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ABSTRACT:D We study a modification of Kendall's 7, replacing his permuta-
tions of n different numbers by sequences of length n. Thus repetition is allowed.
In particular, binary sequences are studied.

1 Introduction

The basic tool in Kendall’s 7-test is the “score” S. Suppose that ¢ digits
0,1,...,¢ — 1 satisfying the transitive relations 0 < 1 < ... < £ — 1 are given
and consider all the ¢™ possible sequences

T1, 22, ..., T (1)

of length n that can be formed by the aid of these digits. Let ST(xy, ..., 2,)
denote the number of true inequalities

in the sequence . Analogously, S™(z1, ..., z,) counts the number of all
valid inequalities z; < x; with ¢ > j. Define

S(x1, s wy) = ST (21, oy xn) — S (21,0, ). (2)
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For example, S = 5 — 11 = —6 for the sequence 0112021. Originallyﬂ,
Kendall considered the distribution of S among the ¢! permutations of the
digits 0,1,...,£ — 1 (then n = {), and so far as I knowﬂ the generalizations
of Kendall’s 7-test rely upon the distribution of S among all

n!

(2!)1)2 (3])1)3 . (r!)pr

(p1+2p2+ ... +rp. =n)

possible sequences consisting of p; digits occurring only once, py pairs, ps
triplets, and so on. Here the numbers of ties, i.e., pi, po, ..., pr, are regarded
as fixed. See [S]. For permutations S has been thoroughly investigated in
[M].

We shall study a different situation, arising for example in connexion with
the testing of sequences of random digits. In this setting the number of ties
cannot be regarded as fixed a priori. Thus we are led to study the distri-
bution of S among all {"™ sequences . As we shall learn, this distribution
approaches normality, as n — co.

Having in mind applications for a certain kind of sampling, we have con-
sidered the binary case ¢ = 2 also when the probability for a 0 is p and the
probability for a 1 is ¢, where p + ¢ = 1. See Section [5

Finally, we mention that the distribution for S in our setting of the prob-

lem is, in certain respects even simpler than the version considered by Kendall
[K1], Sillitto [S], and Silverstone [S2].

2 The Basic Results

The mean value for S taken over all sequences is zero by symmetry:

pu(n) = 0. (3)
When all the sequences are equiprobable, the variance is

JQ(n):Kzln(nQ—l)+€€;1n(n—19)(n—2) (1)

2The coefficient T was considered by Greiner (1909) and Esscher (1924). The coefficient
was rediscovered by Kendall (1938).
3However, see [L1].




and the fourth central moment is

2 — 1\2100n* + 328n° — 127n% — 997n — 372
pa(n) = ( 2 ) 2700 n(n—1)

2 — 1 252n + 507n? — 3623n + 3652

+ /i 900 n(n —1)
?—-12n+3n*>—-5n—15

B 5 n(n —1) (5)
{—1n%24+11n—25

7 5 n(n —1).

By symmetry
ps(n) = 0, pus(n) = 0, uz(n) = 0, ....

It is interesting to observe that for n fixed the moments approach those given
by Kendall in [K1], as ¢ — oco. Formula is derived in Section @, but the
corresponding calculations for are, to say the least, a laborious task and
o0 p14(n) is given without proof, when ¢ > 3.

As n grows, the distribution for S tends towards normality in the sense
that the frequency between the values S; and S5 tends to

1\/ / S et gy
o(n)v2r Js, ’
where the standard deviation is o(n) = 4/ pa(n). This follows from the Second

Limit Theorem, since

im prax(n)
A (o))

and the odd moments are zero. It is easy to prove @ for small values of ¢,

but the probability function for S becomes soon too complicated, as ¢ grows.

