥ 1− n−

1
10tc .

Let Xhard,N be the input configuration with Xhard,N (xi) = 1 for all i ∈ R, and Xhard,N (xi) = 0 for
all i /∈ R. Let αhard,N be the infinite input execution with Xt = Xhard,N for all t.

Lemma 4.16 (Valid WTA is Unlikely After Both or Neither Inhibitors Fire). Let N = 〈N,w, b, f〉
be any simple SNN with two auxiliary inhibitory neurons a1, a2 which solves WTA(n, tc, ts, δ) for
n ≥ 341, δ ≤ 1/2, and tc ≤ lnn

30 ln lnn . For any configuration C with C(X) = Xhard,N (Definition
4.15) and with C(a1) = C(a2) = 1 or C(a1) = C(a2) = 0,

P[‖Y t+1‖ = 1|N t = C] ≤ 1

lnn
.

Proof. We prove the lemma in two cases depending on the inhibitor behavior.

Case 1: C(a1) = C(a2) = 0.

In this case, by Lemma 4.4, since Xt(xi) = Xhard,N (xi) = 1 for any i ∈ R by Definition 4.15,

P[yt+1
i = 1|N t = C] ≥ 1− δ1/tc ≥ 1− 1

2
ln lnn
lnn

where the second inequality follows from our assumption that δ ≤ 1/2 and tc ≤ lnn
30 ln lnn ≤

lnn
ln lnn .

For any x ∈ [1, 2], (1− 1/x) ≥ log2 x
2 . Since 2

ln lnn
lnn ∈ [1, 2] this gives:

P[yt+1
i = 1|N t = C] ≥ ln lnn

2 lnn
. (46)

Using (46) we can bound the probability that ‖Y t+1‖1 6= 1 by:

P[‖Y t+1‖1 6= 1|N t = C] ≥ 1− |R|
(

1− ln lnn

2 lnn

)|R|−1

.

We can check numerically that since |R| = bln2 nc and by assumption n ≥ 341, the above can be
lower bounded to give:

P[‖Y t+1‖1 6= 1|N t = C] ≥ 1− 1

lnn
.

This gives P[‖Y t+1‖1 = 1|N t = C] ≤ 1
lnn and thus the lemma in this case.
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Case 2: C(a1) = C(a2) = 1.

In this case, by Lemma 4.8 and the assumption that tc ≤ lnn
30 ln lnn , for any i ∈ R:

P[yt+1
i = 1|N t = C] ≤ n−

1
10tc ≤ e−

30 ln lnn
10 ≤ 1

ln3 n
. (47)

Using (47) we can bound:

P[‖Y t+1‖1 = 1|N t = C] ≤ |R|
ln3 n

=
bln2 nc
ln3 n

≤ 1

lnn
,

which gives the lemma in this case.

By Lemma 4.16, if at1 = at2 = 0 or at1 = at2 = 1, then Y t+1 is unlikely to have ‖Y t+1‖1 = 1
and thus is unlikely to be a valid WTA output configuration. Thus, to stabilize to any valid WTA
output configuration C, if N t = C exactly one of a1 or a2 must fire at time t + 1. Otherwise
convergence will likely be broken at time t + 2. To prove this, we first show an auxiliary lemma,
very similar to Lemma 4.12, which bounds the probability of maintaining stability over two time
steps in terms of the convergence and stability times tc and ts.

Lemma 4.17 (Lower Bound on the Two-Step Stability Probability). If N = 〈N,w, b, f〉 is a simple
SNN which solves WTA(n, tc, ts, δ) for δ ≤ 1/2, then there exists some configuration C with C(Y )
a valid WTA output configuration such that:

P[Y t+2 = Y t+1 = Y t|N t = C] ≥ 1− 4 ln 2tc
ts

. (48)

Proof. Our proof mirrors that of Lemma 4.12. Assume for the sake of contradiction that for any
C with C(Y ) a valid WTA output configuration,

P[Y t+2 = Y t+1 = Y t|N t = C] < 1− 4 ln 2tc
ts

.

For any t, i, let Estab(t, i) be the event that Y t = Y t+1 = ... = Y t+i. Trivially, P[Estab(t, 0)] = 1 for
all t. Using the assumption if (48) and induction we can bound for any i ≥ 2:

P[Estab(t, i)|N t = C] = P[Estab(t, i)|Estab(t, t− 2), N t = C] · P[Estab(t, i− 2)|N t = C]

(Since Estab(t, i− 2) ⊆ Estab(t, i).)

<

(
1− 4 ln 2tc

ts

)
· P[Estab(t, i− 2)|N t = C]

≤
(

1− 4 ln 2tc
ts

)bi/2c
.

45



Thus, for any C with C(Y ) a valid WTA output configuration,

P[Estab(t, ts)|N t = C] <

(
1− 4 · ln 2tc

ts

)bts/2c
<

(
1− 4 · ln 2tc

ts

)ts/4
<

1

2tc
. (49)

Let E be the event that N reaches a valid WTA output configuration within t ≤ tc steps
and remains in this output configuration for ts consecutive steps. Let Z1, ..., Ztc be i.i.d. random
variables with Zt = 1 with probability 1

2tc
and Zt = 0 otherwise. Invoking (49) and Lemma 2.3,

P[E ] < P

[
tc∑
t=1

Zt ≥ 1

]
= 1−

(
1− 1

2tc

)tc
< 1/2

< 1− δ (50)

for δ ≤ 1/2. This contradicts the fact that N solves WTA(n, tc, ts, δ), giving the lemma.

We can now use Lemmas 4.16 and 4.17 to show that, for N to stabilize to a valid WTA output
configuration for ts steps with good probability, if Y t is a valid WTA output configuration, then,
with high probability, exactly one inhibitor must fire at time t+ 1.

Lemma 4.18 (A Single Inhibitor is Likely to Fire After a Valid WTA Configuration). Let N =
〈N,w, b, f〉 be any simple SNN with two auxiliary inhibitory neurons A = {a1, a2} which solves
WTA(n, tc, ts, δ) for n ≥ 341, δ ≤ 1/2, and tc ≤ lnn

30 ln lnn . For any configuration C with C(X) =
Xhard,N (Definition 4.15) and with C(Y ) a valid WTA output configuration,

P[‖At+1‖1 = 1|N t = C] ≥ 1− 8 · ln 2tc
ts

.

Proof. Assume for the sake of contradiction that there exists C with C(Y ) a valid WTA output
configuration and

P[‖At+1‖1 = 1|N t = C] < 1− 8 · ln 2tc
ts

.

From this assumption, since in a symmetric SNN (Definition 4.2), w(yi, u) = w(yj , u) for all i, j
and u ∈ A, and since each auxiliary neuron may only have connections from the inputs and outputs
(not to the other auxiliary neurons), we can deduce the stronger claim:

Claim 4.19. For every C with C(Y ) a valid WTA output configuration,

P[‖At+1‖1 = 1|N t = C] < 1− 8 · ln 2tc
ts

.

Using Claim 4.19 we can bound the probability that N remains in a valid WTA output config-
uration at time t+ 2 if it is in a valid configuration at time t. Specifically, for any C with C(Y ) a
valid WTA output configuration:

P[Y t+2 = Y t|N t = C] = P[Y t+2 = Y t|‖At+1‖1 = 1, N t = C] · P[‖At+1‖1 = 1|N t = C]

+ P[Y t+2 = Y t|‖At+1‖1 6= 1, N t = C] · P[‖At+1‖1 6= 1|N t = C]

<

(
1− 8 · ln 2tc

ts

)
+

(
8 · ln 2tc

ts

)
· P[Y t+2 = Y t|‖At+1‖1 6= 1, N t = C]. (51)
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Since C(Y ) is a valid WTA output configuration, having Y t+2 = Y t requires that ‖Y t+2‖1 = 1.
Thus by Lemma 4.16 we can bound:

P[Y t+2 = Y t|‖At+1‖1 6= 1, N t = C] ≤ 1

lnn
.

Plugging back into (51), for any C with C(Y ) a valid WTA output configuration:

P[Y t+2 = Y t|N t = C] <

(
1− 8 · ln 2tc

ts

)
+

(
8 · ln 2tc

ts

)
·
(

1

lnn

)
< 1− 4 · ln 2tc

ts
(52)

where the last inequality holds easily since we require n ≥ 341 and so lnn ≥ 2. Using (52) we can
bound:

P[Y t+2 = Y t+1 = Y t|N t = C] ≤ P[Y t+2 = Y t|N t = C] < 1− 4 · ln 2tc
ts

.

This contradicts Lemma 4.17, giving the lemma.

Since at time t+ 1, conditioned on the configuration at time t, a1 and a2 fire independently, we
can in fact strengthen Lemma 4.18 to show that one of a1, a2 fires with high probability at time
t+ 1 when ‖Y t‖1 ≥ 1 and that the other remains silent with high probability when ‖Y t‖1 ≤ 1.

Lemma 4.20 (Separation of Inhibitor Behaviors). Let N = 〈N,w, b, f〉 be any symmetric SNN
with two auxiliary inhibitory neurons A = {a1, a2} which solves WTA(n, tc, ts, δ) for n ≥ 341,
δ ≤ 1/2, tc ≤ lnn

30 ln lnn , and 8 ln 2tc
ts
≤ 1

4 . There exists some i ∈ {1, 2} such that, for any configuration
C with C(X) = Xhard,N (Definition 4.15),

1. If ‖C(Y )‖1 ≥ 1, then

P[at+1
i = 1|N t = C] ≥ 1− 8 · ln 2tc

ts
.

2. If ‖C(Y )‖1 ≤ 1, then for j 6= i,

P[at+1
j = 1|N t = C] ≤ 12 · ln 2tc

ts
.

We can assume without loss of generality that i = 1.

Proof. We prove the two conclusions in sequence. We first show that there exists some i such that
conclusion (1) holds. Fixing i, we then show that for j 6= i, conclusion (2) holds.

Conclusion 1:

Assume for the sake of contradiction that for both i ∈ {1, 2} there exists some configuration C
with C(X) = Xhard,N , with ‖C(Y )‖1 ≥ 1, and with

P[at+1
i = 1|N t = C] < 1− 8 · ln 2tc

ts
.

From this assumption we can deduce two claims. First, since all yi are excitatory:
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Claim 4.21. For both i ∈ {1, 2}, there exists some configuration C with C(X) = Xhard,N , with
‖C(Y )‖1 = 1, and with P[at+1

i = 1|N t = C] < 1− 8·ln 2tc
ts

.

Further, since by Definition 4.2, a symmetric SNN has w(yi, u) = w(yj , u) for all i, j and u ∈ A,
and since each inhibitor can only have incoming connections from the inputs and outputs,

Claim 4.22. For both i ∈ {1, 2}, for every C with C(X) = Xhard,N and with C(Y ) a valid WTA
output configuration,

P[at+1
i = 1|N t = C] < 1− 8 · ln 2tc

ts
.

Since conditioned on N t, at+1
1 and at+2

2 are independent, we can compute, for any C with C(Y )
a valid WTA output configuration,

P[‖At+1‖1 = 1|N t = C] = P[at+1
1 = 1|N t = C] · P[at+1

2 = 0|N t = C]

+ P[at+1
1 = 0|N t = C] · P[at+1

2 = 1|N t = C]

= P[at+1
1 = 1|N t = C] ·

(
1− P[at+1

2 = 1|N t = C]
)

+
(
1− P[at+1

1 = 1|N t = C]
)
· P[at+1

2 = 1|N t = C]. (53)

If P[at+1
1 = 1|N t = C] ≥ 1

2 , then (53) is maximized by setting P[at+1
2 = 1|N t = C] = 0, giving via

Claim 4.22:

P[‖At+1‖1 = 1|N t = C] = P[at+1
1 = 1|N t = C] < 1− 8 ln 2tc

ts
.

If P[at+1
1 = 1|N t = C] ≤ 1

2 , (53) is maximized by setting Pr[at+1
2 = 1|N t = C] = 1− 8 ln 2tc

ts
, giving:

P[‖At+1‖1 = 1|N t = C] < P[at+1
1 = 1|N t = C] · 8 ln 2tc

ts

+
(
1− P[at+1

1 = 1|N t = C]
)
·
(

1− 8 ln 2tc
ts

)
. (54)

Using our requirement that 8 ln 2tc
ts
≤ 1

4 , (54) is maximized by setting P[at+1
1 = 1|N t = C] = 0, again

giving:

P[‖At+1‖1 = 1|N t = C] = P[at+1
1 = 1|N t = C] < 1− 8 ln 2tc

ts
.

In either case, we have a contradiction of Lemma 4.18, giving the result.

Conclusion 2:

From conclusion (1) proven above, we can assume without loss of generality that, for any
configuration C with C(X) = Xhard,N and with ‖C(Y )‖1 ≥ 1,

P[at+1
1 = 1|N t = C] ≥ 1− 8 · ln 2tc

ts
. (55)

I.e., we assume that the index i in the lemma statement satisfies i = 1. To prove conclusion (2)
Assume for the sake of contradiction that there exists some configuration C with C(X) = Xhard,N
and with ‖C(Y )‖ ≤ 1 such that P[at+1

2 = 1|N t = C] > 12·ln 2tc
ts

. Since all outputs are excitatory,
from this assumption we can conclude:
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Claim 4.23. There exists some configuration C with C(X) = Xhard,N and with ‖C(Y )‖1 = 1 such
that P[at+1

2 = 1|N t = C] > 12·ln 2tc
ts

.

Further, since, by Definition 4.2, a symmetric SNN has w(yi, u) = w(yj , u) for all i, j and u ∈ A,
and since each inhibitor can only have incoming connections from the inputs and outputs,

Claim 4.24. For every C with C(X) = Xhard,N and with C(Y ) a valid WTA output configuration,

P[at+1
2 = 1|N t = C] >

12 · ln 2tc
ts

.

Using Claim 4.24 we can prove conclusion (2) by considering two cases.

Case 1: P[at+1
2 = 1|N t = C] > 1/2.

In this case, by (53) and (55), we have for C with C(Y ) a valid WTA output configuration:

P[‖At+1‖1 = 1|N t = C] = P[at+1
1 = 1|N t = C] ·

(
1− P[at+1

2 = 1|N t = C]
)

+
(
1− P[at+1

1 = 1|N t = C]
)
· P[at+1

2 = 1|N t = C]

<
1

2
+

8 · ln 2tc
ts

< 1− 8 · ln 2tc
ts

(56)

where the last inequality follows from our requirement that 8·ln 2tc
ts
≤ 1

4 . (56) contradicts Lemma
4.18, giving the result in this case.

Case 2: P[at+1
2 = 1|N t = C] ≤ 1/2.

In this case, by (55), Claim 4.24, and (53) we have for any C with C(Y ) a valid WTA output
configuration:

P[‖At+1‖1 = 1|N t = C] = P[at+1
1 = 1|N t = C] ·

(
1− P[at+1

2 = 1|N t = C]
)

+
(
1− P[at+1

1 = 1|N t = C]
)
· P[at+1

2 = 1|N t = C]

<

(
1− 12 ln 2tc

ts

)
+

4 · ln 2tc
ts

< 1− 8 · ln 2tc
ts

. (57)

Again, (57) contradicts Lemma 4.18, giving the result in this case.

