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Abstract:1 We study a modification of Kendall’s τ , replacing his permuta-
tions of n different numbers by sequences of length n. Thus repetition is allowed.
In particular, binary sequences are studied.

1 Introduction

The basic tool in Kendall’s τ -test is the “score” S. Suppose that ` digits
0, 1, ..., ` − 1 satisfying the transitive relations 0 < 1 < ... < ` − 1 are given
and consider all the `n possible sequences

x1, x2, ..., xn (1)

of length n that can be formed by the aid of these digits. Let S+(x1, ..., xn)
denote the number of true inequalities

xi > xj with i > j

in the sequence (1). Analogously, S−(x1, ..., xn) counts the number of all
valid inequalities xi < xj with i > j. Define

S(x1, ..., xn) = S+(x1, ..., xn)− S−(x1, ..., xn). (2)
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For example, S = 5 − 11 = −6 for the sequence 0 1 1 2 0 2 1. Originally2,
Kendall considered the distribution of S among the `! permutations of the
digits 0, 1, ..., ` − 1 (then n = `), and so far as I know3 the generalizations
of Kendall’s τ -test rely upon the distribution of S among all

n!

(2!)p2(3!)p3 · · · (r!)pr
(p1 + 2p2 + ...+ rpr = n)

possible sequences (1) consisting of p1 digits occurring only once, p2 pairs, p3
triplets, and so on. Here the numbers of ties, i.e., p1, p2, ..., pr, are regarded
as fixed. See [S]. For permutations S+ has been thoroughly investigated in
[M].

We shall study a different situation, arising for example in connexion with
the testing of sequences of random digits. In this setting the number of ties
cannot be regarded as fixed a priori. Thus we are led to study the distri-
bution of S among all `n sequences (1). As we shall learn, this distribution
approaches normality, as n→∞.

Having in mind applications for a certain kind of sampling, we have con-
sidered the binary case ` = 2 also when the probability for a 0 is p and the
probability for a 1 is q, where p+ q = 1. See Section 5.

Finally, we mention that the distribution for S in our setting of the prob-
lem is, in certain respects even simpler than the version considered by Kendall
[K1], Sillitto [S], and Silverstone [S2].

2 The Basic Results

The mean value for S taken over all sequences (1) is zero by symmetry:

µ(n) = 0. (3)

When all the sequences are equiprobable, the variance is

σ2(n) =
`− 1

`

n(n− 1)

2
+
`2 − 1

`2
n(n− 1)(n− 2)

9
(4)

2The coefficient τ was considered by Greiner (1909) and Esscher (1924). The coefficient
was rediscovered by Kendall (1938).

3However, see [L1].
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and the fourth central moment is

µ4(n) =
(`2 − 1

`2

)2100n4 + 328n3 − 127n2 − 997n− 372

2700
n(n− 1)

+
`2 − 1

`4
252n3 + 507n2 − 3623n+ 3652

900
n(n− 1)

− `2 − 1

`3
2n3 + 3n2 − 5n− 15

6
n(n− 1) (5)

+
`− 1

`3
n2 + 11n− 25

2
n(n− 1).

By symmetry
µ3(n) = 0, µ5(n) = 0, µ7(n) = 0, ....

It is interesting to observe that for n fixed the moments approach those given
by Kendall in [K1], as ` → ∞. Formula (4) is derived in Section 6, but the
corresponding calculations for (5) are, to say the least, a laborious task and
so µ4(n) is given without proof, when ` ≥ 3.

As n grows, the distribution for S tends towards normality in the sense
that the frequency between the values S1 and S2 tends to

1

σ(n)
√

2π

∫ S2

S1

e−x
2/2σ2(n) dx,

where the standard deviation is σ(n) =
√
µ2(n). This follows from the Second

Limit Theorem, since

lim
n→∞

µ2k(n)

(σ(n))2k
= 1 · 2 · 5 · · · (2k − 1) (6)

and the odd moments are zero. It is easy to prove (6) for small values of `,
but the probability function for S becomes soon too complicated, as ` grows.
Therefore we shall prove (6) only for the binary case ` = 2, see Section 4.

