# A TEST AGAINST TREND IN RANDOM SEQUENCES 

Peter Lindqvist<br>Department of Mathematical Sciences<br>Norwegian University of Science and Technology<br>NO-7491 Trondheim, Norway


#### Abstract

We study a modification of Kendall's $\tau$, replacing his permutations of $n$ different numbers by sequences of length $n$. Thus repetition is allowed. In particular, binary sequences are studied.


## 1 Introduction

The basic tool in Kendall's $\tau$-test is the "score" $S$. Suppose that $\ell$ digits $0,1, \ldots, \ell-1$ satisfying the transitive relations $0<1<\ldots<\ell-1$ are given and consider all the $\ell^{n}$ possible sequences

$$
\begin{equation*}
x_{1}, x_{2}, \ldots, x_{n} \tag{1}
\end{equation*}
$$

of length $n$ that can be formed by the aid of these digits. Let $S^{+}\left(x_{1}, \ldots, x_{n}\right)$ denote the number of true inequalities

$$
x_{i}>x_{j} \quad \text { with } \quad i>j
$$

in the sequence (1). Analogously, $S^{-}\left(x_{1}, \ldots, x_{n}\right)$ counts the number of all valid inequalities $x_{i}<x_{j}$ with $i>j$. Define

$$
\begin{equation*}
S\left(x_{1}, \ldots, x_{n}\right)=S^{+}\left(x_{1}, \ldots, x_{n}\right)-S^{-}\left(x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

[^0]For example, $S=5-11=-6$ for the sequence 0112021 . Originally ${ }^{2}$, Kendall considered the distribution of $S$ among the $\ell$ ! permutations of the digits $0,1, \ldots, \ell-1$ (then $n=\ell$ ), and so far as I know ${ }^{3}$ the generalizations of Kendall's $\tau$-test rely upon the distribution of $S$ among all

$$
\frac{n!}{(2!)^{p_{2}}(3!)^{p_{3}} \cdots(r!)^{p_{r}}} \quad\left(p_{1}+2 p_{2}+\ldots+r p_{r}=n\right)
$$

possible sequences (1) consisting of $p_{1}$ digits occurring only once, $p_{2}$ pairs, $p_{3}$ triplets, and so on. Here the numbers of ties, i.e., $p_{1}, p_{2}, \ldots, p_{r}$, are regarded as fixed. See [S]. For permutations $S^{+}$has been thoroughly investigated in (M).

We shall study a different situation, arising for example in connexion with the testing of sequences of random digits. In this setting the number of ties cannot be regarded as fixed a priori. Thus we are led to study the distribution of $S$ among all $\ell^{n}$ sequences (1). As we shall learn, this distribution approaches normality, as $n \rightarrow \infty$.

Having in mind applications for a certain kind of sampling, we have considered the binary case $\ell=2$ also when the probability for a 0 is $p$ and the probability for a 1 is $q$, where $p+q=1$. See Section 5 .

Finally, we mention that the distribution for $S$ in our setting of the problem is, in certain respects even simpler than the version considered by Kendall [K1], Sillitto [S], and Silverstone [S2].

## 2 The Basic Results

The mean value for $S$ taken over all sequences (1) is zero by symmetry:

$$
\begin{equation*}
\mu(n)=0 \tag{3}
\end{equation*}
$$

When all the sequences are equiprobable, the variance is

$$
\begin{equation*}
\sigma^{2}(n)=\frac{\ell-1}{\ell} \frac{n(n-1)}{2}+\frac{\ell^{2}-1}{\ell^{2}} \frac{n(n-1)(n-2)}{9} \tag{4}
\end{equation*}
$$

[^1]and the fourth central moment is
\[

$$
\begin{align*}
\mu_{4}(n)= & \left(\frac{\ell^{2}-1}{\ell^{2}}\right)^{2} \frac{100 n^{4}+328 n^{3}-127 n^{2}-997 n-372}{2700} n(n-1) \\
& +\frac{\ell^{2}-1}{\ell^{4}} \frac{252 n^{3}+507 n^{2}-3623 n+3652}{900} n(n-1) \\
& -\frac{\ell^{2}-1}{\ell^{3}} \frac{2 n^{3}+3 n^{2}-5 n-15}{6} n(n-1)  \tag{5}\\
& +\frac{\ell-1}{\ell^{3}} \frac{n^{2}+11 n-25}{2} n(n-1) .
\end{align*}
$$
\]

By symmetry

$$
\mu_{3}(n)=0, \mu_{5}(n)=0, \mu_{7}(n)=0, \ldots
$$

It is interesting to observe that for $n$ fixed the moments approach those given by Kendall in [K1], as $\ell \rightarrow \infty$. Formula (4) is derived in Section 6, but the corresponding calculations for (5) are, to say the least, a laborious task and so $\mu_{4}(n)$ is given without proof, when $\ell \geq 3$.

