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Abstract
Natural-gradient methods enable fast and simple
algorithms for variational inference, but due to
computational difficulties, their use is mostly lim-
ited to minimal exponential-family (EF) approx-
imations. In this paper, we extend their applica-
tion to estimate structured approximations such
as mixtures of EF distributions. Such approxi-
mations can fit complex, multimodal posterior
distributions and are generally more accurate than
unimodal EF approximations. By using a minimal
conditional-EF representation of such approxima-
tions, we derive simple natural-gradient updates.
Our empirical results demonstrate a faster conver-
gence of our natural-gradient method compared to
black-box gradient-based methods with reparame-
terization gradients. Our work expands the scope
of natural gradients for Bayesian inference and
makes them more widely applicable than before.

1. Introduction
Variational Inference (VI) provides a cheap and quick ap-
proximation to the posterior distribution, and is now widely
used in many areas of machine learning (Kingma & Welling,
2013; Furmston & Barber, 2010; Wainwright & Jordan,
2008; Hensman et al., 2013; Nguyen et al., 2017). In recent
years, many natural-gradient methods have been proposed
for VI (Sato, 2001; Honkela et al., 2007; 2011; Hensman
et al., 2012; Hoffman et al., 2013; Khan & Lin, 2017). These
works have shown that, for specific types of models and ap-
proximations, natural-gradient methods can result in simple
updates which converge faster than gradient-based methods.
For example, stochastic variational inference (SVI) (Hoff-
man et al., 2013) is a popular natural-gradient method for
conjugate exponential-family models. Unfortunately, the
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Figure 1. We derive simple natural-gradient updates for approxima-
tions with a minimal-conditional EF (MCEF) representation. Such
approximations include all minimal (normalized) EF distributions,
and some curved and mixture of EF distributions.

simplicity of natural-gradient updates is currently limited
to VI with minimal exponential-family (EF) approxima-
tions. For such approximations, we can efficiently compute
natural-gradients in the natural-parameter space without
explicitly computing the Fisher information matrix (FIM)
(Khan & Nielsen, 2018). Unfortunately, this property does
not extend to many other approximations such as mixtures
of EF distributions. Such structured approximations are
more appropriate for complex and multi-modal posterior
distributions, giving a more accurate fit than minimal EF
distributions. However, computation of natural-gradients is
challenging for them.

In this paper, we propose a simple new natural-gradient
method for VI with structured approximations. We define a
class of distributions which take a minimal conditional-EF
(MCEF) form. This includes many members of mixture
and curved EF distributions (see Fig. 1). Using the MCEF
representation and an expectation parameterization asso-
ciated with it, we derive simple natural-gradient updates.
We show examples on a variety of models where simple
natural-gradient updates can be used to estimate flexible
and accurate structured approximations. Our empirical re-
sults show faster convergence of our method compared to
gradient descent for VI. Our work extends the simplicity of
natural-gradient methods making them more widely appli-
cable than before, while maintaining their fast convergence.

1.1. Related Works

Existing work on natural-gradient VI to obtain EF approxi-
mations all assume a minimal representation to ensure in-
vertiblility of the FIM. Such methods show fast convergence,
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result in simple updates, and lead to a straightforward imple-
mentation for many types of models. They have been used
for conditionally-conjugate EF models (Sato, 2001; Hoff-
man et al., 2013) and non-conjugate models (Khan & Lin,
2017), including deep neural networks (Khan et al., 2018;
Zhang et al., 2018; Mishkin et al., 2018) and Gaussian pro-
cesses (Khan et al., 2016; Salimbeni et al., 2018). Our work
presents fast and simple updates for approximations that are
beyond the reach of these works.

For structured approximations, existing works employ
stochastic-gradient methods (Salimans & Knowles, 2013;
Hoffman & Blei, 2015; Ranganath et al., 2016; Titsias &
Ruiz, 2018; Yin & Zhou, 2018). Such methods are widely
applicable, but not as widely used as their mean-field coun-
terparts. This is because they are computationally expensive
and slow to converge. Our work attempts to improve these
aspects for a flexible class of approximations.

2. Natural-Gradient Variational Inference
We begin with a description of natural-gradient descent for
variational inference in probabilistic models. Given a proba-
bilistic model p(D, z) to model data D using latent vector
z, the goal of Bayesian inference is to compute the posterior
distribution: p(z|D) = p(D, z)/p(D). This requires com-
putation of the marginal likelihood p(D) =

∫
p(D, z)dz,

which is a high dimensional integral and difficult to compute.
VI simplifies this problem by approximating the posterior
distribution p(z|D) by another distribution whose normaliz-
ing constant is easier to compute. For example, a common
choice to approximate the posterior is to use a regular1

exponential-family (EF) approximation,

q(z|λz) := hz(z) exp [〈φz(z),λz〉 −Az(λz)] , (1)

where q denotes the approximating distribution, φz(z) are
the sufficient statistics, hz(z) is the base measure, and
λz ∈ Ω is the natural parameter with Ω being the set of valid
natural-parameters (the set of λz where the log-partition
function Az(λz) 2 is finite) and 〈·, ·〉 denotes an inner prod-
uct. Such parametrized approximations can be estimated by
maximizing the variational lower bound:

L(λz) := Eq [log p(D, z)− log q(z|λz)] , (2)

which can be solved by gradient descent, as shown below:

GD : λz ← λz + α∇λzL(λz), (3)

where∇ denotes the gradient and α > 0 is a scalar learning
rate. The GD algorithm is simple and convenient to imple-
ment by using modern automatic-differentiation methods
and the reparameterization trick (Ranganath et al., 2014;

1An EF is regular when Ω is an open set.
2We assume Az(λz) can be efficiently computed.

Titsias & Lázaro-Gredilla, 2014). Unfortunately, such first-
order methods can show suboptimal rates of convergence
and be slow in practice.

An alternative approach is to use natural-gradient descent
which exploits the information geometry of q to speed-up
convergence. Assuming that the Fisher information matrix
(FIM) of q(z|λz), denoted by Fz(λz), is positive-definite
for all λz ∈ Ω, the natural-gradient descent (NGD) for VI
in the natural-parameter space is given as follows:

NGD : λz ← λz + β [Fz(λz)]
−1∇λzL(λz), (4)

The preconditioning of the gradients by the FIM leads to a
proper scaling of the gradient in each dimension, and takes
into account dependencies between variables. This often
leads to faster convergence, particularly when the FIM is
well-conditioned.

A naive implementation of (4) would require computa-
tion and inversion of the FIM. However, for specific types
of models and approximations, NGVI could be simpler
to compute than GD. This is true for mean-field VI in
conjugate-exponential family models (Hoffman et al., 2013)
as well as Bayesian neural networks (Khan et al., 2018;
Zhang et al., 2018). This computational efficiency is a
result of a simple NGD update to estimate EF approxima-
tions, as shown by Khan & Nielsen (2018). For EFs, we
can use the expectation-parameter, defined as the function
mz(λz) := Eq [φz(z)] from Ω→M, to compute natural-
gradients. This is possible because of the following relation,

∇λzL =
[
∇λzmT

z

]
∇mzL = [Fz(λz)]∇mzL (5)

where the first equality is obtained by applying the chain rule
and second equality is obtained by noting that ∇λzmT

z =
∇2
λz
A(λz) = Fz(λz). When the FIM is invertible, we get

a simple update for NGD,

λz ← λz + β ∇mzL(λz), (6)

where the gradient is computed with respect to mz . When
the above gradient is easier to compute than the gradient
with respect to λz , NGD admits a simpler form than GD.
This is the case for many existing works on NGD for VI.

To rewrite NGD as in (6), we need the FIM to be invertible.
For EFs, a sufficient condition for invertibility is to use a
minimal representation which is defined3 below using the
definition given in Wainwright & Jordan (2008).

Definition 1 (Minimal EF) A regular EF representation
is said to be minimal when there does not exist a nonzero
vectors λ such that 〈φz(z),λ〉 is equal to a constant.

3A more complete definition is given in Definition 1.3 of Jo-
hansen (1979).
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This essentially means that there are no linear dependencies
in the parameterization of the distribution. When such a
nonzero vector exists, we can add/subtract it from λ with-
out changing the distribution. Minimality ensures that this
never happens and the parametrization λz is unique and
identifiable up to multiplication with a nonsingular affine
transformation.

Under a minimal representation, the log-partition function
Az(λz) is strictly convex, implying that the FIM is positive-
definite.4 For other types of representation, like curved
EFs, the FIM may not be positive-definite. Minimality
ensures that the FIM is positive-definite and that NGD is
well defined 5. The NGD update can be then carried out
using the expectation parameter which are a one-to-one
function, as stated below (Wainwright & Jordan, 2008).

Theorem 1 The representation (1) is minimal if and only if
the mapping mz(·) : Ω→M is one-to-one.

Unfortunately, minimal EF approximations are not always
appropriate. Such approximations, especially unimodal
ones, usually yield poor approximations of multimodal
posterior distributions. Structured approximations, such
as mixtures of EF distributions, are more suitable for ap-
proximating multimodal posteriors. Unfortunately, for such
approximations, there is no straightforward way to define
a minimal EF representation which can be exploited to de-
rive a simple NGD update. For example, a mixture of EF
distributions expressed as

q(z) :=

∫
q(z|w)q(w)dw, (7)

with q(z|w) as the component and q(w) as the mixing dis-
tribution, may not even have an EF form even when both
the terms above are in the EF. A famous example is the
finite mixture of Gaussians. The conditions under which the
FIM of (7) is invertible are also difficult to characterize in
general. Due to these reasons, it is difficult to simplify the
NGD update for such structured distributions.

In this paper, we propose a new way to derive simple natural-
gradients for structured approximations (7) using a minimal
conditional representation which we define next.

3. Minimal Conditional-EF Representation
In this section we define a minimal conditional-EF (MCEF)
representation of the joint distribution q(z,w) for structured
approximations that take the form (7). Using this, we derive

4A formal proof can be found in Johansen (1979).
5In some cases, when FIM is not invertible, it is still possible

to perform NGD by, for example, ignoring the zero eigenvalues
or using damping, but the simplification shown in (6) may not be
possible.

conditions under which the FIM of the joint is invertible,
and show that it leads to a simple NGD similar to (6).

We begin with a definition of the conditional EF distribution.

Definition 2 (Conditional EF) We call the joint distribu-
tion q(z,w) defined in (7) a conditional EF when its com-
ponents take the following form:6

q(z|w) := hz(z,w) exp [〈φz(z,w),λz〉 −Az(λz,w)] ,

q(w) := hw(w) exp [〈φw(w),λw〉 −Aw(λw)] , (8)

with λw,φw(w) andAw(λw) being the natural parameters,
sufficient statistics, and log-partition function of q(w), and
λz,φz(z,w) and Az(λz,w) are the same for q(z|w). We
denote the set of natural parameters for q(z|w) and q(w)
by Ωz and Ωw respectively, and assume them to be open.7

Note that the sufficient statistics φz(z,w) and log-partition
Az(λz,w) both depend on w, but, conditioned on w, the
distribution is parametrized by the natural parameter λz .
For a well-defined conditional EF distribution, q(w) is a
regular EF distribution and conditioned on w, q(z|w) is
also a regular EF distribution. This is a type of conditional
exponential-family distribution (Xing et al., 2002; Liang
et al., 2009; Lindsey, 1996; Feigin, 1981) with a special
conditional structure.

We are interested in an NGD update that can exploit the
FIM of the joint distribution. We denote the set of natural
parameters by λ := {λz,λw} and the set of valid λz and
λw by Ωz and Ωw respectively. We define the following
FIM in the natural-parameter space Ωz × Ωw as follows:

Fwz(λ) := −Eq(z,w)

[
∇2
λ log q(z,w)

]
. (9)

This is the FIM of the joint distribution q(z,w) which is
different from the one for the marginal distribution q(z).
Similar to the minimal EF case, our goal now is to find
representations where the above FIM is invertible and can
be exploited to compute NGD using expectations of the
sufficient statistics. The expectation parameters of a CEF
can be defined as shown below:

mz(λz,λw) := Eq(z|w)q(w) [φz(z,w)] , (10)
mw(λw) := Eq(w) [φw(w)] . (11)

We denote the ranges of mz and mw by Mz and Mw

respectively, and the whole set of expectation parameters

6We assume that Az(λz,w) and Aw(λw) can be efficiently
computed.

7It is possible for Ωz to be non-open since it is an intersection
of all of the valid natural-parameter of q(z|w) for each w ∼ q(w).
The set is open when the set of valid natural-parameters for q(z|w)
conditioned on w does not depend on w, or when the cardinality
of the support of w is finite. For all the examples given in this
paper, the set is an open set.
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by m(λ) := {mz,mw}. Since φz(z,w) and Az(λz,w)
both depend on w, we may or may not be able to perform
NGD using these expectation parameters. However, we next
show NGD is always possible by restricting to a minimal
representation of CEFs.

Below we define a minimal representation for CEF which
ensures that the Fwz(λ) is positive definite, and NGD can
be performed using m.

Definition 3 (Minimal Conditional-EF (MCEF)) A con-
ditional EF defined in Definition 2 is said to have a minimal
representation when mw(·) : Ωw →Mw and mz(·,λw) :
Ωz →Mz are both one-to-one, ∀λw ∈ Ωw.

In the next section, we will show that all the examples
shown in Figure 1 (See “Examples of MCEFs”) have an
MCEF representation. Similar to minimal EFs, an MCEF
representation implies that Fwz(λ) is positive-definite and
invertible, as stated in the following theorem (see a proof in
Appendix A).

Theorem 2 For an MCEF representation given in Defini-
tion 3, the FIM Fwz(λ) given in (9) is positive-definite and
invertible for all λ ∈ Ω.

Since the FIM is well-defined, it is reasonable to perform
natural-gradient steps in the Riemannian manifold defined
by Fwz(λ). The steps can be taken using an update that
takes a simple form, similar to the one shown in (6). As
shown in Lemma 5 in Appendix A, similar to (5) for mini-
mal EF, we have the following relationship for MCEFs:

∇λL =
[
∇λmT

]
∇mL = [Fwz(λ)]∇mL (12)

Since the FIM is invertible, we can compute the natural-
gradient by using gradients with respect to m. The follow-
ing theorem shows the simplicity of NGD.

Theorem 3 For minimal conditional-EF approximations,
the following updates are equivalent:

λ← λ + β [Fwz(λ)]
−1∇λL(λ) (13)

λ← λ + β ∇mL(λ). (14)

The above theorem generalizes the previous result for mini-
mal EF approximations to minimal conditional-EF approxi-
mations. It also implies that using the expectation parame-
terization m enables us to exploit the geometry of the joint
q(z,w) to improve convergence.

4. Examples
In this section, we give examples of approximations with
a minimal conditional-EF form. We discuss finite mix-
tures of EFs, scale mixtures of Gaussians, and multivariate

Skew-Gaussians. We give updates that can be implemented
efficiently by using existing NGD implementations, e.g.,
the variational online Newton (VON) method of Khan et al.
(2018). We also propose many new versions. To derive
these updates, we use the extended Bonnet’s and Price’s
theorems (Lin et al., 2019) for Gaussian mixtures. For
exponential-family mixtures, we use the implicit reparame-
terization trick (Salimans & Knowles, 2013; Figurnov et al.,
2018). Lin et al. (2019) discuss a weaker version of the
reparameterization trick for exponential-family mixtures.

4.1. Finite Mixture of Exponential Family Distributions

Finite mixtures of EFs are a powerful approximation where
components in EF form are mixed using a discrete distribu-
tions such as a multinomial distribution, as shown below:

q(z) =

K∑
c=1

πcq(z|λc), such that
K∑
c=1

πc = 1, (15)

where q(z|λc) are EF distributions with natural parameters
λc. The support of z of all the components is assumed to
be the same, and πK is fixed to 1−

∑K−1
c=1 πc.