In the binary case the probability generating function for S is

f(x) =


1

22ν

k=ν∏
k=1

(
x2k−1 + 2 + x1−2k

)
, n = 2ν

2
22ν+1

k=ν∏
k=1

(
xk + x−k

)2
, n = 2ν + 1

(7)

and so the characteristic function φ(θ) = f(eiθ) reduces to the simple ex-
pression (10). Our proof for (6), when ` = 2 is based on φ(θ). Furthermore,
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the distribution for S can be rapidly calculated via a suitable interpretation
of (7).

In the general binary case, when the probability that xi = 0 is p and that
xi = 1 is q in (1), i = 1, 2, ..., n, p + q = 1, the corresponding probability
function is given by (18) and the characteristic function by (19). Now again
µ(n) = 0, and

σ2(n) =
n(n2 − 1)

3
pq (8)

and the fourth moment is

µ4(n) =
n(n2 − 1)(5n3 − 6n2 − 5n+ 14)

15
p2q2

+
n(n2 − 1)(3n2 − 7)

15
pq(p− q)2. (9)

All odd moments are zero and the asymptotic normality (6) holds even for
p 6= q.

3 The Probability Function

Consider the binary case ` = 2 with equiprobable sequences (1). Direct
calculation of S for n = 3 yields

0 0 0 0 0 1 0 0 1 0 0 2 1 1 0 2

0 0 1 −2 0 1 1 −2 1 0 1 0 1 1 1 0

and so we can write

−2−1 0 +1 +2

2 0 4 0 2

and in this manner the distribution for S can be tabulated. The results are
displayed below:

2

1 2 1

2 0 4 0 2

1 2 1 2 4 2 1 2 1

2 0 4 0 6 0 8 0 6 0 4 0 2

1 2 1 2 4 4 5 4 5 8 5 4 5 4 4 2 1 2 1
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The fundamental observation is that the table can be constructed via the
following kind of figurates. For even n we have

1 2 1

1 2 1

1 2 1 1 2 1

1 2 1 2 4 2 1 2 1

1 2 1 2 4 2 1 2 1

1 2 1 2 4 2 1 2 1 1 2 1 2 4 2 1 2 1

1 2 1 2 4 4 5 4 5 8 5 4 5 4 4 2 1 2 1

and so on. (The overlined sequences display n = 2, 4 and 6.) For odd n the
table looks like

0 2 0

0 2 0

0 2 0 0 2 0

0 2 0 4 0 2 0

0 2 0 4 0 2 0

0 2 0 4 0 2 0 0 2 0 4 0 2 0

0 2 0 4 0 6 0 8 0 6 0 4 0 2 0

0 2 0 4 0 6 0 8 0 6 0 4 0 2 0

0 2 0 4 0 6 0 8 0 6 0 4 04 0 4 0 6 0 8 0 6 0 4 0 2 0

and the next row, corresponding to n = 7, becomes

0 2 0 4 0 6 0 12 0 14 0 16 0 20 0 16 0 14 0 12 0 6 0 4 0 2 0.

(The first and last zeros in a row are void.) In an obvious interpretation the
above process reads

x−1 + 2 + x,

x−4 + 2x−3 + x−2 + 2x−1 + 4 + 2x+ x2 + 2x3 + x4

=
(
x−1 + 2 + x

)(
x−3 + 2 + x3

)
, .....
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for odd n and

2, 2x−2 + 4 + 2x2,

2x−6 + 4x−4 + 6x−2 + 8 + 6x2 + 4x4 + 2x6

= 2
(
x−2 + 2 + x2

)(
x−4 + 2 + x4

)
, .....

for even n. This leads to the probability generating function (7).
A simple proof for the probability generating function f(x) comes from

considering the binary sequence

j1, j2, ..., jn where jk = 0 or 1.