As $n$ grows, the distribution for $S$ tends towards normality in the sense that the frequency between the values $S_{1}$ and $S_{2}$ tends to

$$
\frac{1}{\sigma(n) \sqrt{2 \pi}} \int_{S_{1}}^{S_{2}} e^{-x^{2} / 2 \sigma^{2}(n)} d x
$$

where the standard deviation is $\sigma(n)=\sqrt{\mu_{2}(n)}$. This follows from the Second Limit Theorem, since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mu_{2 k}(n)}{(\sigma(n))^{2 k}}=1 \cdot 2 \cdot 5 \cdots(2 k-1) \tag{6}
\end{equation*}
$$

and the odd moments are zero. It is easy to prove (6) for small values of $\ell$, but the probability function for $S$ becomes soon too complicated, as $\ell$ grows. Therefore we shall prove (6) only for the binary case $\ell=2$, see Section 4 .

In the binary case the probability generating function for $S$ is

$$
f(x)= \begin{cases}\frac{1}{2^{2 \nu}} \prod_{k=1}^{k=\nu}\left(x^{2 k-1}+2+x^{1-2 k}\right), & n=2 \nu  \tag{7}\\ \frac{2}{2^{2 \nu+1}} \prod_{k=1}^{k=\nu}\left(x^{k}+x^{-k}\right)^{2}, & n=2 \nu+1\end{cases}
$$

and so the characteristic function $\phi(\theta)=f\left(e^{i \theta}\right)$ reduces to the simple expression (10). Our proof for (6), when $\ell=2$ is based on $\phi(\theta)$. Furthermore,
the distribution for $S$ can be rapidly calculated via a suitable interpretation of (7).

In the general binary case, when the probability that $x_{i}=0$ is $p$ and that $x_{i}=1$ is $q$ in (1), $i=1,2, \ldots, n, p+q=1$, the corresponding probability function is given by (18) and the characteristic function by (19). Now again $\mu(n)=0$, and

$$
\begin{equation*}
\sigma^{2}(n)=\frac{n\left(n^{2}-1\right)}{3} p q \tag{8}
\end{equation*}
$$

and the fourth moment is

$$
\begin{align*}
\mu_{4}(n)= & \frac{n\left(n^{2}-1\right)\left(5 n^{3}-6 n^{2}-5 n+14\right)}{15} p^{2} q^{2} \\
& +\frac{n\left(n^{2}-1\right)\left(3 n^{2}-7\right)}{15} p q(p-q)^{2} . \tag{9}
\end{align*}
$$

All odd moments are zero and the asymptotic normality (6) holds even for $p \neq q$.

## 3 The Probability Function

Consider the binary case $\ell=2$ with equiprobable sequences (1). Direct calculation of $S$ for $n=3$ yields

$$
\begin{array}{rrrrrrr}
000 & \mathbf{0} & 010 & \mathbf{0} & 100 \mathbf{2} & 110 \mathbf{2} \\
001 & \mathbf{2} & 011 & \mathbf{- 2} & 101 \mathbf{0} & 111 \mathbf{0}
\end{array}
$$

and so we can write
and in this manner the distribution for $S$ can be tabulated. The results are displayed below:

The fundamental observation is that the table can be constructed via the following kind of figurates. For even $n$ we have
$\overline{121}$
121
$121 \quad 121$
$\overline{121242121}$
121242121
121242121121242121
$\overline{1212445458545442121}$
and so on. (The overlined sequences display $n=2,4$ and 6 .) For odd $n$ the table looks like

$$
\begin{gathered}
\overline{020} \\
020 \\
020 \quad 020 \\
\overline{0204020} \\
0204020 \\
0204020 \quad 0204020 \\
\overline{020406080604020} \\
020406080604020 \\
020406080604040406080604020
\end{gathered}
$$

and the next row, corresponding to $n=7$, becomes

$$
0204060120140160200160140120604020 .
$$

(The first and last zeros in a row are void.) In an obvious interpretation the above process reads

$$
\begin{aligned}
& x^{-1}+2+x, \\
& x^{-4}+2 x^{-3}+x^{-2}+2 x^{-1}+4+2 x+x^{2}+2 x^{3}+x^{4} \\
& \quad=\left(x^{-1}+2+x\right)\left(x^{-3}+2+x^{3}\right), \ldots .
\end{aligned}
$$