This distribution cannot be written in an exponential form
in general, and therefore none of the existing NGD methods
can be used to derive a simple expression for NGVI. Directly
applying NGD using the FIM of q(z) would be too expen-
sive since the number of parameters are in O(D2K), and
the FIM could be extremely large when computed naively.
Fortunately, the joint distribution does take an MCEF form
when all q(z|λc) are minimal EFs. A formal statement is
given in Appendix B. Using this conditional EF form, we
can derive a much simpler NGD update which reduces to
simple parallel updates on mixture components.

We will now demonstrate the simplicity of our update for
a finite mixture of Gaussians (MOG) where components
q(z|λc) := N (z|µc,Σc) are Gaussian. The sufficient statis-
tics, natural parameters, and expectation parameters of the
corresponding CEF are given in Table 1.

We consider the following model where the likelihood
p(Dn|z) is defined using neural-network weights z with
a prior p(z): p(D, z) =

∏N
n=1 p(Dn|z)p(z). We approxi-

mate the posterior with a MOG by optimizing the follow-
ing variational lower bound: L(λ) := Eq(z)[−h(z)] where
h(z) := log [q(z)/p(z)]−

∑
n log p(Dn|z).

We now summarize the NGD update derived in Appendix B.
We first generate samples (z, w) from q(z, w). The mean µc
and covariance Σc are similarly updated by the variational
online Newton (VON) algorithm (Khan et al., 2018):

Σ−1
c ← Σ−1

c + βδc
[
∇2
zh(z)

]
,

µc ← µc − βδcΣc [∇zh(z)] , (16)
log (πc/πK)← log (πc/πK)− β(δc − δK)h(z)
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Table 1. We give expressions for various components of q(z,w) as specified in (8) for a minimal conditional-EF representation. We give
three examples. More examples can be found at the Appendix. The first two rows give expressions for the sufficient statistics, and the
subsequent rows show natural and expectation parameters. For the first column, Ic(w) denotes the indicator function which is 1 when
w = c and 0 otherwise. For the second column, ψ is the digamma function. For the third column, c :=

√
2/π. Note that both the natural

and expectation parameters may lie in a constrained set. Due to space limitations, we have not explicitly given the description of these sets.
Mixture of Gaussians T-Distribution Skew-Gaussian

φw(w) {Ic(w)}K−1
c=1 −1/w − logw w, w2

φz(z, w)
{
Ic(w)z, Ic(w)zzT

}K
c=1

{
z/w, zzT /w

} {
z, |w|z, zzT

}
λw {log (πc/πK)}K−1

c=1 a constants
{

0, − 1
2

}
mw(λw) {πc}K−1

c=1 −1− log a+ ψ(a) constants {0, 1}
λz

{
Σ−1
c µc, − 1

2Σ−1
c

}K
c=1

{
Σ−1µ,− 1

2Σ−1
} {

Σ−1µ, Σ−1α, − 1
2Σ−1

}
mz(λ)

{
πcµc, πc

(
µcµ

T
c + Σc

)}K
c=1

{
µ,µµT + Σ

} {
µ + cα, α + cµ,

µµT + ααT + Σ + c
(
µαT + αµT

) }
where δc := N (z|µc,Σc)/

∑K
k=1 πkN (z|µk,Σk). This

update can be implemented efficiently using approximations
discussed in Khan et al. (2018); Zhang et al. (2018); Mishkin
et al. (2018). For example, implementation of the Adam
optimizer can be utilized. This is simpler and more efficient
than the update which requires computation of the FIM.

A similar example to MOG is the fatigue life distribution
(Birnbaum & Saunders, 1969) discussed in Appendix C.

4.2. Scale Mixture of Gaussians

A multivariate scale-mixture of Gaussian (SMG) distribu-
tion (Andrews & Mallows, 1974; Eltoft et al., 2006) takes
the following form where the covariance matrix is “scaled”
by a vector w sampled from q(w) such that wi > 0:

q(z) =

∫
N (z|µ,LWLT )

d∏
i=1

q(wi)dw,

where W := diag(w) is a diagonal matrix containing w
as the diagonal and L is a matrix with determinant 1 (e.g.,
a Cholesky factor) that determines the covariance matrix.
SMG includes many well-known distributions like Student’s
t, Laplace, logistic, doubly-exponential, normal-gamma,
normal-inverse Gaussian, normal-Jeffreys, and their non-
parametric extensions (Caron & Doucet, 2008). For exam-
ple, the multivariate Student’s t-distribution is obtained by
using a scalar w from an inverse-gamma distribution:

T (z|µ,Σ, a) :=

∫
N (z|µ, wΣ) IG(w|a, a)dw, (17)

where Σ := LLT and both the shape and scale parameters
of the inverse-gamma distribution are equal to a. We assume
a > 1, since for a ≤ 1 the variance of q(z) does not exist.

SMG is another class of approximations where existing
methods cannot be applied to obtain a simple natural-
gradient update. For example, for Student’s t the joint-
distribution q(z, w) takes an EF form, but, as we show in

Lemma 8 in Appendix D, the number of free parameters is
equal to 3, while the number of natural parameters is equal
to 4. Such representations are not minimal EFs but curved
where the FIM is not positive-definite because the number
of free parameters is less than the number of natural param-
eters. Therefore, the update (6) does not apply. In contrast,
our update can be applied since the joint distribution is a
minimal CEF. This can be verified from Table 1 where both
mw(λw) and mz(λ) are one-to-one functions. A formal
proof is given in Lemma 10 in Appendix D.

We now demonstrate the simplicity of our update to obtain
a Student’s t-approximation on a Bayesian neural network.
We assume the following model with a likelihood p(Dn|z)
specified using a neural network with weights z and a Stu-
dent’s t-prior: p(D, z) =

∏N
n=1 p(Dn|z)T (z|0, I, a0). The

Student’s t-prior is better than a Gaussian one if we expect
the weights to follow a heavy-tailed distribution. We ap-
proximate the posterior by the approximation (17) using
parameters Σ, µ, and a. We use the variational lower bound
defined in the joint distribution p(D, z, w) space:

L(λ) = Eq(z,w|λ)

[ N∑
n=1

:=−fn(z)︷ ︸︸ ︷
log p(Dn|z) + log

p(z, w)

q(z, w)

]
(18)

Below, we summarize the NGD updates derived in Ap-
pendix D. We first sample (z, w) from q and randomly sam-
pled an example n. The update is then a small modification
of the VON update (Khan et al., 2018):

Σ−1 ← (1− β)Σ−1 + β
[
u∇2

zfn(z) + I/N
]
, (19)

µ← µ− βΣ [∇zfn(z) + µ/N ] , (20)

a← (1− β)a+ β
[
a0 − δTr

(
∇2
zfn(z)Σ

)]
, (21)

where β > 0, δ ← Nw2/(2(1 − w)), and u is a pre-
multiplier defined below (d is length of z): u = (a − 1 +

d/2)−1
[
a+ (z− µ)

T
Σ−1 (z− µ) /2

]
. Similarly to the

previous section, this update can be implemented efficiently
using the method of Khan et al. (2018).
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Another example is given at Appendix H. Extensions using
an Adam-like optimizer for this kind of mixtures are given
in Appendix J.

4.3. Gaussian Mean Mixture

We consider the following Gaussian mixture.

q(z|µ,α,Σ) =

∫
N (z|µ +

k∑
i=1

u(wi)αi,Σ)

k∏
i=1

q(wi)dw,

where α is a d-by-k matrix and z ∈ Rd. An example is
the rank-1 covariance Gaussian with k = 1, u(w) = w,
and D as a diagonal covariance matrix: q(z|µ,α,D) =∫
N (z|µ + wα,D)N (w|0, 1)dw = N (z|µ,ααT + D).

The multivariate skew Gaussian (Azzalini & Valle, 1996;
Genton, 2004), defined below, is another example and al-
lows for non-zero skewness (asymmetric approximations):

q(z|µ,α,Σ) =

∫
N (z|µ + |w|α,Σ)N (w|0, 1)dw.

This distribution is not a minimal EF and the FIM of the
marginal q(z) can be singular (Azzalini, 2013). However,
the joint distribution is a minimal conditional-EF distribu-
tion as we show in Lemma 12 and 13 in Appendix E. The
sufficient statistics, natural parameters, expectation parame-
ters of the conditional EF form are given in Table 1.

Similar to other examples, we get a simple and effi-
cient NGD update. We summarize the updates for a
model with a neural-network likelihood p(Dn|z) using
weights z and a Gaussian prior N (z|0, I). Denoting
fn(z) = − log p(Dn|z), the lower bound is L(λ) :=
Eq(z)[−

∑
n fn(z) + log p(z) − log q(z)]. The updates de-

rived in Appendix E is a variant of the VON update:

Σ−1 ← (1− β)Σ−1 + β(I +NgnS) (22)

µ← µ− βΣ
[
c̄(gnµ − cgnα) + µ

]
(23)

α← α− βΣ
[
c̄(gnα − cgnµ) + α

]
(24)

where c̄ := N/(1 − 2/π) and gnS ,g
n
µ,g

n
α are gradients

obtained by gradient and Hessian of fn(z) at a sample of
q(z). The gradients are defined in (53)-(55) in Appendix E.

Another example of the mixture is the exponentially modi-
fied Gaussian distribution (Grushka, 1972; Carr & Madan,
2009) given in Appendix F. Extensions using an Adam
optimizer for the class of mixtures are given in Appendix J.

5. Generalization to Multilinear EF
We now extend the approach to an approximation with mul-
tilinear EFs which contain blocks of natural parameters. We
start by specifying a distribution over z by a function f(·):

q(z|λ) = hz(z) exp [f (z,λ)−Az(λ)] . (25)

Then we divide the vector λ := {λ1,λ2, . . . ,λK} into K
blocks with λj ∈ Ωj being the j-th block of parameters. In
EF, the function f is just linear in λz at (1). We can gener-
alize the notion of linearity to multiple blocks of parameters
by considering f to be a multilinear function.

Definition 4 (Minimal Multilinear-EF) We call f a multi-
linear function when, for each block j, there exist functions
φj and rj such that f is linear with respect to λj , i.e.,

f(z,λ) = 〈λj ,φj (z,λ−j)〉+ rj (z,λ−j) , (26)

where λ−j is the parameter vector containing all λ ex-
cept λj . A distribution q(z|λ) defined as in (25), but with
a multilinear f , is called a multilinear EF. Additionally,
when Ωj is open and the following expectation parameters
mj(λ) := Eq(z)

[
φj (z,λ−j)

]
are one-to-one, we call the

distribution a minimal multilinear EF distribution.

Clearly, minimal EFs are minimal multilinear EFs. The
following theorem give a result about a block NGD update
performed on individual blocks of parameters λj .

Theorem 4 For approximations with multilinearly-minimal
EF representation, the following updates are equivalent:

λj ← λj + β [Fj(λ)]
−1∇λjL(λ) (27)

λj ← λj + β ∇mjL(λ) (28)

The proof of this theorem is similar to Theorem 3. We now
give an example and demonstrate the simplicity of the NGD
update. Let’s consider the Matrix-Variate Gaussian (MVG)
distribution defined as follows:

MN (Z|W,U,V) := N (vec(Z)|vec(W),V ⊗U).

This distribution has been used for Bayesian neural networks
(Louizos & Welling, 2016; Sun et al., 2017). An approx-
imate NGD update is also derived by Zhang et al. (2018)
where the FIM is approximated by a block-diagonal matrix
and K-FAC approximation. Our update have a similar block-
diagonal approximation, but the update for the each block
is an exact NGD unlike Zhang et al. (2018) where the steps
are approximated by K-FAC.

In Appendix I, we show that the MVG distribution
MN (Z|W,U,V) can be written in the minimal multi-
linear form. The NGD update, derived in Appendix I, is
summarized below to optimize the lower bound as L(λ) =
Eq[−h(Z)] where h(Z) := − log p(D,Z) + log q(Z). To
simplify our implementation, we use the Gauss-Newton ap-
proximation (Graves, 2011) although it is not necessary to
do so. The resulting block NGD update is shown below,

W←W − β1UGV, (29)

U−1 ← U−1 + β2GVG>, (30)

V−1 ← V−1 + β2G
>UG, (31)
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Figure 2. Quantitative results on three toy examples showing the flexibility obtained by using structured approximations considered in this
paper. The leftmost figure shows the MOG approximation (with K = 20) to fit an MOG model with 10 components in a 20 dimensional
problem. The first 9 dimensions are shown in the figure where we see that MOG approximation fits the marginals well. The middle figure
shows MOG approximation fit to a beta-binomial model for a 2-D problem. The number indicates the number of mixture components
used. By increasing the number of components in our approximation, we get better results. The last figure shows a Skew Gaussian (in red)
and a Gaussian (in blue) fit on a 2-D logistic regression posterior. We see that skew-Gaussian captures the skewness in the distribution in
the right direction, and gives better approximation than a single Gaussian.

where we sample Z from the MVG distribution and eval-
uate the gradient G := ∇Zh(Z). These updates extend
the VON update obtained in Khan et al. (2018) to MVG
approximations. The gradient G is pre-conditioned, which
is very similar to other preconditioned algorithms, such as
K-FAC (Martens & Grosse, 2015; Zhang et al., 2018) and
Shampoo (Gupta et al., 2018). The update can be extended
to Tensor-Variate Gaussian (Ohlson et al., 2013).

6. Experimental Results
The code is available at:
https://github.com/yorkerlin/VB-MixEF.

6.1. Qualitative Results on Synthetic Examples

First, we show qualitative results on three toy examples and
visualize the results obtained by structured approximations.

The first toy example is the Gaussian mixture example
from Wang et al. (2018). In this example, the true dis-
tribution is a finite mixture of Gaussians (MOG) p(z) =∑C
i=1

1
CN (z|ui, I), z ∈ Rd, where each element of ui is

uniformly drawn from the interval [−s, s]. We approximate
the posterior distribution by an MOG approximation de-
scribed in Section 4.1. We consider a case with K = 20,
C = 10, s = 20, and d = 20. We initialize πc = 1

K and
Σc = 100I. Each element of µc is randomly initialized by
Gaussian noise with mean 0 and variance 100. We use 10
Monte Carlo samples to compute the gradients. The left-
most plot in Figure 2 shows the first 9 marginal distributions
of the true distribution and its approximations, where we
clearly see that MOG closely matches the marginals. All 20
marginal distributions are in Figure 6 in Appendix B.6.

In the second toy example we approximate the beta-binomial
model for overdispersion considered in Salimans & Knowles
(2013); Salimans et al. (2015) by using MOG (N = 20,
d = 2). The model is to used to estimate the rates of death
from stomach cancer for cities in Missouri. The exact poste-
rior of the model is non-standard and extremely skewed. In
the middle plot in Figure 2, we see that our MOG approxi-
mation approximates the true posterior better and better as
we increase the number of mixture components.

In the last toy example, we visualize the skew-Gaussian
approximations for the two-dimensional Bayesian Logistic
regression example taken from Murphy (2013) (N = 60,
d = 2). In the rightmost plot in Figure 2, we can see that
the skewness of the true posterior is captured well by the
skew-Gaussian distribution. The Gaussian approximation
results in a worse approximation than the skew-Gaussian.