From Lemma 4.20 we can easily show that it is unlikely that a2 ever fires when a1 does not.

Corollary 4.25 (Neuron a2 Rarely Fires Alone). Let N = 〈N,w, b, f〉 be any symmetric SNN
with two auxiliary inhibitory neurons a1, a2 which solves WTA(n, tc, ts, δ) for n ≥ 341, δ ≤ 1/2,
tc ≤ lnn

30 ln lnn , and 8 ln 2tc
ts
≤ 1

4 . For any configuration C with C(X) = Xhard,N (Definition 4.15):

P[at+1
1 = 0 and at+1

2 = 1|N t = C] ≤ 12 · ln 2tc
ts

.
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Proof. We prove this result in two cases.

Case 1: ‖C(Y )‖1 ≤ 1.

In this case, using Lemma 4.20 conclusion (2):

P[at+1
1 = 0 and at+1

2 = 1|N t = C] ≤ P[at+1
2 = 1|N t = C] ≤ 12 · ln 2tc

ts
.

Case 2: ‖C(Y )‖1 > 1.

In this case, applying Lemma 4.20 conclusion (1):

P[at+1
1 = 0 and at+1

2 = 1|N t = C] ≤ P[at+1
1 = 0|N t = C]

= 1− P[at+1
1 = 0|N t = C]

≤ 8 · ln 2tc
ts

.

In combination, Lemma 4.16 and Corollary 4.25 show that, in order for a valid WTA output
state to be maintained with high probability, some inhibitor, (which we assume without loss of
generality is a1) must fire alone. Using this fact, we can characterize the firing behavior of the
outputs when a1 fires alone. Since a1 maintains stability, if it fires alone at time t, all outputs
maintain the same firing state at time t+ 1 as at time t with high probability.

Lemma 4.26 (Neuron a1 Enforces Stability). Let N = 〈N,w, b, f〉 be any symmetric SNN with
two auxiliary inhibitory neurons a1, a2 which solves WTA(n, tc, ts, δ) for n ≥ 341, δ ≤ 1/2, tc ≤

lnn
30 ln lnn , and 8 ln 2tc

ts
≤ 1

4 . For any configuration C with C(X) = Xhard,N (Definition 4.15) and with
C(a1) = 1 and C(a2) = 0:

1. For all i ∈ R, if C(yi) = 1 then P[yt+1
i = 1|N t = C] ≥ 1− 16 ln 2tc

ts
.

2. For all i ∈ R, if C(yi) = 0 then P[yt+1
i = 0|N t = C] ≥

(
1− 16 ln 2tc

ts

)1/(|R|−1)

Proof. In a symmetric SNN (Definition 4.2) all outputs have identical incoming connections and
biases. Thus, to prove the lemma it suffices to show that there exists a configuration C with
C(X) = Xhard,N and with C(a1) = 1 and C(a2) = 0, such that:

1. There exists i ∈ R with C(yi) = 1 and P[yt+1
i = 1|N t = C] ≥ 1− 16 ln 2tc

ts
.

2. There exists i ∈ R with C(yi) = 0 and P[yt+1
i = 0|N t = C] ≥

(
1− 16 ln 2tc

ts

)1/(|R|−1)
.

We will show that these bounds must hold for at least one configuration in order for the network
to reach a valid WTA output configuration in tc steps and remain in this configuration for ts
consecutive steps. Let E(t) denote the event that Y t = Y t+1 = Y t+2. For any C we have:

P[E(t)|N t = C] = P[E(t)|N t = C, at+1
1 = at+1

2 ] · P[at+1
1 = at+1

2 |N t = C]

+ P[E(t)|N t = C, at+1
1 = 0, at+1

2 = 1] · P[at+1
1 = 0, at+1

2 = 1|N t = C]

+ P[E(t)|N t = C, at+1
1 = 1, at+1

2 = 0] · P[at+1
1 = 1, at+1

2 = 0|N t = C]

≤ P[at+1
1 = 0, at+1

2 = 1|N t = C]

+ max
(
P[E(t)|N t = C, at+1

1 = at+1
2 ],P[E(t)|Y t = C, at+1

1 = 1, at+1
2 = 0]

)
. (58)

50



We can upper bound the first term of (58) by 12 ln 2tc
ts

using Corollary 4.25. Additionally, using

Lemma 4.16, we can bound P[E(t)|N t = C, at+1
1 = at+1

2 ] ≤ 1
lnn . This gives:

P[E(t)|N t = C] ≤ 12 ln 2tc
ts

+ max

(
1

lnn
,P[E(t)|N t = C, at+1

1 = 1, at+1
2 = 0]

)
. (59)

Applying Lemma 4.17 gives that there must exist some C with C(Y ) a valid WTA output config-
uration such that P[E(t)|N t = C] ≥ 1− 4 ln 2tc

ts
. So combining with (59):

max

(
1

lnn
,P[E(t)|N t = C, at+1

1 = 1, at+1
2 = 0]

)
≥ 1− 16 ln 2tc

ts

By our assumption that 8 ln 2tc
ts
≤ 1

4 and the fact that n ≥ 341 we easily have that 1
lnn ≤

1
2 ≤ 1 −

16 ln 2tc
ts

, meaning that in fact, there must exist some C with C(Y ) a valid WTA output configuration
such that:

P[E(t)|N t = C, at+1
1 = 1, at+1

2 = 0] ≥ 1− 16 ln 2tc
ts

. (60)

We can now easily prove the two conclusions of the lemma using similar arguments.

Conclusion 1:

Assume for the sake of contradiction that for every configuration C with C(X) = Xhard,N and
with C(a1) = 1 and C(a2) = 0, for all i ∈ R with C(yi) = 1,

P[yt+1
i = 1|N t = C] < 1− 16 ln 2tc

ts
.

Then, for every C with C(Y ) a valid WTA output configuration we have:

P[E(t)|N t = C, at+1
1 = 1, at+1

2 = 0] ≤ P[Y t+2 = Y t+1|N t+1 = C, at+1
1 = 1, at+1

2 = 0]

< 1− 16 ln 2tc
ts

.

contradicting (60) and giving the lemma.

Conclusion 2:

Assume for the sake of contradiction that for every configuration C with C(X) = Xhard,N and
with C(a1) = 1 and C(a2) = 0, for all i ∈ R with C(yi) = 0,

P[yt+1
i = 0|N t = C] <

(
1− 16 ln 2tc

ts

)1/(|R|−1)

.

Then, again for every C with C(Y ) a valid WTA output configuration we have:

P[E(t)|N t = C, at+1
1 = 1, at+1

2 = 0] ≤ P[Y t+2 = Y t+1|N t+1 = C, at+1
1 = 1, at+1

2 = 0]

<

((
1− 16 ln 2tc

ts

)1/(|R|−1)
)|R|−1

< 1− 16 ln 2tc
ts

contradicting (60) and giving the lemma.
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Lemma 4.26 implies that when just a1 fires, since this leads to stability, it is unlikely to lead to
a valid WTA output configuration when starting from an invalid output configuration. That is, a1

does not drive convergence to a valid WTA output configuration.

Corollary 4.27 (Neuron a1 Does Not Drive Convergence). Let N = 〈N,w, b, f〉 be any symmetric
SNN with two auxiliary inhibitory neurons a1, a2 which solves WTA(n, tc, ts, δ) for n ≥ 341, δ ≤
1/2, tc ≤ lnn

30 ln lnn , and 8 ln 2tc
ts
≤ 1

4 . For any configuration C with C(X) = Xhard,N (Definition 4.15),
with C(a1) = 1 and C(a2) = 0, and in which C(Y ) is not a valid WTA output configuration:

P[Y t+1 is a valid WTA output configuration |N t = C] ≤ 32 ln 2tc
ts

.

Proof. The proof can be split into two cases, depending on if C(Y ) is not a valid WTA output
configuration because too many valid outputs are firing or because no outputs are firing. Let
R ⊆ {1, ..., } be the set of indices with Xhard,N (xi) = 1.

Case 1: |{i ∈ R|C(yi) = 1}| ≥ 2.

Let Y (R) denote the set of outputs restricted to the indices in R. In order for Y t+1 to be a
valid WTA output configuration for Xhard,N , we must have ‖Y (R)t‖1 = 1. We can apply Lemma
4.26 conclusion (1) to bound:

P[‖Y (R)t+1‖1 ≥ 2|N t = C] ≥
(

1− 16 ln 2tc
ts

)2

≥ 1− 32 ln 2tc
ts

and thus P[Y t+1 is a valid WTA output configuration |N t = C] ≤ 32 ln 2tc
ts

.

Case 2: |{i ∈ R|C(yi) = 1}| = 0.

In this case, we can apply Lemma 4.26 conclusion (2) to bound:

P[‖Y (R)t+1‖1 = 0|N t = C] ≥

((
1− 16 ln 2tc

ts

)1/(|R|−1)
)|R|

By our assumption that n ≥ 341, |R|
|R|−1 = bln2 nc

bln2 nc−1
≤ 34

33 < 2. So we have:

P[‖Y (R)t+1‖1 = 0|N t = C] ≥
(

1− 16 ln 2tc
ts

)2

≥ 1− 32 ln 2tc
ts

.

Thus, P[Y t+1 is a valid WTA output configuration |N t = C] ≤ 32 ln 2tc
ts

, giving the lemma.

We can now prove the main two-inhibitor lower bound Theorem 4.14 via a case analysis which
combines Lemma 4.16, Corollary 4.25, and Corollary 4.27.

Proof of Theorem 4.14.

Assume that N = 〈N,w, b, f〉 is a symmetric SNN with two auxiliary inhibitory neurons a1, a2

which solves WTA(n, tc, ts, δ) for n ≥ 341, δ ≤ 1/2, tc ≤ lnn
30 ln lnn , and ln 2tc

ts
≤ 1

32 lnn . Assume that
the network is given the hard input execution αhard,N (Definition 4.15) and starts with initial state
N0 in which Y 0 is not a valid WTA output configuration and a0

1 = a0
2 = 0.
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Let Efail(t) be the event that for every t′ ≤ t, Y t′ is not a valid WTA output configuration. Let
E01(t) be the event that for every t′ ≤ t, we do not have at

′
1 = 0 and at

′
2 = 1.

We can bound P[Efail(t)] ≥ P[Efail(t), E01(t)] and write, using that Efail(t − 1) ⊆ Efail(t) and
E01(t− 1) ⊆ E01(t),

P[Efail(t), E01(t)] = P[Efail(t), E01(t)|Efail(t− 1), E01(t− 1)] · P[Efail(t− 1), E01(t− 1)]. (61)

Conditioned on Efail(t − 1) and E01(t − 1), Y t−1 is not a valid WTA output configuration and
(at−1

1 , at−1
2 ) 6= (0, 1). Let C be the set of all configurations which are not valid WTA output

configurations and which have (C(a1), C(a2)) 6= (0, 1). We can expand (61) as:

P[Efail(t), E01(t)] = P[Efail(t), E01(t)|Efail(t− 1), E01(t− 1)] · P[Efail(t− 1), E01(t− 1)]

=
∑
C∈C

P[Efail(t), E01(t)|N t−1 = C] · P[N t−1 = C, Efail(t− 1), E01(t− 1)]. (62)

Note that by the law of total probability since Efail(t− 1) and E01(t− 1) requires that C ∈ C:∑
C∈C

P[N t−1 = C, Efail(t− 1), E01(t− 1)] = P[Efail(t− 1), E01(t− 1)]. (63)

We now bound P[Efail(t), E01(t)|N t−1 = C] in (62) in two cases:

Case 1: C(a1) = C(a2) = 1 or C(a1) = C(a2) = 0.

In this case, for any C ∈ C with C(a1) = C(a2), by Lemma 4.16,

P[Efail(t)|N t−1 = C] ≥ 1− 1

lnn
.

By Corollary 4.25,

P[E01(t)|N t−1 = C] ≥ 1− 12 · ln 2tc
ts

≥ 1− 1

lnn
,

where the second inequality follows from our requirement that ln 2tc
ts
≤ 1

32 lnn . Additionally, con-

ditioned on N t−1, Efail(t) and E01(t) are independent since they involve disjoint sets of neurons.
Thus we can bound:

P[Efail(t), E01(t)|N t−1 = C] ≥
(

1− 1

lnn

)2

. (64)

Case 2: C(a1) = 1 and C(a2) = 0.

In this case, for any C ∈ C, since C(Y ) is not a valid WTA output configuration, by Corollary
4.27,

P[Efail(t)|N t−1 = C] ≥ 1− 32 · ln 2tc
ts

≥ 1− 1

lnn

where the second inequality follows from our requirement that ln 2tc
ts
≤ 1

32 lnn . As above we also

have P[E01(t)|N t−1 = C] ≥ 1 − 1
lnn and since Efail(t) and E01(t) are independent conditioned on

N t−1:

P[Efail(t), E01(t)|N t−1 = C] ≥
(

1− 1

lnn

)2

. (65)

Together (64) and (65) and the definition of C give us:
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Claim 4.28. For any C which is not a valid WTA configuration and with (C(a1), C(a2)) 6= (0, 1),

P[Efail(t), E01(t)|N t−1 = C] ≥
(

1− 1

lnn

)2

.

Completing the Theorem.

We conclude by using Claim 4.28 to lower bound the probability of converging to a valid WTA
configuration within tc steps. Substituting the bound of Claim 4.28 into (62) and (63) we have:

P[Efail(t), E01(t)] ≥
∑
C∈C

(
1− 1

lnn

)2

· P[N t−1 = C, Efail(t− 1), E01(t− 1)]

≥
(

1− 1

lnn

)2

· P[Efail(t− 1), E01(t− 1)]

Since we chooseN0 with Y 0 not a valid WTA output configuration and a0
1 = a0

2 = 0, P[Efail(0), E01(0)] =
1. Thus, via induction, we have for any t ≥ 0,

P[Efail(t), E01(t)] ≥
(

1− 1

lnn

)2t

.

Plugging in tc ≤ lnn
30 ln lnn we have:

P[Efail(tc)] ≥ P[Efail(tc), E01(tc)] ≥
(

1− 1

lnn

) lnn
15 ln lnn

≥ 1

e1/15
> 1/2.

This contradicts the fact that N solves WTA(n, tc, ts, δ) for δ ≥ 1/2, giving the lower bound.

5 Faster Convergence With More Inhibitors

In this section we show how to speed up the two-inhibitor construction of Section 3 by using α > 2
inhibitors. We give a formal convergence proof for a construction which uses dlog2 ne+ 1 inhibitors
and converges with constant probability in O(1) time (and with probability ≥ 1− δ in O(log 1/δ)
time). We then describe the high level idea behind two constructions that give a tradeoff between
the number of inhibitors used and the convergence time.