Then we have

S =
n∑
k=2

(j1 − jk) +
n∑
k=3

(j2 − jk) + ... +
n∑

k=n

(jn−1 − jk)

and the index jk appears exactly (n−k)−(k−1) times and so its contribution
to the score S is

[(n− k)− (k − 1)]jk.

Therefore

S = (n−1)j1 + (n−3)j2 + · · ·+ (n−2k+ 1)jk + · · ·+ (3−n)jn−1 + (1−n)jn

for this sequence. Now jk is 0 or 1 so that the generating function becomes(
1 + xn−1

)(
1 + xn−3

)
· · ·
(
1 + x−(n−3)

)(
1 + x−(n−1)

)
.

Upon multiplication, the coefficient of xt indicates how many times S = t
among all possible sequences j1, j2, ..., jn. Dividing by the total number of
sequences we arrive at the probability generating function (7).

The characteristic function for S is φ(θ) = f(eiθ), i2 = −1. Euler’s
formula yields

φ(θ) =


ν∏
k=1

cos2(kθ), n = 2ν + 1

ν∏
k=1

cos2
(
2k−1
2
θ
)
, n = 2ν.

(10)
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By definition φ(0) = 1 and

φ(k)(0) = i−kµk(n), k = 1, 2, ..., n.

By symmetry φ′(0) = 0, φ3(0) = 0,..., so that all odd moments are zero and

φ(2k)(0) = (−1)kµ2k(n).

Direct calculations yield

µ1(n) = 0,

µ2(n) =
n(n2−1)

12
,

µ3(n) = 0,

µ4(n) =
n(n2−1)(5n3−6n2−5n+14)

240
µ5(n) = 0,

µ6(n) =
n(n2−1)(35n6−126n5+74n4+420n3−829n2−294n+1488)

4032
,

µ7(n) = 0,

.......

The arrangements in Section 4 will shorten such calculations.

4 Approach to Normality

In order to show that the distribution for S approaches normality in the
binary case, we shall prove (6). The dichotomy in formulae (10) forces us to
separate the cases

lim
ν→∞

µ2k(2ν)(
σ(2ν)

)2k =
(2k)!

2k · k!
, lim

ν→∞

µ2k(2ν + 1)(
σ(2ν + 1)

)2k =
(2k)!

2k · k!
.

However, both cases are so similar that we shall write down only the odd
case n = 2ν + 1. Then the characteristic function is

φ(θ) = cos2(θ) cos2(2θ) · · · cos2(νθ)
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and by logarithmic differentiation

φ′(θ) = −2φ(θ)
ν∑
j=1

j tan(jθ). (11)

Denoting

A(θ) = −2
ν∑
j=1

j tan(jθ), (12)

we obviously have

A(0) = 0, A′′(0) = 0, A(4)(0) = 0, ....

In order to calculate the odd derivatives A′(0), A′′′(0), ... we use the expansion

tan(z) =
∞∑
k=1

22k
(
22k − 1

)
(2k)!

(−1)k+1B2kz
2k−1

(
|z|2 < π2

4

)
where B0 = 1,B2 = 1/6,B4 = −1/30, ... are the Bernoulli numbers. Thus

A(θ) =
∞∑
k=1

22k
(
22k − 1

)
(2k)!

(−1)kB2k

(
12k + 22k + · · ·+ ν2k

)
θ2k−1 (13)

for |θ| < π/2ν. We deduce that

A(2k−1)(0) =
(−1)k

k
22k
(
22k − 1

)
B2k sν(2k) (14)

where

sν(2k) = 12k + 22k + · · ·+ ν2k

=
ν2k+1

2k + 1
+
ν2k

2
+
kν2k−1

6
+ 〈lower terms〉

are well-known polynomials of degree 2k + 1.
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According to (11) and (12) we obtain4 by Leibniz rule

φ′(θ) = φ(θ)A(θ)

φ′′(θ) = φ′(θ)A(θ) + φ(θ)A′(θ)

φ′′′(θ) = φ′′(θ)A(θ) + 2φ′(θ)A′(θ) + φ(θ)A′′(θ)

...