6.2. Results on Real Data

Next, we show results on real-world datasets. We consider
two models in our experiments. We start with Bayesian
Logistic regression (BLR) and present results for MOG
approximations on two small UCI datasets. The ‘Breast-
Cancer’ dataset has N = 683, d = 10 with 341 chosen
for training, and regularization parameter is set to 1.0. The
‘Sonar’ dataset has N = 208, d = 6 with 100 chosen for
training, and regularization parameter is set to 0.204. We
vary the number of mixture components to K = 1, 3, 5, 10.
In Figure 3, we plot the KL divergence between the true
posterior and the MOG approximation, and compare our
method (referred to as ‘NGVI’) proposed in Section 4.1 to
the black-box gradient method (referred to as ‘BBVI’) with
the re-parametrization trick (Salimans & Knowles, 2013;

https://github.com/yorkerlin/VB-MixEF
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Figure 3. Bayesian logistic regression approximated by MoG: This
figure demonstrates a fast convergence of NGVI over BBVI. We
use a mixture of Gaussians with full covariance matrix as the ap-
proximating distribution. The number next to the method name
indicates the number of mixture components used. The plot shows
the KL obtained using 106 MC samples, where p is the true pos-
terior distribution. For both algorithms, we used full-batches by
using 20 MC samples to compute stochastic approximations.
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Figure 4. Bayesian logistic regression with Student’s t (left) and
skew-Gaussian approximations (right). We use 10 MC samples
for training, and M denotes the mini-batch size.

Kingma & Welling, 2013; Figurnov et al., 2018). For both
methods, we use a full batch for each update. We observe
that NGVI always converges faster than BBVI. We also see
that MoG is a better approximation than the single Gaussian,
and the quality of the posterior approximation improves as
the number of mixture increases.

Next, we show results on a larger dataset using two other
kinds of variational approximation: Skew-Gaussian and
Student’s t. We use the UCI dataset “covtype-binary-scale”
with d = 54, N = 581, 012 with 464, 809 chosen for train-
ing and regularization parameter 0.002. We use the algo-
rithm discussed in Section 4.2 and 4.3. For black-box meth-
ods, we use the Adam optimizer and refer to it as BBVI.
In the skew-Gaussian case, we use a Gaussian prior, and,
for the Student’s t-distribution, we use a Student’s t-prior as
shown in (18). Figure 4 demonstrates the fast convergence
of our method compared to BBVI.

Finally, we discuss results on Bayesian neural network
(BNN) with a standard normal prior on weights. We use one
hidden layer, 50 hidden units, and ReLU activation func-
tions. We approximate the posterior by a skew-Gaussian
distribution using NGVI. We also compare to two other
methods where we used BBVI to fit a skew-Gaussian ap-
proximation as well as a Gaussian approximation. For scal-
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Figure 5. BNN using skew-Gaussian approximation: This figure
shows a fast convergence of NGVI over BBVI to approximate the
posterior of BNN. For all methods, the prior is a Gaussian. We
use 10 MC samples for training. M in the figures denotes the size
of a mini-batch. BBVI (Gauss) uses a Gaussian approximation
while BBVI (Skew-Gauss) uses a skew-Gaussian approximation.
Our NGVI method with skew-Gaussian approximation converges
faster than the other two methods.

ability reasons, we use of a diagonal covariance for all
methods. We use 10 Monte Carlo (MC) samples and mini-
batch size of 32. For NGVI, we use the gradient magnitude-
approximation as explained in Appendix J. Figure 5 shows
the performance of all methods in terms of the test RMSE.
We can see that our method converges faster than BBVI,
although the performance of skew-Gaussian methods seem
to be similar to a Gaussian.

7. Discussion
In this paper, we present fast and simple NGD for VI with
structured approximations. The approximations we have
considered are currently beyond the reach of existing meth-
ods, and our approach extends these existing approaches
to perform NGD updates with a simple update which can
also be implemented efficiently in some cases. Our current
proposal is limited to a certain class of approximations, and
further work is needed to generalize our results to many
other types of structured approximations. The minimality
condition we proposed uses one-to-one mappings of the
expectation parameterization. We believe that this condition
can be relaxed which will enable simple NGD update for
many types of approximations.

Our main focus has been on the derivation of simple updates.
We have presented examples where the updates can also be
implemented efficiently. There are however implementation
bottlenecks in existing software frameworks to implement
some of the reparameterization tricks used in our algorithms.
It is important to find ways to enable efficient updates by
modifying the existing software frameworks. Another issue
is that the NGD update needs to make sure that the parame-
ters stay inside Ω, and this issue deserves further exploration.
Another important direction is to apply structured approxi-
mations to large problems, especially those involving deep
networks. We hope to perform such extensive experiments
in the future to establish the benefits obtained by our NGD
update for Bayesian deep learning.
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A. Proof of Theorem 2
In this section, we provide a proof for Theorem 2:

For an MCEF representation given in Definition 3, the FIM Fwz(λ) given in (9) is positive-definite and
invertible for all λ ∈ Ω.

We prove this using a sequence of lemmas.

Lemma 1 log q(w, z|λ) is twice differentiable with respect to λ.

Proof: From Definition 2, we see that the log q(z,w) is differentiable when Aw(λw) and Az(λz,w) are twice differen-
tiable for each w sampled from q(w). Since q(w) is an EF, Aw(λw) is twice differentiable (Johansen, 1979). Similarly,
since conditioned on w, q(z|w) is also an EF, Az(λz,w) is twice differentiable too. Therefore, the log of the joint
distribution is twice differentiable. �

Lemma 2 The FIM Fwz(λ) is block-diagonal with two blocks:

Fwz(λ) =

[
Fz(λ) 0

0 Fw(λw)

]
, (32)

where Fw(λw) is the FIM of q(w) and Fz(λ) is the expected of the FIM of q(z|w) where expectation is taken under q(w)
as shown below:

Fw(λw) := −Eq(w)

[
∇2
λw log q(w|λw)

]
Fz(λ) := −Eq(w)

[
Eq(z|w)

[
∇2
λz log q(z|w,λz)

]]
,

Proof: By Lemma 1, log q(w, z|λ) is twice differentiable, so the FIM is well defined. Below, we simplify the FIM to
show that it has a block-diagonal structure. The first step below follows from the definition of the FIM. The second step is
simply writing the FIM in a 2× 2 block corresponding to λz and λw. In the third step, we write the joint as the product of
q(z|w) and q(w). The fourth step is obtained since the two blocks are separable in λz and λw. In the fifth step, we take the
expectation inside which give us the desired result in the last step.

Fwz(λ) = −Eq(z,w|λ)

[
∇2
λ log q(z,w|λ)

]
= −Eq(z,w|λ)

[
∇2
λz

log q(z,w|λ) ∇λw∇λTz log q(z,w|λ)
∇λz∇λTw log q(z,w|λ) ∇2

λw
log q(z,w|λ)

]
= −Eq(z,w|λ)

[
∇2
λz

(log q(z|w,λz) + log q(w|λw)) ∇λw∇λTz (log q(z|w,λz) + log q(w|λw))
∇λz∇λTw (log q(z|w,λz) + log q(w|λw)) ∇2

λw
(log q(z|w,λz) + log q(w|λw))

]
= −Eq(z,w|λ)

[
∇2
λz

log q(z|w,λz) 0
0 ∇2

λw
log q(w|λw)

]
= −

[
Eq(z,w|λ)

[
∇2
λz

log q(z|w,λz)
]

0
0 Eq(w|λw)

[
∇2
λw

log q(w|λw)
]]

=

[
Fz(λ) 0

0 Fw(λw),

]
�

Lemma 3 The first block of the FIM matrix Fz is equal to the derivative of the expectation parameter mz(λ):

Fz(λ) := ∇λzmT
z (λ)
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Proof: We first show that the gradient of Az(λz,w) with respect to λz is equal to Eq(z|w) [φz(z,w)]. By using the
definition of Az(λz,w), this is straightforward to show:

∇λzAz(λz,w) = ∇λz log

∫
hz(z,w) exp [〈φz(z,w),λz〉] dz

=

∫
∇λzhz(z,w) exp [〈φz(z,w),λz〉] dz∫
hz(z,w) exp [〈φz(z,w),λz〉] dz

=

∫
φz(z,w)hz(z,w) exp [〈φz(z,w),λz〉] dz∫

hz(z,w) exp [〈φz(z,w),λz〉] dz
(33)

= Eq(z|w) [φz(z,w)] (34)

Using this, the expectation parameter mz is simply the expected value of the gradient of the log-partition function.

mz = Eq(w)q(z|w) [φz(z,w)] = Eq(w) [∇λzAz(λz,w)] (35)

Using this, it is easy to show the result by simply using the definition of the conditional EF, as shown below:

Fz(λ) = −Eq(z,w)

[
∇2
λz log q(z|w,λz)

]
= −Eq(z,w|λ)

[
∇2
λz (log hz(z,w) + 〈φz(z,w),λz〉 −Az(λz,w))

]
= Eq(z,w|λ)

[
∇2
λzAz(λz,w)

]
= Eq(w|λw)

[
∇2
λzAz(λz,w)

]
= ∇λzEq(w|λw)

[
∇λTz Az(λz,w)

]
= ∇λzmT

z

�

Lemma 4 Let Ωw × Ωz be relatively open. If the mapping mw(·) : Ωw →Mw is one-to-one, and, given every λw ∈ Ωw,
the conditional mapping mz(·,λw) : Ωz →Mz is one-to-one, then Fwz(λ) is positive-definite in Ωz × Ωw.

Proof: When the mapping mw is one-to-one, q(w|λw) is a minimal EF, and given that Ωw is open, using the result
discussed in Section 2, we conclude that the second block Fw(λw) of Fwz(λ) given in (32) is positive definite and invertible
for all Ωz . Now we prove that the first block Fz(λ) is also positive definite.

The steps below establish the positive-semi definiteness first. The first step is simply the definition of the FIM, while the
second step is obtained by using the fact that∇ log f(λ) = ∇f(λ)/f(λ). The third step is obtained by using the chain-rule,
and the fourth step simply uses the log-trick above to simply the second term. In the fifth step, we take the derivative out of
the first term which cancels out q(z|w,λz). The last step is straightfoward since the outer products are always nonnegative.

∇2
λzAz(λz,w) = −Eq(z|w)

[
∇2
λz log q(z|w,λz)

]
,

= −Eq(z|w)

[
∇λz

(∇λTz q(z|w,λz)
q(z|w,λz)

)]
,

= −Eq(z|w)

[
∇2
λz
q(z|w,λz)

q(z|w,λz)
− ∇λzq(z|w,λz)

q(z|w,λz)
∇λTz q(z|w,λz)
q(z|w,λz)

]

= Eq(z|w)

[
−
∇2
λz
q(z|w,λz)

q(z|w,λz)

]
+ Eq(z|w)

[
∇λz log q(z|w,λz)∇λTz log q(z|w,λz)

]
,

=

∫
−∇2

λzq(z|w,λz)dz + Eq(z|w)

[
∇λz log q(z|w,λz)∇λTz log q(z|w,λz)

]
,

= −∇2
λz

=1︷ ︸︸ ︷∫
q(z|w,λz)dz︸ ︷︷ ︸
=0

+Eq(z|w)

[
∇λz log q(z|w,λz)∇λTz log q(z|w,λz)

]
,

= Eq(z|w)

[
∇λz log q(z|w,λz)∇λTz log q(z|w,λz)

]
� 0. (36)
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Using Lemma 3 and (35), we see that FIM is positive semi-definite:

Fz(λ) = ∇λzmT
z = ∇λzEq(w|λw)

[
∇λTz Az(λz,w)

]
= Eq(w)

[
∇2
λzAz(λz,w)

]
� 0

Now, we prove the final claim that, for every λw ∈ Ωw, if the conditional mapping mz(·,λw) is one-to-one, then Fz(λ)
is positive definite. We will prove this statement by contradiction. Suppose there exists λ such that Fz(λ) is positive
semi-definite, since Fz(λ) is positive semi-definite, there exists a non-zero vector a such that aTFz(λ)a = 0. Simplifying
below, we show that this leads to a contradiction. The first and second step are obtained by simply plugging (36), while the
third step is obtained by using the definition of q(z|w,λz) and the fourth step is obtained by using (34). The last step is
obtained by noting that the quantity is simply the variance of aTφz(z,w) conditioned on w .

aTFz(λ)a = Eq(w)

[
aT∇2

λzAz(λz,w)a
]

= Eq(w)

[
aTEq(z|w)

{
∇λz log q(z|w,λz)∇λTz log q(z|w,λz)

}
a
]

= Eq(w)q(z|w)

[
aT (φz(z,w)−∇λzAz(λz,w)) (φz(z,w)−∇λzAz(λz,w))

T
a
]

= Eq(w)q(z|w)

[
aT (φz(z,w)− Eq(z|w) [φz(z,w)]) (φz(z,w)− Eq(z|w) [φz(z,w)])

T
a
]

= Eq(w)Vq(z|w)

[
aTφz(z,w)

]
The expectation of a function positive quantity is equal to zero only when each function value is equal to zero, therefore for
the above to be zeros, we need aTφz(z,w) = 0. However, as we show below, this is not possible since the representation
q(z|w) is minimal conditioned on w.

Since Ωz is open, there exists a small δ > 0 to always be able to obtain a perturbed version λ′z = λz+δa, such that λ′z ∈ Ωz .
Since the conditional mapping is one-to-one, mz(λ

′
z,λw) 6= mz(λz,λw). By using (35) and (33), when aTφz(z,w) = 0,

we get a contradiction:

mz(λ
′
z,λw) = Eq(w|λw)

[
∇λ′zAz(λ

′
z,w)

]
= Eq(w|λw)

[∫
φz(z,w)hz(z,w) exp

[
〈φz(z,w),λ′z〉

]
dz∫

hz(z,w) exp
[
〈φz(z,w),λ′z〉

]
dz

]
(37)

= Eq(w|λw)

[∫
φz(z,w)hz(z,w) exp [〈φz(z,w),λz〉] dz∫

hz(z,w) exp [〈φz(z,w),λz〉] dz

]
(38)

= mz(λz,λw)

where we can move from (37) to (38), since 〈φz(z,w),λ′z〉 = 〈φz(z,w),λz + δa〉 = 〈φz(z,w),λz〉, Due to the
contradiction, Fz(λ) must be positive definite. This proves that both the blocks are positive definite and invertible.

�

Lemma 5 The gradient with respect to λ can be expressed as the gradient with respect to m:

∇λL =
[
∇λmT

]
∇mL = [Fwz(λ)]∇mL (39)

Proof: Using Lemma 3, and chain rule, we can establish the results for λz:

∇λzL = ∇λzmT
z (λ) [∇mzL] = Fz(λ) [∇mzL]

For λw, this result holds trivially, which proves the statement. �
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B. Finite Mixture of Gaussians
The finite mixture of EF distribution has the following conditional distribution q(z|w):

q(z|w) =

K∑
c=1

Ic(w)q(z|λc) =

K∑
c=1

Ic(w)hz(z) exp [〈λc,φz(z)〉 −Az(λc)]

= hz(z) exp

{
K∑
c=1

〈Ic(w)φz(z),λc〉 −
K∑
c′=1

Ic′(w)Az(λc′)

}

where we assume each component admits the same parametric form with distinct parameter λc. For a mixture using distinct
parametric forms with tied parameters, please see Appendix C.

From the above expression and using the EF form for the multinomial distribution, we can write the sufficient statistics,
natural parameters, and expectation parameters as shown below, where mc := Eq(z|w=c) [φz(z)] is the expectation parameter
of a component q(z|w = c). 

I1(w)
I2(w)

...
IK−1(w)

I1(w)φz(z)
I2(w)φz(z)

...
IK(w)φz(z)





log(π1/πK)
log(π2/πK)

...
log(πK−1/πK)

λ1

λ2

...
λK





π1

π2

...
πK−1

π1m1

π2m2

...
πKmK


From the last two vectors, we can see that the mapping between λ and m is going to be one-to-one, when each EF q(z|λc)
is minimal (which makes sure that mapping λc and mc is one-to-one), and all λc are distinct.