5.1 Use of History Period

Our dlog2 ne+1-inhibitor construction (as well as the sketched constructions which give an inhibitor-
convergence time tradeoff) requires using a history period of h = 2, as suggested in Section 2.5. At
a high level, to achieve fast convergence, our networks use the larger number of inhibitors available
to create higher levels of inhibition at time t corresponding to higher number of firing outputs at
time t − 1. This strategy however, leads to ‘race conditions’. If many outputs fire at time t and
exactly one output fires at time t + 1, there will still be a high level of inhibition at time t + 1.
Thus, at time t+ 2 it is likely that the single firing output at time t+ 1 will stop firing and so the
network will not stabilize to a valid WTA output state.
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To avoid this race condition, we use history so that an output’s self-loop excites the output for
two time steps. The stability inhibitor as will also be excited for two time steps by the outputs. In
this way, if a single output yi fires at time t, while at time t + 1 no outputs may fire due to high
levels of inhibition, at time t + 2 the history will cause both as and yi to fire, and the network to
stabilize to a valid WTA state.

5.1.1 Generalized Model with History Period

Following the basic SNN model of Section 2 we define an SNN model with history period h for any
h ≥ 1. The changes to the definition are highlighted in gray.

An SNN N = 〈N,w, b, f, h〉 with history period h consists of:

• N , a set of neurons, partitioned into a set of input neurons X, a set of output neurons Y ,
and a set of auxiliary neurons A. N is also partitioned into a set of excitatory and inhibitory
neurons E and I. All input and output neurons are excitatory.

• h ∈ Z≥1, a positive integer indicating the neural response history period.

• w : N × N × {1, ..., h} → R, a weight function describing the weighted synaptic connections
between the neurons in the network. w is restricted in a few notable ways:

– w(u, x, l) = 0 for all u ∈ N , x ∈ X, and l ∈ {1, ..., h}.

– Each excitatory neuron v ∈ E has w(v, u, l) ≥ 0 for every u and l ∈ {1, ..., h}. Each
inhibitory neuron v ∈ I has w(v, u, l) ≤ 0 for every u and l ∈ {1, ..., h}.

• b : N → R, a bias function, assigning an activation bias to each neuron.

• f : R→ [0, 1], a spike probability function, satisfying a few restrictions:

– f is continuous and monotonically increasing.

– limx→∞ f(x) = 1 and limx→−∞ f(x) = 0.

Remark on the Time Dependent Weight Function: The only difference between the above
model and our basic SNN model of Section 2.1 is in the specification of the weight function w.
In the model with history period h, w describes the strength of the synaptic connections between
neurons in N , as a function of the time difference between a spike and the current time (from 1 up
to h). w(u, v, 1) is the weight corresponding to the most recent time and w(u, v, h) corresponds to
the most distant time within the history period. The weight function, for example, can be used to
model the decaying effect of a spike over time, if we set |w(u, v, 1)| ≥ |w(u, v, 2)| ≥ ... ≥ |w(u, v, h)|.

5.1.2 Network Dynamics With History Period

In our SNN with history period model, configurations and executions are defined as in our basic
model (see Section 2.2). The behavior of the SNN is determined as follows:

• Input Neurons: As in our basic model, we specify how the infinite input execution X0X1....
is determined. Through this work, we will fix the input so that for each u ∈ X, ut is constant
for all t ≥ 0.
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• Initial Firing States: For each non-input u ∈ N \ X, the firing states in the first h time
slots u0, u1, ..., uh−1 are arbitrary, where h is this history length.

• Firing Dynamics: For each non-input neuron u ∈ N \X and every time t ≥ h, let pot(u, t)
denote the membrane potential at time t and p(u, t) denote the corresponding firing proba-
bility. These values are calculated as:

pot(u, t) =

(
h∑
i=1

∑
v∈N

w(v, u, i) · vt−i
)
− b(u) and p(u, t) = f(pot(u, t)) (66)

where f is the spike probability function. At time t, each non-input neuron u fires indepen-
dently with probability p(u, t). Note that equation (66) is defined only for t ≥ h, in which
case t − i ≥ 0 for all i ∈ {1, ..., h}. It is analogous to the potential calculation (1), used for
our basic model, except that the summation of spikes is over h time steps.

An SSN N = 〈N,w, b, f, h〉 with history period h, length h execution αh = N0N1...Nh−1, and
infinite input execution αX define a probability distribution over infinite executions, D(N , αh, αX).
This distribution is the natural distribution that follows from applying the stochastic firing dy-
namics of (66). As with our basic model (see Section 2.2), we can also define a corresponding
distribution DY (N , αh, αX) on infinite output executions.

5.1.3 Solving Problems in Networks with History

As in our basic model, a problem P is a mapping from an infinite input execution αX to a set of
output distributions. A network N is said to solve problem P on input αX if, for any length h
initial execution αh, the output distribution DY (N , αh, αX) is an element of P (αX). A network N
is said to solve problem P if it solves P on every infinite input execution αX .

5.2 O(1) Convergence Time with O(log n) Inhibitors

In this section we describe and analyze a family of networks that converge to a valid WTA state
with constant probability in constant time and uses O(log n) inhibitors.

We have one stability inhibitor as that functions similarly to the stability inhibitor in our two-
inhibitor construction (Definition 3.1), ensuring that, once the network reaches a valid WTA output
configuration, it remains in this configuration for ts consecutive time steps with high probability
(see Corollary 5.19). This stability inhibitor employs a history period of length 2. We prove in
Lemma 5.7 that it fires with high probability at time t + 1 whenever at least one output fires at
time t or t− 1.

We additionally have dlog2 ne convergence inhibitors, labeled a1, ..., adlog2 ne. For each i, ai fires
with high probability at time t + 1 whenever k ≥ 2i outputs fire at time t. In this way, with high
probability, a1, ..., ai fire and all other inhibitors do not fires at time t + 1 whenever the number
of firing outputs k is in the range

[
2i, 2i+1

)
(see Lemma 5.8). Note that we define our network so

a1, ..., adlog2 ne have no incoming connections that use the length 2 history period (i.e., w(u, ai, 2) = 0
for all u and all i ∈ {1, ..., dlog2 ne}). Thus, the firing probabilities of these inhibitors at time t+ 1
depend only on the firing pattern at time t.

We set the inhibitory weights such that when ai fires at time t (along with aj for all j ≤ i),
each firing output fires at time t+ 1 with probability pi ≈ 1

2i
(see Lemma 5.12). For k ∈

[
2i, 2i+1

)
we thus have pi · k ∈ [1, 2). We will show that this ensures that, with constant probability, exactly
one output fires at time t+ 1 (see Corollary 5.13). Once a single output fires, using the length-two
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history mechanism described in Section 5.1, the network stabilizes to a valid WTA state with high
probability.

We begin with a formal definition of the network below:

Definition 5.1 (Constant Time WTA Network). For any n ∈ Z≥2 and γ ∈ R+, let Ln,γ =
〈N,w, b, f, 2〉 where the spike probability, weight, and bias functions are defined as follows:

• The spike probability function f is defined to be the basic sigmoid function:

f(x)
def
=

1

1 + e−x
.

• The set of neurons N consists of a set of n input neurons X, labeled x1, ..., xn, a set of n
corresponding outputs Y , labeled y1, ..., yn, and dlog2 ne+1 auxiliary inhibitory neurons labeled
as and a1, ..., adlog2 ne.

• The weight function w is given by:

– w(xi, yi, 1) = 6γ, for all i.

– w(yi, yi, 1) = w(yi, yi, 2) = 2γ, for all i.

– w(as, yi, 1) = −γ, for all i

– w(a1, yi, 1) = −7γ/2− ln(2), for all i

– w(aj , yi, 1) = − ln(2), for all i and j ∈ {2, ..., dlog2 ne}.
– w(yi, as, 1) = w(yi, as, 2) = γ, for all i.

– w(yi, aj , 1) = γ, for all i and j ∈ {1, ..., dlog2 ne}.
– w(u, v, i) = 0 for any u, v and i ∈ {1, 2} whose connection is not specified above.

• The bias function b is given by:

– b(yi) = 11γ/2 for all i.

– b(as) = γ/2.

– b(ai) = 2i · γ − γ/2 for all i ∈ {1, ..., dlog2 ne}.

Use of History. Note that in our network definition above, we use the history mechanism only
in two places. We set w(yi, yi, 1) = w(yi, yi, 2) = 2γ, for all i, meaning that each output’s self-loop
affects its potential for two time steps. We also set w(yi, as, 1) = w(yi, as, 2) = γ for all i, meaning
that the stability inhibitor is affected by the outputs for two steps.

Due to the high level of inhibition inducted by the convergence inhibitors a1, ..., adlog2 ne, after
the network reaches a configuration with just a single firing output, it will likely transition to a
state with no firing outputs, since the number of firing inhibitors will still reflect the number of
firing outputs in the previous time step. The length-two output self-loop and output to inhibitor
connections allow the network to recover from this state. Specifically, in Lemma 5.18 and Corollary
5.19, we show that if the network reaches a valid WTA output state at time t, with good probability
it will return to this state at time t+ 2 and remain in this state for ts consecutive steps.

In our two-inhibitor construction, no history was necessary. The inhibition in the network was
always low enough such that, after reaching a near-valid WTA configuration with a single firing
output, with constant probability the network would transition to a valid-WTA configuration and
stabilize in this configuration (see Lemma 3.21).
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We prove the following theorems on the performance of Ln,γ :

Theorem 5.2 (O(log n)-Inhibitor WTA). For γ ≥ ln((n + 2)ts/δ), Ln,γ solves WTA(n, tc, ts, δ)
for any tc ≥ log2(1/δ) + 1. Ln,γ contains dlog2 ne+ 1 auxiliary inhibitors.

Theorem 5.3 (O(log n)-Inhibitor Expected-Time WTA). For γ ≥ ln((n + 2)ts/δ), Ln,γ solves
WTA-EXP(n, tc, ts) for any tc ≥ 4. Ln,γ contains dlog2 ne+ 1 auxiliary inhibitors.

Proof Roadmap. We prove Theorems 5.2 and 5.3 in Section 5.5. The analysis is broken down as
follows:

Section 5.3: Prove basic two-step lemmas which characterize single time step transitions of
Ln,γ , showing that the neurons behave as described in the above high-level description.

Section 5.4: Prove that, once in a valid WTA output configuration, as long as certain other
stability conditions are satisfied, Ln,γ stays in this configuration with high probability.

Section 5.5: Show that all configurations of Ln,γ transition with constant probability to a
stable and valid WTA configuration within O(1) time steps.

Section 5.6: Complete the analysis, demonstrating with what parameter values Ln,γ solves
the winner-take-all problem (Definitions 2.7 and 2.9).

5.3 Two-Step Lemmas

As in our analysis of our two-inhibitor network family in Section 3.2, we begin with a series of
lemmas which characterize the basic transition probabilities of Ln,γ . Since we employ history
period h = 2, these lemmas consider the behavior of the network at time t + 1 conditioned on its
configuration at times t and t− 1.

We first note that an analog to Lemma 3.4 still holds for all inhibitory neurons.

Lemma 5.4 (Characterization of Firing Probabilities). For any time t ≥ 1 and any a ∈ A:

If pot(u, t) = 0, then p(u, t) = 1/2.

If pot(u, t) < 0, then p(u, t) ≤ e−γ/2.
If pot(u, t) > 0, then p(u, t) ≥ 1− e−γ/2.

Proof. The proof is essentially identical to that of Lemma 3.4. We just use that for each inhibitor
a ∈ A and each i and h ∈ {1, 2}, w(yi, a, h) and b(a) are all multiples of γ/2.

Analogs to Lemma 3.5 and Corollary 3.6 also still hold, ensuring that, with high probability,
outputs that do not correspond to firing inputs do not fire.

Lemma 5.5 (Correct Output Behavior). For any time t ≥ 1, any configurations C,C ′ of Ln,γ,
and any i with C(xi) = 0,

P[yt+1
i = 1|N t = C,N t−1 = C ′] ≤ e−3γ/2.
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Proof. If N t = C then xti = C(xi). We can compute yi’s potential at time t+ 1, assuming xti = 0:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats

+

dlog2 ne∑
j=1

w(ac, yi, 1)atc − b(yi)

≤ 0 + 2γ + 2γ + 0 + 0− 11γ/2 = −3γ/2.

We thus have p(yi, t+ 1) ≤ 1
1+e3γ/2

≤ e−3γ/2.

Corollary 5.6 (Correct Output Behavior, All Neurons). For any time t ≥ 1 and configurations
C,C ′ of Ln,γ,

P[yt+1
i ≤ xti for all i|N t = C,N t−1 = C ′] ≥ 1− ne−3γ/2.

Proof. The proof is essentially identical to that of Corollary 3.6. If C(xi) = 1 then conditioned
on N t = C, xti = 1 and so yt+1

i ≤ xti always. Otherwise, by Lemma 5.5, if C(xi) = 0, then
P[yt+1

i = 0|N t = C,N t−1 = C ′] ≥ 1− e−3γ/2. Union bounding over all such inputs (of which there
are at most n) gives the corollary.

We next show that the inhibitors as, a1, ..., adlog2 ne behave as expected. The following lemmas
can be viewed as a generalization of Lemma 3.7. We first show that, due to our use of history, as
fires with high probability at time t+ 1 whenever at least one output fires at time t or t− 1.

Lemma 5.7 (Correct Stability Inhibitor Behavior). For any time t ≥ 1 and configurations C,C ′

of Ln,γ,

1. If ‖C(Y )‖1 = ‖C ′(Y )‖1 = 0, then P[at+1
s = 0|N t = C,N t−1 = C ′] ≥ 1− e−γ/2.

2. If ‖C(Y )‖1 ≥ 1 or ‖C ′(Y )‖1 ≥ 1, then P[at+1
s = 1|N t = C,N t=1 = C ′] ≥ 1− e−γ/2.

Proof. We prove the two conclusions separately.

Conclusion 1: ‖C(Y )‖1 = ‖C ′(Y )‖1 = 0.

In this case, as receives no excitatory signal from the outputs so,

pot(as, t+ 1) = −b(as) < 0.

Thus by Lemma 5.4,
P[at+1

s = 0|N t = C] ≥ 1− e−γ/2.

Conclusion 2: ‖C(Y )‖1 ≥ 1 or ‖C ′(Y )‖1 ≥ 1.

In this case we have:

pot(as, t+ 1) =

n∑
j=1

[w(yj , as, 1)ytj + w(yj , as, 2)yt−1
j ]− b(as)

≥ γ − γ/2 = γ/2.
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We thus have by Lemma 5.4:

P[at+1
s = 1|N t = C] ≥ 1− e−γ/2,

which gives the lemma.

As described in Section 5.2, the convergence inhibitors a1, ..., adlog2 ne fire at time t+1 depending
on the number of firing outputs at time t. They have no incoming connections which affect them
for two rounds, and thus their firing probabilities at time t+ 1 do not depend on the firing pattern
at time t− 1. We prove that aj for all j ≤ i fire with high probability at time t+ 1 whenever the
number of firing outputs at time t falls in the range [2i, 2i+1). Further, all aj for j > i do not fire
with high probability.

