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Cortical network functioning critically depends on finely tuned interactions to

afford neuronal activity propagation over long distances while avoiding run-

away excitation. This importance is highlighted by the pathological conse-

quences and impaired performance resulting from aberrant network excitabil-

ity in psychiatric and neurological diseases, such as epilepsy. Theory and ex-

periment suggest that the control of activity propagation by network interac-

tions can be adequately described by a branching process. This hypothesis is

partially supported by strong evidence for balanced spatiotemporal dynam-

ics observed in the cerebral cortex, however, evidence of a causal relationship

between network interactions and cortex activity, as predicted by a branch-

ing process, is missing in humans. Here we test this cause-effect relationship

by monitoring cortex activity under systematic pharmacological reduction of

cortical network interactions with antiepileptic drugs. We report that cortical

activity cascades, presented by the propagating patterns of epileptic spikes, as

well as temporal correlations decline precisely as predicted for a branching
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process. Our results provide the missing link to the branching process theory

of cortical network function with implications for understanding the founda-

tions of cortical excitability and its monitoring in conditions like epilepsy.

Introduction

Cortical network functioning critically depends on a finely tuned level of excitability, the tran-

sient or steady-state response in which the brain reacts to a stimulus. On the one side, ex-

citability must be small enough to prevent explosive growth of neuronal activity cascades. On

the other side, it must be large enough to allow for activity propagation over long distances to

afford neuronal communication across sites far apart. The importance of finely tuned cortical

excitability levels is highlighted by the pathological consequences and impairments resulting

from aberrant network excitability in neurological (1) and psychiatric diseases (2). In epilepsy,

changes in cortical network excitability are believed to be an important cause underlying the ini-

tiation and spread of seizures, i.e. the large non-physiological neuronal activity cascades across

time and space (3–5). Pharmacological reduction of excitability consequently constitutes the

main treatment approach to control seizures (6).

In the brain, excitability is a product of excitatory and inhibitory network interactions. To

avoid regimes where excitability is too high or too low, these interactions must be finely tuned.

A growing amount of evidence indicates that this control of activity propagation by network

interactions can be adequately described by a branching process (7–14). In a branching process,

activity will remain small and local when interactions are too weak. When interactions are too

strong, dynamics over-activates the whole network. At the critical transition between these two

states, activity propagates in balanced cascades, or avalanches, avoiding premature die-out and

runaway excitation. These balanced propagation patterns closely match empirical observations

in animal and human studies where spontaneous activity was found to propagate from one
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active group of neurons to another in cascades over long distances without runaway excitation

(9, 15–17). Further evidence comes from observations of long-range temporal correlations in

cortical activity (13,15,18), another hallmark of a critical branching process (13,14,19). When

network interactions in a branching process are reduced, cascade sizes and temporal correlations

decline (7–9, 13, 14, 20). In vitro studies using cortex preparations, where network interactions

can be pharmacologically reduced, show that activity changes closely match the predictions of

a branching process (9).

Empirical evidence, however, that alterations in cortical network interactions predict dynam-

ics changes according to a branching process in humans is missing. The lack of this cause-effect

demonstration constitutes a missing link to the branching process theory with implications for

understanding the foundations of cortical excitability and its management in conditions like

epilepsy. Here we directly test the hypothesis that cortical network interactions control dynam-

ics according to a branching process in humans. We make use of the notion that antiepileptic

drugs (AEDs) are specifically targeted at reducing network interactions either by reduction of

a neuron’s individual excitability, reduction of excitatory synaptic transmission or increase in

inhibitory synaptic transmission (6). By systematic investigation of the effects of AEDs on

cortex dynamics alongside a companion neural network model, we show that changes in net-

work interactions predict spatiotemporal cortex dynamics precisely as expected for a branching

process.