B.1. The Model and ELBO

We consider the following model: p(D, z) =
∏N
n=1 p(Dn|z)p(z). We approximate the posterior by using the finite mixture

of EFs whose marginal is denoted by q(z) as given in (15). The variational lower bound is given by the following:

L(λ) =

[
N∑
n=1

[log p(Dn|z)] + log
p(z)

q(z)

]

= Eq(z) [−h(z)] , where h(z) := −

[
log

p(z)

q(z)
+
∑
n

log p(Dn|z)

]
.

Note that the lower bound is defined with the marginal q(z) and the variable w is not part of the model but only the
variational approximation q(z, w).

B.2. Finite Mixture of Gaussians Approximation

We now give details about the NGD update for finite mixture of Gaussians. Note that the NGD update for λz and λw can be
computed separately since the FIM is block-diagonal. We first derive the NGD update for each component q(z|w = c), and
then give an update for λw.

As shown in Table 1, the natural and expectation parameters of the c’th component is given as follows:

Λc := − 1
2Σ−1

c Mc := πc(µcµ
T
c + Σc)

λc := Σ−1
c µc mc := πcµc

The expectation parameters mc and Mc are functions of πc,µc,Σc and its gradient can be obtained in terms of the gradient
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with respect to these quantities by using the chain rule. The final expressions are shown below:

∇mcL =
1

πc
(∇µcL − 2 [∇ΣcL]µc)

∇Mc
L =

1

πc
(∇ΣcL)

We can compute gradients with respect to µc and Σc by using the gradient and Hessian of h(z) at a sample z from q(z, w).
This can be done by using the Bonnet’s and Price’s theorems (Bonnet, 1964; Price, 1958; Opper & Archambeau, 2009;
Rezende et al., 2014). Staines & Barber (2012) and Lin et al. (2019) discuss the conditions of the target function h(z) when
it comes to applying these theorems. Firstly, we define δc = q(z|w = c)/q(z) := N (z|µc,Σc)/

∑K
c′=1 πc′N (z|µc′ ,Σc′).

Notice that

∇µcL(λ) = ∇µcEq(z) [−h(z)] = Eq(z|w=c) [−πc∇zh(z)] = Eq(z)
[
−q(z|w = c)πc

q(z)
∇zh(z)

]
= Eq(z)

[
−q(z|w = c)q(w = c)

q(z)
∇zh(z)

]
Using these theorems, we obtain the following stochastic-gradient estimations for the mixture of Gaussians:

∇µcL(λ) =− Eq(z) [q(w = c|z)∇zh(z)] ≈ −πcδc∇zh(z)

∇ΣcL(λ) =− Eq(z)
[
q(w = c|z)∇2

zh(z)
]
≈ −πcδc

2
∇2
zh(z).

where q(w = c|z) = πcδc and z is sampled from q(z).

For Λc, we can then plug these gradient estimations into the natural-gradient update and obtain the following update:

− 1
2

[
Σ(new)
c

]−1

← − 1
2Σ−1

c + β∇Mc
L ⇒

[
Σ(new)
c

]−1

← Σ−1
c + βδc∇2

zh(z)

Similarly, for λc, we have the following expression:[
Σ(new)
c

]−1

µ(new)
c ← Σ−1

c µc + β∇mcL

← Σ−1
c µc + β

1

πc
(∇µcL − 2 [∇ΣcL]µc)

←
[
Σ−1
c − 2

β

πc
[∇ΣcL]

]
µc + β

1

πc
(∇µcL)

←
[
Σ−1
c + βδc

[
∇2
zh(z)

]]
µc + β

1

πc
(∇µcL)

←
[
Σ(new)
c

]−1

µc + β
1

πc
(∇µcL)

This gives the following update (by using the stochastic gradients):

µ(new)
c ← µc − βδcΣ

(new)
c ∇zh(z)

B.3. Natural Gradients for q(w)

Now, we give the update for q(w|λw). Its natural parameter and expectation parameter are

λw =

{
log

πc
πK

}K−1

c=1

mw = {Eq(w) [Ic(w)]}K−1
c=1

= {πc}K−1
c=1

To derive the gradients, we note that only q(z) depends on π since the model does not contain this as a parameter. Therefore,
we need the gradient of the variational approximation which can be written as follows:

∇πcq(z) = ∇πc
K∑
k=1

πkq(z|w = k) = q(z|w = c)− q(z|w = K).
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where q(z|w = c) = q(z|λc) = N (z|µc,Σc). The second term appears in the above expression because πK =

1−
∑K−1
c=1 πc.

For the convenience of our derivation, we will separate the lower bound into terms that depend on q(z) and the rest of the
terms, as shown below:

∇πcL(λ) = ∇πcEq(z)

[
N∑
n=1

log p(Dn|z) + log p(z)− log q(z)

]

=

∫
∇πcq(z)︸ ︷︷ ︸

q(z|w=c)−q(z|w=K)

[
N∑
n=1

log p(Dn|z) + log p(z)− log q(z)

]
dz−

∫
q(z)∇πc log q(z)dz︸ ︷︷ ︸

0

=

∫
[q(z|w = c)− q(z|w = K)]

[
N∑
n=1

(
log p(Dn|z) + log

p(z)

q(z)

)]
dz

=

∫
q(z)

[
q(z|w = c)

q(z)
− q(z|w = K)

q(z)

][ N∑
n=1

(
log p(Dn|z) + log

p(z)

q(z)

)]
dz

= Eq(z)
[

(δc − δK)
[ N∑
n=1

(
log p(Dn|z) + log

p(z)

q(z)

)
︸ ︷︷ ︸

−h(z)

]]

≈ −(δc − δK)h(z)

where z is a sample from q(z).

Using this, we can perform the following NGD update:

log (πc/πK)← log (πc/πK)− β(δc − δK)h(z)

B.4. Updates for Unnormalized Likelihoods

When p(D, z) = p̂(D,z)
C is unnormalized, where C is the normalizing constant, the NGD updates are still valid. We define

the following functions.

ĥ(z) := − [log p̂(D, z)− log q(z)]

h(z) := ĥ(z) + log C

It is easy to see that the update for q(z|w) remains the same since∇zh(z) = ∇zĥ(z) and ∇2
zh(z) = ∇2

zĥ(z).

For the update for q(w), we use the following expression.

∇πcL(λ) = ∇πcEq(z) [log p̂(D, z)− log C − log q(z)]

=

∫
∇πcq(z)︸ ︷︷ ︸

q(z|w=c)−q(z|w=K)

[log p̂(D, z)− log C − log q(z)] dz−
∫
q(z)∇πc log q(z)dz︸ ︷︷ ︸

0

=

∫
(q(z|w = c)− q(z|w = K)) [log p̂(D, z)− log q(z)] dz−

∫
(q(z|w = c)− q(z|w = K)) log Cdz︸ ︷︷ ︸

0

= Eq(z)
[

(δc − δK) (log p̂(D, z)− log q(z))
]

≈ −(δc − δK)ĥ(z)

where the second term in the third step is 0 since C does not depend on z and
∫
q(z|w = c)dz =

∫
q(z|w = K)dz = 1.
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B.5. Extension to Finite Mixture of EFs

The algorithm presented in Section 4.1 can be extended to handle generic minimal EF components. We now present a
general gradient estimator to do so. The update of πc remains unaltered, so we do not discuss them here. We only discuss
how to update natural parameters λc of q(z|λc).

The natural parameter and sufficient statistics are λc and Ic(w)φz(z) respectively. We wish to perform the following update:
λc ← λc + βz∇mcL(λ). In general, we can compute the gradient∇mcL(λ) by computing the FIM of each component as
shown below:

∇mcL(λ) = (∇λcmc)
−1∇λcL(λ) = (∇λcEq(w,z) [Ic(w)φz(z)])

−1∇λcL(λ),

Both of these gradients can be obtained given∇λzz, where z is a sample from q(z) as shown below.

∇λcEq(w,z) [Ic(w)φz(z)] =∇λc
∫
πcq(z|w = c)φz(z)dz =

∫
πcq(z|w = c) [∇zφz(z)] [∇λcz] dz

∇λcL(λ) =

∫
πc∇λcq(z|w = c) [−h(z)] dz +

∫
q(z) [∇λc log q(z)] dz︸ ︷︷ ︸

0

=

∫
πcq(z|w = c) [∇z (−h(z))] [∇λcz] dz

If we assume that q(z|w) is an univariate continuous exponential family distribution, we can use the implicit re-
parameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018) to get the following gradient. Lin et al. (2019)
discuss the trick under a weaker assumption than Salimans & Knowles (2013); Figurnov et al. (2018).

∇λcz = −∇λcQc(z|λc)
q(z|w = c)

,

where Qc(·|λc) is the cumulative distribution function (CDF) of q(z|w = c). Therefore, we now can compute the required
gradient as below:

∇λcL(λ) =

∫
πcq(z|w = c) [−∇zh(z)]

[
−∇λcQc(z|λc)

q(z|w = c)

]
dz

=Eq(z)
[
πc
q(z|w = c)

q(z)
[−∇zh(z)]

[
−∇λcQc(z|λc)

q(z|w = c)

]]
=Eq(z)

[
πc∇λcQc(z|λc)

q(z)
[∇zh(z)]

]
,

and

∇λcEq(w,z) [Ic(w)φz(z)] =

∫
πcq(z|w = c)∇z [φz(z)]

[
−∇λcQc(z|λc)

q(z|w = c)

]
dz

=Eq(z)
[
−πc∇λcQc(z|λc)

q(z)
∇z [φz(z)]

]
.

This is not the most efficient way to compute NGDs, however, for the specific cases (e.g., Gaussian, exponential, inverse
Gaussian), we can get simplifications whenever gradients with respect to the expectation parameters are easy to compute.

The Birnbaum-Saunders distribution, which is a finite mixture of inverse Gaussians, is presented in Appendix C. This
example is different from examples given in this section since we allow each mixing component takes a distinct but tied
parametric form.

B.6. Result for the Toy Example

See Figure 6
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Figure 6. This is a complete version of the leftmost figure in Figure 2. The figure shows MOG approximation (with K = 20) to fit an
MOG model with 10 components in a 20 dimensional problem.

C. Birnbaum-Saunders Distribution
Firstly, we denote the inverse Gaussian distribution by InvGauss(z;µ, v) =

(
v

2πz3

)1/2
exp

[
− vz

2µ2 − v
2z + v

µ

]
, where z > 0,

v > 0, and µ > 0. We consider the following mixture distribution.

q(w) = pI(w=0)(1− p)I(w=1)

q(z|w) = I(w = 0)InvGauss(z;µ, v) + I(w = 1)
zInvGauss(z;µ, v)

µ
, (40)

where z
µ InvGauss(z;µ, v) is a normalized distribution since it is the distribution of z = y−1 where y is distributed by

InvGauss(y;µ−1, v/µ2).

As we can observe from Eq (40), each mixing component has a distinct parametric form and variational parameters are
shared between the components, which is different from examples discussed in Appendix B. According to Desmond (1986);
Jørgensen et al. (1991); Balakrishnan & Kundu (2019), the marginal distribution is known as the Birnbaum-Saunders
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distribution (Birnbaum & Saunders, 1969) shown as below, where p = 1
2 .

q(z|v, µ) =
∑
w

q(w)q(z|w)

= 1
2

{( v

2πz3

)1/2

exp

[
− vz

2µ2
− v

2z
+
v

µ

](
1 +

z

µ

)}
=

√
v

2
√

2π

[
1

z3/2
+

1

µz1/2

]
exp

[
− vz

2µ2
− v

2z
+
v

µ

]
=

√
v

2µ
√

2πµ

[(µ
z

)1/2

+
(µ
z

)3/2
]

exp

{
−
v( zµ + µ

z − 2)

2µ

}

Lemma 6 The joint distribution of the Birnbaum-Saunders distribution given in (40) can be written in a conditional EF
form.

Proof: It is obvious that q(w) is Bernoulli distribution with p = 1
2 , which is an EF distribution. Now, we show that q(z|w)

is a conditional EF distribution as below.

q(z|w) = exp

{
I(w = 0)

[
− vz

2µ2
− v

2z
+
v

µ
+ 1

2 log
v

2πz3

]
+ I(w = 1)

[
− vz

2µ2
− v

2z
+
v

µ
+ 1

2 log
v

2πz
− logµ

]}
= exp

{
− vz

2µ2
− v

2z
+
v

µ
+ I(w = 0)

[
1
2 log

v

2πz3

]
+ I(w = 1)

[
1
2 log

v

2πz
− logµ

]}
=

1√
2π
z−3I(w=0)/2z−I(w=1)/2 exp

{
− vz

2µ2
− v

2z
+
v

µ
+ 1

2 log(v)− I(w = 1) log(µ)

}
The natural parameters and sufficient statistics are {− v

2µ2 ,−v2} and {z, 1
z} respectively. �

According to Balakrishnan & Kundu (2019), the expectation parameters are

m1 = Eq(z) [z] = µ+
µ2

2v

m2 = Eq(z)
[
z−1
]

= µ−1 +
1

2v

The sufficient statistics, natural parameters, and expectation parameters are summarized below:[
z
1
z

] [
− v

2µ2

−v2

] [
µ+ µ2

2v
µ−1 + 1

2v

]
Lemma 7 The joint distribution given in (40) is a minimal conditional-EF.

Proof: Since λw is known in this case, we only need to show there exists an one-to-one mapping between the natural
parameter and the expectation parameter. Just by observing the parameters given above, we can see that there exists
an one-to-one mapping between the natural parameter and {µ, v} since µ > 0 and v > 0. Furthermore, we know that
m1m2 > 1 and m1 > 0. We can show that there also exists an one-to-one mapping between {µ, v} and the expectation
parameter by noticing that

µ =
√
m1/m2

v =
1

2(m2 −
√
m2/m1)

Since one-to-one mapping is transitive, we know that mapping between natural and expectation parameters is one-to-one.
Hence proved. �

Note that we can use the implicit re-parametrization trick to compute the gradient w.r.t. µ and v. Furthermore, the expectation
parameters m1 and m2 are functions of µ, v and the gradients can be obtained in terms of the gradient with respect to µ and
v by using the chain rule.
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D. Student’s t-distribution
Lemma 8 The joint distribution N (z|µ, wΣ)IG(w|a, a), where z ∈ Rd, is a curved exponential family distribution.

Proof: The joint-distribution can be expressed as a four-parameter exponential form as shown below:

N (z|µ, wΣ)IG(w|a, a) = det (2πwΣ)
− 1

2 exp{− 1
2 (z− µ)T (wΣ)

−1
(z− µ)} aa

Γ(a)
w−a−1 exp{− a

w
}

= (2πw)
−d/2

w−1 exp{− 1
2 (z− µ)T (wΣ)

−1
(z− µ)− 1

2 log det(Σ)

− a

w
− a logw − (log Γ(a)− a log a)}

= (2πw)
−d/2

w−1 exp{〈− 1
2Σ−1, wzzT 〉+ 〈Σ−1µ, wz〉+ 〈− 1

2µ
TΣ−1µ, w−1〉

+ 〈−a,w−1 + logw〉 −
[
log Γ(a)− a log a+ 1

2 log det(Σ)
]
}

= (2πw)
−d/2

w−1 exp{〈Λ1, wzzT 〉+ 〈λ2, wz〉+ 〈λ3, w
−1〉

+ 〈λ4, w
−1 + logw〉 −

[
log Γ(−λ4) + λ4 log(−λ4)− 1

2 log det(−2Λ1)
]
},

where the following are the natural parameters:

Λ1 := − 1
2Σ−1, λ2 := Σ−1µ, λ3 := − 1

2µ
TΣ−1µ, λ4 := −a

We can see that λ3 is fully determined by Λ1 and λ2, i.e.,

λ3 = − 1
2µ

TΣ−1µ = − 1
2

(
ΣΣ−1µ

)T (
Σ−1µ

)
= − 1

2

(
(−2Λ1)

−1
λ2

)T
λ2

In a minimal representation we can specify all four parameters freely, but in this case we have less degree of freedom.
Therefore, this is a curved EF representation.