Lemma 5.8 (Correct Convergence Inhibitor Behaviors). For any time t ≥ 1 and configurations
C,C ′ of Ln,γ,

1. If ‖C(Y )‖1 ≤ 1, then

P
[
at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}

∣∣N t = C,N t−1 = C ′
]
≥ 1− dlog2 ne · e−γ/2.

2. For any i ∈ {1, ..., dlog2 ne}, if ‖C(Y )‖1 = k for k ∈ [2i, 2i+1), then:

P[at+1
1 = ... = at+1

i = 1 and at+1
i+1 = ... = at+1

dlog2 ne
= 0|N t = C,N t−1 = C ′]

≥ 1− dlog2 ne · e−γ/2.

Proof. We prove the two conclusions of the lemma separately.

Conclusion 1: ‖C(Y )‖1 ≤ 1.

In this case we have for all i:

pot(ai, t+ 1) =
n∑
j=1

w(yj , ai, 1)ytj − b(ai)

≤ γ − 3γ/2 = −γ/2.

Again by Lemma 5.4 and a union bound,

P

dlog2 ne∑
i=1

at+1
i = 0

∣∣N t = C,N t−1 = C ′

 ≥ 1− dlog2 ne · e−γ/2.

Conclusion 2: ‖C(Y )‖1 = k for k ∈ [2i, 2i+1).

In this case, for any j ≤ i we have:

pot(aj , t+ 1) =
n∑
l=1

w(yl, as, 1)ytl − b(aj)

= k · γ − 2jγ + γ/2 ≥ γ/2
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where the last inequality follows since k ≥ 2j ≥ 2j . In contrast for j > i:

pot(aj , t+ 1) =
n∑
l=1

w(yl, as, 1)ytl − b(aj)

= k · γ − 2jγ + γ/2 ≤ −γ/2

where the last inequality follows from the fact that k < 2i+1 ≤ 2j . Overall, by Lemma 5.4 and a
union bound,

P[at+1
1 = ... = at+1

i = 1 and at+1
i+1 = ... = at+1

dlog2 ne
= 0|N t = C,N t−1 = C ′]

≥ 1− dlog2 ne · e−γ/2,

which gives the lemma

It will be useful in our future bounds to consider the class of configurations in which all outputs
and inhibitors behave as expected. Such a configuration is analogous to the good configurations of
our two-inhibitor networks (Definition 3.17), from which we were able to show convergence.

Definition 5.9 (Typical Configuration). A typical configuration is any configuration C with
C(yi) ≤ C(xi) for all i and C(as) ≥ C(a1) ≥ ... ≥ C(adlog2 ne).

In combination, Corollary 5.6, Lemma 5.7 and Lemma 5.8 give:

Corollary 5.10 (Correct Behavior, All Neurons). Assume the input execution αX of Ln,γ has Xt

fixed for all t and consider configurations C,C ′ with C(X) = C ′(X) = Xt. For any time t ≥ 1:

P[N t+1 is a typical configuration |N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2.

Proof. Since the input is fixed, by Corollary 5.6,

P[yt+1
i ≤ xt+1

i |N
t = C,N t−1 = C ′] ≥ 1− n · e−3γ/2. (67)

If ‖C(Y )‖1 ≤ 1 then by Lemma 5.8 conclusion (2),

P[at+1
1 = .... = at+1

dlog2 ne
= 0|N t = C,N t−1 = C ′] ≥ 1− dlog2 ne · e−γ/2.

If ‖C(Y )‖1 > 1 then by Lemma 5.7 conclusion (2), Lemma 5.8 conclusion (2), and a union bound,

P[at+1
s = at+1

1 = ... = at+1
i = 1 and at+1

i+1 = ... = at+1
dlog2 ne

= 0|N t = C,N t−1 = C ′]

≥ 1− (dlog2 ne+ 1) · e−γ/2.

Combining these two cases, we have

P[at+1
s ≥ at+1

1 ≥ ... ≥ at+1
dlog2 ne

|N t = C,N t−1 = C ′] ≥ 1− (dlog2 ne+ 1) · e−γ/2,

which gives the lemma after a union bound with (67)
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We next show that the stability inhibitor firing alone, with high probability, induces exactly
the outputs that fired at one of the previous two time steps to fire in the next step. This Lemma
is analogous to Lemma 3.9 for our two-inhibitor networks.

Lemma 5.11 (Stability Inhibitor Effect). Assume the input execution αX of Ln,γ has Xt fixed
for all t and consider configurations C,C ′ with C(X) = C ′(X) = Xt, C(as) = 1, C(ai) = 0 for
all i ∈ {1, ..., dlog2 ne}, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any time t ≥ 1,

P[yt+1
i = max(yti , y

t−1
i ) for all i|N t = C,N t−1 = C ′] ≥ 1− ne−γ/2

Proof. Conditioned on N t = C,N t−1 = C ′, yti ≤ xti and yt−1
i ≤ xt−1

i by assumption. So for any
output with max(yti , y

t−1
i ) = 1 we must have xti = 1. This gives:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats

+

dlog2 ne∑
j=1

w(aj , yi, 1)atj − b(yi)

≥ 6γ + 2γ ·max(yti , y
t−1
i )− γ + 0− 11γ/2s

≥ 3γ/2.

In contrast, for any output with max(yti , y
t−1
i ) = 0:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats

+

dlog2 ne∑
j=1

w(aj , yi, 1)atj − b(yi)

≤ 6γ + 0 + 0− γ + 0− 11γ/2

= −γ/2.

So, if max(yti , y
t−1
i ) = 1, then yt+1

i = 1 with probability ≥ 1 − e−3γ/2. If max(yti , y
t−1
i ) = 0,

then yt+1
i = 0 with probability ≥ 1 − e−γ/2. The lemma follows after union bounding over all n

outputs.

We next characterize the effect of the convergence inhibitors. We show that when l inhibitors
fire, any firing output that also fired in the previous time step, fires with probability Θ(1/l). We
will show in Corollary 5.13 that this implies that in the next step, with constant probability, exactly
one output fires, and in fact the configuration is a valid WTA output configuration.

Lemma 5.12 below is analogous to Lemma 3.10 for our two-inhibitor networks, except that the
firing probability is Θ(1/l) rather than 1/2. Since this firing probability is smaller when a larger
number of outputs fire at time t, convergence to a single firing output with constant probability
occurs in 1 step, rather than O(log n) steps.
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Lemma 5.12 (Convergence Inhibitor Effect). Assume the input execution αX of Ln,γ has Xt

fixed for all t and consider configurations C,C ′ with C(X) = C ′(X) = Xt, C(as) = C(a1) =
...C(al) = 1, C(al+1) = ... = C(adlog2 ne) = 0 for some l ≥ 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi)
for all i. For any time t ≥ 1,

1. P[yt+1
i ≤ min(yti , y

t−1
i ) for all i|N t = C,N t−1 = C ′] ≥ 1− ne−2γ.

2. If min(yti , y
t−1
i ) = 1, P[yt+1

i = 1|N t = C,N t−1 = C ′] = 1
1+2`

.

3. For i 6= j, yt+1
i and yt+1

j are independent conditioned on N t = C,N t−1 = C ′.

Proof. Conditioned on N t = C,N t−1 = C ′, if min(yti , y
t−1
i ) = 1, then yti = yt−1

i = 1 and by
assumption xti = 1. We can thus compute:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats + w(a1, yi, 1)at1

+

dlog2 ne∑
j=2

w(aj , yi, 1)atj − b(yi)

= 6γ + 4γ − γ − 7γ/2− ln 2− (l − 1) · ln 2− 11γ/2

= −l · ln 2.

We thus have

P[yt+1
i = 1|N t = C] = f(−l · ln 2) =

1

1 + 2l
.

This gives conclusion (2). Conclusion (3) holds since, with N t and N t−1 fixed with history length
2, ut+1 is independent of vt+1 for all u 6= v. We can also bound if min(yti , y

t−1
i ) = 0:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats + w(a1, yi, 1)at1

+

dlog2 ne∑
j=2

w(aj , yi, 1)atj − b(yi)

≤ 6γ + 2γ − γ − 7γ/2− ln 2− (l − 1) · ln 2− 11γ/2

≤ −2γ.

Thus, P[yt+1
i = 1|N t = C,N t−1 = C ′] ≤ e−2γ . By a union bound over at most n such outputs,

we have, with probability ≥ 1 − ne−2γ , yt+1
i ≤ min(yti , y

t−1
i ) for all i, giving conclusion (1) and

completing the lemma.

We now formalize the fact that the network converges to a valid WTA output configuration
in just a single step with constant probability, as long as the number of inhibitors matches the
minimum number of firing outputs in the preceding two steps. Corollary 5.13 can be viewed as an
analog to Lemma 3.23 for our two inhibitor networks, except that the number of outputs is reduced
to 1, rather than just cut in half, with constant probability.
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Corollary 5.13 (Constant Probability of a Valid WTA Configuration). Assume the input execu-
tion αX of Ln,γ has Xt fixed for all t and consider configurations C,C ′ with C(X) = C ′(X) = Xt,
C(as) = C(a1) = ...C(al) = 1, C(al+1) = ... = C(adlog2 ne) = 0 for some l ≥ 1, and C(yi) ≤ C(xi),

C ′(yi) ≤ C ′(xi) for all i. For any time t ≥ 1, if ‖min(C ′, C)‖1 ∈
[
2l, 2l+1

)
, then

P[Y t+1 is a valid WTA output configuration |N t = C,N t−1 = C ′] ≥ 1

16
− ne−2γ .

Proof. Let Ȳ be the set of outputs who fire in both in C,C ′. So ‖Ȳ ‖1 = ‖min(C ′, C)‖1. By
conclusions (2) and (3) of Lemma 5.12, and the assumption that ‖min(C ′, C)‖1 ∈

[
2l, 2l+1

)
:

P[‖Ȳ t+1‖1 = 1|N t = C,N t−1 = C ′] =
1

1 + 2l
·
(

1− 1

1 + 2l

)‖Ȳ t‖1
· ‖Ȳ t‖1

≥ 1

1 + 2l

(
1− 1

1 + 2l

)2l+1

· 2l

≥ 2l

1 + 2l
· 1

8
≥ 1

16
.

Further, by conclusion (1) of Lemma 5.12, no output outside if Ȳ fires at time t+1 with probability
≥ 1− ne−2γ . Additionally, by assumption, for all yi ∈ Ȳ , xti = 1. So since if exactly one output in
Ȳ fires, N t+1 is a valid WTA output configuration. This gives the corollary by a union bound.

We also show a related corollary – if the number of firing inhibitors exceeds the appropriate
amount for the number of firing outputs, then with good probability, no outputs fire in the next
time step.

Corollary 5.14 (Constant Probability of Zero Firing Outputs). Assume the input execution
αX of Ln,γ has Xt fixed for all t and consider configurations C,C ′ with C(X) = C ′(X) = Xt,
C(as) = C(a1) = ...C(al) = 1, C(al+1) = ... = C(adlog2 ne) = 0 for some l ≥ 1, and C(yi) ≤ C(xi),

C ′(yi) ≤ C ′(xi) for all i. For any time t ≥ 1, if ‖min(C ′, C)‖1 ∈
[
0, 2l+1

)
, then

P[‖Y t+1‖1 = 0|N t = C,N t−1 = C ′] ≥ 1

8
− ne−2γ

Proof. Let Ȳ be the set of outputs who fire in both in C,C ′. So ‖Ȳ ‖1 = ‖min(C ′, C)‖1 ∈
[
0, 2l+1

)
.

By conclusions (2) and (3) of Lemma 5.12:

P[‖Ȳ t+1‖1 = 0|N t = C,N t−1 = C ′] =

(
1− 1

1 + 2l

)‖Ȳ t‖1
≥
(

1− 1

1 + 2l

)2l+1

≥ 1

8
.

Further, by conclusion (1) of Lemma 5.12, no output outside if Ȳ fires at time t+1 with probability
≥ 1− ne−2γ . This gives the corollary by a union bound.
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Finally, we show that if there is no inhibition in the network, all outputs corresponding to firing
inputs are likely to fire at the next time step.

Lemma 5.15 (No Inhibitor Effect). For any time t ≥ 1 and configurations C,C ′ of Ln,γ, if
‖C(A)‖1 = 0, then

P[yt+1
i = xti for all i|N t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

Proof. We consider two cases:

Case 1: xti = 0.

In this case:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats+

+

dlog2 ne∑
j=1

w(aj , yi, 1)atj − b(yi)

≤ 0 + 4γ + 0 + 0− 11γ/2

≤ −3γ/2.

This gives
P[yt+1

i = 0 = xti|N t = C,N t−1 = C ′] ≥ 1− e−2γ .

Case 2: xti = 1.

In this case:

pot(yi, t+ 1) = w(xi, yi, 1)xti + w(yi, yi, 1)yti + w(yi, yi, 2)yt−1
i + w(as, yi, 1)ats+

+

dlog2 ne∑
j=1

w(aj , yi, 1)atj − b(yi)

≥ 6γ + 0 + 0 + 0− 11γ/2

≥ γ/2.

This gives
P[yt+1

i = 1 = xti|N t = C,N t−1 = C ′] ≥ 1− e−γ/2.

The lemma then follows after union bounding over all n outputs.

5.4 Stability

In this section we show that once in a valid WTA output configuration (Definition 2.6), the network
remains in this configuration with high probability. Due to our use of a length-two history period,
our stability proof requires certain conditions on the firing states at both times t and times t− 1.
We will focus on the case when there is at least one firing input (i.e., when ‖Xt‖ ≥ 1.) In the
case ‖Xt‖ = 0, convergence to a valid WTA output configuration and stability of this configuration
follow easily from Lemma 5.5.

Definition 5.16 below can be viewed as a two-step generalization of a near-valid WTA configu-
ration of our two-inhibitor networks (Definition 3.15).
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Definition 5.16 (Near-Stable Pair of Configurations). Assume the input execution αX of Ln,γ has
Xt fixed for all t and ‖Xt‖1 ≥ 1. Consider configurations C,C ′ with C(X) = C ′(X) = Xt. The
ordered pair (C ′, C) is near-stable if:

1. ‖max(C ′(Y ), C(Y ))‖1 = 1, where max(C ′(Y ), C(Y )) is the entrywise maximum of C ′(Y ), C(Y ).
This condition requires that exactly one output fires in configurations C ′, C. It may fire in
one or both configurations.

2. C(as) = C ′(as) = 1.

3. C(ai) = 0 for all i ∈ {1, dlog2 ne}.

4. C(yi) ≤ C(xi), C
′(yi) ≤ C ′(xi) for all i.

Note that by conditions (1) and (4), at least one of C(Y ), C ′(Y ) is a valid WTA output con-
figuration (Definition 2.6). In our proofs, it will be useful to refer to the output whose existence is
guaranteed by condition (1). Thus we define:

Definition 5.17. Assume the input execution αX of Ln,γ has Xt fixed for all t and ‖Xt‖1 ≥ 1. For
any near-stable pair of configurations (C ′, C) with C(X) = C ′(X) = Xt, let out(C ′, C) ∈ {1, ..., n}
be equal to the index of the unique output that fires in C ′, C (whose existence is guaranteed by
condition (1) of Definition 5.16).