Therefore we shall prove @ only for the binary case £ = 2, see Section .
In the binary case the probability generating function for S is

=1-2-5---(2k—1) (6)

k=v
f(ZL‘) = k:klzu 9 (7)
gt 1] (2% +27F)7, n=2v+1
k=1
and so the characteristic function ¢(#) = f(e?) reduces to the simple ex-

pression . Our proof for @, when ¢ = 2 is based on ¢(6). Furthermore,
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the distribution for S can be rapidly calculated via a suitable interpretation
of .
In the general binary case, when the probability that x; = 0 is p and that
r; = 11is ¢ in , t=1,2,...,n, p+ q = 1, the corresponding probability
function is given by and the characteristic function by . Now again
wu(n) =0, and
n(n? —1
P2y = " )
and the fourth moment is
n(n? —1)(5n® — 6n% — 5n + 14
pan) = 2 X ) g
15
n(n? —1)(3n% -7
( fé ) pa(p — g (9)

All odd moments are zero and the asymptotic normality @ holds even for

p#q.

3 The Probability Function

Consider the binary case ¢ = 2 with equiprobable sequences . Direct
calculation of S for n = 3 yields

000 O 010 O 1002 1102
001 -2 011 -2 1010 1110
and so we can write

—-2-10+1 42
2 04 0 2

and in this manner the distribution for S can be tabulated. The results are
displayed below:
2
121
20402
121242121
2040608060402
1212445458545442121



The fundamental observation is that the table can be constructed via the
following kind of figurates. For even n we have

121
121 121
121242121
121242121
121242121 121242121
1212445458545442121

and so on. (The overlined sequences display n = 2, 4 and 6.) For odd n the
table looks like

020
020
020 020
0204020
0204020
0204020 0204020
020406080604020
020406080604020
020406080604040406080604020

and the next row, corresponding to n = 7, becomes
0204060120140160200160140120604020.

(The first and last zeros in a row are void.) In an obvious interpretation the
above process reads

2+,
r S e 2 4+ 20 + 22 + 228 + 2t
= (x_1+2+x)(x_3—|—2—|—:£3), .....



for odd n and

2, 2072 + 4 4 222,
2070 4 427 + 6272 + 8 + 62 + 42t + 22°
=2(z7+2+2°) (a7 + 242", ...

for even n. This leads to the probability generating function ([7)).
A simple proof for the probability generating function f(x) comes from
considering the binary sequence

J1,J2, - Jn where j, =0 or 1.

Then we have

n n n

S = Z(jl — Jk) +Z(j2 —Jk) + ... +Z(jn—1 — Jr)

k=2 k=3 k=n

and the index jj, appears exactly (n—k)—(k—1) times and so its contribution
to the score S is

[(n = k) = (k = 1)]jk-

Therefore

S =n—-1)jh+n=3)js++n—2k+1Dj+ -+ B=n)jn1+ (1 —n)jn

for this sequence. Now 7, is 0 or 1 so that the generating function becomes
(1 + :1:”_1) (1 + :U"_3) e (1 + :L’_("_3)) (1 + x_("_l)).

Upon multiplication, the coefficient of 2! indicates how many times S = ¢
among all possible sequences 7ji, ja, ..., jn. Dividing by the total number of
sequences we arrive at the probability generating function .

The characteristic function for S is ¢(0) = f(e?), i = —1. Euler’s
formula yields

f[ cos®(k0), n=2v+1
¢(0) = ¢! (10)

k]i[l cos?(22L0), n=2w.



By definition ¢(0) = 1 and
o (0) = i *up(n),  k=1,2,..,n.
By symmetry ¢'(0) = 0, ¢3(0) = 0,..., so that all odd moments are zero and
¢P(0) = (=1)* par(n).

Direct calculations yield

n(n®—1)(35n5—126n°+74n* +420n° —829n% — 294n+1488)
4032 ’

(n)
(n)
pa(n) = 240
(n)
(n)
(n)

The arrangements in Section [4 will shorten such calculations.

4 Approach to Normality

In order to show that the distribution for S approaches normality in the
binary case, we shall prove @ The dichotomy in formulae forces us to
separate the cases

i pok (2v) _ (2k)! lim pox(2v + 1) _ (2k)!.
v (g(20))F 2R s (g(ap 4 1) 28R

However, both cases are so similar that we shall write down only the odd
case n = 2v + 1. Then the characteristic function is

#(0) = cos*(0) cos*(20) - - - cos*(vh)



and by logarithmic differentiation

¢'(0) = —2¢(0 Z]tfmg& (11)
Denoting
6) = =2 j tan(j6), (12)
j=1

we obviously have
A(0) = 0, A"(0) = 0, AD(0) = 0,....