φk+1(θ) =
k∑
j=0

(
k

j

)
φ(j)(θ)A(k−j)(θ)

...

In passing, we calculate

φ′′(0) = A′(0) = −
n
(
n2 − 1

)
12

φ(4) = 3φ′′(0)2 + A′′′(0) =
n
(
n2 − 1

)(
5n3 − 6n2 − 5n+ 14

)
240

for odd n. For even n we shall arrive at the same formulae. We have obtained
that

σ2(n) =
n
(
n2 − 1

)
12

(15)

µ4(n) =
n
(
n2 − 1

)(
5n3 − 6n2 − 5n+ 14

)
240

. (16)

This shows that (6) holds at least for k = 1 and k = 2. For general k we use
induction.

To this end, notice that at the point θ = 0 we have

φ(2k) = (2k − 1)φ′′φ(2k−2) +
k∑
j=2

(
2k − 1

2j − 1

)
A(2j−1)φ(2k−2j)

or, more conveniently,

φ(2k)

(φ′′)k
= (2k − 1)

φ(2k−2)

(φ′′)k−1
+

k∑
j=2

(
2k − 1

2j − 1

)
φ(2k−2j)

(φ′′)k−j
A(2j−1)

(φ′′)j
. (17)

4The connexion with cumulants is obvious, since d
dθ log |φ(θ)| = A(θ).
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According to (14) and (15), where n = 2ν + 1 is odd, we have

lim
ν→∞

A(2j−1)

(φ′′)j
= 0, j = 2, 3, ..., k,

since A(2j−1) ≈ ν2j+1 and (φ′′)j ≈ ν3j. But now (17) shows that, if

lim
ν→∞

φ(2m)

(φ′′)m
= 1 · 2 · · · · (2m− 1)

holds for m = 1, 2, ..., k − 1, then also

lim
ν→∞

φ(2k)

(φ′′)k
= 1 · 2 · · · · (2k − 1).

In other words, the desired conclusion (6) follows by induction with respect
to k. This concludes our proof of the asymptotic normality.

5 Binary Sequences not Equiprobable

Consider again all 2n sequences of length n consisting merely of 0’s and 1’s.
But assume now that the probability for a 0 is P (0) = p and the probability
for an 1 is P (1) = q. Here p + q = 1. For example, the sequence 0 1 1 0 1 1 1
has probability p2q5. The figurates in Table I and Table II (at the end)
are constructed via (6) below. The simple rule for the formation of these
figurates is condensed in the formulae

f(x) =


(p+ q)

ν∏
k=1

(
pqx−2k + p2 + q2 + pqx2k

)
, n = 2ν + 1

ν∏
k=1

(
pqx1−2k + p2 + q2 + pqx2k−1

)
, n = 2ν

(18)

for the probability generating function. (Of course, the factor p + q outside
the product is 1, but it is included to match Table II.)

The characteristic function φ(θ) = f(eiθ) is

φ(θ) =


(p+ q)

ν∏
k=1

(p2 + q2 + 2pq cos(2kθ)) , n = 2ν + 1

ν∏
k=1

(p2 + q2 + 2pq cos((2k − 1)θ)) , n = 2ν
(19)
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For p = q = 1/2 we again obtain the expressions in Section 2.
Let us consider the case n = 2ν + 1, the calculations for even n being

similar. Now

φ′(θ) = φ(θ)
ν∑
k=1

−4pqk sin(2kθ)

p2 + q2 + 2pq cos(2kθ)
= φ(θ)A(θ)

with an obvious abbreviation. The well-known expansion

% sin(ψ)

p2 + q2 − 2% cos(ψ)
=

∞∑
m=1

%m sin(mψ) (|%| < 1)

converges for

−% = min{p
q
,
q

p
} if p 6= q.

Having treated the case p = q = 1/2 in the previous sections, we assume
that p 6= q here. Then

4k% sin(2kθ)

p2 + q2 − 2% cos(2kθ)
= 4k

∞∑
m=1

%m sin(2kmθ)

and so we obtain

A(θ) =
∞∑
m=1

(
4%m

∞∑
k=1

k sin(2kmθ)

)
(p 6= q).