Results

We first analyzed a parsimonious neuron network model based on a branching process to review

how collective cortical dynamics is shaped by network interactions and AED action. Similar

models have been used widely to successfully predict the dynamics of tissue from the cortex in

humans, monkeys, rats and turtle (9, 10, 12, 13, 21–25). The model is simple enough to provide
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insight into the mechanisms governing collective network dynamics yet entails sufficient detail

to model relevant aspects of AED action on network interactions. The network consisted of

probabilistic integrate-and-fire neurons with all-to-all connectivity, a subset of neurons (20%)

being inhibitory (Fig. 1 B). Our model differed from previous models in that it contains means

to mimic AED action to reduce excitability (6) (Fig. 1 A): (a) a variable to probabilistically

reduce neuron excitability, (b) a scaling parameter by which excitatory synaptic strengths could

be downscaled, and (c) a scaling parameter by which inhibitory synaptic strengths could be

upscaled. We studied how the model dynamics in terms of cascading activity and temporal

correlations change as a result of decreasing excitability by means of AED action.

In the absence of AED action, collective dynamics exhibited the well-known phase tran-

sition from a quiescent to an active phase when connection strength was increased (Fig. 1 C,

black line). Activity propagated in the form of cascades or avalanches (9, 12, 21). Cascade

sizes, quantified by the large cascade fraction, LCF, became larger as interaction strength was

increased, whereas temporal correlations, quantified by the autocorrelation half-width, ACW,

peaked at criticality (13, 14, 18) (Fig. 1 C, grey dotted and broken lines, respectively). Next,

we studied the effect of AED action on these dynamical signatures. LCF and ACW decreased

with each AED mechanism of action modelled when dynamics was placed at criticality or in the

subcritical regime (Fig. 1 D, E). These results illustrate how AED action reduces network inter-

actions and, thereby, provides means for changing the system’s control parameter, i.e., network

interactions. By controlling network interactions, AEDs therefore allow to directly test if net-

work interactions control spatiotemporal cortex dynamics precisely as predicted by a branching

process in humans.

To study cascading network events in human cortex, we took advantage of the fact that in-

terictal epileptic spikes superimpose in the extracellular field as a consequence of synchronous

activity of spatially neighboured group of neurons (Fig. 2 A). Epileptic spikes consist of ele-
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vated population activity known to propagate across cortex (26). Inter-spike intervals exhibited

a bimodal density distribution (Fig. 2 B) indicative of short intervals arising from spikes in the

same cascade and long intervals separating different cascades. Spatiotemporal spike cascades

were consequently identified if spikes occurred within the same or consecutive time bins of

width ∆t (Fig. 2 C), where ∆t was chosen to be greater than the short timescale of inter-spike

intervals within a cascade, but less than the longer timescale of inter-cascade quiescent peri-

ods (27). We observed spikes to organize in cascades of continuous events in time and space

indicative of the presence of significant correlations in neuronal activity among cortical sites

which, accordingly, were destroyed when the times of spikes were shuffled randomly (Fig. 2

D). Cascade sizes exhibited a high degree of size variability with larger sizes occurring system-

atically less often, as predicted by a branching process in the vicinity of criticality or slightly

subcritical (7–9, 11, 14). Higher antiepileptic drug loads generally led to smaller cascade sizes

(Fig. 2 D, blue). As a quantification, the large cascade fraction, LCF, was significantly lower

in days with high compared to low AED load (Fig. 2 E, p=0.005, two-sided paired t-test). This

effect could not be explained by spike rate changes, which exhibited no difference (p=0.381,

two-sided paired t-test).

Next, we tested whether temporal correlation were controlled by AEDs as predicted by a

branching process. Modulations in signal power are a generally useful currency in character-

izing neural dynamics (28). We analyzed broadband high-frequency power modulations which

provide a local estimate of population spike rate variations near an electrocorticographic elec-

trode (29–33). Autocorrelation functions obtained from these high-frequency power modulation

have been shown to accurately capture temporal integration properties (34). Autocorrelation

functions exhibited a faster decay in high AED medication days compared to low medication

days (Fig. 3 A). As a quantification of this decay, the autocorrelation function width, ACW, was

significantly lower in days with high compared to low AED load (Fig. 3 B, p=0.008, two-sided
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paired t-test). This effect could not be explained by changes in high-frequency power, which

exhibited no difference (p=0.988, two-sided paired t-test).