for odd $n$ and

$$
\begin{aligned}
& 2,2 x^{-2}+4+2 x^{2}, \\
& 2 x^{-6}+4 x^{-4}+6 x^{-2}+8+6 x^{2}+4 x^{4}+2 x^{6} \\
& \quad=2\left(x^{-2}+2+x^{2}\right)\left(x^{-4}+2+x^{4}\right), \ldots .
\end{aligned}
$$

for even $n$. This leads to the probability generating function (7).
A simple proof for the probability generating function $f(x)$ comes from considering the binary sequence

$$
j_{1}, j_{2}, \ldots, j_{n} \quad \text { where } \quad j_{k}=0 \quad \text { or } \quad 1 .
$$

Then we have

$$
S=\sum_{k=2}^{n}\left(j_{1}-j_{k}\right)+\sum_{k=3}^{n}\left(j_{2}-j_{k}\right)+\ldots+\sum_{k=n}^{n}\left(j_{n-1}-j_{k}\right)
$$

and the index $j_{k}$ appears exactly $(n-k)-(k-1)$ times and so its contribution to the score $S$ is

$$
[(n-k)-(k-1)] j_{k} .
$$

Therefore
$S=(n-1) j_{1}+(n-3) j_{2}+\cdots+(n-2 k+1) j_{k}+\cdots+(3-n) j_{n-1}+(1-n) j_{n}$
for this sequence. Now $j_{k}$ is 0 or 1 so that the generating function becomes

$$
\left(1+x^{n-1}\right)\left(1+x^{n-3}\right) \cdots\left(1+x^{-(n-3)}\right)\left(1+x^{-(n-1)}\right) .
$$

Upon multiplication, the coefficient of $x^{t}$ indicates how many times $S=t$ among all possible sequences $j_{1}, j_{2}, \ldots, j_{n}$. Dividing by the total number of sequences we arrive at the probability generating function (7).

The characteristic function for $S$ is $\phi(\theta)=f\left(e^{i \theta}\right), i^{2}=-1$. Euler's formula yields

$$
\phi(\theta)= \begin{cases}\prod_{k=1}^{\nu} \cos ^{2}(k \theta), & n=2 \nu+1  \tag{10}\\ \prod_{k=1}^{\nu} \cos ^{2}\left(\frac{2 k-1}{2} \theta\right), & n=2 \nu\end{cases}
$$

By definition $\phi(0)=1$ and

$$
\phi^{(k)}(0)=i^{-k} \mu_{k}(n), \quad k=1,2, \ldots, n .
$$

By symmetry $\phi^{\prime}(0)=0, \phi^{3}(0)=0, \ldots$, so that all odd moments are zero and

$$
\phi^{(2 k)}(0)=(-1)^{k} \mu_{2 k}(n)
$$

Direct calculations yield

$$
\begin{aligned}
& \mu_{1}(n)=0 \\
& \mu_{2}(n)=\frac{n\left(n^{2}-1\right)}{12} \\
& \mu_{3}(n)=0 \\
& \mu_{4}(n)=\frac{n\left(n^{2}-1\right)\left(5 n^{3}-6 n^{2}-5 n+14\right)}{240} \\
& \mu_{5}(n)=0 \\
& \mu_{6}(n)=\frac{n\left(n^{2}-1\right)\left(35 n^{6}-126 n^{5}+74 n^{4}+420 n^{3}-829 n^{2}-294 n+1488\right)}{4032} \\
& \mu_{7}(n)=0
\end{aligned}
$$

The arrangements in Section 4 will shorten such calculations.

## 4 Approach to Normality

In order to show that the distribution for $S$ approaches normality in the binary case, we shall prove (6). The dichotomy in formulae (10) forces us to separate the cases

$$
\lim _{\nu \rightarrow \infty} \frac{\mu_{2 k}(2 \nu)}{(\sigma(2 \nu))^{2 k}}=\frac{(2 k)!}{2^{k} \cdot k!}, \quad \lim _{\nu \rightarrow \infty} \frac{\mu_{2 k}(2 \nu+1)}{(\sigma(2 \nu+1))^{2 k}}=\frac{(2 k)!}{2^{k} \cdot k!}
$$