We next show that if the configurations (N t−1, N t) are near-stable, then with high probability,
N t+1 will be a valid WTA output configuration. Further, the network will stabilize for ts steps.
That is, with high probability, we will have N t+1 = ... = N t+ts+1. Lemma 5.16 is analogous to
Lemma 3.21 for our two-inhibitor networks.

Lemma 5.18 (Reaching Stability From Near-Stable Configurations). Assume the input execution
αX of Ln,γ has Xt fixed for all t and that ‖Xt‖1 ≥ 1. Consider any near-stable pair of configura-
tions (C ′, C) with C(X) = C ′(X) = Xt. For any time t ≥ 1, conditioned on N t = C,N t−1 = C ′,
with probability ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2,

1. N t+1 is a valid WTA output configuration (Definition 2.6).

2. yt+1
out(Nt−1,Nt)

= 1. That is, the winner at time t+ 1 is the output firing in N t−1, and/or N t.

3. (N t, N t+1) is also a near-stable pair of configurations.

Proof. By condition (1) of Definition 5.16, for all j 6= out(N t−1, N t), ytj = yt−1
j = 0. Additionally,

by conditions (2) and (3), as is the only inhibitor that fires at time t. So by Lemma 5.11,

P[Y t+1 = max(Y t, Y t−1)|N t = C] ≥ 1− ne−γ/2. (68)

This gives that yt+1
out(Nt−1,Nt)

= 1 while yt+1
j = 0 for all j 6= out(N t−1, N t). By condition (4) of

Definition 5.16 we must have also have xt+1
out(Nt−1,Nt)

= 1. This implies conclusions (1) and (2) of

the lemma. It remains to show conclusion (3).
Condition (1) of Definition 5.16 holds if Y t+1 = max(Y t, Y t−1) (see (68)) since yt+1

out(Nt−1,Nt)
= 1

and further, yout(Nt−1,Nt) is the only output that may fire at time t. Conditions (2) and (3) with

probability ≥ 1− (dlog2 ne+ 1) · e−γ/2 conditioned on N t = C,N t−1 = C ′ by Lemmas 5.7 and 5.8
and a union bound. Finally, condition (4) holds if Y t+1 = max(Y t, Y t−1) (see (68)). Overall, by a
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union bound, all three conclusions hold with probability ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2, giving the
lemma.

We can use Lemma 5.18 to show that Ln,γ remains in a valid WTA configuration for ts consec-
utive time steps with good probability.

Corollary 5.19 (Stability of Valid WTA Configurations). Assume the input execution αX of
Ln,γ has Xt fixed for all t and that ‖Xt‖1 ≥ 1. Consider any near-stable pair of configurations
(C ′, C) with C(X) = C ′(X) = Xt. For any time t ≥ 1, . For any time t conditioned on
N t = C,N t−1 = C ′, with probability ≥ 1− 3tsn · e−γ/2, Y t+1 is a valid WTA output configuration
and further,

Y t+1 = Y t+2 = ... = Y t+ts+1.

Proof. We apply Lemma 5.18 for each time t+ 1, ..., t+ ts + 1 in succession. This is possible since
by conclusion (3), if (N t−1, N t−1) is a near-stable pair of configurations, then with high probability
(N t, N t+1) is as well. Conclusion (1) gives that N t+1, ..., N t+ts+1 are all valid WTA configurations
and conclusion (2) gives that Y t+1 = Y t+2 = ... = Y t+ts+1. By a union bound over these ts steps,
the conclusion holds with probability ≥ 1− ts(n+ dlog2 ne+ 1) · e−γ/2 ≥ 1− 3tsn · e−γ/2.

5.5 Convergence in O(1) Steps

We now use the transition lemmas of Section 5.3 to show that, starting from any configuration,
the network converges to a near-stable pair of configurations (Definition 5.16) with constant prob-
ability in O(1) time steps. Combined with Corollary 5.19 this shows convergence to a valid WTA
configuration (and stability within this configuration for ts steps) in O(1) steps with constant
probability.

Our analysis is tedious by straightforward. It breaks down into nine cases, based on the initial
output and inhibitor behavior. These cases are summarized in Table 2. Since some cases depend
on our bounds for others, we do not prove them in the order listed.

Output Count ‖Y t‖1 Inhibitor Count ‖At‖1 Lemma

0 0 Lemma 5.20

0 1 Lemma 5.27

0 any a > 1 Lemma 5.28

1 0 Lemma 5.24

1 1 Lemma 5.25

1 any a > 1 Lemma 5.26

any k > 1 0 Lemma 5.23

any k > 1 1 Lemma 5.22

any k > 1 any a > 1 Lemma 5.21

Table 2: Summary of cases from which we show convergence in O(1) steps to a near-stable pair
of configurations (Definition 5.16) with constant probability.
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Lemma 5.20 (‖Y t‖1 = ‖At‖1 = 0). Assume the input execution αX of Ln,γ has Xt fixed for all
t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt and
‖C(Y )‖1 = ‖C(A)‖1 = 0. For any time t ≥ 1,

P[(N t+3, N t+4) is near-stable |N t = C,N t−1 = C ′] ≥ 1

16
− 12n · e−γ/2.

Proof. The proof follows from a series of four steps, arguing about the state of Ln,γ at times
t+ 1, t+ 2, t+ 3, t+ 4.

Step 1:

Let E1 be the event that yt+1
i = xt+1

i for all i and that at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}. By

Lemma 5.15, since ‖C(A)‖1 = 0,

P[yt+1
i = xt+1

i for all i|N t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

Additionally, since ‖C(Y )‖1 = 0, by Lemma 5.8 conclusion (1),

P[at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}|N t = C,N t−1 = C ′] ≥ 1− dlog2 ne · e−γ/2.

Thus, by a union bound we have:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne) · e−γ/2. (69)

Step 2:

Let E2 be the event that yt+2
i = xt+2

i for all i and that for l =
⌊
log2

(
‖Xt‖1

)⌋
, at+2

s = at+2
1 =

... = at+2
l = 1 and at+2

l+1 = ... = al+2
dlog2 ne

= 0 (if l = 0, just at+2
s = 1). Conditioned on E1, the only

inhibitor that possibly fires at time t+ 1 is as. We can separately consider the cases when at+1
s = 0

and when at+1
s = 1. By Lemma 5.11,

P
[
yt+2
i = xt+2

i for all i|E1, a
t+1
s = 1, N t = C,N t−1 = C ′

]
≥ 1− ne−γ/2.

By Lemma 5.15 we also have

P
[
yt+2
i = xt+2

i for all i|E1, a
t+1
s = 0, N t = C,N t−1 = C ′

]
≥ 1− ne−γ/2.

By the law of total probability this gives:

P
[
yt+2
i = xt+2

i for all i|E1, N
t = C,N t−1 = C ′

]
≥ 1− ne−γ/2. (70)

We also apply Lemma 5.8. Conditioned on E1, for l =
⌊
log2

(
‖Xt‖1

)⌋
, we have ‖Y t+1‖1 = ‖Xt‖1 ∈

[2l, 2l+1), which gives that,

P[at+2
1 = ... = at+2

i = 1 and at+2
i+1 = ... = at+2

dlog2 ne
= 0|E1, N

t = C,N t−1 = C ′]

≥ 1− dlog2 ne · e−γ/2. (71)

Similarly, applying Lemma 5.7, since conditioned on E1, ‖Y t+1‖1 = ‖Xt+1‖1 ≥ 1:

P[at+2
s = 1|E1, N

t = C,N t−1 = C ′] ≥ 1− e−γ/2. (72)
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Combining (70), (71), and (72) we have:

P[E2|E1, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (73)

Step 3:

Let E3 be the event that Y t+3 is a valid WTA configuration, and that for l =
⌊
log2

(
‖Xt‖1

)⌋
,

at+3
s = at+3

1 = ... = at+3
l = 1 and at+3

l+1 = ... = al+3
dlog2 ne

= 0.

If l = 0, conditioned on E1, E2, we have Y t+1 = Y t+2 = Xt and so ‖Y t+1‖1 = ‖Y t+2‖1 =
‖Xt‖1 = 1. By the stability property of Lemma 5.11 we thus have:

P[Y t+3 is a valid WTA output configuration |E1, E2, N
t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

Oftherwise, for l ≥ 1, by Corollary 5.13, since conditioned on E1 and E2,

‖min(Y t+1, Y t+2)‖1 = ‖Xt‖1 ∈ [2l, 2l+1)

and at+2
s = at+2

1 = ... = at+2
l = 1 and at+2

l+1 = ... = at+2
dlog2 ne

= 0,

P[Y t+3 is a valid WTA output configuration |E1, E2, N
t = C,N t−1 = C ′] ≥ 1

16
− ne−2γ .

We can easily bound the probability of at+3
s = at+3

1 = ... = at+3
l = 1 and at+3

l+1 = ... = al+3
dlog2 ne

= 0

using the same arguments as in (71) and (72), giving, via a union bound:

P[E3|E1, E2, N
t = C,N t−1 = C ′] ≥ 1

16
− (n+ dlog2 ne+ 1) · e−γ/2. (74)

Step 4:

Finally, let E4 be the event that max(Y t+3, Y t+4) = 1, at+4
s = 1,

∑dlog2 ne
j=1 at+4

j = 0 and yt+4
i ≤

xt+4
i for all i. We can check via Definition 5.16 that if E3 and E4 occur, then (N t+3, N t+4) is a

near-stable pair.
Since conditioned on E3, at+3

s = at+3
1 = ... = at+3

l = 1 and at+3
l+1 = ... = al+3

dlog2 ne
= 0, if l ≥ 1, by

Lemma 5.12 conclusion (1),

P[‖Y t+4‖1 ≤ ‖Y t+3‖1|E1, E2, E3, N
t = C,N t−1 = C ′] ≥ 1− ne−γ/2. (75)

Since conditioned on E3, ‖Y t+3‖1 = 1, this gives max(Y t+3, Y t+4) = 1. If l = 0, then we have an
identical bound via the stability property of Lemma 5.11.

Again, since conditioned on E3, ‖Y t+3‖1 = 1, by Lemma 5.7,

P[at+4
s = 1|E1, E2, E3, N

t = C,N t−1 = C ′] ≥ 1− e−γ/2. (76)

By Lemma 5.8, this also gives

P

dlog2 ne∑
j=1

at+4
j = 0

∣∣E1, E2, E3, N
t = C,N t−1 = C ′

 ≥ 1− dlog2 ne · e−γ/2. (77)
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By a union bound using (75),(76), and (77),

P[E4|E1, E2, E3, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (78)

Completing the proof:
Let E be the event that (N t+3, N t+4) is near-stable . We can complete the proof by bounding:

P[E|N t = C,N t−1 = C ′] ≥ P[E3, E4|N t = C,N t−1 = C ′]

≥ P[E4|E1, E2, E3, N
t = C,N t−1 = C ′]

· P[E3|E1, E2, N
t = C,N t−1 = C ′]

· P[E2|E1, N
t = C,N t−1 = C ′]

· P[E1|N t = C,N t−1 = C ′].

We can bound the above terms using (69), (73),(74), and (78) giving:

P[E|N t = C,N t−1 = C ′] ≥
(

1− (n+ dlog2 ne) · e−γ/2
)
·
(

1− (n+ dlog2 ne+ 1) · e−γ/2
)

·
(

1

16
− (n+ dlog2 ne+ 1) · e−γ/2

)
·
(

1− (n+ dlog2 ne+ 1) · e−γ/2
)

≥ 1

16
− 4(n+ dlog2 ne+ 1) · e−γ/2

≥ 1

16
− 12n · e−γ/2.

Lemma 5.21 (‖Y t‖1 > 1, ‖At‖1 > 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 > 1, ‖C(A)‖1 > 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 7|N t = C,N t−1 = C ′] ≥ 1

128
− 24n · e−γ/2.

Proof. Again the proof follows from a series of steps, arguing about the state of Ln,γ at times
t+ 1, t+ 2, .... Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 7.

Step 1:

Let E1 be the event that yt+1
i ≤ yti for all i and that for l =

⌊
log2

(
‖Y t‖1

)⌋
, at+2

s = at+2
1 = ... =

at+2
l = 1 and at+2

l+1 = ... = al+2
dlog2 ne

= 0 (note that l ≥ 1 since ‖Y t‖1 > 1). Let E1,0 be the event that

E1 holds and ‖Y t+1‖1 = 0. Let E1,1 be the event that E1 holds and ‖Y t+1‖1 = 1. Finally, let E1,>1

be the event that E1 holds and ‖Y t+1‖1 > 1. Applying Lemmas 5.7, 5.8, and 5.12 and a union
bound:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (79)

Step 2:
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Let E2 be the event that ‖Y t+2‖1 = 0, that at+2
s = 1 if ‖Y t+1‖1 > 0, and that for l′ =⌊

log2

(
‖Y t+1‖1

)⌋
, at+2

1 = ... = at+2
l′ = 1 and at+2

l′+1 = ... = al+2
dlog2 ne

= 0. Since, conditioned on E1,

‖Y t+1‖1 ≤ ‖Y t‖1 ≤ 2l+1, at+2
s = at+2

1 = ... = at+2
l = 1 and at+2

l+1 = ... = al+2
dlog2 ne

= 0, by Corollary

5.14 combined with Lemmas 5.7, 5.8:

P[E2|E1, N
t = C,N t−1 = C ′] ≥ 1

8
− (n+ dlog2 ne+ 1) · e−γ/2. (80)

We now write:

P[E|N t = C,N t−1 = C ′] ≥ min
(
P[E|E2, E1,0, N

t = C,N t−1 = C ′],

P[E|E2, E1,1, N
t = C,N t−1 = C ′],

P[E|E2, E1,>1, N
t = C,N t−1 = C ′]

)
· P[E2|E1, N

t = C,N t−1 = C ′] · P[E1|N t = C,N t−1 = C ′]

Using (79) and (80) we can bound the above by:

P[E|N t = C,N t−1 = C ′] ≥ min
(
P[E|E2, E1,0, N

t = C,N t−1 = C ′],

P[E|E2, E1,1, N
t = C,N t−1 = C ′],

P[E|E2, E1,>1, N
t = C,N t−1 = C ′]

)
·
(

1

8
− 6n · e−γ/2

)
. (81)

We bound the minimum above by considering each of the three cases separately.

Case 1: P[E|E2, E1,0, N
t = C,N t−1 = C ′].

Conditioned on E2, ‖Y t+2‖1 = 0. So by Lemma 5.20,

P[(N t+5, N t+6) is near-stable |E2, E1,0, ‖At+2‖1 = 0, N t = C,N t−1 = C ′] ≥ 1

16
− 12n · e−γ/2. (82)

If ‖At+2‖ ≥ 1 then, conditioned on E2, we must have at+2
s = 1. Let E3 be the event that ‖Y t+3‖1 =

‖At+3‖1 = 0. By Lemmas 5.7, 5.8, and 5.11 and the fact that conditioned on E1,0, ‖Y t+1‖1 = 0,

P[E3|E2, E1,0, ‖At+2‖1 ≥ 1, N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2 (83)

Again by Lemma 5.20,

P[(N t+6, N t+7) is near-stable |E3, E2, E1,0, ‖At+2‖1 = 0, N t = C,N t−1 = C ′] ≥ 1

16
− 12n · e−γ/2.