Discussion

Our results demonstrate that human cortical dynamics under manipulation of network interac-

tions by AEDs is predicted by a branching process. Albeit backed by a large number of com-

putational studies (13, 20–25, 35, 36), empirical evidence demonstrating interaction strength as

a control parameter in this phase space had previously been limited to reduced in vitro prepa-

rations (9). By using AEDs as means to pharmacologically manipulate and reduce cortical

network interactions in epilepsy patients, we report that dynamics becomes more short ranged

in terms of spatiotemporal activity cascades and temporal correlations. These findings closely

match predictions for dynamical shifts towards the subcritical state, as demonstrated in a com-

panion model. By directly controlling interaction strengths in patients, our work overcomes

previous limitations inherent to passive monitoring of network dynamics. Taken together, our

results indicate that AEDs drive cortical network dynamics into a subcritical regime by acting

on the control parameter which may serve to avoid the risk of runaway excitation (Fig. 4).

Beyond providing the missing link to the branching process theory of cortical network func-

tion, the current findings have implications for understanding the foundations of cortical ex-

citability and information processing in cortex. Aberrant excitability levels are an important

cause underlying the initiation and spread of seizures (3–5). Accordingly, the ability to mon-

itor excitability and control its degree is of prime importance for adequate clinical care and

treatment. As a unifying framework linking interictal spike cascades, temporal correlations and

cortical network excitability, a branching process provides precise markers informed by theory

on how to monitor excitability levels from EEG (37). For example, while previous work has

shown that interictal spike count itself does not reflect excitability (38), a branching process,
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backed by our empirical findings, suggests that cascade sizes of interictal spikes are more in-

formative about network excitability. The diminished spread of neural activity to other cortical

sites indicated by the smaller cascades under high AED load is in line with observations of

lower synchrony under AED (37) indicative of decreased cortical interactions. Collectively, a

fundamental dynamical understanding of how excitability and its control represents in corti-

cal activity may help to screen and evaluate treatments targeted at excitability in epilepsy and

beyond.

The maintenance and integration of information over extended periods of time is consid-

ered to be important for information processing at the neural network level (39, 40) for which

long-range temporal correlations are thought to provide the neural basis (13,34,41,42). Conse-

quently, theory and experiment show that a balanced state, where long-range temporal correla-

tion peak, gives rise to optimal information processing (10, 15, 21, 27). Our results demonstrate

a systematic decrease in temporal correlations with AED load, some of which are known have

detrimental effects on cognition. The insights gained into the decline of spatiotemporal corre-

lation as a function of decreased cortical excitability may thus help to uncover the underlying

neuronal correlates linked to these cognitive impairments.
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Materials and Methods

Preprocessing of electrocorticogram data

Multi-day electrocorticogram recordings from 17 patients undergoing presurgical monitoring at

the Epilepsy Center of the University Hospital of Freiburg, Germany (43) were analyzed. The

number and dosing level of antiepileptic drugs (AEDs) varied over the course of the recording

period. Patients gave informed consent. The number of electrodes varied between patients and

included both subdural and depth electrodes (mean number of electrodes n = 78±24, 30-121).

Electrode placement was solely determined by clinical considerations. Electrocorticogram data

were sampled at either 256 Hz, 512 Hz or 1024 Hz. If sampled at higher rate, data were first
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downsampled to 256 Hz. A notch filter was then applied to remove potential contamination

with 50 Hz line noise. Data was preprocessed in segments of one hour duration. To compare

high and low AED medication regimes, we picked the one day with the highest cumulative

AED load and the one day with the lowest AED load in each patient and analyzed all hours

from midnight to midnight within this day. If there were more than one day with highest and/or

lowest medications, we picked the two days furthest apart from each other.