However, both cases are so similar that we shall write down only the odd case $n=2 \nu+1$. Then the characteristic function is

$$
\phi(\theta)=\cos ^{2}(\theta) \cos ^{2}(2 \theta) \cdots \cos ^{2}(\nu \theta)
$$

and by logarithmic differentiation

$$
\begin{equation*}
\phi^{\prime}(\theta)=-2 \phi(\theta) \sum_{j=1}^{\nu} j \tan (j \theta) . \tag{11}
\end{equation*}
$$

Denoting

$$
\begin{equation*}
A(\theta)=-2 \sum_{j=1}^{\nu} j \tan (j \theta) \tag{12}
\end{equation*}
$$

we obviously have

$$
A(0)=0, A^{\prime \prime}(0)=0, A^{(4)}(0)=0, \ldots
$$

In order to calculate the odd derivatives $A^{\prime}(0), A^{\prime \prime \prime}(0), \ldots$ we use the expansion

$$
\tan (z)=\sum_{k=1}^{\infty} \frac{2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!}(-1)^{k+1} \mathrm{~B}_{2 k} z^{2 k-1} \quad\left(|z|^{2}<\frac{\pi^{2}}{4}\right)
$$

where $\mathrm{B}_{0}=1, \mathrm{~B}_{2}=1 / 6, \mathrm{~B}_{4}=-1 / 30, \ldots$ are the Bernoulli numbers. Thus

$$
\begin{equation*}
A(\theta)=\sum_{k=1}^{\infty} \frac{2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!}(-1)^{k} \mathrm{~B}_{2 k}\left(1^{2 k}+2^{2 k}+\cdots+\nu^{2 k}\right) \theta^{2 k-1} \tag{13}
\end{equation*}
$$

for $|\theta|<\pi / 2 \nu$. We deduce that

$$
\begin{equation*}
A^{(2 k-1)}(0)=\frac{(-1)^{k}}{k} 2^{2 k}\left(2^{2 k}-1\right) \mathrm{B}_{2 k} s_{\nu}(2 k) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
s_{\nu}(2 k) & =1^{2 k}+2^{2 k}+\cdots+\nu^{2 k} \\
& =\frac{\nu^{2 k+1}}{2 k+1}+\frac{\nu^{2 k}}{2}+\frac{k \nu^{2 k-1}}{6}+\langle\text { lower terms }\rangle
\end{aligned}
$$

are well-known polynomials of degree $2 k+1$.

According to (11) and (12) we obtain ${ }^{4}$ by Leibniz rule

$$
\begin{aligned}
\phi^{\prime}(\theta)= & \phi(\theta) A(\theta) \\
\phi^{\prime \prime}(\theta)= & \phi^{\prime}(\theta) A(\theta)+\phi(\theta) A^{\prime}(\theta) \\
\phi^{\prime \prime \prime}(\theta)= & \phi^{\prime \prime}(\theta) A(\theta)+2 \phi^{\prime}(\theta) A^{\prime}(\theta)+\phi(\theta) A^{\prime \prime}(\theta) \\
& \vdots \\
\phi^{k+1}(\theta)= & \sum_{j=0}^{k}\binom{k}{j} \phi^{(j)}(\theta) A^{(k-j)}(\theta) \\
& \vdots
\end{aligned}
$$

In passing, we calculate

$$
\begin{gathered}
\phi^{\prime \prime}(0)=A^{\prime}(0)=-\frac{n\left(n^{2}-1\right)}{12} \\
\phi^{(4)}=3 \phi^{\prime \prime}(0)^{2}+A^{\prime \prime \prime}(0)=\frac{n\left(n^{2}-1\right)\left(5 n^{3}-6 n^{2}-5 n+14\right)}{240}
\end{gathered}
$$

for odd $n$. For even $n$ we shall arrive at the same formulae. We have obtained that

$$
\begin{align*}
\sigma^{2}(n) & =\frac{n\left(n^{2}-1\right)}{12}  \tag{15}\\
\mu_{4}(n) & =\frac{n\left(n^{2}-1\right)\left(5 n^{3}-6 n^{2}-5 n+14\right)}{240} . \tag{16}
\end{align*}
$$

This shows that (6) holds at least for $k=1$ and $k=2$. For general $k$ we use induction.