In order to calculate the odd derivatives A’(0), A”(0), ... we use the expansion

00 22k: 22k -1 2
tan(z) = Z % (—1)FH 1By, 2%t (\z|2 < %)
k=1

where By = 1,Bs = 1/6,B4 = —1/30, ... are the Bernoulli numbers. Thus

00 o2k (02k
2 (2 1) (—l)kng(l%—i-Q%-f—'“+V2k)92k71 (13)

A= e

k=1

for |0] < w/2v. We deduce that

AC=D(0) = % 2°%(2°% — 1) By 5, (2K) (14)

where

s,(2k) = 127 4 2%F .
V2k:+1 V2k ]{]VQk_l
T %12 TTo

+ (lower terms)

are well-known polynomials of degree 2k + 1.



According to and we obtainﬁ by Leibniz rule

¢'(0) = ¢(0)A(0)
¢"(0) = ¢'(0)A(0) + o(0)A'(0)
¢"(6) = ¢"(6)A(0) + 2¢/(0)A'(0) + H(0)A"(6)

PFHL(g) = Z (k> ¢(9)(6’)A( j)(g)

In passing, we calculate

2 —_—
o) = ) = -0 Y
4) — 4 " . n(n2 - 1) (5713 —6n? —5n + 14)
oW = 3¢"(0)% + A”(0) = —

for odd n. For even n we shall arrive at the same formulae. We have obtained
that

o?(n) = W (15)
Ja(n) = n(n2 — 1) (5n3 —6n% —5n+ 14) ' (16)

240

This shows that @ holds at least for k = 1 and k = 2. For general k we use
induction.
To this end, notice that at the point § = 0 we have

k
(2k) _ " (2k—2) A25-1) 4 (2k—27)
) — (2 — 1)eD + 3 (2 - 1) ¢
Jj=2
or, more conveniently,
(%)
((b”)k

4The connexion with cumulants is obvious, since £ log |¢(0)| = A(6).

(17)

(% — 1) ¢(2k—2) k (Qk: _ 1) & (2k—=2j) A(2j-1)
=2

((b//)k_l ] -1 (¢//)k 7 <¢”)j '




According to and (|15, where n = 2v + 1 is odd, we have

A .
Vlg& &Y = 0, 1=2,3,...,k,
since A1 ~ ¥+ and (¢")’ ~ 3. But now (|17 shows that, if
o pem)
holds for m = 1,2, ...,k — 1, then also
‘ ¢(2k)

In other words, the desired conclusion @ follows by induction with respect
to k. This concludes our proof of the asymptotic normality.

5 Binary Sequences not Equiprobable

Consider again all 2" sequences of length n consisting merely of 0’s and 1’s.
But assume now that the probability for a 0 is P(0) = p and the probability
for an 1is P(1) = ¢. Here p + ¢ = 1. For example, the sequence 0110111
has probability p?¢®. The figurates in Table I and Table II (at the end)
are constructed via @ below. The simple rule for the formation of these
figurates is condensed in the formulae

P+ II (par™ +p* + @ +pgz®™),  n=2w+1
fla) =9 ., (18)

k=1

for the probability generating function. (Of course, the factor p + ¢ outside
the product is 1, but it is included to match Table II.)
The characteristic function ¢(0) = f(e%) is
(p+ @) IT ®* +¢* +2pgcos(2k0)), n=2v+1

o0) = { , = (19)
kl;I1 (p* + ¢ + 2pq cos((2k — 1)0)), n =2
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For p = ¢ = 1/2 we again obtain the expressions in Section .
Let us consider the case n = 2v + 1, the calculations for even n being
similar. Now

—4pqk sin(2k6)
P? + ¢2 + 2pq cos(2k0)

¢(0) = ¢(6) Y = #(0)A(9)

k=1
with an obvious abbreviation. The well-known expansion

osin(1)
P+ ¢% — 2pcos

0 > tsin(my)  (lel < 1)
m=1
converges for
P4y
—0 = mm{a, 5} if p#q

Having treated the case p = ¢ = 1/2 in the previous sections, we assume
that p # ¢ here. Then

Ak psin(2k0)
p? + ¢* — 2pcos(2k0)

= 4k Z 0™ sin(2kmo)
m=1

and so we obtain
A(0) = Z <4Qm Z ksin(kaQ)) (p # q).
m=1 k=1

Using the Maclaurin series for sin(2km#é), we arrive at the formula

A(G) _ Z {(_1>j+12 J (1(2]]—|—_1)|—|— v 3) Z:1m2j1'9m} 92i—1 (20>

J=1

where some arrangements have been done. The corresponding convergence
investigations are quite straightforward.