Detection of epileptic spikes

Spikes are large, abnormal discharges that occur between seizures in patients with epilepsy. We

here detected sharply contoured waveforms as spikes via a previously validated method (Fig.

2 A, (44)). In brief, for each one-minute long data block, potential spikes were detected, if

they cross a threshold defined by standard deviations (SD coefficient=4) of the absolute am-

plitude of high bandpass filtered signal (2050 Hz) for the channel. Next, the raw ECoG data

were bandpass filtered between 135 Hz (second order digital Butterworth) and all channels in

the one-minute block were scaled by a scaling factor which is the median value of the average

absolute amplitudes across all channels in the grid. Once data had been scaled, shape criteria

of amplitude, duration, and slope were applied to the scaled, lower bandpass filtered EEG sig-

nal (135 Hz) at the previously identified potential spikes. Spike duration was determined by

searching 10 sampling steps (at 256 Hz) on either side of the detected peak to find the minima

on each side. Standard parameters described previously were used to identify spikes (44): total

amplitude of both half-waves > 600µV , slope of each half-wave > 7µV/ms, duration of each

half-wave > 10ms. Timestamps of spikes were saved for further analysis.
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Detection of spike cascades

Fig. 2 B shows the distribution of inter-spike intervals from one patient. The bimodality in-

dicates a fast timescale belonging to the inter-spike intervals within a cascade (left peak), and

a much slower timescale indicating the intervals between cascades (right peak). A cascade

was defined as a spatiotemporal cluster of consecutive spikes with inter-spike intervals not ex-

ceeding a temporal threshold ∆T . ∆T was chosen to be in the trough between the two peaks

∆T = 20 sampling steps at 256 Hz (grey vertical line) in order to identify spikes belonging to

one cascade and to prevent concatenation of separate cascades.

Signal autocorrelation

Modulations in signal power are generally useful to characterize neural dynamics (28). In

particular, fluctuations in the broadband high-frequency 50200 Hz range have been shown to

provide a local, spatiotemporal estimate of population spike rate variations near an electrode

(29–33).

For each ECoG channel, time-courses of broadband high-frequency power fluctuations were

obtained by computing the mean 50-100 Hz signal power every 125 ms (FFT routine, Hanning

window) for each hour during either a high or low AED medication day. Signal power estimates

are not normally distributed across time samples, the logarithm of power estimates was thus

taken to normalize their distributions (34, 45). An autocorrelation function of the power time

course was then obtained for each electrode and hour in recording. Analyses in the main part of

the manuscript are based on average autocorrelation functions across all electrodes and across

all hours in either high or low AED medication day.

ACW was defined as the full-width-at-half-maximum of the autocorrelation function of the

power time course. For this purpose, autocorrelation functions across all channels and hours

in either high/low medication day were averaged for each patient. ACW was determined as
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twice the time lag at which the ACF became smaller than half its value between maximum to

minimum. Since time lags are in 125 ms increments, the minimal value of ACW is 250 ms.

Computational neuron network model

The neuron network model consists of N=200 binary-state neurons connected by all-to-all,

asymmetric synaptic coupling strengths wij . Each neuron j is either excitatory or inhibitory,

respectively corresponding to wij ≥ 0 or wij ≤ 0 for all i. The binary state si(t + 1) of

neuron i (s = 0 inactive, s = 1 spiking) is determined based on the sum p(t + 1) of its inputs

p(t+ 1) =
∑N

j=1wij(t)sj(t) and the parameter controlling neuronal excitability, pne, according

to the following dynamical rules: if 0 < p ∗ pne < 1, then the neuron fires with probability

p ∗ pne, if p ∗ pne ≥ 1, then the neuron fires with probability 1, if p ∗ pne ≤ 0, then the neuron

does not fire.

wij values are first drawn from a uniform distribution [0,1]. Then, 20% of neurons are

set to being inhibitory (by multiplication of the corresponding coupling strengths with -1) and

the remaining 80% of neurons to being excitatory. pij are then multiplied by N · K/∑wij .