To this end, notice that at the point $\theta=0$ we have

$$
\phi^{(2 k)}=(2 k-1) \phi^{\prime \prime} \phi^{(2 k-2)}+\sum_{j=2}^{k}\binom{2 k-1}{2 j-1} A^{(2 j-1)} \phi^{(2 k-2 j)}
$$

or, more conveniently,

$$
\begin{equation*}
\frac{\phi^{(2 k)}}{\left(\phi^{\prime \prime}\right)^{k}}=(2 k-1) \frac{\phi^{(2 k-2)}}{\left(\phi^{\prime \prime}\right)^{k-1}}+\sum_{j=2}^{k}\binom{2 k-1}{2 j-1} \frac{\phi^{(2 k-2 j)}}{\left(\phi^{\prime \prime}\right)^{k-j}} \frac{A^{(2 j-1)}}{\left(\phi^{\prime \prime}\right)^{j}} . \tag{17}
\end{equation*}
$$

[^2]According to (14) and (15), where $n=2 \nu+1$ is odd, we have

$$
\lim _{\nu \rightarrow \infty} \frac{A^{(2 j-1)}}{\left(\phi^{\prime \prime}\right)^{j}}=0, \quad j=2,3, \ldots, k
$$

since $A^{(2 j-1)} \approx \nu^{2 j+1}$ and $\left(\phi^{\prime \prime}\right)^{j} \approx \nu^{3 j}$. But now 17 shows that, if

$$
\lim _{\nu \rightarrow \infty} \frac{\phi^{(2 m)}}{\left(\phi^{\prime \prime}\right)^{m}}=1 \cdot 2 \cdots(2 m-1)
$$

holds for $m=1,2, \ldots, k-1$, then also

$$
\lim _{\nu \rightarrow \infty} \frac{\phi^{(2 k)}}{\left(\phi^{\prime \prime}\right)^{k}}=1 \cdot 2 \cdots(2 k-1)
$$

In other words, the desired conclusion (6) follows by induction with respect to $k$. This concludes our proof of the asymptotic normality.

## 5 Binary Sequences not Equiprobable

Consider again all $2^{n}$ sequences of length $n$ consisting merely of 0 's and 1 's. But assume now that the probability for a 0 is $P(0)=p$ and the probability for an 1 is $P(1)=q$. Here $p+q=1$. For example, the sequence 0110111 has probability $p^{2} q^{5}$. The figurates in Table I and Table II (at the end) are constructed via (6) below. The simple rule for the formation of these figurates is condensed in the formulae

$$
f(x)= \begin{cases}(p+q) \prod_{k=1}^{\nu}\left(p q x^{-2 k}+p^{2}+q^{2}+p q x^{2 k}\right), & n=2 \nu+1  \tag{18}\\ \prod_{k=1}^{\nu}\left(p q x^{1-2 k}+p^{2}+q^{2}+p q x^{2 k-1}\right), & n=2 \nu\end{cases}
$$

for the probability generating function. (Of course, the factor $p+q$ outside the product is 1 , but it is included to match Table II.)

The characteristic function $\phi(\theta)=f\left(e^{i \theta}\right)$ is

$$
\phi(\theta)= \begin{cases}(p+q) \prod_{k=1}^{\nu}\left(p^{2}+q^{2}+2 p q \cos (2 k \theta)\right), & n=2 \nu+1  \tag{19}\\ \prod_{k=1}^{\nu}\left(p^{2}+q^{2}+2 p q \cos ((2 k-1) \theta)\right), & n=2 \nu\end{cases}
$$

For $p=q=1 / 2$ we again obtain the expressions in Section 2 .
Let us consider the case $n=2 \nu+1$, the calculations for even $n$ being similar. Now

$$
\phi^{\prime}(\theta)=\phi(\theta) \sum_{k=1}^{\nu} \frac{-4 p q k \sin (2 k \theta)}{p^{2}+q^{2}+2 p q \cos (2 k \theta)}=\phi(\theta) A(\theta)
$$

with an obvious abbreviation. The well-known expansion

$$
\frac{\varrho \sin (\psi)}{p^{2}+q^{2}-2 \varrho \cos (\psi)}=\sum_{m=1}^{\infty} \varrho^{m} \sin (m \psi) \quad(|\varrho|<1)
$$

converges for

$$
-\varrho=\min \left\{\frac{p}{q}, \frac{q}{p}\right\} \quad \text { if } \quad p \neq q
$$

Having treated the case $p=q=1 / 2$ in the previous sections, we assume that $p \neq q$ here. Then

$$
\frac{4 k \varrho \sin (2 k \theta)}{p^{2}+q^{2}-2 \varrho \cos (2 k \theta)}=4 k \sum_{m=1}^{\infty} \varrho^{m} \sin (2 k m \theta)
$$

and so we obtain

$$
A(\theta)=\sum_{m=1}^{\infty}\left(4 \varrho^{m} \sum_{k=1}^{\infty} k \sin (2 k m \theta)\right) \quad(p \neq q)
$$

Using the Maclaurin series for $\sin (2 k m \theta)$, we arrive at the formula

$$
\begin{equation*}
A(\theta)=\sum_{j=1}^{\infty}\left\{(-1)^{j+1} \frac{2^{2 j+1}\left(1^{2 j}+\cdots+\nu^{2 j}\right)}{(2 j-1)!} \sum_{m=1}^{\infty} m^{2 j-1} \varrho^{m}\right\} \theta^{2 j-1} \tag{20}
\end{equation*}
$$

where some arrangements have been done. The corresponding convergence investigations are quite straightforward.