�

Instead of using the above 4 parameter form, we can write the distribution in the conditional EF form given in Definition 2.

Lemma 9 The joint distribution of Student’s t-distribution given in (17) can be written in a conditional EF form.

Proof: We can rewrite the conditional q(z|w) in an EF-form as follows:

q(z|w) = N (z|µ, wΣ)

= (2π)−d/2 exp(
{

Tr
(
− 1

2Σ−1w−1zzT
)

+ µTΣ−1w−1z− 1
2 (w−1µTΣ−1µ + log det(wΣ)

}
)

The sufficient statistics φz(z, w) =
{
w−1z, w−1zzT

}
. The natural parameter is λz =

{
Σ−1µ,− 1

2Σ−1
}

. Since q(w) is a
inverse Gamma distribution, which is a EF distribution as shown below, the joint q(z, w) is a conditional EF. The EF form
of the inverse gamma distribution is shown below:

q(w|a, a) = w−1 exp(−(log(w) +
1

w
)a− (log Γ(a)− a log(a)))

We can read the sufficient statistics φw(w) = − log(w)− 1
w and the natural parameter λw = a from this form. �

Using the fact that Eq(w|a) [1/w] = a/a = 1, and Eq(w|a) [logw] = log a− ψ(a), we can derive the expectation parameter
shown below:

m := Eq(w|a)q(z|µ,wΣ)

[
w−1z

]
= µ,

M := Eq(w|a)q(z|µ,wΣ)

[
w−1zzT

]
= µµT + Σ,

ma := Eq(w|a)

[
− 1

w
− log(w)

]
= −1− log a+ ψ(a)
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The sufficient statistics, natural parameters, and expectation parameters are summarized below: −1/w − logw
z/w

zzT /w

  a

Σ−1µ

− 1
2Σ−1

  −1− log a+ ψ(a)
µ

µµT + Σ


The following lemma shows that the Student’s t-distribution is an MCEF obtained by establishing one-to-one mapping
between natural and expectation parameters.

Lemma 10 The joint distribution of Student’s t-distribution shown in (17) is a minimal conditional-EF.

Proof: The proof is rather simple. First we note that the expectation parameters for q(z|w) do not depend on λw := a. In
fact, the mapping between the last two natural and expectation parameter is one-to-one since they correspond to a Gaussian
distribution which has a minimal representation.

The only thing remaining is to show that the mapping between a and mw(a) := −1 − log a + ψ(a) is one-to-one.
Since ∇amw(a) is the Fisher information of q(w), we can show this when ∇amw(a) > 0. The gradient ∇amw(a) =
∇aψ(a) − 1/a. According to Eq. 1.4 in Batir (2005), we have ∇αψ(α) − 1/a − 1/(2a2) > 0 when a > 0. Therefore,
∇aψ(a)− 1/a > 0 which establishes that the Fisher information is positive, therefore the distribution is a minimal EF. This
completes the proof. �

D.1. Derivation of the NGD Update

Let’s consider q(w) = IG(w|a, a) and q(z|w) = N (z|µ, wΣ). We denote the log-likelihood for the n’th data
point by fn(z) := − log p(Dn|z) with a Student’s t-prior on z expressed as a scale mixture of Gaussians p(z, w) =
IG(w|a0, a0)N (z|0, wI). We use the lower bound defined in the joint-distribution p(D, z, w):

L(λ) = Eq(z,w) [log p(D, z, w)− log q(D, z, w)]

= Eq(z,w)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
:=−fn(z)

+ log
N (z|0, wI)

N (z|µ, wΣ)
+ log

IG(w|a0, a0)

IG(w|a, a)

 ,
Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

Since the expectation parameters mz only depend on µ and Σ, we can write the gradient with respect to them using the
chain rule (similar to the finite mixture of Gaussians case):

∇mL(λ) = ∇µL(λ)− 2∇ΣL(λ)µ

∇ML(λ) = ∇ΣL(λ)

These gradients of the lower bound can be obtained as follows:

∇µL(λ) = −
N∑
n=1

∇µEq(z,w) [fn(z)]− µ

∇ΣL(λ) = −
N∑
n=1

∇ΣEq(z,w) [fn(z)]− 1
2I + 1

2Σ−1

Plugging these in the natural-gradient updates (14), we get the following updates (we have simplified these in the same way
as explained in Appendix B.2; more details in Khan et al. (2018)):

Σ−1 ← (1− β)Σ−1 + 2β

N∑
n=1

∇ΣEq(z,w) [fn(z)] + βI

µ← µ− β
N∑
n=1

Σ (∇µEq(z) [fn(z)] + µ)



Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations

To compute the gradients, the reparametrization trick (Kingma & Welling, 2013) can be used. However, we can do better
by using the extended Bonnet’s and Price’s theorems for Student’s t-distribution (Lin et al., 2019). Assuming that fn(z)
satisfies the assumptions needed for these two theorems, we can use the following stochastic-gradient approximations for
the graidents:

∇µEq(w)N (z|µ,wΣ) [f(z)] =Eq(z) [∇zf(z)] ≈ ∇zf(z),

∇ΣEq(w)N (z|µ,wΣ) [f(z)] = 1
2Eq(z)

[
u(z)∇2

zf(z)
]
≈ 1

2u(z)∇2
zf(z),

= 1
2Eq(w,z)

[
w∇2

zf(z)
]
≈ 1

2w∇
2
zf(z),

where z ∈ Rd is generated from q(z), w is generated from q(w) , and

u(z) :=
a+ 1

2 (z− µ)
T

Σ−1 (z− µ)

(a+ d/2− 1)
.

Using these gradient, we get the following update:

Σ−1 ← (1− β)Σ−1 + β
[
u(z)∇2

zfn(z) + I/N
]
,

µ← µ− βΣ [∇zfn(z) + µ/N ] .

Now we derive the NGD update for a. Recall that the natural parameter is a and the expectation parameter is ma =
−1− log a+ ψ(a). The gradient of the lower bound can be expressed as

∇maL(λ) = −
N∑
n=1

∇maEq(z,w) [fn(z)] + a0 − a

which gives us the following update:

a← (1− β)a+ β

(
a0 −

N∑
n=1

∇maEq(z,w) [fn(z)]

)
(41)

While the gradient with respect to the expectation parameter does not admit a closed-form expression, we can compute the
gradient using the re-parametrization trick. According to (39), the gradient∇maEq(z,w) [fn(z)] can be computed as

∇maEq(z,w) [fn(z)] = (∇ama)
−1∇aEq(z,w) [fn(z)] = (∇aEq(w) [φw(w)])

−1∇aEq(z,w) [fn(z)]

Note that∇aEq(w) [φw(w)] = ∇a(ma) has a closed-form expression. However we have found that using stochastic approxi-
mation for both the numerator and denominator works better. Salimans & Knowles (2013) show that such approximation
reduces the variance but introduce a bit bias. We use the reparameterization trick for both terms. Since q(w) is (implicitly)
re-parameterizable (Salimans & Knowles, 2013; Figurnov et al., 2018) , the gradient can be computed as

∇aEq(w) [φw(w)] = −
∫
IG(w|a, a)

(
∇w

[
w−1 + logw

])
(∇aw) dw ≈ (w−2 − w−1)∇aw

where w is generated from IG(w|a, a). Similarly,

∇aEq(z,w) [fn(z)] =

∫ ∫
q(w) (∇wq(z|w)) (∇aw) fn(z)dwdz

=

∫ ∫
IG(w|a, a) (∇wN (z|µ, wΣ)) (∇aw) fn(z)dwdz

For stochastic approximation, we generate w from q(w) and let Σ̂ = wΣ. The above expression can be approximated as
below.

∇aEq(z,w) [fn(z)] ≈
∫

(∇wN (z|µ, wΣ)) (∇aw) fn(z)dz

=

∫
Tr
(
Σ∇Σ̂N (z|µ, Σ̂)

)
(∇aw) fn(z)dz

= ∇awTr
(
Σ∇Σ̂EN (z|µ,Σ̂) [fn(z)]

)
=
∇aw

2
Tr
(
ΣEN (z|µ,Σ̂)

[
∇2
zfn(z)

])
,
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where we use the Price’s theorem∇Σ̂EN (z|µ,Σ̂) [fn(z)] = 1
2EN (z|µ,Σ̂)

[
∇2
zfn(z)

]
.

We then use stochastic approximation to get the desired update.

∇aEq(z,w) [fn(z)] ≈ ∇aw
2

Tr
(
Σ∇2

zfn(z)
)

where z is generated from q(z) and w is generated from q(w).

Anther example is the symmetric normal inverse-Gaussian distribution, which can be found at Appendix H.

E. Multivariate Skew-Gaussian Distribution
We consider the following variational distribution .

q(z, w) = N (z|µ + |w|α,Σ)N (w|0, 1) (42)

The marginal distribution is known as the multivariate skew Gaussian distribution (Azzalini, 2005) as shown in the following
lemma.

Lemma 11 The marginal distribution q(z) is 2Φ

(
(z−µ)TΣ−1α√

1+αTΣ−1α

)
N (z|µ,Σ + ααT ), where Φ(·) is the CDF of the

standard univariate Gaussian distribution.

Proof: The marginal distribution z is

q(z) =2

∫ +∞

0

N (w|0, 1)N (z|µ + wα,Σ)dw

=2

∫ +∞

0

N (w|0, 1)N (z− wα|µ,Σ)dw

By grouping terms related to w together and completing a Gaussian form for w, we obtain the following expression

q(z) =2

∫ +∞

0

N (w| (z− µ)
T

Σ−1α

1 + αTΣ−1α
,
(
1 + αTΣ−1α

)−1
)N (z|µ,Σ + ααT )dw

=2Φ

(
(z− µ)

T
Σ−1α√

1 + αTΣ−1α

)
N (z|µ,Σ + ααT )

where we move from the first step to the second step using the fact that∫ +∞

0

N (w|u, σ2)dw =

∫ +∞

−u/σ
N (w′|0, 1)dw′

= 1− Φ(−u/σ)

= Φ(u/σ).

�

Lemma 12 The joint distribution of skew-Gaussian distribution given at Eq. (42) can be written in a conditional EF form.

Proof: We first rewrite q(z|w) in a EF-form as follows:

q(z|w) = N (z|µ + |w|α,Σ)

= (2π)−d/2 exp(
{

Tr
(
− 1

2Σ−1zzT
)

+ |w|αTΣ−1z + µTΣ−1z− 1
2 ((µ + |w|α)TΣ−1(µ + |w|α) + log det(Σ)

}
)

The sufficient statistics φz(z, w) =
{
z, |w|z, zzT

}
and the natural parameter λz =

{
Σ−1µ,Σ−1α,− 1

2Σ−1
}

can be
read from the form. Since q(w) is a univariate Gaussian distribution with known parameters, which is a EF distribution.
Therefore, the joint distribution q(z, w) is a conditional EF. �
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Let c =
√

2
π . Using the fact that Eq(w|0,1) [|w|] = c, we can derive the expectation parameter shown below:

m := EN (w|0,1)N (z|µ+|w|α,Σ) [z] = µ + cα,

mα := EN (w|0,1)N (z|µ+|w|α,Σ) [|w|z] = cµ + α,

M := EN (w|0,1)N (z|µ+|w|α,Σ)

[
zzT

]
= µµT + ααT + c

(
µαT + αµT

)
+ Σ

The sufficient statistics, natural parameters, and expectation parameters are summarized below: z
|w|z
zzT

  Σ−1µ

Σ−1α

− 1
2Σ−1

  µ + cα
cµ + α

µµT + ααT + c
(
µαT + αµT

)
+ Σ


The following lemma shows that the skew-Gaussian distribution is indeed a minimal conditional-EF.

Lemma 13 Multivariate skew Gaussians is a minimal conditional-EF.

Proof: Since λw is known in this case, we only need to show there exists an one-to-one mapping between the natural
parameter and the expectation parameter. Just by observing the parameters given above, we can see that there exists an
one-to-one mapping between the natural parameter and {µ,α,Σ}. We can show that there also exists an one-to-one
mapping between {µ,α,Σ} and the expectation parameter by noticing that

µ =
m− cmα

1− c2
(43)

α =
mα − cm

1− c2
(44)

Σ = M−
mmT + mαmT

α − c
(
mαmT + mmT

α

)
1− c2

(45)

Since one-to-one mapping is transitive, we know that mapping between natural and expectation parameters is one-to-one.
Hence proved. �

E.1. Derivation of the NGD Update

Let’s consider the variational approximation using the skew-Gaussian distribution q(z|λ). We consider the following model
with a Gaussian-prior N (z|0, δ−1I) on z, where the log-likelihood for the n’th data point is denoted by p(Dn|z).

p(D, z) =

N∏
n=1

p(Dn|z)N (z|0, δ−1I)

We use the lower bound defined in the following distribution p(D, z):

L(λ) = Eq(z|λ)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
:=−fn(z)

+ logN (z|0, δ−1I)− log q(z|λ)

 ,
where q(z) = 2Φ

(
(z−µ)TΣ−1α√

1+αTΣ−1α

)
N (z|µ,Σ + ααT ) and recall that Φ(·) denotes the CDF of the standard univariate

normal distribution.

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

E.2. Natural Gradient for q(z|w)

We do not need to compute these gradients with respect to the expectation parameters directly. The gradients can be
computed in terms of {µ,α,Σ}.
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Using the mapping at (43)-(45) and the chain rule, we can express the following gradients with respect to the expectation
parameters in terms of the gradients with respect to µ, α, and Σ.

∇mL =
1

1− c2
∇µL −

c

1− c2
∇αL − 2 (∇ΣL)µ

∇mαL =
1

1− c2
∇αL −

c

1− c2
∇µL − 2 (∇ΣL)α

∇ML = ∇ΣL

By plugging the gradients into the update in (14) and then re-expressing the update in terms of µ, α, Σ (we have simplified
these in the same way as explained in Appendix B.2), we obtain the natural gradient update in terms of µ, α, and Σ.

Σ−1 ← Σ−1 − 2β∇ΣL (46)

µ← µ + βΣ

(
1

1− c2
∇µL −

c

1− c2
∇αL

)
(47)

α← α + βΣ

(
1

1− c2
∇αL −

c

1− c2
∇µL

)
(48)

Recall that the lower bound is

L(λ) = Eq(z|λ)

− N∑
n=1

fn(z) + logN (z|0, δ−1I)︸ ︷︷ ︸
prior

− log q(z|λ)︸ ︷︷ ︸
entropy

 ,
For the prior term, there is a closed-form expression for gradient computation.

Eq(z)
[
logN (z|0, δ−1I)

]
= −d

2
log(2π) +

dδ

2
− δ

2

(
αTα + 2cµTα + Tr (Σ) + µTµ

)
It is easy to show that the gradients about the prior term are

gprior
µ = −δ (µ + cα)

gprior
α = −δ (α + cµ)

gprior
Σ = −δ

2
I

For the entropy term, by Contreras-Reyes & Arellano-Valle (2012); Arellano-Valle et al. (2013), it can be expressed as
follows.