The parameter K consequently captures the average connectivity and is closely related to the

largest eigenvalue λ of the adjacency matrix wij which controls the dynamics of the network: at

K = 1 each spiking neuron excites, on average, exactly one postsynaptic neuron meaning the

network is critical (46, 47). Conversely, at K < 1 activity dies out prematurely and the system

is subcritical; at K > 1 each neuron excites on average more than one postsynaptic neuron and

the system is supercritical.

The model affords implementation of different AED mechanisms known to reduce corti-

cal network excitability: reduction of individual neuronal excitability, reduction of excitatory

synaptic transmission and increase of inhibitory synaptic transmission (Fig. 1 A, (6)). Reduc-

tion of individual neuronal excitability is controlled by parameter pne, where pne ≤ 1. De-
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creased excitatory synaptic transmission is modelled by multiplication of all positive wij with

factor pexc, where pexc ≤ 1. Increased inhibitory synaptic transmission is modelled by multipli-

cation of all negative wij with factor pinh, where pinh ≥ 1.

The onset of stimulation is instantiated by setting a random neuron to active. Activity is

monitored until no neuron is active anymore or, in case of ongoing activity, until 500 time steps

have passed, at which point a new cascade is started by setting a random neuron to active. We

modelled a total of 100000 such cascades at each connectivity K. The temporal autocorrelation

was studied using the time course of overall network activity, i.e., the sum of active neurons at

each time step.
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Figure 1: Antiepileptic drug (AED) action induces subcritical dynamics in a neural network
model. A, Illustration of the main mechanisms of AED action. Collectively, AEDs aim to
reduce seizure risk by decreasing cortical network excitability. B, Conceptual cartoon illustrat-
ing neural network model features, including excitatory (black) and inhibitory (green) recurrent
synapses. The strengths of inhibitory and excitatory synaptic transmission along with neuron
excitability can be selectively changed to mimic AED action. C, Network dynamics exhibits
a phase transition between an inactive phase, where cascades remain small and local and an
active phase, where activity is dominated by large cascades spanning the whole network upon
increasing connection strengths (solid black line). Grey dashed line indicates the large cas-
cade fraction, LCF. Grey dotted line indicates autocorrelation function half-width, ACW, which
peaks at criticality (λ = 1). Red area inset shows cascade size distribution and autocorrelation
functions when dynamics is poised in a slightly subcritical regime, mimicking experimental
observations. D, E, AED action incurs decline of large cascade sizes and faster autocorrela-
tion function decline. Large plots show exemplary cascade size distribution and autocorrelation
function (50% decrease in neuron excitability, 50% decrease in excitatory synaptic strength, ten
fold increase in inhibitory synaptic strength). Insets show LCF and ACW for a range of network
excitability reducing parameter values.
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Figure 2: Epileptic spikes organize as activity cascades reduced in size by AED action. A, Iden-
tification of spikes in electrocorticogram. B, C Bimodality of inter-spike interval distribution
identifies spike cascades and their timescale. D, Spike cascade size distribution from four pa-
tients under high (blue) and low (red) AED load. High AED load reduces the number of large
cascades (shaded grey area). Broken lines indicate size distributions from randomly shuffled
spike times. E, AEDs significantly reduce the number of large cascades (large cascade fraction,
LCF; grey lines indicate individual patients; black line indicates mean with whiskers denoting
standard deviation).
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Figure 3: AED action reduces temporal correlations in cortex. A, Autocorrelation functions
from four patients under high (blue) and low (red) AED load. B, AEDs significantly reduce
temporal correlations measured by the autocorrelation function half-width (ACW; grey lines
indicate individual patients; black line indicates mean with whiskers denoting standard devia-
tion).

Figure 4: Growing evidence suggests that activity propagation in cortical networks can be de-
scribed by a branching process near the transition between an inactive (subcritical) and an active
(supercritical) regime (red). AEDs shift network dynamics further into the subcritical regime
(blue), thereby establishing a safety margin to avoid runaway activity associated with the super-
critical regime.
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