By 20), $A(0)=0, A^{\prime \prime}(0)=0, A^{(4)}(0)=0, \ldots$, and

$$
\begin{equation*}
A^{(2 j-1)}(0)=(-1)^{j+1} 2^{2 j+1} s_{\nu}(2 j) \sum_{m=1}^{\infty} m^{2 j-1} \varrho^{m} \tag{21}
\end{equation*}
$$

(This expansion diverges for $\varrho=-1$, i. e. for $p=q$.) Here the infinite sum is easily calculated as the differentiated geometric series

$$
\sum_{m=1}^{\infty} m^{2 j-1} \varrho^{m}=\left(\varrho \frac{d}{\varrho}\right)^{2 j-1} \frac{1}{1-\varrho} \quad(j=1,2,3, \ldots)
$$

A calculation yields

$$
\begin{aligned}
A^{\prime}(0) & =\frac{4 \nu(\nu+1)(2 \nu+1)}{3} \frac{\varrho}{(1-\varrho)^{2}}, \\
A^{\prime \prime \prime}(0) & =-\frac{16}{15} \nu(\nu+1)(2 \nu+1)\left(3 \nu^{2}+3 \nu-1\right) \frac{1+4 \varrho+\varrho^{2}}{(1-\varrho)^{4}} \varrho
\end{aligned}
$$

and using

$$
\begin{aligned}
\phi^{\prime \prime}(0) & =A^{\prime}(0) \\
\phi^{(4)}(0) & =3 \phi^{\prime \prime}(0) A^{\prime}(0)+A^{\prime \prime \prime}(0)=3 A^{\prime}(0)^{2}+A^{\prime \prime \prime}(0)
\end{aligned}
$$

we arrive at (8) and (9). -The corresponding calculations for even $n$ yield the same final result.

An analogous investigation as that in Section 4, but now based on (21), shows the approach to normality also for $p \neq q$. The difference is merely technical.

## 6 The Variance (with General $\ell$ ).

Consider again all sequences $x_{1}, x_{2}, \ldots, x_{n}$ that can be formed of the digits $0,1,2, \ldots, \ell$. Let $P_{n}\left(t ; j_{0}, j_{1}, \ldots, j_{\ell-1}\right)$ count the number of those sequences consisting of $j_{0} 0$ 's, $j_{1} 1$ 's, $\ldots, j_{\ell-1} \ell$ 's, $j_{0}+j_{1}+\cdots+j_{\ell-1}=n$, for which $S=t$. For example $P_{6}(1 ; 3,3)=3, P_{6}(4 ; 2,4)=2, P_{9}(27 ; 3,3,3)=1$, and $P_{9}(t ; 3,3,3)=0$ when $t \geq 28$.

Constructing the sequence $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ from $x_{1}, x_{2}, \ldots, x_{n}$ we arrive at the fundamental recursive rule

$$
\begin{align*}
& P_{n+1}\left(t ; i_{0}, i_{1}, \ldots, i_{\ell-1}\right) \\
& \quad=P_{n}\left(t-i_{1}-\cdots-i_{\ell-1} ; i_{0}-1, i_{1}, \ldots, i_{\ell-1}\right) \\
& \quad+P_{n}\left(t+i_{0}-i_{2}-\cdots-i_{\ell-1} ; i_{0}, i_{1}-1, \ldots, i_{\ell-1}\right)+\cdots+  \tag{22}\\
& \quad+P_{n}\left(t+i_{0}+\cdots+i_{\ell-2} ; i_{0}, i_{1}, \ldots, i_{\ell-2}, i_{\ell-1}-1\right)
\end{align*}
$$

where now $i_{0}+i_{1}+\cdots+i_{\ell-1}=n+1$. In passing, we notice that applying the recursive formula twice we obtain for $\ell=2$ that

$$
\begin{gather*}
P_{n+1}\left(t ; i_{0}, i_{1}\right)=P_{n-1}\left(t-2 i_{1} ; i_{0}-2, i_{1}\right) \\
+P_{n-1}\left(t+i_{0}-1 ; i_{0}-1, i_{1}-1\right)+P_{n-1}\left(t+i_{0}-i_{1}+1 ; i_{0}-1, i_{1}-1\right)  \tag{23}\\
+P_{n-1}\left(t+2 i_{0} ; i_{0}, i_{1}-2\right)
\end{gather*}
$$

Repeated use of this identity describes exactly how the configurations in Tables I and II are built up.