Eq(z) [− log q(z|λ)] =
d

2
(log(2π) + 1) + 1

2 log |Σ + ααT | − 2EN (z2|0,αTΣ−1α)

[
Φ (z2) log (Φ (z2))

]
− log(2) (49)

We can use the re-parametrization trick to approximate the gradients about the entropy term. However, the exact gradients
usually works better. Using the expression in (49), the gradients of the entropy term are given as follows:

gentropy
µ = 0 (50)

gentropy
α =

(
Σ + ααT

)−1
α− EN(z3|0,αTΣ−1α/(1+αTΣ−1α))

 log (Φ (z3))√
2π
(
1 + αTΣ−1α

) 2z3Σ
−1α

αTΣ−1α

 (51)

gentropy
Σ = 1

2

(
Σ + ααT

)−1
+ EN(z3|0,αTΣ−1α/(1+αTΣ−1α))

 log (Φ (z3))√
2π
(
1 + αTΣ−1α

) z3Σ
−1ααTΣ−1

αTΣ−1α

 (52)
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where the expectations involve 1d integrations, which can be computed by Gauss-Hermite quadrature.

The remaining thing is to compute the gradients about Eq(z) [fn(z)]. To compute the gradients, the reparametrization trick
can be used. However, we can do better by using the extended Bonnet’s and Price’s theorems for skew-Gaussian distribution
(Lin et al., 2019). Assuming that fn(z) satisfies the assumptions needed for these two theorems, we obtain the following
gradient expression:

gn1 := ∇µEq(z) [fn(z)] = Eq(z) [∇zfn(z)] ≈ ∇zfn(z)

gn2 := ∇αEq(z) [fn(z)]

= Eq(z) [u(z)∇zfn(z)] + vEN (ẑ|µ,Σ) [∇ẑfn(ẑ)] ≈ u(z)∇zfn(z) + v∇ẑfn(ẑ)

= Eq(w,z) [|w|∇zfn(z)] ≈ |w|∇zfn(z)

gn3 := 2∇ΣEq(z) [fn(z)] = Eq(z)
[
∇2
zfn(z)

]
≈ ∇2

zfn(z)

where v = c

(1+αTΣ−1α)
, u(z) :=

(z−µ)TΣ−1α
1+αTΣ−1α

, and w ∼ N (w|0, 1), ẑ ∼ N (ẑ|µ,Σ), z = ẑ + |w|α.

Putting together, we can express the gradients in the following form, which will be used for deriving the extended variational
Adam update.

∇µL(λ) = −
N∑
n=1

gn1 −gentropy
µ /N︸ ︷︷ ︸

0

−δ(µ + cα)︸ ︷︷ ︸
gprior
µ

= −
N∑
n=1

gn1︸︷︷︸
:=gnµ

−δ(µ + cα) (53)

∇αL(λ) = −
N∑
n=1

gn2 − gentropy
α /N︸ ︷︷ ︸

:=gnα

−δ(α + cµ)︸ ︷︷ ︸
gprior
α

(54)

∇ΣL(λ) = − 1
2

N∑
n=1

(
gn3 − 2gentropy

Σ /N
)
−δ

2
I︸︷︷︸

gprior
Σ

+ 1
2 (Σ−1 −Σ−1)

= − 1
2

N∑
n=1

gn3 − 2gentropy
Σ /N + Σ−1/N︸ ︷︷ ︸

:=gnS

− δ

2
I + 1

2Σ−1 (55)

For stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate gn1 , gn2 , and gn3 .
Plugging these stochastic gradients into (46)-(48), we obtain the NGD update:

Σ−1 ← (1− β)Σ−1 + β(δI +NgnS)

µ← µ− βΣ(
N

1− c2
(gnµ − cgnα) + δµ)

α← α− βΣ(
N

1− c2
(gnα − cgnµ) + δα)

F. Multivariate Exponentially Modified Gaussian Distribution
We consider the following mixture distribution.

q(z, w) = N (z|µ + wα,Σ)Exp(w|1)

The marginal distribution is a multivariate extension of the exponentially modified Gaussian distribution (Grushka, 1972)
and the Gaussian minus exponential distribution (Carr & Madan, 2009) due to the following lemma.



Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations

Lemma 14 The marginal distribution q(z) (α 6= 0) is

q(z) =

√
2πdet (2πΣ)

− 1
2

√
αTΣ−1α

Φ

(
(z− µ)

T
Σ−1α− 1√

αTΣ−1α

)
exp

 1
2


(

(z− µ)
T

Σ−1α− 1
)2

αTΣ−1α
− (z− µ)

T
Σ−1 (z− µ)


 ,

where Φ(·) is the CDF of the standard univariate Gaussian distribution.

In the univariate case, the marginal distribution becomes the exponentially modified Gaussian distribution when α > 0 and
the Gaussian minus exponential distribution when α < 0.

Proof: The marginal distribution z is

q(z|µ,α,Σ) =

∫ +∞

0

Exp(w|0, 1)N (z|µ + wα,Σ)dw

By grouping terms related to w together and completing a Gaussian form for w, we obtain the following expression.

=
det (2πΣ)

− 1
2√

αTΣ−1α
2π

∫ +∞

0

N (w| (z− µ)
T

Σ−1α− 1

αTΣ−1α
,

1

αTΣ−1α
) exp

 1
2


(

(z− µ)
T

Σ−1α− 1
)2

αTΣ−1α
− (z− µ)

T
Σ−1 (z− µ)


 dw

(56)

=

√
2πdet (2πΣ)

− 1
2

√
αTΣ−1α

Φ

(
(z− µ)

T
Σ−1α− 1√

αTΣ−1α

)
exp

 1
2


(

(z− µ)
T

Σ−1α− 1
)2

αTΣ−1α
− (z− µ)

T
Σ−1 (z− µ)




(57)

where we move from Eq. (56) to Eq. (57) using the fact that
∫ +∞

0
N (w|u, σ2)dw = Φ(u/σ). �

Similar to the skew-Gaussian case, in this example, the sufficient statistics φz(z, w) =
{
z, wz, zzT

}
and the natural

parameter λz =
{
Σ−1µ,Σ−1α,− 1

2Σ−1
}

can be read from q(z|w) = N (z|µ + wα,Σ). The joint distribution q(z, w) is
a conditional EF since q(w) is an exponential distribution with known parameters, which is an EF distribution. Likewise, we
can show that the joint distribution is also a minimal conditional EF. We can derive the expectation parameter shown below:

m := EExp(w|1)N (z|µ+wα,Σ) [z] = µ + α,

mα := EExp(w|1)N (z|µ+wα,Σ) [wz] = µ + 2α,

M := EExp(w|1)N (z|µ+wα,Σ)

[
zzT

]
= µµT + 2ααT +

(
µαT + αµT

)
+ Σ

The sufficient statistics, natural parameters, and expectation parameters are summarized below: z
wz
zzT

  Σ−1µ

Σ−1α

− 1
2Σ−1

  µ + α
µ + 2α

µµT + 2ααT +
(
µαT + αµT

)
+ Σ


F.1. Derivation of the NGD Update

As shown in Appendix E.1, we consider the variational approximation using the exponentially modified Gaussian distribution
q(z|λ). We consider the same model as Appendix E.1 with a Gaussian-priorN (z|0, δ−1I) on z. The lower bound is defined
as below:

L(λ) = Eq(z|λ)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
:=−fn(z)

+ logN (z|0, δ−1I)− log q(z|λ)

 ,
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where q(z) =
√

2πdet(2πΣ)
−

1
2√

αTΣ−1α
Φ

(
(z−µ)TΣ−1α−1√

αTΣ−1α

)
exp

{
1
2

[(
(z−µ)TΣ−1α−1

)2

αTΣ−1α
− (z− µ)

T
Σ−1 (z− µ)

]}
and re-

call that Φ(·) denotes the CDF of the standard univariate normal distribution.

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

F.2. Natural Gradient for q(z|w)

We do not need to compute these gradients with respect to the expectation parameters directly. The gradients can be
computed in terms of {µ,α,Σ}.

Similarly, by the chain rule, we can express the following gradients with respect to the expectation parameters in terms of
the gradients with respect to µ, α, and Σ.

∇mL = 2∇µL −∇αL − 2 (∇ΣL)µ

∇mαL = ∇αL −∇µL − 2 (∇ΣL)α

∇ML = ∇ΣL

By plugging the gradients into the update in (14) and then re-expressing the update in terms of µ, α, Σ, we obtain the
natural gradient update in terms of µ, α, and Σ.

Σ−1 ← Σ−1 − 2β∇ΣL (58)
µ← µ + βΣ (2∇µL −∇αL) (59)
α← α + βΣ (∇αL −∇µL) (60)

Recall that the lower bound is

L(λ) = Eq(z|λ)

− N∑
n=1

fn(z) + logN (z|0, δ−1I)︸ ︷︷ ︸
prior

− log q(z|λ)︸ ︷︷ ︸
entropy

 ,

For the prior term, there is a closed-form expression for gradient computation.

Eq(z)
[
logN (z|0, δ−1I)

]
= −d

2
log(2π) +

dδ

2
− δ

2

(
2αTα + 2µTα + Tr (Σ) + µTµ

)
It is easy to show that the gradients about the prior term are

gprior
µ = −δ (µ + α)

gprior
α = −δ (2α + µ)

gprior
Σ = −δ

2
I

For the entropy term, it can be expressed as follows.

Eq(z) [− log q(z)] = 1
2

{
log det (2πΣ) + log

(
αTΣ−1α

2π

)
− 1

αTΣ−1α
+ (d+ 1)

}
− EExp(w|1)N (z2|w

√
αTΣ1α, 1)

[
log φ

(
z2 −

1√
αTΣ1α

)]
(61)
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Using the expression in (61), the gradients of the entropy term are given as follows:

gentropy
µ = 0 (62)

gentropy
α =

Σ−1α

αTΣ−1α
+

Σ−1α(
αTΣ−1α

)2 − EExp(w|1)N (z2|0,1)

exp
(
− t

2

2 − log φ(t)
)

√
2π

(
w +

1

αTΣ−1α

)(
Σ−1α√
αTΣ−1α

)
(63)

gentropy
Σ =

Σ−1

2
− Σ−1ααTΣ−1

2αTΣ−1α
− Σ−1ααTΣ−1

2
(
αTΣ−1α

)2 + EExp(w|1)N (z2|0,1)

exp
(
− t

2

2 − log φ(t)
)

√
2π

(
w +

1

αTΣ−1α

)(
Σ−1ααTΣ−1

2
√
αTΣ−1α

)
(64)

where t = z2 + wαTΣ−1α−1√
αTΣ−1α

and the expectations involve 2d integrations, which can be computed by Gauss-Hermite

quadrature and Gauss-Laguerre quadrature.

The remaining thing is to compute the gradients about Eq(z) [fn(z)]. To compute the gradients, the reparametrization trick
can be used. However, we can use the extended Bonnet’s and Price’s theorems (Lin et al., 2019). Assuming that fn(z)
satisfies the assumptions needed for these two theorems, we obtain the following gradient expression:

gn1 := ∇µEq(z) [fn(z)] = Eq(z) [∇zfn(z)] ≈ ∇zfn(z)

gn2 := ∇αEq(z) [fn(z)]

= Eq(z) [u(z)∇zfn(z)] + vEN (ẑ|µ,Σ) [∇ẑfn(ẑ)] ≈ u(z)∇zfn(z) + v∇ẑfn(ẑ)

= Eq(w,z) [w∇zfn(z)] ≈ w∇zfn(z)

gn3 := 2∇ΣEq(z) [fn(z)] = Eq(z)
[
∇2
zfn(z)

]
≈ ∇2

zfn(z)

where v = 1

(αTΣ−1α)
, u(z) :=

(z−µ)TΣ−1α−1

αTΣ−1α
, and w ∼ Exp(w|1), ẑ ∼ N (ẑ|µ,Σ), z = ẑ + wα.

Putting together, we can express the gradients in the following form, which will be used for deriving the extended variational
Adam update.

∇µL(λ) = −
N∑
n=1

gn1 −gentropy
µ /N︸ ︷︷ ︸

0

−δ(µ + α)︸ ︷︷ ︸
gprior
µ

= −
N∑
n=1

gn1︸︷︷︸
:=gnµ

−δ(µ + α) (65)

∇αL(λ) = −
N∑
n=1

gn2 − gentropy
α /N︸ ︷︷ ︸

:=gnα

−δ(2α + µ)︸ ︷︷ ︸
gprior
α

(66)

∇ΣL(λ) = − 1
2

N∑
n=1

(
gn3 − 2gentropy

Σ /N
)
−δ

2
I︸︷︷︸

gprior
Σ

+ 1
2 (Σ−1 −Σ−1)

= − 1
2

N∑
n=1

gn3 − 2gentropy
Σ /N + Σ−1/N︸ ︷︷ ︸

:=gnS

− δ

2
I + 1

2Σ−1 (67)

Similarly, for stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate gn1 , gn2 ,
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and gn3 . Plugging these stochastic gradients into (58)-(60), we obtain the NGD update:

Σ−1 ← (1− β)Σ−1 + β(δI +NgnS)

µ← µ− βΣ(N(2gnµ − gnα) + δµ)

α← α− βΣ(N(gnα − gnµ) + δα)

G. Multivariate Normal Inverse-Gaussian Distribution
We consider the following mixture distribution (Barndorff-Nielsen, 1997), which is a Gaussian variance-mean mixture
distribution. For simplicity, we assume λ is known.

q(w, z) = N (z|µ + wα, wΣ)InvGauss(w|1, λ)

where InvGauss(w|1, λ) =
(

λ
2πw3

) 1
2 exp

{
−λ2

(
w + w−1

)
+ λ
}

denotes the inverse Gaussian distribution.

Lemma 15 The marginal distribution is

q(z) =
λ

1
2

(2π)
d+1

2

det (Σ)
−1/2

exp
[
(z− µ)

T
Σ−1α + λ

] 2K d+1
2

(√(
αTΣ−1α + λ

) (
(z− µ)

T
Σ−1 (z− µ) + λ

))
(√

αTΣ−1α+λ

(z−µ)TΣ−1
(z−µ)+λ

)−d−1
2

,

where Kv(x) denotes the modified Bessel function of the second kind.

Proof: By definition, we can compute the marginal distribution as follows.

q(z) =

∫ +∞

0

q(z|w)q(w)dw

=

∫ +∞

0

det (2πwΣ)
−1/2

exp
{
− 1

2

[
(z− µ− wα)

T
(wΣ)

−1
(z− µ− wα)

]}( λ

2πw3

)1/2

exp

[
−λ

2

(
w +

1

w

)
+ λ

]
dw

By grouping all terms related to w together, we have

=
λ

1
2

(2π)
d+1

2

det (Σ)
−1/2

exp
[
(z− µ)

T
Σ−1α + λ

] ∫ +∞

0

w−
d+3

2 exp

{
− 1

2

[
w
(
αTΣ−1α + λ

)
+

(z− µ)
T

Σ−1 (z− µ) + λ

w

]}
dw

By completing a generalized inverse Gaussian form, we have

=
λ

1
2

(2π)
d+1

2

det (Σ)
−1/2

exp
[
(z− µ)

T
Σ−1α + λ

] 2K−d−1
2

(√(
αTΣ−1α + λ

) (
(z− µ)

T
Σ−1 (z− µ) + λ

))
(√

αTΣ−1α+λ

(z−µ)TΣ−1
(z−µ)+λ

)−d−1
2

We obtain the last step by the fact that Kv(x) = K−v(x)

=
λ

1
2

(2π)
d+1

2

det (Σ)
−1/2

exp
[
(z− µ)

T
Σ−1α + λ

] 2K d+1
2

(√(
αTΣ−1α + λ

) (
(z− µ)

T
Σ−1 (z− µ) + λ

))
(√

αTΣ−1α+λ

(z−µ)TΣ−1
(z−µ)+λ

)−d−1
2

�

Similarly, the sufficient statistics φz(z, w) =
{
z/w, z, zzT /w

}
and the natural parameter λz =

{
Σ−1µ,Σ−1α,− 1

2Σ−1
}

can be read from q(z|w) = N (z|µ + wα, wΣ). The joint distribution q(z, w) is a conditional EF because q(w) is an
inverse Gaussian distribution with known parameters, which is a EF distribution. Likewise, we can show that the joint
distribution is also a minimal conditional EF.
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We can derive the expectation parameter shown below:

m := EInvGauss(w|1,λ)N (z|µ+wα,wΣ)

[
w−1z

]
=
(
1 + λ−1

)
µ + α,

mα := EInvGauss(w|1,λ)N (z|µ+wα,wΣ) [z] = µ + α,

M := EInvGauss(w|1,λ)N (z|µ+wα,wΣ)

[
w−1zzT

]
=
(
1 + λ−1

)
µµT + ααT + µαT + αµT + Σ

The sufficient statistics, natural parameters, and expectation parameters are summarized below: z/w
z

zzT /w

  Σ−1µ

Σ−1α

− 1
2Σ−1

  (
1 + λ−1

)
µ + α

µ + α(
1 + λ−1

)
µµT + ααT + µαT + αµT + Σ


G.1. Derivation of the NGD Update

We consider the variational approximation using the normal inverse Gaussian distribution q(z|λ). We consider the same
model as Appendix B.1 with a Gaussian-prior N (z|0, δ−1I) on z. The lower bound is defined as below:

L(λ) = Eq(z|λ)

[
N∑
n=1

log p(Dn|z) + logN (z|0, δ−1I)− log q(z|λ)

]

= Eq(z) [−h(z)] , where h(z) := −

[
log
N (z|0, δ−1I)

q(z)
+
∑
n

log p(Dn|z)

]
.