Combined with (83) this gives

P[(N t+6, N t+7) is near-stable |E2, E1,0, ‖At+2‖1 ≥ 1, N t = C,N t−1 = C ′] ≥ 1

16
− 15n · e−γ/2.

By the law of total probability, combined with (82) we have

P[E|E2, E1,0, N
t = C,N t−1 = C ′] ≥ 1

16
− 15n · e−γ/2 (84)

which completes this case.
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Case 2: P[E|E2, E1,1, N
t = C,N t−1 = C ′].

In this case, conditioned on E1,1 and E2, at+1
s = at+2

s = 1, as is the only inhibitor that fires at time
t + 2, ‖Y t+1‖1 = 1, and ‖Y t+2‖1 = 0. Thus, (N t+1, N t+2) is a near-stable pair of configurations,
and so vacuously,

P[E|E2, E1,0, N
t = C,N t−1 = C ′] = 1 (85)

which completes this case.

Case 3: P[E|E2, E1,>1, N
t = C,N t−1 = C ′].

In this case, conditioned on E1,>1 and E2, ‖At+2‖1 > 1 and at+2
s = 1. Let E3 be the event that

‖Y t+3‖1 = 0 and that if ‖At+3‖1 ≥ 1, at+3
s = 1. By Lemmas 5.7, 5.8, and 5.12,

P[E3|E2, E1,>1, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1)e−γ/2. (86)

In the case that ‖At+3‖1 = 0, we can again apply Lemma 5.20 to give:

P[(N t+6, N t+7) is near-stable |E3, ‖At+3‖1 = 0, E2, E1,>1,N
t = C,N t−1 = C ′]

≥ 1

16
− 12n · e−γ/2. (87)

In the case that ‖At+3‖1 ≥ 1, let E4 be the event that ‖Y t+4‖1 = ‖At+4‖ = 0. We have by Lemmas
5.7, 5.8 and 5.11,

P[E4|E3, ‖At+3‖1 ≥ 1, E2, E1,>1, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1)e−γ/2. (88)

Further, again by Lemma 5.20 we have:

P[(N t+7, N t+8) is near-stable |E4, E3, ‖At+3‖1 = 0, E2, E1,>1,N
t = C,N t−1 = C ′]

≥ 1

16
− 12n · e−γ/2.

Combined with (88) this gives:

P[(N t+7, N t+8) is near-stable |E3, ‖At+3‖1 = 0, E2, E1,>1,N
t = C,N t−1 = C ′]

≥ 1

16
− 15n · e−γ/2.

Further, combined with (87), by the law of total probability,

P[E|E3, E2, E1,>1, N
t = C,N t−1 = C ′] ≥ 1

16
− 15n · e−γ/2. (89)

Finally, combining (89) with (86) we have:

P[E|E2, E1,>1, N
t = C,N t−1 = C ′] ≥ 1

16
− 18n · e−γ/2 (90)

completing this case.

Completing the proof.
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Using equations (84), (85), and (90) in the three cases above along (81):

P[E|N t = C,N t−1 = C ′] ≥ min
(
P[E|E2, E1,0, N

t = C,N t−1 = C ′],

P[E|E2, E1,1, N
t = C,N t−1 = C ′],

P[E|E2, E1,>1, N
t = C,N t−1 = C ′]

)
·
(

1

8
− 6n · e−γ/2

)
≥
(

1

16
− 18n · e−γ/2

)
·
(

1

8
− 6n · e−γ/2

)
≥ 1

128
− 24n · e−γ/2,

completing the lemma.

Using Lemma 5.21 it is not hard to complete the cases when ‖Y t‖1 > 1 and ‖At‖1 ≤ 1.

Lemma 5.22 (‖Y t‖1 > 1, ‖At‖1 = 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 > 1, ‖C(A)‖1 = 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 8|N t = C,N t−1 = C ′] ≥ 1

128
− 28n · e−γ/2.

Proof. Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 8. Let E1 be the event
that yt+1

i ≥ yti and yt+1
i ≤ xt+1

i for all i, that at+1
s = 1, and that ‖At+1‖1 > 1. By Corollary 5.6

and Lemmas 5.7, 5.8, and 5.11, we have:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (2n+ dlog2 ne+ 1)e−γ/2.

Further, by Lemma 5.22 since conditioned on E1, ‖Y t+1‖1 > 1 and ‖At+1‖1 > 1 with at+1
s = 1:

P[E|E1, N
t = C,N t−1 = C ′] ≥ 1

128
− 24n · e−γ/2.

This gives the lemma since:

P[E|N t = C,N t−1 = C ′] ≥ P[E|E1, N
t = C,N t−1 = C ′] · P[E1|N t = C,N t−1 = C ′]

≥ 1

128
− 28n · e−γ/2.

Lemma 5.23 (‖Y t‖1 > 1, ‖At‖1 = 0). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 > 1, ‖C(A)‖1 = 0, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 8|N t = C,N t−1 = C ′] ≥ 1

128
− 27n · e−γ/2.
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Proof. Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 8. Let E1 be the event
that yt+1

i = xt+1
i for all i, that at+1

s = 1, and that ‖At+1‖1 > 1. Note that since ‖C(Y )‖1 > 1 and
C(yi) ≤ C(xi) for all i, E1 implies that ‖Y t+1‖1 = ‖Xt+1‖1 > 1. By Lemmas 5.7, 5.8, and 5.15:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1)e−γ/2.

Further, by Lemma 5.22 since conditioned on E1, ‖Y t+1‖1 > 1 and ‖At+1‖1 > 1 with at+1
s = 1:

P[E|E1, N
t = C,N t−1 = C ′] ≥ 1

128
− 24n · e−γ/2.

This gives the lemma since:

P[E|N t = C,N t−1 = C ′] ≥ P[E|E1, N
t = C,N t−1 = C ′] · P[E1|N t = C,N t−1 = C ′]

≥ 1

128
− 27n · e−γ/2.

We next complete the remaining cases when ‖Y t‖1 ≤ 1.

Lemma 5.24 (‖Y t‖1 = 1, ‖At‖1 = 0). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 = 1, ‖C(A)‖1 = 0, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any time t ≥ 1,

P[(N t+3, N t+4) is near-stable |N t = C,N t−1 = C ′] ≥ 1

16
− 12n · e−γ/2.

Proof. The proof follows from a series of four steps, arguing about the state of Ln,γ at times
t + 1, t + 2, t + 3, t + 4. The analysis closely mirrors that of Lemma 5.20, for the case when
‖Y t‖1 = 0 and ‖At‖1 = 0.

Step 1:

Let E1 be the event that yt+1
i = xt+1

i for all i, that at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}, and that

at+1
s = 1. By Lemma 5.15, since ‖C(A)‖1 = 0,

P[yt+1
i = xt+1

i for all i|N t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

Additionally, since ‖C(Y )‖1 = 1, by Lemma 5.8 conclusion (1),

P[at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}|N t = C,N t−1 = C ′] ≥ 1− dlog2 ne · e−γ/2.

Finally, by Lemma 5.7,

P[at+1
s = 1|N t = C,N t−1 = C ′] ≥ 1− e−γ/2.

Thus, by a union bound we have:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (91)

Step 2:
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Let E2 be the event that yt+2
i = xt+2

i for all i and that for l =
⌊
log2

(
‖Xt‖1

)⌋
, at+2

s = at+2
1 =

... = at+2
l = 1 and at+2

l+1 = ... = al+2
dlog2 ne

= 0 (if l = 0, just at+2
s = 1). Conditioned on E1, the only

inhibitor that fires at time t + 1 is as. We can separately consider the cases when at+1
s = 0 and

when at+1
s = 1. By Lemma 5.11 and the fact that yt+1

i = xt+1
i for all i,

P
[
yt+2
i = xt+2

i for all i|E1, N
t = C,N t−1 = C ′

]
≥ 1− ne−γ/2. (92)

We also apply Lemma 5.8. Conditioned on E1, for l =
⌊
log2

(
‖Xt‖1

)⌋
, we have ‖Y t+1‖1 = ‖Xt‖1 ∈

[2l, 2l+1), which gives that,

P[at+2
1 = ... = at+2

i = 1 and at+2
i+1 = ... = at+2

dlog2 ne
= 0|E1,N

t = C,N t−1 = C ′]

≥ 1− dlog2 ne · e−γ/2. (93)

Similarly, applying Lemma 5.7, since conditioned on E1, ‖Y t+1‖1 = ‖Xt+1‖1 ≥ 1:

P[at+2
s = 1|E1, N

t = C,N t−1 = C ′] ≥ 1− e−γ/2. (94)

Combining (92), (93), and (94) we have:

P[E2|E1, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (95)

Step 3:

Let E3 be the event that Y t+3 is a valid WTA configuration, and that for l =
⌊
log2

(
‖Xt‖1

)⌋
,

at+3
s = at+3

1 = ... = at+3
l = 1 and at+3

l+1 = ... = al+3
dlog2 ne

= 0.

If l = 0, conditioned on E1, E2, we have ‖Y t+1‖1 = ‖Y t+2‖1 = 1 and Y t+1 = Y t+2 = Xt. By
the stability property of Lemma 5.11 we thus have:

P[Y t+3 is a valid WTA output configuration |E1, E2, N
t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

Oftherwise, for l ≥ 1, by Corollary 5.13, since conditioned on E1 and E2,

‖min(Y t+1, Y t+2)‖1 = ‖Xt‖1 ∈ [2l, 2l+1)

and at+2
s = at+2

1 = ... = at+2
l = 1 and at+2

l+1 = ... = at+2
dlog2 ne

= 0,

P[Y t+3 is a valid WTA output configuration |E1, E2, N
t = C,N t−1 = C ′] ≥ 1

16
− ne−2γ .

We can easily bound the probability of at+3
s = at+3

1 = ... = at+3
l = 1 and at+3

l+1 = ... = al+3
dlog2 ne

= 0

using the same arguments as in (93) and (94), giving, via a union bound:

P[E3|E1, E2, N
t = C,N t−1 = C ′] ≥ 1

16
− (n+ dlog2 ne+ 1) · e−γ/2. (96)

Step 4:

Finally, let E4 be the event that max(Y t+3, Y t+4) = 1, at+4
s = 1,

∑dlog2 ne
j=1 at+4

j = 0 and yt+4
i ≤

xt+4
i for all i. We can check via Definition 5.16 that if E3 and E4 occur, then (N t+3, N t+4) is a

near-stable pair.

75



Since conditioned on E3, at+3
s = at+3

1 = ... = at+3
l = 1 and at+3

l+1 = ... = al+3
dlog2 ne

= 0, if l ≥ 1, by

Lemma 5.12 conclusion (1),

P[‖Y t+4‖1 ≤ ‖Y t+3‖1|E1, E2, E3, N
t = C,N t−1 = C ′] ≥ 1− ne−γ/2. (97)

Since conditioned on E3, ‖Y t+3‖1 = 1, this gives max(Y t+3, Y t+4) = 1. If l = 0, then we have an
identical bound via the stability property of Lemma 5.11.

Again, since conditioned on E3, ‖Y t+3‖1 = 1, by Lemma 5.7,

P[at+4
s = 1|E1, E2, E3, N

t = C,N t−1 = C ′] ≥ 1− e−γ/2. (98)

By Lemma 5.8, this also gives

P

dlog2 ne∑
j=1

at+4
j = 0

∣∣E1, E2, E3, N
t = C,N t−1 = C ′

 ≥ 1− dlog2 ne · e−γ/2. (99)

By a union bound using (97),(98), and (99),

P[E4|E1, E2, E3, N
t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2. (100)

Completing the proof:
Let E be the event that (N t+3, N t+4) is near-stable . We can complete the proof by bounding:

P[E|N t = C,N t−1 = C ′] ≥ P[E3, E4|N t = C,N t−1 = C ′]

≥ P[E4|E1, E2, E3, N
t = C,N t−1 = C ′]

· P[E3|E1, E2, N
t = C,N t−1 = C ′]

· P[E2|E1, N
t = C,N t−1 = C ′]

· P[E1|N t = C,N t−1 = C ′]

We can bound the above terms using (91), (95),(96), and (100) giving:

P[E|N t = C,N t−1 = C ′] ≥
(

1− (n+ dlog2 ne+ 1) · e−γ/2
)
·
(

1− (n+ dlog2 ne+ 1) · e−γ/2
)

·
(

1

16
− (n+ dlog2 ne+ 1) · e−γ/2

)
·
(

1− (n+ dlog2 ne+ 1) · e−γ/2
)

≥ 1

16
− 4(n+ dlog2 ne+ 1) · e−γ/2

≥ 1

16
− 12n · e−γ/2.

The remaining cases follow relatively straightforwardly from the previous lemmas.

Lemma 5.25 (‖Y t‖1 = 1, ‖At‖1 = 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 = 1, ‖C(A)‖1 = 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 9|N t = C,N t−1 = C ′] ≥ 1

128
− 28n · e−γ/2.
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Proof. Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 9. Let E1 be the event
that yt+1

i ≥ yti and yt+1
i ≤ xt+1

i for all i, that at+1
s = 1, and that ‖At+1‖1 > 1. By Corollary 5.6

and Lemmas 5.7, 5.8, and 5.11, we have:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (2n+ dlog2 ne+ 1)e−γ/2. (101)

We consider two cases, dependent on the number of firing outputs at time t + 1. Conditioned on
E1, ‖Y t+1‖1 ≥ ‖Y t‖1 = 1. By Lemma 5.22 since conditioned on E1, ‖At+1‖1 > 1 with at+1

s = 1:

P[E|E1, ‖Y t+1‖ > 1, N t = C,N t−1 = C ′] ≥ 1

128
− 24n · e−γ/2.

Alternatively, if ‖Y t+1‖ = 1, then (N t, N t+1) is already a near-stable pair of configurations (Defi-
nition 5.16) so we vacuously have

P[E|E1, ‖Y t+1‖ = 1, N t = C,N t−1 = C ′] = 1.

By the law of total probability this gives:

P[E|E1N
t = C,N t−1 = C ′] ≥ 1

128
− 24n · e−γ/2.

Finally, we obtain the lemma by combining this bound with (101).

Lemma 5.26 (‖Y t‖1 = 1, ‖At‖1 > 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 = 1, ‖C(A)‖1 > 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t, N t+1) is near-stable |N t = C,N t−1 = C ′] ≥ 1− 3n · e−γ/2.

Proof. Let E1 be the event that ‖At+1‖1 = 1 and at+1
s = 1. Again Lemmas 5.7 and 5.8 we have:

P[E1|N t = C,N t−1 = C ′] ≥ 1− (dlog2 ne+ 1) · e−γ/2.