Let us return to the recursive rule 22 . For the calculation of the variance $\mu_{2}(n)$ we assume that all sequences $x_{1}, x_{2}, \ldots, x_{n}$ of length $n$ are equiprobable. Then

$$
\mu_{2}(n)=\sum_{x_{1} \cdots x_{n}} \frac{S^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\ell^{n}}
$$

where the sum is taken over all the $\ell^{n}$ possible sequences. The auxiliary quantities

$$
B_{n}\left(j_{0}, \ldots, j_{\ell-1}\right)=\sum_{t} t^{2} P_{n}\left(t ; j_{0}, \ldots, j_{\ell-1}\right)
$$

satisfy according to the recursive rule 22 the formula

$$
\begin{aligned}
& \quad B_{n+1}\left(i_{0}, \ldots, i_{\ell-1}\right) \\
& =\sum_{k=0}^{\ell-1} \sum_{t}\left(t+i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1}\right)^{2} \times \\
& \quad P_{n}\left(t+i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1} ; i_{0}, \ldots, i_{k}-1, \ldots, i_{\ell-1}\right) \\
& -2 \sum_{k=0}^{\ell-1} \sum_{t}\left(i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1}\right) \times \\
& \quad\left(t+i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1}\right) \times \\
& \quad P_{n}\left(t+i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1} ; i_{0}, \ldots, i_{k}-1, \ldots, i_{\ell-1}\right) \\
& +\sum_{k=0}^{\ell-1} \sum_{t}\left(i_{0}+i_{1}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1}\right)^{2} \times \\
& \quad P_{n}\left(t+i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1} ; i_{0}, \ldots, i_{k}-1, \ldots, i_{\ell-1}\right),
\end{aligned}
$$

where $i_{0}+i_{1}+\cdots+i_{\ell-1}=n+1$. Here the first inner sum over $t$ is merely $B_{n}\left(i_{0}, i_{1}, \ldots, i_{k-1}, i_{k}-1, i_{k+1}, \ldots, i_{\ell-1}\right)$ and the second inner sum is zero by symmetry. In the last inner sum $\sum_{t} P_{n}$ is a certain number of combinations.

Therefore the above formula reduces to the simple expression

$$
\begin{aligned}
& B_{n+1}\left(i_{0}, \ldots, i_{\ell-1}\right)=\sum_{k=0}^{\ell-1} B_{n}\left(i_{0}, \ldots, i_{k-1}, i_{k}-1, i_{k+1}, \ldots, i_{\ell-1}\right) \\
& \quad+\sum_{k=0}^{\ell-1}\left(i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{\ell-1}\right)^{2}\binom{n}{i_{0} \cdots i_{k-1} i_{k}-1 i_{k+1} \cdots i_{\ell-1}}
\end{aligned}
$$

Here

$$
\binom{n}{i_{0} \cdots i_{k}-1 \cdots i_{\ell-1}}=\frac{n!}{i_{0}!\cdots\left(i_{k}-1\right)!\cdots i_{\ell-1}!}
$$

is the usual multinomial coefficient. Summing all equations with $i_{0}+i_{1}+$ $\cdots+i_{\ell-1}=n+1$ and noting that

$$
\ell^{n} \mu_{2}(n)=\sum_{j_{0}+\cdots+j_{\ell-1}=n} B_{n}\left(j_{0}, \ldots, j_{\ell-1}\right),
$$

we obtain

$$
\begin{aligned}
\mu_{2}(n+1)= & \mu_{2}(n) \\
+ & \ell^{-n-1} \sum_{k=0}^{\ell-1} \sum_{j_{0}, \cdots, j_{\ell-1}}\left(i_{0}+\cdots+i_{k-1}-i_{k+1}-\cdots-i_{l-1}\right)^{2} \times \\
& \binom{n}{i_{0} \cdots i_{k}-1 \cdots i_{\ell-1}} .
\end{aligned}
$$