By (20), A(0) =0, A”(0) = 0, A®(0) =0,..., and

ACID () = (1)1 g (25) Zm2j—1gm' (21)
m=1
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(This expansion diverges for ¢ = —1, i.e. for p = g.) Here the infinite sum
is easily calculated as the differentiated geometric series

00 L d\2i-1 1 ‘

> mP e = (g—) — (=123
m=1 0 Y

A calculation yields

wrv+1)Q2v+1) o
3 (1-20)*
16

A”(0) = —1—5u(y +1)(2v + 1)(3v° + 3v — 1)

A(0) =

1+4Q+92
(1—o0)*

and using

¢"(0) = A(0),
6W(0) = 3¢"(0)A'(0) + A" (0) = 34'(0)* + A" (0)

we arrive at and @ —The corresponding calculations for even n yield
the same final result.

An analogous investigation as that in Section , but now based on ,
shows the approach to normality also for p # q. The difference is merely
technical.

6 The Variance (with General /).

Consider again all sequences 1, x», ..., x, that can be formed of the digits
0,1,2,...,¢. Let P,(t; jo, j1,---,Je—1) count the number of those sequences
consisting of jo 0’s, j1 1's,..., je—1 €’s, jo + j1 + -+ + je-1 = n, for which
S = t. For example Ps(1;3,3) = 3, Ps(4;2,4) = 2, Py(27;3,3,3) = 1, and
Py(t;3,3,3) = 0 when t > 28.

Constructing the sequence x1, s, ..., T,, Tyyq from xq,2o,..., 2z, We ar-
rive at the fundamental recursive rule

Poyi(tsio,in, ... ie—1)
=P,(t—i1— - —dp_1390 — 1,01, .., 0—1)
+ Pn<t+’i0—’i2—"'—Z-gfl;l-o,lll—1,...,Z-g,1)+“’+ (22)

+ Pn(t+i0+"'+i€—2;i07i17'"aif—Qail—l_]-)

12



where now ig + 4, + -+ + 441 = n + 1. In passing, we notice that applying
the recursive formula twice we obtain for ¢ = 2 that

Poyi(tyio,i1) = Pu1(t — 2iy540 — 2,41)
—f—Pn_l(t—l—ZO—]_,l()—l,Zl—]_)—f—Pn_l(t—f-ZO—Zl—l—l,Zo—1,21—1) (23)
+ P (t 4 2ig; g, 1 — 2).

Repeated use of this identity describes exactly how the configurations in
Tables I and II are built up.

Let us return to the recursive rule . For the calculation of the variance
p2(n) we assume that all sequences x1, s, . . ., T, of length n are equiprobable.
Then

p2(n) =

Z SQ(ZL'l,ZEg, e ,ZL‘n)
o ’

T T

where the sum is taken over all the /" possible sequences. The auxiliary
quantities

Bu(jo,- -2 de-1) = Y Pt o, - Je1)
t

satisfy according to the recursive rule the formula

Bn+1(i07 s 7”*1)
-1
. . . N
:ZZ(t‘i‘ZO‘i‘"""Zkfl_ZkJrl_"'_Zéfl) X
k=0 ¢t
Po(t 4o+ +ip—q — o1 — - — Gg1500, - - 50 — 1,000 dpq)
-1
—QZZ(i0+"'+ik—1—ik+1—"'—ie—l)x
k=0 ¢t
(t+io+ - +ik1 —igp1 — - —ig_1) X
Po(t+ig+ -+ g1 — b1 — - — Ge—15%0,- - -, 0k — L, ... Gp—1)
-1
S . . N
+ (o + i1+ + k1 — fpgr — - — Gg—1) X
k=0 t
Po(t +io+ -+ ip1 —dhyr — - —dg1500, - 50 — 1,0 i),