Using the Maclaurin series for sin(2kmθ), we arrive at the formula

A(θ) =
∞∑
j=1

{
(−1)j+122j+1

(
12j + · · ·+ ν2j

)
(2j − 1)!

∞∑
m=1

m2j−1%m

}
θ2j−1 (20)

where some arrangements have been done. The corresponding convergence
investigations are quite straightforward.

By (20), A(0) = 0, A′′(0) = 0, A(4)(0) = 0, . . . , and

A(2j−1)(0) = (−1)j+122j+1sν(2j)
∞∑
m=1

m2j−1%m. (21)
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(This expansion diverges for % = −1, i. e. for p = q.) Here the infinite sum
is easily calculated as the differentiated geometric series

∞∑
m=1

m2j−1%m =
(
%
d

%

)2j−1 1

1− %
(j = 1, 2, 3, . . . ).

A calculation yields

A′(0) =
4ν(ν + 1)(2ν + 1)

3

%

(1− %)2
,

A′′′(0) = −16

15
ν(ν + 1)(2ν + 1)(3ν2 + 3ν − 1)

1 + 4%+ %2

(1− %)4
%

and using

φ′′(0) = A′(0),

φ(4)(0) = 3φ′′(0)A′(0) + A′′′(0) = 3A′(0)2 + A′′′(0)

we arrive at (8) and (9). —The corresponding calculations for even n yield
the same final result.

An analogous investigation as that in Section 4, but now based on (21),
shows the approach to normality also for p 6= q. The difference is merely
technical.

6 The Variance (with General `).

Consider again all sequences x1, x2, . . . , xn that can be formed of the digits
0, 1, 2, . . . , `. Let Pn(t; j0, j1, . . . , j`−1) count the number of those sequences
consisting of j0 0’s, j1 1’s,..., j`−1 `’s, j0 + j1 + · · · + j`−1 = n, for which
S = t. For example P6(1; 3, 3) = 3, P6(4; 2, 4) = 2, P9(27; 3, 3, 3) = 1, and
P9(t; 3, 3, 3) = 0 when t ≥ 28.

Constructing the sequence x1, x2, . . . , xn, xn+1 from x1, x2, . . . , xn we ar-
rive at the fundamental recursive rule

Pn+1(t; i0, i1, . . . , i`−1)

=Pn(t− i1 − · · · − i`−1; i0 − 1, i1, . . . , i`−1)

+ Pn(t+ i0 − i2 − · · · − i`−1; i0, i1 − 1, . . . , i`−1) + · · ·+ (22)

+ Pn(t+ i0 + · · ·+ i`−2; i0, i1, . . . , i`−2, i`−1 − 1)

12



where now i0 + i1 + · · · + i`−1 = n + 1. In passing, we notice that applying
the recursive formula twice we obtain for ` = 2 that

Pn+1(t; i0, i1) = Pn−1(t− 2i1; i0 − 2, i1)

+Pn−1(t+ i0 − 1; i0 − 1, i1 − 1) + Pn−1(t+ i0 − i1 + 1; i0 − 1, i1 − 1) (23)

+Pn−1(t+ 2i0; i0, i1 − 2).

Repeated use of this identity describes exactly how the configurations in
Tables I and II are built up.

Let us return to the recursive rule (22). For the calculation of the variance
µ2(n) we assume that all sequences x1, x2, . . . , xn of length n are equiprobable.
Then

µ2(n) =
∑
x1···xn

S2(x1, x2, . . . , xn)

`n
,

where the sum is taken over all the `n possible sequences. The auxiliary
quantities

Bn(j0, . . . , j`−1) =
∑
t

t2Pn(t; j0, . . . , j`−1)

satisfy according to the recursive rule (22) the formula

Bn+1(i0, . . . , i`−1)

=
`−1∑
k=0

∑
t

(
t+ i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1

)2×
Pn(t+ i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1; i0, . . . , ik − 1, . . . , i`−1)