Let E2 be the event that ‖Y t+1‖ ≤ 1 and that yt+1
i ≤ xt+1

i for all i. By Lemma 5.12,

P[E2|N t = C,N t−1 = C ′] ≥ 1− ne−γ/2.

If E1 and E2 both occur, (N t, N t + 1) is a near-stable pair of configurations, giving the lemma by
a union bound and the fact that (n+ dlog2 ne+ 1) ≤ 3n.

Lemma 5.27 (‖Y t‖1 = 0, ‖At‖1 = 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 = 0, ‖C(A)‖1 = 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 10|N t = C,N t−1 = C ′] ≥ 1

128
− 31ne−γ/2.
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Proof. Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 10. Let E1 be the event
that at+1

s = 1 if ‖Y t−1‖1 ≥ 1 and 0 otherwise, that at+1
i = 0 for all i ∈ {1, ..., dlog2 ne}, and that

yt+1
i = max(yt−1

i , yti) for all i. By Lemmas 5.7, 5.8, and 5.11

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne+ 1) · e−γ/2 (102)

We next consider two cases, based off the number of firing outputs at time t− 1.

Case 1: ‖C ′(Y )‖1 = 0.

In this case, conditioned on E1, ‖Y t+1‖1 = ‖At+1‖1 = 0. Thus, by Lemma 5.20,

P[(N t+4, N t+5) is near-stable |E1, N
t = C,N t−1 = C ′] ≥ 1

16
− 12n · e−γ/2 (103)

Case 2: ‖C ′(Y )‖1 ≥ 1.

In this case, conditioned on E1, at+1
s = 1, ‖At+1‖1 = 1 and ‖Y t+1‖1 ≥ 1. Thus by Lemmas 5.22

and 5.25,

P[E|E1, N
t = C,N t−1 = C ′] ≥ 1

128
− 28n · e−γ/2 (104)

Overall by (103) and (104) we have

P[E|E1, N
t = C,N t−1 = C ′] ≥ 1

128
− 28n · e−γ/2,

which gives the lemma when combined with (102).

Lemma 5.28 (‖Y t‖1 = 0, ‖At‖1 > 1). Assume the input execution αX of Ln,γ has Xt fixed for
all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) = C ′(X) = Xt,
‖C(Y )‖1 = 0, ‖C(A)‖1 > 1, C(as) = 1, and C(yi) ≤ C(xi), C

′(yi) ≤ C ′(xi) for all i. For any
time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 11|N t = C,N t−1 = C ′] ≥ 1

128
− 33ne−γ/2.

Proof. Let E be the event that (N t+i, N t+i+1) is near-stable for some i ≤ 11. Let E1 be the event
that at+1

i = 0 for all i ∈ {1, ..., dlog2 ne}, and that ‖Y t+1‖1 = 0. By Lemmas 5.8 and 5.12,

P[E1|N t = C,N t−1 = C ′] ≥ 1− (n+ dlog2 ne) · e−γ/2. (105)

Further, by Lemmas 5.20 and 5.27,

P[E|E1, N
t = C,N t−1 = C ′] ≥ 1

128
− 31n · e−γ/2.

This gives the lemma when combined with (105).
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5.6 Completing the Analysis

By combining the nine cases of Lemmas 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, and 5.28 we
can conclude the following general statement:

Lemma 5.29 (O(1) Step Convergence From Typical Configurations). Assume the input execution
αX of Ln,γ has Xt fixed for all t and that ‖Xt‖1 ≥ 1. Consider any pair of typical configurations
(Definition 5.9) C ′, C with C(X) = C ′(X) = Xt. For any time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 11|N t = C,N t−1 = C ′] ≥ 1

128
− 33ne−γ/2.

Proof. The nine cases of the above listed lemmas cover all possible pairs of typical configurations
C,C ′. So the lemma follows immediately.

From Lemma 5.29 we can conclude an even more general result:

Lemma 5.30 (General O(1) Step Convergence). Assume the input execution αX of Ln,γ has
Xt fixed for all t and that ‖Xt‖1 ≥ 1. Consider any pair of configurations C ′, C with C(X) =
C ′(X) = Xt. For any time t ≥ 1,

P[(N t+i, N t+i+1) is near-stable for some i ≤ 13|N t = C,N t−1 = C ′] ≥ 1

128
− 39ne−γ/2.

Proof. By Corollary 5.10, for any C ′, C,

P[N t+1, N t+2 are typical |N t = C,N t−1 = C ′] ≥ 1− 2(n+ dlog2 ne+ 1) · e−γ/2

≥ 1− 6n · e−γ/2.

The lemma then follows by combining this bound with Lemma 5.29.

Finally, using Lemma 5.30, we can prove the two main theorems of this section. The proofs are
similar to those of the main theorems for the two-inhibitor network in Section 3.7.

Theorem 5.2 (O(log n)-Inhibitor WTA). For γ ≥ 12 ln(39tsn/δ), Ln,γ solves WTA(n, tc, ts, δ)
for any tc ≥ 2086(log2(1/δ) + 1). Ln,γ contains dlog2 ne+ 1 auxiliary inhibitors.

Proof. Consider Ln,γ starting with any initial configurations N0, N1 and given an infinite input
execution αX with Xt fixed for all t. We consider two cases:

Case 1: ‖Xt‖1 ≥ 1.

Let ∆ = 15 and r = 139(log2(1/δ) + 1). Let E be the event that there is some time t ≤ tc where
(N t, N t+1) is a near-stable pair of configurations.

For any i ≥ 0, let Ei be the event that there is some time t ∈ {i∆ + 1, ..., (i + 1)∆ − 1} where
(N t, N t+1) is a near-stable pair of configurations. By Lemma 5.30 we have:

P[Ei|N i∆] ≥ 1

128
− 39n · e−γ/2 ≥ 1

200
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by the requirement that γ > 12 ln(39tsn/δ). Let Z0, ..., Zr−1 ∈ {0, 1} be independent coin flips,
with P[Zi = 1] = 1/200. Applying Lemma 2.3:

P[E ] = P

[
r−1⋂
i=0

Ei

]
≥ P

[
r−1∑
i=0

Zi ≥ 1

]
= 1−

(
199

200

)r
.

Using that r = 139(log2(1/δ) + 1) and that
(

199
200

)139 ≤ 1
2 :

P[E ] ≥ 1−
(

199

200

)139(log2(1/δ)+1)

≥ 1− δ

2
. (106)

Thus, with probability ≥ 1− δ
2 there is some time t ≤ r ·∆− 1 ≤ 2085 · (log2(1/δ) + 1)− 1 ≤ tc− 2

in which (N t, N t+1) is a near-stable pair of configurations. By Corollary 5.19, if (N t, N t+1) is a
near-stable pair, with probability ≥ 1− 3tsn · e−γ/2, N t+2 is a valid WTA configuration and:

Y t+2 = Y t+3 = ... = Y t+2+ts .

By the requirement that γ ≥ 12 ln(39tsn/δ) and (106) we thus have that the network reaches a
valid WTA configuration within time tc and remains in it for time ts with probability at least:(

1− δ

2

)
·
(

1− δ

e6

)
≥ 1− δ,

yielding the theorem in this case.

Case 0: ‖Xt‖1 = 0

In this case, by Corollary 5.6 and a union bound, for any configurations C,C ′ with C(X) =
C ′(X) = Xt:

P[‖Y 2‖1 = ... = ‖Y 2+ts‖1 = 0|N1 = C,N0 = C ′] ≥ 1− 3tsn · e−γ/2

≥ 1− δ

by the requirement that γ ≥ 12 ln(39tsn/δ). This easily gives the theorem in this case since when
‖Xt‖1 = 0, ‖Y t‖1 = 0 is a valid WTA output configuration.

We now use a similar argument to show with what parameters Ln,γ solves the expected-time
WTA problem of Definition 2.9.

Theorem 5.3 (O(log n)-Inhibitor Expected-Time WTA). For γ ≥ 12 ln(39tsn), Ln,γ solves
WTA-EXP(n, tc, ts) for any tc ≥ 4001. Ln,γ contains dlog2 ne+ 1 auxiliary inhibitors.

Proof. Our proof closely follows that of Theorem 3.3. Recall that in Definition 2.9 we defined the
convergence time for any infinite input execution αX and output execution αY :

t(αX , ts, αY ) = min
{
t : Y t is a valid WTA output configuration for Xt and Y t = ... = Y t+ts

}
.

Define the worst case expected convergence time of Ln,γ on input αX by:

tmax(αX) = max
α1=N0N1

(
E

αY ∼DY (Ln,γ ,α1,αX)
t(αX , ts, αY )

)
.
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To prove the lemma we must prove that for any αX with Xt fixed for all t, tmax(αX) ≤ 16. Fixing
such an αX , for any initial configuration α1 = N0N1, let E

α1
and P

α1
denote the expectation and

probability of an event taken over executions drawn from D(Ln,γ , α1, αX).
We consider the case when αX has ‖Xt‖1 ≥ 1. The case when ‖Xt‖1 = 0 follows easily from a

similar proof using Corollary 5.6.
Let ∆ = 15 and let E1 be the event that there is some t ∈ {1, ...,∆ − 1} where (N t, N t+1) is

a near-stable pair of configurations. Let Estab be the event that there is some t ∈ {1, ...,∆ − 1}
where (N t, N t+1) is a near-stable pair of configurations and additionally, where N t+2 is a valid
WTA output configuration with N t+2 = ... = N t+2+ts . Let Ē1 and Ēstab be the complements of
these two events. By Lemma 5.30, for any initial α1 = N0N1:

P
α1

[E1] ≥ 1

128
− 39ne−γ/2 ≥ 1

200
. (107)

by the requirement that γ ≥ 12 ln(39tsn). Further, by Corollary 5.19, if (C ′, C) is a near-stable
pair of configurations, then

P
α1

[N t+1 is a valid WTA output config. and N t+2 = ... = N t+2+ts |N t = C ′, N t+1 = C]

≥ 1− 3tsne
−γ/2

≥ 1− 1

1000ts
(108)

where the bound holds since γ ≥ 12 ln(39tsn) ≥ 6 ln(39t2sn) and so e−γ/2 ≤ 1
(39nt2s)

6 ≤ 1
1000nt2s

.

Together (107) and (108) give that:

P
α1

[Estab] ≥ P
α1

[Estab|E1] · P
α1

[E1] ≥ 1

200
·
(

1− 1

1000ts

)
≥ 1

200
− 1

1000ts
.

We can write:

E
α1

[t(αX , ts, αY )] = E
α1

[t(αX , ts, αY )|Estab] · P
α1

[Estab]

+ E
α1

[t(αX , ts, αY )|E1, Ēstab] · P
α1

[E1, Ēstab]

+ E
α1

[t(αX , ts, αY )|Ē1] · P
α1

[Ē1] (109)

Conditioned on Estab (which also requires that E1 occurs), the network reaches a near-stable pair of
configuration within ∆ steps, reaches a valid WTA output configuration within ∆ + 1 steps, and
stabilizes for ts steps. Thus, we have:

E
α1

[t(αX , ts, αY )|Estab] ≤ ∆ + 1.

Conditioned on E1, Ēstab the network reaches a near-stable pair of configurations, but does not
stabilize. We can bound

E
α1

[t(αX , ts, αY )|E1, Ēstab] ≤ (∆ + 1 + ts) + E
N∆+tsN∆+1+ts

[t(αX , ts, αY )]

≤ ∆ + 1 + ts + tmax(αX).
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Finally, conditioned on Ē1, the network does not reach a pair of near-stable configurations within
∆ steps. We have:

E
α1

[t(αX , ts, αY )|Ē1] ≤ ∆ + E
N∆−1N∆

[t(αX , ts, αY )]

≤ ∆ + tmax(αX).

We can plug these bounds along with the probability bounds of (107) and (108) into (109) to
obtain:

E
α1

[t(αX , ts, αY )] ≤ (∆ + 1) ·
(

1

200
− 1

1000ts

)
+ (∆ + 1 + tmax(αX) + ts) ·

1

1000ts

+ (∆ + tmax(αX)) · 199

200

≤ ∆ + 1 + tmax

(
199

200
+

1

1000ts

)
+

ts
1000ts

≤ ∆ + 1 + tmax(αX) · 249

250
+

1

1000
.

Since this bound holds for all α1 we have:

tmax(αX) ≤ ∆ + 1 + tmax(αX) · 249

250
+

1

100

which gives tmax(αX) ≤ 250(∆ + 1) + 250
1000 ≤ 250∆ + 251. This bound holds for all αX and so gives

the lemma, after recalling that ∆ = 15.

5.7 Constructions With Runtime Tradeoffs

The family of two-inhibitor networks of Section 3 and the family of O(log n)-inhibitor networks of
Section 5.2 represent two extremes of a tradeoff between number of inhibitors and runtime. As
shown in Theorem 4.3, the two-inhibitor network uses the minimum number of neurons required to
solve WTA with a reasonably long stability period. At least when considering a constant probability
of success, the O(log n)-inhibitor networks gives optimal convergence time of O(1) steps. In this
section we outline, at a high level, two families of networks that allow a tradeoff between these two
extremes.

5.7.1 Fixed Convergence Time Construction

The first construction lets us to achieve any desired convergence time θ if sufficiently many inhibitors
are used. Specifically, we describe a family of networks which converge to a valid WTA output
configuration with constant probability in O(θ) steps (and with probability ≥ 1− δ in O(θ · log 1/δ)
steps), using O(θ log1/θ n) inhibitors. Note that setting θ = 1 recovers the runtime-inhibitor tradeoff
of our O(log n)-inhibitor networks.

We have one stability inhibitor as that functions in the same way as the stability inhibitor
in our O(log n)-inhibitor construction (Definition 5.1), ensuring that, once the network reaches a
valid WTA output configuration, it remains in this configuration for ts consecutive time steps with
high probability (as long as some other stability conditions, similar to the near-stable condition of
Definition 5.16 are satisfied).
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The remaining inhibitors are split into θ groups each containing O(log1/θ n) inhibitors. The
ith group for i ∈ {2, ..., θ} is responsible for reducing the number of competing outputs from any
number

k ∈
(

2log(i−1)/θ n, 2logi/θ n
]

to some k′ ≤ 2log(i−1)/θ n. With O(log1/θ n)) inhibitors this can be done with high probability in
O(1) time steps via a method described below. Thus, in O(θ) time steps, the number of firing

outputs (corresponding to firing inputs will reduce from at most 2logθ/θ n = n down to 2log1/θ n.
Once the number of computing outputs is this low, the final group of O(log1/θ n) inhibitors can
drive convergence to WTA with constant probability in O(1) steps using an identical strategy to

that employed in our O(log n)-inhibitor network. n is just replaced by 2log1/θ n.

It remains to explain how the number of competing outputs is reduced from k ∈ [2log(i−1)/θ n, 2logi/θ n]

to k′ ≤ 2log(i−1)/θ n in a single time step using O(log1/θ n) inhibitors. Again, we use a strategy sim-
ilar to our O(log n)-inhibitor construction. depending on the number of firing outputs at time
t, the O(log1/θ n) inhibitors in group i induce O(log1/θ n) different firing probabilities. Letting
∆(j) = j · log(i−1)/θ n, these firing probabilities are:

1

2∆(1)
,

1

2∆(2)
, ...,

1

2∆((log1/θ n−1))
,

1

2∆(log1/θ n)
.