13



where ig + i1 + --- + i1 = n + 1. Here the first inner sum over ¢ is merely

B, (g, 1,y k—1,% — 1,411, .,0—1) and the second inner sum is zero by

symmetry. In the last inner sum ), P, is a certain number of combinations.
Therefore the above formula reduces to the simple expression

-1
Bpnii(io, .. ie—1) = By (o, -y ip—1, 0k — L, dgg1, - oo 50—1)
k=0
-1
. . . . 2 n
+ (o4 +ik—1 — i1 — - — 1) | . . . :
— 10 h—1 0k — Ligg1 - o1

Here

n B n!
o in—1oig1) ol (i — Dl e
is the usual multinomial coefficient. Summing all equations with iy + 47 +
-++ 411 =n+ 1 and noting that

E",ug(n) = Z Bn(j()wuajé—l)?

Jot+je—1=n

we obtain

pa(n+1) = pa(n)

-1
ST ST (o et i — gt — e — i) X

k=0 jo, " je—1
n
do iy — 1 v ip_q1/)’

The parenthesis in the sum can be written as the sum of products +i,ig, £—1
of which are of the form 2, k* + (¢ — k — 1) of which are of the form
+iqip (@ # B), and 2k(¢ — k — 1) of which are negative. Using well-known
identities like

> joj1<. " )-71(71—1)@"2
Jo- " Je—1

Jot+je—1=n

Z jg( " ) =nl" 4 n(n— 1)

Jot-Fje—1=n Jorr e

14



we finally obtain the equation

€—1+n(n—3) ?—1
l 3 2

Adding the n first equations and noting that po(1) = 0, we reach the
final result . This concludes our proof for the variance o?(n).

The fourth moment 4 in is the result of a similar, although more
tedious, calculation. However, a more effective method should be invented
for higher moments. —Corresponding formulae for ST are given in [L1].

In passing we mention the formula

pa(n+1) = po(n) +n (24)

n? — (ig+ - +1;_)

S(io, ... ie_1) = 28" (ig, ... ie_1) — 5 :

190 + - -+ 2._1 = n. Here the exceptional notation is understandable.

7 Edgeworth’s Approximation

The closedness to normality of the distribution for S is good, when (" is large.
However, if [™ is not large, especially the tails of the distribution behave
obstinately, so that the assumption of normality is somewhat inadequate for
precisely those values of S whose significance may be in doubt. Fortunately,
numerical calculations indicate that a correction based on Edgeworth’s series
gives an accurate approximation.

Let
B(z) = — / % dt
r) = —F— e
V2T J o

denote the normal distribution function. The approximation

P{S < o(n)z} ~ ®(z) + %(% —3><I>(4)(x) (25)

is obtained from Edgeworth’s series [C, page 229], terms containing g, p7, . . .
being neglected.

It stands to reason that is accurate, py(n) and o(n) being calculated
from and , provided that ¢" is large, say ¢* > 10°. —The dependence
on ¢ is slightly puzzling. This is a point that requires further numerical
investigation.
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TABLE I

-9--7--5--3--101234567389

The binary distribution for

21

S

For example

The p'q’,

i

+

1

3

1

o,

1
N\
1
Ve
1
1
N\
1 1
N N\
1 2
N/ /N
1 1
N7
1
1
1 1 1
1 2 3
2 2 3
1 2 3
1 1 1
1
stands for (0 1)

(0 0)

1 1

1 0.

ptq = 1, denote the corresponding frequences.

TABLE II

v

-10+-8:.-6--4--20123456782910

The binary distribution for

22

For example

The p'p

j

H o e

1
1

i+j

BN e

1
|
1
1
1
1 1 1
! '
1 w 1
1
- 1 ~
H/w 1 _H 1 -
-
1 _NVA 2 _m 1 _H
1 2 NXN 1 1
-1 I~ -
1 1 1 1 1
~
1
1
1 1 1 1 1
2 3 3 3 2 1
3 4 5 4 3 2
3 4 5 4 3 2
2 3 3 3 2 1
1 1 1 1 1
1
0.
stands for (© .
(1

=n,

o e e

a

2B

p*q = 1, denote the corresponding frequences.
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