The parenthesis in the sum can be written as the sum of products $\pm i_{\alpha} i_{\beta}, \ell-1$ of which are of the form $i_{\alpha}^{2}, k^{2}+(\ell-k-1)^{2}$ of which are of the form $+i_{\alpha} i_{\beta}(\alpha \neq \beta)$, and $2 k(\ell-k-1)$ of which are negative. Using well-known identities like

$$
\begin{aligned}
& \sum_{j_{0}+\cdots+j_{\ell-1}=n} j_{0} j_{1}\binom{n}{j_{0} \cdots j_{\ell-1}}=n(n-1) \ell^{n-2} \\
& \sum_{j_{0}+\cdots+j_{\ell-1}=n} j_{0}^{2}\binom{n}{j_{0} \cdots j_{\ell-1}}=n \ell^{n-1}+n(n-1) \ell^{n-2}
\end{aligned}
$$

we finally obtain the equation

$$
\begin{equation*}
\mu_{2}(n+1)=\mu_{2}(n)+n \frac{\ell-1}{\ell}+\frac{n(n-3)}{3} \frac{\ell^{2}-1}{\ell^{2}} . \tag{24}
\end{equation*}
$$

Adding the $n$ first equations (24) and noting that $\mu_{2}(1)=0$, we reach the final result (4). This concludes our proof for the variance $\sigma^{2}(n)$.

The fourth moment $\mu_{4}$ in (5) is the result of a similar, although more tedious, calculation. However, a more effective method should be invented for higher moments. - Corresponding formulae for $S^{+}$are given in [1].

In passing we mention the formula

$$
S\left(i_{0}, \ldots, i_{\ell-1}\right)=2 S^{+}\left(i_{0}, \ldots, i_{\ell-1}\right)-\frac{n^{2}-\left(i_{0}^{2}+\cdots+i_{\ell-1}^{2}\right)}{2}
$$

$i_{0}+\cdots+i_{\ell-1}=n$. Here the exceptional notation is understandable.

## 7 Edgeworth's Approximation

The closedness to normality of the distribution for $S$ is good, when $l^{n}$ is large. However, if $l^{n}$ is not large, especially the tails of the distribution behave obstinately, so that the assumption of normality is somewhat inadequate for precisely those values of $S$ whose significance may be in doubt. Fortunately, numerical calculations indicate that a correction based on Edgeworth's series gives an accurate approximation.

Let

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
$$

denote the normal distribution function. The approximation

$$
\begin{equation*}
\mathrm{P}\{S \leq \sigma(n) x\} \approx \Phi(x)+\frac{1}{4!}\left(\frac{\mu_{4}(n)}{\sigma(n)^{4}}-3\right) \Phi^{(4)}(x) \tag{25}
\end{equation*}
$$

is obtained from Edgeworth's series [C, page 229], terms containing $\mu_{6}, \mu_{7}, \ldots$ being neglected.

It stands to reason that (25) is accurate, $\mu_{4}(n)$ and $\sigma(n)$ being calculated from (5) and (4), provided that $\ell^{n}$ is large, say $\ell^{n}>10^{6}$. -The dependence on $\ell$ is slightly puzzling. This is a point that requires further numerical investigation.


~

N

## References

[C] H. Cramér, Mathematical Methods of Statistics. Uppsala 1945.
[GR] I. Gradshteyn, I Ryzhik, Table of Integrals, Series, and Products (fourth edition), New York - London 1965.
[K1] M. Kendall, A new measure of rank correlation, Biometrika 30, 1938, pp. 81-93.
[K2] M. Kendall, Rank Correlation Methods (fourth edition), Bristol 1970.
[L1] P. LindQvist, On a statistical "trend-test", Report - Mat - A131, Helsinki University of Technology 1978, pp. 1-13.
[L2] P. Lindqvist, A test against trend in random sequences, Report - Mat A234, Helsinki University of Technology 1986, pp. 1-23.
[M] H. Mann, Nonparametric tests against trend, Econometrica 13, 1945, pp. 245-259..
[S] G. Silitto, The distribution of Kendall's $\tau$ coefficient of rank correlation in rankings containing ties, Biometrika 34, 1947, pp. 36-40.
[S2] H. Silverstone, A note of the cumulants of Kendall's S-distribution, Biometrika 37, 1950, pp. 231-235.


[^0]:    ${ }^{1}$ AMS classification 62 G 60

[^1]:    ${ }^{2}$ The coefficient $\tau$ was considered by Greiner (1909) and Esscher (1924). The coefficient was rediscovered by Kendall (1938).
    ${ }^{3}$ However, see [1].

[^2]:    ${ }^{4}$ The connexion with cumulants is obvious, since $\frac{d}{d \theta} \log |\phi(\theta)|=A(\theta)$.