Note that ∆(1) = log(i−1)/θ n and ∆(log1/θ n) = logi/θ n. Additionally, the ratio between adjacent

probabilities is 2log(i−1)/θ n. Thus, for any number k ∈
(

2log(i−1)/θ n, 2logi/θ n
]

of firing outputs at

time t, the inhibitors can induce a firing probability between 1
k and 2log(i−1)/θ n

k . Thus, with good

probability, the number of firing outputs will reduce to some value k′ ≤ 2log(i−1)/θ n.
While we do not analyze this construction in detail, using similar proof techniques to those used

for our O(log n)-inhibitor construction, it is possible to show:

Theorem 5.31 (θ-Step WTA). For any n ∈ Z≥2 and θ ∈ Z≥1 there is an a family of SNNs
containing O(θ · log1/θ n) auxiliary inhibitory neurons which solve WTA(n, tc, ts, δ) for any ts, δ
and any tc ≥ c1 · θ(log2(1/δ) + 1), where c1 is some fixed constant.

5.7.2 Fixed Inhibitor Budget Construction

Our second construction is a family of networks using α inhibitors for any α ≥ 2, which converges
to a valid WTA state with constant probability in O(α · (log n)1/(α−1)) steps (and with probability
≥ 1−δ in O(α ·(log n)1/(α−1) · log 1/δ) steps. Note that for α = 2, this gives convergence in O(log n)
steps, matching the performance of the two-inhibitor network construction of Section 3.

As in our two-inhibitor construction (Definition 3.1) and O(log n)-inhibitor construction (Defi-
nition 5.1) we employ one stability inhibitor, which ensures that, once the network reaches a valid
WTA output configuration, it remains in such a configuration with good probability for ts consec-
utive steps (again, as long as some other stability conditions, similar to the near-stable condition
of Definition 5.16 are satisfied).

We label the remaining α−1 inhibitors a1, ..., aα−1. For each i, ai fires with high probability at

time t+ 1 whenever k ≥ 2(logn)(i−1)/(α−1)
outputs fire at time t. In this way, with high probability,

a1, ..., ai fire (and all other inhibitors do not fire) at time t+1 whenever the number of firing outputs
k is in the range:

Ri
def
=
[
2(logn)(i−1)/(α−1)

, 2(logn)i/(α−1)
)
.
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We set the inhibitory weights such that when ai fires (along with aj for all j ≤ i), each firing output
fires in the next step with probability pi = 1

2(logn)(i−1)/(α−1) . For k ∈ Ri we have:

pi · k ∈
[
1, 2(logn)i/(α−1)·(1−1/(logn)1/(α−1))

)
.

With each output continuing to fire with probability 1

2(logn)(i−1)/(α−1) in each step, starting from

at most 2(logn)i/(α−1)
competing outputs, we thus reach a configuration with k ≤ 2(logn)(i−1)/(α−1)

firing outputs with good probability within O((log n)1/(α−1)) steps. Overall, over α such levels, the
network reaches a valid WTA configuration with constant probability in O(α · (log n)1/(α−1)) steps.

Again, while we do not analyze this construction here, it is possible to prove the following:

Theorem 5.32 (α-Inhibitor WTA). For any n, α ∈ Z≥2 there is an a family of SNNs con-
taining α auxiliary inhibitory neurons which solve WTA(n, tc, ts, δ) for any ts, δ and any tc ≥
c1 · α(log n)1/(α−1) · (log2(1/δ) + 1), where c1 is some fixed constant.

6 Discussion and Future Work

We have presented an exploration of the WTA problem in stochastic spiking neural networks,
giving network constructions, runtime analysis, and lower bounds. Our work leaves open a number
of questions, both in regards to the WTA problem, and more broadly, in exploring spiking neural
networks from an algorithmic perspective. We discuss some of these directions below. See also
Section 2.5 in which we discuss possible extensions two and modifications of our basic spiking
neural network model.

6.1 Winner-Take-All Extensions and Open Questions

We first overview future work directly related to the WTA problem studied in this work.

6.1.1 Lower Bounds

In Section 4 we present lower bounds for one and two-inhibitor WTA networks (Theorems 4.3 and
4.14) . In [LMP17a] we also give nearly tight lower bounds on the convergence time for networks
using α > 2 inhibitors, in a similar model to the one presented here. A few interesting open
questions remain:

• Can our lower bound for two-inhibitor networks (Theorem 4.14) be tightened to match our
upper bound (Theorem 3.2) up to a constant factor, rather than a O(log log n) factor?

• Our lower bounds apply to somewhat restricted classes of simple and symmetric SNNs (Def-
initions 4.1 and 4.2 respectively.) We conjecture, however, that these lower bounds can be
shown for general SNNs, with no restrictions on the network structure.

• It would be interesting to obtain lower bounds which help explain the relationship between
history and convergence time. Our O(log n)-inhibitor network of Section 5.2 achieves constant
probability, O(1) convergence time. However, it requires a history period of two steps. Is it
possible to show that, with no history period (i.e., in the basic SNN model of Section 2), it
is not possible to achieve this convergence time? Is the O(log n) time for our two-inhibitor
network optimal for historyless networks, regardless of the number of inhibitors used? In a
network with history, is it possible to solve WTA with a single auxiliary neuron, or can the
lower bound of Theorem 4.3 be extended to this case?
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6.1.2 Variations on the WTA Problem

Our work focuses on a simplified WTA problem in which all inputs either fire at every time step
or never fire (see Definition 2.7). The challenge in solving this problem is in breaking symmetry
between the firing inputs. In future work we plan to extend this work to consider more general
variants of WTA, discussed below.

• Non-Binary WTA: We plan to extend our WTA work to a non-binary setting, in which
inputs have different firing rates and selection is based on those rates. The most common
requirement is for the network to select an input neuron with the highest or near-highest
firing rate [YG89, CGL92, OL06].

In the most basic setting, we can consider n inputs x1, ..., xn with firing rates r1, ..., rn ∈ [0, 1]
as neurons that fire independently at random at each time step, each time with probability
ri. In [LMP17c], we presented an initial exploration of the non-binary WTA problem with
inputs of this type, giving a solution using O(n log n) auxiliary neurons to select an input with
firing rate within a constant factor of the maximum. It seems that in our basic SNN model,
Ω(n log n) auxiliary neurons may in fact be necessary: essentially, for each input neuron,
Ω(log n) auxiliary neurons are needed to record a short firing history, from which the firing
probability ri can be (implicitly) estimated to within a constant factor, with high probability.
Thus, networks using a sublinear number of auxiliary neurons, like those we gave for binary
WTA, may be ruled out.

However, more efficient solutions may be possible if we use an SNN model with a history
period. Even without history, efficient solutions may be possible if we relax or modify the
WTA problem. For example, we may just require selecting each neuron with probability

ri∑n
i=1 ri

, or some other function of the firing probabilities.

• WTA with Different Output Conditions: It would be interesting to consider variations
on the basic output condition of the WTA problem, both in the binary and non-binary input
setting. For example, k-WTA is a common variant of WTA, in which the goal is to select k
inputs with the highest or near-highest firing rates [MEAM89, Maa96, WS03, HW08], rather
than just as single input. k-WTA, for example, has been used in recent work in modeling
sparse coding in the fly olfactory via random projection methods [DSN17]. It would be
interesting to understand the fundamental complexity (in terms of network complexity and
convergence time) of implementing this primitive in spiking neural networks.

6.1.3 Applications of WTA

Finally, it would be interesting to explore how our WTA constructions can be integrated into
solutions to higher-level neural tasks. Some problems which may be worth considering are:

• Attention in sensory processing systems, which is thought to be implemented via WTA com-
petition [LIKB99, IK01]. In this setting, a specific set of neurons is activated while others
are suppressed, allowing computation to happen on the selected neurons without interfer-
ence. Formulating and studying simple tasks which model the use of WTA as an attention
mechanism would be an interesting direction.

• The use of WTA in neural sparse coding algorithms [DSN17]. In this setting, a stimulus, such
as a specific odor, triggers the firing of a large set of neurons, which is then “sparsified” via
non-binary k-WTA competition to k neurons that encode the odor – those with the strongest
response to the stimulus.
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• Clustering problems, in a which the network is set up such that, when given any input, the
neuron which corresponds to the best cluster assignment for this input fires at the highest
rate. Non-binary WTA can be used to select this neuron [AF94, WR94].

6.2 Other Neural Computational Primitives

WTA is a basic primitive that seems to be useful in a broad range of neural tasks, discussed above.
It is also useful in exploring the computational power of SNNs and studying tradeoffs among such
costs as runtime, network size, and the use of randomness. In future work, we hope to to identify
other such basic primitives, as a means of building a general algorithmic theory for spiking neural
networks. We discuss some possible directions below:

6.2.1 Neural Indexing

In [LMP17b] we define and study the Neuro-RAM problem: the network is given a set of n binary
inputs X1, along with a smaller set of log n inputs X2 whose firing pattern represents an index
into X1. The goal is the for the output to fire if and only if the selected neuron in X1 is firing.
In [LMP17b], we applied our Neuro-RAM primitive to the similarity testing problem: given two
binary inputs X1, X2, determine with high probability whether their Hamming distance is greater
than some threshold. We solved this problem efficiently by using a Neuro-RAM model to select
and compare random positions in X1 and X2.

It would be interesting to formulate other basic neural tasks that may employ a Neuro-RAM
primitive. For example, one can consider estimating the differences between firing patterns (e.g.,
representing sensory inputs at successive times), estimating the average firing activity of a group
of neurons responding to some stimulus, or randomly “exploring” different sets of neurons whose
firing may trigger a desired response (such as the recall of a memory).

In our work, aside from efficient Neuro-RAM constructions, we give lower bounds demonstrating
that these constructions give a near-optimal tradeoff between network size and runtime in our basic
SNN model with a sigmoidal spike probability function. Our proofs are based on reducing an SNN
to a distribution over deterministic networks, and then bounding the VC dimension [Vap98] of
these networks.

Generally, while VC dimension has been studied for spiking networks [ZP96, MS99], we are
the first to apply it to prove computational lower bounds. We hope to continue our work, greatly
expanding the toolkit for proving lower bounds in biologically plausible networks, including those
with different spike probability functions, with history, and even with refractory periods or spike
propagation delays.

Further, Neuro-RAM lower bounds let us compare our SNN models with artificial neural network
models that use continuous-output gates, e.g., sigmoidal gates [Bar93, Bar97] or rectified linear
units (ReLUs) [JKLR09, NH10]. The Neuro-RAM problem can be solved very efficiently in such
networks [Koi96], contrasting with its apparent difficulty in SNNs. However, the continuous-output
solutions do not seem very robust: they do not appear to tolerate small variations in edge weights,
and they seem to rely on precise (infinite precision) gate outputs. We hope that comparing these
models with our SNNs could lead to a better understanding of continuous-output circuits in noisy
settings. We conjecture that in these settings, these networks behave more like their spiking network
counterparts than like ideal continuous-output networks.
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6.2.2 Binary Vector Problems

Beyond the WTA and Neuro-RAM problems it would also be interesting to consider other basic
problems with fixed input firing patterns, that is, binary vector problems. For example, the problem
of estimating the total firing strength of a population of neurons corresponds to determining the
Hamming weight of a binary input vector. More complex problems include string matching, in
which we test whether the input firing pattern contains a copy of a specified substring. In the
brain, this may be used for pattern recognition, or for alignment and comparison of patterns
triggered by multiple stimuli.

6.2.3 Problems with Non-Binary Inputs

It would also be valuable to consider problems in which the input is non-binary, for example,
problems that require computing some function of the firing rates of the input neurons. For example,
we may consider the problem of approximating the sum of input firing probabilities, or more
generally, some norm of the firing rate vector r1, ..., rn. We may also consider similarity testing
under different norms (generalizing the Hamming distance similarity testing problem in [LMP17b]).

Many algorithms proposed in computational neuroscience and computer science apply opera-
tions such as addition and multiplication to continuous neuron output values [DR89, AZGMS14,
AGMM15, DSN17]. These continuous output values can be thought of as abstractions of firing
rates in SNNs. We would like to understand how such basic operations may be emulated in more
biologically plausible SNNs.

6.2.4 Synchronization Problems

Finally, it would be interesting to study algorithmic primitives that are not expressed in terms of
simple input-output mappings. Notably, we would like to consider synchronization problems in
which neurons, starting from arbitrary firing states, cooperate to align their firing in some way.
Synchronization of spiking patterns and the emergence of neural rhythms are widely studied in both
empirical and computational neuroscience [VVAE94, Buz06, RGDA97, WSO+07]. Synchronization
is also an important technique used in distributed algorithms [BL85, KO87, Cri89, LSW09], and
thus is a natural problem to include in an algorithmic theory of neural computation.

6.3 Learning Problems and Dynamic Networks

The work presented in this work, as well as the work proposed in Section 6.2 focuses on computation
in static networks, with fixed edge weights. An important direction is studying algorithms for
learning in dynamic spiking networks, in which synapse weights change throughout the computation
via, for example, a Hebbian update rule.

In classical Hebbian learning [Heb05, CD08], the weight of a synapse is continuously updated by
a factor that depends on the product of the firing strengths of its two endpoints. The more the firing
of the endpoints correlates, the stronger the synapse becomes. We hope to define a Hebbian-style
rule for our synchronous SNN models similar to, for example, the simple rule used in [LMPV18].
When both endpoints fire at the same time, the synapse weight should increase by a small factor,
and when just one fires, the weight may decrease. We then hope to use our dynamic network model
to study the costs of many learning problems such as memory formation and concept association
[Ama77, Val05, LMPV18], linear classification [HNGS+06], principal component analysis [San89,
HO97, HO00], and sparse coding [OF04, AGMM15].
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6.4 Neural Linear Algebraic Computation

Finally, we are interested in understanding how basic linear algebraic computation may be per-
formed in spiking neural networks, possibly with the use of randomization. Randomized algorithms
have recently led to a number of breakthroughs in fundamental linear-algebraic and geometric
problems such as linear regression [CW13, CLM+15], low-rank approximation [Sar06, NN13], clus-
tering [BZD10], and locality-sensitive hashing [DIIM04, AI06]. Many mechanisms used in neural
computation have close analogs to randomized linear algebraic techniques; e.g., Oja’s Hebbian-
style rule for neural principal component analysis (PCA) [HO97, HO00] is a common technique for
low-memory PCA and eigenvector approximation [Sha15, JJK+16]. Fast linear-algebraic methods
based on random projections [Ach03, Sar06] are also conjectured to play a role in neural compu-
tation [GS12, AZGMS14], with random synaptic connectivity providing a natural implementation
of randomized dimensionality-reduction. We hope to study the application of these techniques in
stochastic spiking neural networks, forging connections with work on new algorithms for fast linear
algebraic computation.
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