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

G.2. Natural Gradient for q(z|w)

Likewise, we do not need to compute these gradients with respect to the expectation parameters directly. The gradients can
be computed in terms of {µ,α,Σ}. Similarly, by the chain rule, we can express the following gradients with respect to the
expectation parameters in terms of the gradients with respect to µ, α, and Σ.

∇mL = λ∇µL − λ∇αL − 2 (∇ΣL)µ

∇mαL = (1 + λ)∇αL − λ∇µL − 2 (∇ΣL)α

∇ML = ∇ΣL

By plugging the gradients into the update in (14) and then re-expressing the update in terms of µ, α, Σ, we obtain the
natural gradient update in terms of µ, α, and Σ.

Σ−1 ← Σ−1 − 2β∇ΣL (68)
µ← µ + βΣ (λ∇µL − λ∇αL) (69)
α← α + βΣ ((1 + λ)∇αL − λ∇µL) (70)

We can compute gradients with respect to µ, α, and Σ by the extended Bonnet’s and Price’s theorem (Lin et al., 2019). In
Lin et al. (2019), they discuss the conditions of the target function h(z) when it comes to applying these theorems.

∇µL(λ) =− Eq(z) [∇zh(z)] ≈ −∇zh(z)

∇αL(λ) =− Eq(w,z) [w∇zhn(z)] ≈ −w∇zhn(z)

=− Eq(z) [u(z)∇zhn(z)] ≈ −u(z)∇zhn(z)

∇ΣL(λ) =− 1
2Eq(z)

[
w∇2

zh(z)
]
≈ −w

2
∇2
zh(z).

=− 1
2Eq(z)

[
u(z)∇2

zh(z)
]
≈ −u(z)

2
∇2
zh(z).
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where u(z) :=

√
(z−µ)TΣ−1

(z−µ)+λ

αTΣ−1α+λ

K d−1
2

(√(
αTΣ−1α+λ

)(
(z−µ)TΣ−1

(z−µ)+λ
))

K d+1
2

(√(
αTΣ−1α+λ

)(
(z−µ)TΣ−1

(z−µ)+λ
)) and w ∼ InvGauss(w|1, λ), z ∼

N (z|µ + wα, wΣ).

Directly calculating the ratio between the modified Bessel functions of the second kind is expensive and numerically unstable
when v is large. However, the ratio between consecutive order has a tight and algebraic bound (Ruiz-Antolı́n & Segura,
2016) as given below. When v ∈ R and v ≥ 1

2 , the bound of the ratio is

D2v−1(v, x) ≤ Kv−1 (x)

Kv (x)
≤ D0(v, x)

where function Dα(v, x) is defined as below.

Dα(v, x) :=
x

ψα(v, x) +

√
(ψα(v, x))

2
+ x2

ψα(v, x) := (v − 1
2 )− τα(v)

2

√
(τα(v))

2
+ x2

, τα(v) := v − α+ 1

2

For natural number v ∈ N, a tighter bound (see Eq (3.10) at Yang & Chu (2017)) with higher computation cost can be used,
where we make use of the following relationship due to Eq (72) and (73).

Kv−1 (x)

Kv (x)
=
Kv+1 (x)

Kv (x)
− 2v

x

To compute the ratio, we propose to use the following approximation when v ≥ 1
2 . A similar approach to approximate the

ratio between two modified Bessel functions of the first kind is used in Oh et al. (2019) and Kumar & Tsvetkov (2018).

Kv−1 (x)

Kv (x)
≈ D2v−1(v, x) +D0(v, x)

2
(71)

Now, we discuss how to compute ∇x logKv (x) and ∇2
x logKv (x). The first term appears when we compute ∇zh(z).

Similarly, the second term appears when we compute∇2
zh(z).

First, we make use of the recurrence forms of the modified Bessel function of the second kind for v ∈ R (see page 20 at
Culham (2004)).

∇xKv (x) = −Kv−1 (x)− v

x
Kv (x) (72)

∇xKv (x) =
v

x
Kv (x)−Kv+1 (x) (73)

Using these recurrence forms, we have

∇xKv (x)

Kv (x)
= −Kv−1 (x)

Kv (x)
− v

x
(74)
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Furthermore, we have the following result due to the recurrence forms.

∇2
xKv (x) = ∇x


∇xKv(x)︷ ︸︸ ︷

−Kv−1 (x)− v

x
Kv (x)


= −∇xKv−1 (x)− v

x
∇xKv (x) +

v

x2
Kv (x)

= −

v − 1

x
Kv−1 (x)−Kv (x)︸ ︷︷ ︸
∇xKv−1(x)

− v

x
∇xKv (x) +

v

x2
Kv (x)

= −v − 1

x
Kv−1 (x) +

v + x2

x2
Kv (x)− v

x
∇xKv (x)

= −v − 1

x
Kv−1 (x) +

v + x2

x2
Kv (x)− v

x

−Kv−1 (x)− v

x
Kv (x)︸ ︷︷ ︸

∇xKv(x)


=

1

x
Kv−1 (x) +

v + x2 + v2

x2
Kv (x)

which implies that

∇2
xKv (x)

Kv
=

1

x

Kv−1 (x)

Kv (x)
+
v + x2 + v2

x2
(75)

Using Eq (74) and (75), we have

∇x logKv (x) =
∇xKv (x)

Kv (x)

= −Kv−1 (x)

Kv (x)
− v

x

∇2
x logKv (x) = ∇x

[
∇xKv (x)

Kv (x)

]
=
∇2
xKv (x)

Kv (x)
−
(
∇xKv (x)

Kv (x)

)2

=
1

x

Kv−1 (x)

Kv (x)
+
v + x2 + v2

x2
−
(
−Kv−1 (x)

Kv (x)
− v

x

)2

=
1− 2v

x

(
Kv−1 (x)

Kv (x)

)
−
(
Kv−1 (x)

Kv (x)

)2

+
v

x2
+ 1

where the ratio can be approximated by Eq (71).

H. Multivariate Symmetric Normal Inverse-Gaussian Distribution
The symmetric normal inverse-Gaussian distribution is a scale mixture distribution. A difference between the distribution at
Appendix G is shown in red. Such difference allows this distribution to have heavy tails.

q(w, z) = N (z|µ, w−1Σ)InvGauss(w|1, λ)

where we assume λ is fixed for simplicity and InvGauss(w|1, λ) =
(

λ
2πw3

) 1
2 exp

{
−λ2

(
w + w−1

)
+ λ
}

.
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Similarly, we can show that the marginal distribution is

q(z) =
λ

1
2

(2π)
d+1

2

det (Σ)
−1/2

exp(λ)

2K d−1
2

(√
λ
(

(z− µ)
T

Σ−1 (z− µ) + λ
))

(√
(z−µ)TΣ−1

(z−µ)+λ
λ

) d−1
2

Furthermore, the mixture distribution is a minimal conditional EF distribution. The sufficient statistics, natural parameters,
and expectation parameters are summarized below:[

wz
wzzT

] [
Σ−1µ

− 1
2Σ−1

] [
µ

µµT + Σ

]

Likewise, we can derive the natural-gradient update in terms of µ and Σ as shown below.

Σ−1 ← Σ−1 − 2β∇ΣL
µ← µ + βΣ∇µL

Now, we discuss the gradient computation of the following lower bound.

L(λ) = Eq(z|λ)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
:−fn(z)

+ logN (z|0, δ−1I)− log q(z|λ)


For the prior term, we have

Eq(z)
[
logN (z|0, δ−1I)

]
= −d

2
log(2π) +

dδ

2
− δ

2

(
µTµ +

(
1 + λ−1

)
Tr(Σ)

)
(76)

Due to Eq (76), the closed-form gradients are given below.

gprior
µ = −δµ

gprior
Σ = −

δ
(
1 + λ−1

)
2

I

In this example, we can re-express the entropy term as below.

Eq(z) [− log q(z)] =
(d+ 1)

2

(
log(2π)− log

√
λ
)

+
log det (Σ)

2
− λ− EInvGauss(w|1,λ)χ2

(z1|d)

log

2K d−1
2

(√
λ (w−1z1 + λ)

)
(w−1z1 + λ)

d−1
4


(77)

where χ2(z1|d) denotes the chi-squared distribution with d degrees of freedom. The expectation can be computed by the
inverse Gaussian quadrature (Choi et al., 2018) and the generalized Gauss-Laguerre quadrature.

By Eq (77), the closed-form gradients of the entropy term are shown below.

gentropy
µ = 0

gentropy
Σ =

Σ−1

2

The remaining step is to compute the gradients about Eq(z) [fn(z)]. To compute the gradients, we use the extended Bonnet’s
and Price’s theorems (Lin et al., 2019). Assuming that fn(z) satisfies the assumptions needed for these two theorems, we
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obtain the following gradient expression:

gn1 := ∇µEq(z) [fn(z)] = Eq(z) [∇zfn(z)] ≈ ∇zfn(z)

gn2 := 2∇ΣEq(z) [fn(z)]

= Eq(z)
[
u(z)∇2

zfn(z)
]
≈ u(z)∇2

zfn(z)

= Eq(w,z)
[
w∇2

zfn(z)
]
≈ w−1∇2

zfn(z)

where u(z) :=

√
(z−µ)TΣ−1

(z−µ)+λ
λ

K d−3
2

(√
λ
(

(z−µ)TΣ−1
(z−µ)+λ

))
K d−1

2

(√
λ
(

(z−µ)TΣ−1
(z−µ)+λ

)) , where the ratio between the Bessel functions

can be approximated by Eq (71) when d ≥ 2, and w ∼ InvGauss(w|1, λ), z ∼ N (z|µ, w−1Σ).

Putting together, we can express the gradients in the following form:

∇µL(λ) = −
N∑
n=1

gn1︸︷︷︸
:=gnµ

−δµ (78)

∇ΣL(λ) = − 1
2

N∑
n=1

gn2︸︷︷︸
:=gnS

−δ(1 + λ−1)

2
I + 1

2Σ−1 (79)

Similarly, for stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate gn1 and gn2 .
Plugging these stochastic gradients into

Σ−1 ← (1− β)Σ−1 + β(δ
(
1 + λ−1

)
I +NgnS)

µ← µ− βΣ(Ngnµ + δµ)

I. Matrix-Variate Gaussian Distribution
We first show that MVG is a multi-linear exponential-family distribution.

Lemma 16 Matrix Gaussian distribution is a member of the multi-linear exponential family.

Proof: Let Λ1 = W, Λ2 = U−1, and Λ3 = V−1. The distribution on Z ∈ Rd×p can be expressed as follows.

MN (Z|W,U,V)

= (2π)
−dp/2

exp
[
− 1

2Tr
(
V−1(Z−W)TU−1(Z−W)

)
− (d/2 log Det(V) + p/2 log Det(U))

]
= (2π)

−dp/2
exp

{
Tr
(
Λ3

(
− 1

2Z + Λ1

)T
Λ2Z

)
− 1

2

[
Tr
(
Λ3Λ

T
1 Λ2Λ1

)
+ d log Det(Λ3) + p log Det(Λ2)

]}
.

The function Tr
(
Λ3

(
− 1

2Z + Λ1

)T
Λ2Z

)
is linear with respect each Λj given others. �

We now derive the NGVI update using our new expectation parameterization. We can obtain function φ1, φ2, and φ3 from
the multi-linear function

f(Z,Λ) := Tr
(
Λ3

(
− 1

2Z + Λ1

)T
Λ2Z

)
.

For example, we can obtain function φ1 from f(Z,Λ) as shown below:

f(Z,Λ) = 〈Λ1, Λ2ZΛ3︸ ︷︷ ︸
φ1(Z,Λ−1)

〉− 1
2Tr

(
Λ3Z

TΛ2Z
)

︸ ︷︷ ︸
r1(Z,Λ−1)

.
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Similarly, we can obtain functions φ2 and φ3. The corresponding expectation parameters of the Matrix Gaussian distribution
can then be derived as below:

M1 = EMN (Z|W,U,V ) [Λ2ZΛ3] = Λ2Λ1Λ3

M2 = EMN (Z|W,U,V )

[
− 1

2ZΛ3Z
T + ZΛ3Λ

T
1

]
= 1

2

(
Λ1Λ3Λ

T
1 − pΛ

−1
2

)
M3 = EMN (Z|W,U,V )

[
− 1

2ZTΛ2Z + ΛT
1 Λ2Z

]
= 1

2

(
ΛT

1 Λ2Λ1 − dΛ−1
3

)
We can then compute the gradient with respect to the expectation parameters using chain-rule:

∇M1
Eq(Z|λ) [h(Z)] = (Λ2)

−1∇WEMN (Z|W,U,V ) [h(Z)] (Λ3)
−1

∇M2
Eq(Z|λ) [h(Z)] =

−2

p
∇UEMN (Z|W,U,V ) [h(Z)]

∇M3
Eq(Z|λ) [h(Z)] =

−2

d
∇V EMN (Z|W,U,V ) [h(Z)]

We will now express the gradients in terms of the gradient of the function h(Z). This leads to a simple update because
gradient of h(Z) can be obtained using automatic gradients (or backpropagation when using a neural network). Let
z = vec(Z) and Z = Mat(z). The distribution can be re-expressed as a multivariate Gaussian distribution N (z|µ,Σ),
where µ = vec(W), Σ = V⊗U, and⊗ denotes the Kronecker product. Furthermore, the lower bound can be re-expressed
as EN (z|µ,Σ)

[
−ĥ(z)

]
, where ĥ(z) = h(Z). We make use of the Bonnet’s and Price’s theorems (Opper & Archambeau, 2009):

∇µEN (z|µ,Σ)

[
ĥ(z)

]
= EN (z|µ,Σ)

[
∇zĥ(z)

]
∇ΣEN (z|µ,Σ)

[
∇zĥ(z)

]
= 1

2EN (z|µ,Σ)

[
∇2
zĥ(z)

]
Since Σ = V ⊗U, we have the following result.