−2
`−1∑
k=0

∑
t

(
i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1

)
×(

t+ i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1
)
×

Pn(t+ i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1; i0, . . . , ik − 1, . . . , i`−1)

+
`−1∑
k=0

∑
t

(
i0 + i1 + · · ·+ ik−1 − ik+1 − · · · − i`−1

)2×
Pn(t+ i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1; i0, . . . , ik − 1, . . . , i`−1),

13



where i0 + i1 + · · · + i`−1 = n + 1. Here the first inner sum over t is merely
Bn(i0, i1, . . . , ik−1, ik − 1, ik+1, . . . , i`−1) and the second inner sum is zero by
symmetry. In the last inner sum

∑
t Pn is a certain number of combinations.

Therefore the above formula reduces to the simple expression

Bn+1(i0, . . . , i`−1) =
`−1∑
k=0

Bn(i0, . . . , ik−1, ik − 1, ik+1, . . . , i`−1)

+
`−1∑
k=0

(
i0 + · · ·+ ik−1 − ik+1 − · · · − i`−1

)2( n

i0 · · · ik−1 ik − 1 ik+1 · · · i`−1

)
.

Here (
n

i0 · · · ik − 1 · · · i`−1

)
=

n!

i0! · · · (ik − 1)! · · · i`−1!
is the usual multinomial coefficient. Summing all equations with i0 + i1 +
· · ·+ i`−1 = n+ 1 and noting that

`nµ2(n) =
∑

j0+···+j`−1=n

Bn(j0, . . . , j`−1),

we obtain

µ2(n+ 1) = µ2(n)

+ `−n−1
`−1∑
k=0

∑
j0,··· ,j`−1

(
i0 + · · ·+ ik−1 − ik+1 − · · · − il−1

)2×(
n

i0 · · · ik − 1 · · · i`−1

)
.

The parenthesis in the sum can be written as the sum of products ±iαiβ, `−1
of which are of the form i2α, k

2 + (` − k − 1)2 of which are of the form
+iαiβ (α 6= β), and 2k(` − k − 1) of which are negative. Using well-known
identities like ∑

j0+···+j`−1=n

j0j1

(
n

j0 · · · j`−1

)
= n(n− 1)`n−2

∑
j0+···+j`−1=n

j20

(
n

j0 · · · j`−1

)
= n`n−1 + n(n− 1)`n−2

14



we finally obtain the equation

µ2(n+ 1) = µ2(n) + n
`− 1

`
+
n(n− 3)

3

`2 − 1

`2
. (24)

Adding the n first equations (24) and noting that µ2(1) = 0, we reach the
final result (4). This concludes our proof for the variance σ2(n).

The fourth moment µ4 in (5) is the result of a similar, although more
tedious, calculation. However, a more effective method should be invented
for higher moments. —Corresponding formulae for S+ are given in [L1].

In passing we mention the formula

S(i0, . . . , i`−1) = 2S+(i0, . . . , i`−1)−
n2 −

(
i20 + · · ·+ i2`−1

)
2

,

i0 + · · ·+ i`−1 = n. Here the exceptional notation is understandable.

7 Edgeworth’s Approximation

The closedness to normality of the distribution for S is good, when ln is large.
However, if ln is not large, especially the tails of the distribution behave
obstinately, so that the assumption of normality is somewhat inadequate for
precisely those values of S whose significance may be in doubt. Fortunately,
numerical calculations indicate that a correction based on Edgeworth’s series
gives an accurate approximation.

Let

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

denote the normal distribution function. The approximation

P{S ≤ σ(n)x} ≈ Φ(x) +
1

4!

(µ4(n)

σ(n)4
− 3
)

Φ(4)(x) (25)

is obtained from Edgeworth’s series [C, page 229], terms containing µ6, µ7, . . .
being neglected.

It stands to reason that (25) is accurate, µ4(n) and σ(n) being calculated
from (5) and (4), provided that `n is large, say `n > 106. —The dependence
on ` is slightly puzzling. This is a point that requires further numerical
investigation.
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