Tr
[(
∇UijΣ

)
EN (z|µ,Σ)

[
∇zĥ(z)∇zĥ(z)T

]]
=Tr

[
EN (z|µ,Σ)

[(
∇UijΣ

)
∇zĥ(z)∇zĥ(z)T

]]
=Tr

[
EN (z|µ,Σ)

[
∇zĥ(z)T

(
∇UijΣ

)
∇zĥ(z)

]]
=Tr

[
EN (z|µ,Σ)

[
∇zĥ(z)T

(
∇Uij (V ⊗U)

)
∇zĥ(z)

]]
=Tr

[
EN (z|µ,Σ)

[
∇zĥ(z)T

(
V ⊗∇UijU

)
∇zĥ(z)

]]
=Tr

[
EMN (Z|W,U,V )

[
vec(∇Zh(Z))T

(
V ⊗∇UijU

)
vec(∇Zh(Z))

]]
=Tr

[
EMN (Z|W,U,V )

[
vec(∇Zh(Z))Tvec

(
(∇UijU)∇Zh(Z)VT

)]]
=Tr

[
EMN (Z|W,U,V )

[
∇Zh(Z)T

(
(∇UijU)∇Zh(Z)VT

)]]
=Tr

[
EMN (Z|W,U,V )

[
∇Zh(Z)VT∇Zh(Z)T (∇UijU)

]]
=Tr

[
EMN (Z|W,U,V )

[
∇Zh(Z)V∇Zh(Z)T (∇UijU)

]]
where we use the identity of the Kronecker product, (BT ⊗A) vec(X)︸ ︷︷ ︸

x

= vec(AXB) to move from step 6 to step 7.

Therefore, we have the following identity.

(∇UΣ)EN (z|µ,Σ)

[
∇zĥ(z)∇zĥ(z)T

]
=EMN (Z|W,U,V )

[
∇Zh(Z)V∇Zh(Z)T

]
Similarly, we have

(∇V Σ)EN (z|µ,Σ)

[
∇zĥ(z)∇zĥ(z)T

]
= EMN (Z|W,U,V )

[
∇Zh(Z)TU∇Zh(Z)

]
.
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These identities can be used to express the gradient with respect to the expectation parameters in terms of the gradient with
respect to Z:

∇WEMN (Z|W,U,V ) [h(Z)] = Mat
(
EN (z|µ,Σ)

[
∇zĥ(z)

])
= EMN (Z|W,U,V ) [∇Zh(Z)]

∇UEMN (Z|W,U,V ) [h(Z)] = (∇UΣ)∇ΣEN (z|µ,Σ)

[
∇zĥ(z)

]
= 1

2 (∇UΣ)EN (z|µ,Σ)

[
∇2
zĥ(z)

]
≈ 1

2 (∇UΣ)EN (z|µ,Σ)

[
∇zĥ(z)∇zĥ(z)T

]
(80)

= 1
2EMN (Z|W,U,V )

[
∇Zh(Z)V∇Zh(Z)T

]
∇V EMN (Z|W,U,V ) [h(Z)] = (∇V Σ)∇ΣEN (z|µ,Σ)

[
∇zĥ(z)

]
= 1

2 (∇V Σ)EN (z|µ,Σ)

[
∇2
zĥ(z)

]
≈ 1

2 (∇V Σ)EN (z|µ,Σ)

[
∇zĥ(z)∇zĥ(z)T

]
(81)

= 1
2EMN (Z|W,U,V )

[
∇Zh(Z)TU∇Zh(Z)

]
.

To avoid computation of the Hessian, we have used the Gauss-Newton approximation (Khan et al., 2018) in Eq (80) and Eq.
(81).

We choose the step-size as β = {β1, pβ2, dβ2}. The update with the Gauss-Newton approximation can be expressed as

Λ1 ← Λ1 − β1 (Λ2)
−1 EMN (Z|W,U,V ) [∇Zh(Z)] (Λ3)

−1

Λ2 ← Λ2 + β2EMN (Z|W,U,V )

[
∇Zh(Z)V∇Zh(Z)T

]
Λ3 ← Λ3 + β2EMN (Z|W,U,V )

[
∇Zh(Z)TU∇Zh(Z)

]
We can re-express these in terms of {W,U−1,V−1} to get the final updates:

W←W − β1UEMN (Z|W,U,V ) [∇Zh(Z)] V

(U)
−1 ← (U)

−1
+ β2EMN (Z|W,U,V )

[
∇Zh(Z)V∇Zh(Z)T

]
(V)

−1 ← (V)
−1

+ β2EMN (Z|W,U,V )

[
∇Zh(Z)TU∇Zh(Z)

]

J. Extensions to Variational Adam
For simplicity, we consider a case when variational parameters of q(w|λw) are fixed. Since λw is fixed, using the same
derivation as Khan et al. (2018), we obtain the following natural-gradient update with the natural momentum (0 ≤ m < 1).

λt+1
z =

1

1−m
λtz −

m

1−m
λt−1
z +

β

1−m
∇mzL(λz)

∣∣∣
λz=λtz

(82)

We assume the model prior is a Gaussian prior p(z) = N (z|0, δ−1I) to derive extensions of the variational Adam update,
where the variational distribution is a Gaussian mixture distribution such as skew Gaussian, exponentially modified Gaussian,
symmetric normal inverse-Gaussian, and Student’s t-distribution.
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J.1. Extension for Skew Gaussian

Re-expressing the update (82) in terms of µ, α, Σ (the same derivation as Khan et al. (2018)), we obtain the following
update:

Σ−1
t+1 = Σ−1

t − 2
β

1−m
∇ΣtL+

m

1−m
(
Σ−1
t −Σ−1

t−1

)
µt+1 = µt +

β

1−m
Σt+1

(
1

1− c2
∇µtL −

c

1− c2
∇αtL

)
+

m

1−m
Σt+1Σ

−1
t−1(µt − µt−1)

αt+1 = αt +
β

1−m
Σt+1

(
1

1− c2
∇αtL −

c

1− c2
∇µtL

)
+

m

1−m
Σt+1Σ

−1
t−1(αt −αt−1)

where we use a skew Gaussian distribution as the variational distribution,∇µtL,∇αtL, and∇ΣtL are defined at (53) -(55).

We make use of the same approximations as Khan et al. (2018) such as the gradient-magnitude of the Hessian ap-
proximation, the square root approximation, Σt−1 ≈ Σt, and a diagonal covariance structure in Σ to obtain an exten-

sion of the variational skew-Adam update. Recall that gentropy
α and gentropy

Σ are defined at (51) and (52) and c =
√

2
π .

Using the same algebra manipulation used in Khan et al. (2018), we obtain the variational Adam update with Gaus-

sian prior p(z) = N (z|0, δ−1I), where Σ−1 = Diag(Ns + δ), v = c

(1+αTΣ−1α)
, and u(z) =

(z−µ)TΣ−1α
1+αTΣ−1α

.

Skew Gaussian extension
1: while not converged do
2: ẑ← µ+σ ◦ ε, where ε ∼ N (0, I), σ ← 1/

√
Ns + δ

3: z← ẑ + |w|α, where w ∼ N (0, 1)
4: Randomly sample a data example Di
5: gµ ← −∇ log p(Di|z)
6: option I: ĝα ← −|w|∇ log p(Di|z)
7: option II: ĝα ← − [v∇ log p(Di|ẑ) + u(z)∇ log p(Di|z)]
8: gα ← ĝα − gentropy

α /N
9: gs ← gµ ◦ gµ − diag

(
2gentropy

Σ

)
/N + (s + δ/N)

10: mµ ← γ1 mµ + (1− γ1)
(gµ−cgα

1−c2 + δµ/N
)

11: mα ← γ1 mα + (1− γ1)
(gα−cgµ

1−c2 + δα/N
)

12: s← γ2 s + (1− γ2) gs
13: m̂µ ←mµ/(1− γt1), m̂α ←mα/(1− γt1), ŝ← (s + δ/N)/(1− γt2)

14: µ← µ− β m̂µ/
√

ŝ, α← α− β m̂α/
√

ŝ)
15: t← t+ 1
16: end while

J.2. Extension for Exponentially Modified Gaussian

Similarly, re-expressing the update (82) in terms of µ, α, Σ, we obtain the following update:

Σ−1
t+1 = Σ−1

t − 2
β

1−m
∇ΣtL+

m

1−m
(
Σ−1
t −Σ−1

t−1

)
µt+1 = µt +

β

1−m
Σt+1 (2∇µtL −∇αtL) +

m

1−m
Σt+1Σ

−1
t−1(µt − µt−1)

αt+1 = αt +
β

1−m
Σt+1 (∇αtL −∇µtL) +

m

1−m
Σt+1Σ

−1
t−1(αt −αt−1)

where we use an exponentially modified Gaussian distribution as the variational distribution, ∇µtL, ∇αtL, and ∇ΣtL are
defined at (65) -(67).

Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = N (z|0, δ−1I) as shown below, where

gentropy
α and gentropy

Σ are defined at (63) and (64), Σ−1 = Diag(Ns + δ), v = 1

(αTΣ−1α)
, and u(z) =

(z−µ)TΣ−1α−1

αTΣ−1α
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Exponentially Modified Gaussian extension
1: while not converged do
2: ẑ← µ+σ ◦ ε, where ε ∼ N (0, I), σ ← 1/

√
Ns + δ

3: z← ẑ +wα, where w ∼ Exp(1)
4: Randomly sample a data example Di
5: gµ ← −∇ log p(Di|z)
6: option I: ĝα ← −w∇ log p(Di|z)
7: option II: ĝα ← − [v∇ log p(Di|ẑ) + u(z)∇ log p(Di|z)]
8: gα ← ĝα − gentropy

α /N
9: gs ← gµ ◦ gµ − diag

(
2gentropy

Σ

)
/N + (s + δ/N)

10: mµ ← γ1 mµ + (1− γ1)
(
2gµ − gα + δµ/N

)
11: mα ← γ1 mα + (1− γ1)

(
gα − gµ + δα/N

)
12: s← γ2 s + (1− γ2) gs
13: m̂µ ←mµ/(1− γt1), m̂α ←mα/(1− γt1), ŝ← (s + δ/N)/(1− γt2)

14: µ← µ− β m̂µ/
√

ŝ, α← α− β m̂α/
√

ŝ
15: t← t+ 1
16: end while

J.3. Extension for Student’s t-distribution

Likewise, re-expressing the update (82) in terms of µ, Σ, we obtain the following update:

Σ−1
t+1 = Σ−1

t − 2
β

1−m
∇ΣtL+

m

1−m
(
Σ−1
t −Σ−1

t−1

)
µt+1 = µt +

β

1−m
Σt+1∇µtL+

m

1−m
Σt+1Σ

−1
t−1(µt − µt−1)

where we use a Student’s t-distribution with fixed α > 1 as the variational distribution,∇µtL and∇ΣtL are defined at (83) -
(84).

Now, we consider the following lower bound (z ∈ Rd).

L(λ) = Eq(z|λ)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
−fn(z)

+ logN (z|0, δ−1I)− log q(z|λ)

 .
where

q(z) = det (πΣ)
−1/2

Γ(α+ d/2)
(

2α+ (z− µ)
T

Σ−1 (z− µ)
)−α−d/2

Γ(α) (2α)
−α .

We use the results from Kotz & Nadarajah (2004).

Eq(z|λ) [− log q(z|λ)] = 1
2 log |Σ|+ log

(2aπ)d/2

Γ(d/2)
+ log

Γ(d/2)Γ(a)

Γ(d/2 + a)
+ (a+ d/2) (ψ (a+ d/2)− ψ (a))

Eq(z|λ)

[
logN (z|0, δ−1I)

]
= −d

2
log(2π) +

d log(δ)

2
− δ

2
µTµ− δ

2

a

a− 1
Tr (Σ)

where ψ(·) is the digamma function.

The remaining thing is to compute the gradients about Eq(z) [fn(z)]. To compute the gradients, the reparametrization trick
can be used. However, we can do better by the extended Bonnet’s and Price’s theorems for Student’s t-distribution (Lin
et al., 2019). Assuming that fn(z) satisfies the assumptions needed for these two theorems, we obtain the following gradient
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expression:

gn1 := ∇µEq(z) [fn(z)] = Eq(z) [∇zfn(z)] ≈ ∇zfn(z)

gn2 := 2∇ΣEq(z) [fn(z)]

= Eq(z)
[
u(z)∇2

zfn(z)
]
≈ u(z)∇2

zfn(z)

= Eq(w,z)
[
w∇2

zfn(z)
]
≈ w∇2

zfn(z)

where z ∈ Rd is generated from q(z), w is generated from q(w) , and

u(z) :=
a+ 1

2 (z− µ)
T

Σ−1 (z− µ)

(a+ d/2− 1)

The gradients of L(λ) can be expressed as

∇µL(λ) = −
N∑
n=1

gn1 − δµ (83)

∇ΣL(λ) = − 1
2

N∑
n=1

gn2 −
δ

2

a

a− 1
I + 1

2Σ−1 (84)

Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = N (z|0, δ−1I) as

shown below, where z ∈ Rd, Σ−1 = Diag(Ns + αδ
α−1 ), and u(z) =

a+
1
2 (z−µ)TΣ−1

(z−µ)

(a+d/2−1) .

Student’s t (α > 1) extension
1: while not converged do
2: z← µ+σ ◦ ε, where w ∼ IG(α, α), ε ∼ N (0, I), σ ←

√
w/(Ns + αδ

α−1 )

3: Randomly sample a data example Di
4: gµ ← −∇ log p(Di|z)
5: option I: gs ← wgµ ◦ gµ
6: option II: gs ← u(z)gµ ◦ gµ
7: mµ ← γ1 mµ + (1− γ1)

(
gµ + δµ/N

)
8: s← γ2 s + (1− γ2) gs
9: m̂µ ←mµ/(1− γt1), ŝ← (s + αδ

N(α−1) )/(1− γt2)

10: µ← µ− β m̂µ/
√

ŝ
11: t← t+ 1
12: end while

J.4. Extension for Symmetric Normal Inverse-Gaussian Distribution

Re-expressing the update (82) in terms of µ and Σ (the same derivation as Khan et al. (2018)), we obtain the following
update:

Σ−1
t+1 = Σ−1

t − 2
β

1−m
∇ΣtL+

m

1−m
(
Σ−1
t −Σ−1

t−1

)
µt+1 = µt +

β

1−m
Σt+1∇µtL+

m

1−m
Σt+1Σ

−1
t−1(µt − µt−1)

where we use a symmetric normal inverse-Gaussian distribution with fixed λ > 0 as the variational distribution,∇µtL and
∇ΣtL are defined at (78) -(79).

Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = N (z|0, δ−1I) as shown below. where
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z ∈ Rd, Σ−1 = Diag(Ns + δ(1 + λ−1)), and

u(z) =

√
(z− µ)

T
Σ−1 (z− µ) + λ

λ

K d−3
2

(√
λ
(

(z− µ)
T

Σ−1 (z− µ) + λ
))

K d−1
2

(√
λ
(

(z− µ)
T

Σ−1 (z− µ) + λ
))

Recall that the ratio about the Bessel functions can be approximated by Eq (71) when d ≥ 2.

Symmetric Normal Inverse-Gaussian (λ > 0) extension
1: while not converged do
2: z← µ+σ ◦ ε, where w ∼ InvGauss(1, λ), ε ∼ N (0, I), σ ←

√
1/ [w(Ns + δ(1 + λ−1))]

3: Randomly sample a data example Di
4: gµ ← −∇ log p(Di|z)
5: option I: gs ← w−1gµ ◦ gµ
6: option II: gs ← u(z)gµ ◦ gµ
7: mµ ← γ1 mµ + (1− γ1)

(
gµ + δµ/N

)
8: s← γ2 s + (1− γ2) gs
9: m̂µ ←mµ/(1− γt1), ŝ← (s + δ(1+λ−1)

N )/(1− γt2)

10: µ← µ− β m̂µ/
√

ŝ
11: t← t+ 1
12: end while


