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Abstract

We consider a nonparametric heteroscedastic time series regression model and

suggest testing procedures to detect changes in the conditional variance function.

The tests are based on a sequential marked empirical process and thus combine clas-

sical CUSUM tests with marked empirical process approaches known from goodness-

of-fit testing. The tests are consistent against general alternatives of a change in

the conditional variance function, a feature that classical CUSUM tests are lacking.

We derive a simple limiting distribution and in the case of univariate covariates

even obtain asymptotically distribution-free tests. We demonstrate the good per-

formance of the tests in a simulation study and consider exchange rate data as a

real data application.
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1 Introduction

The paper is concerned with the investigation of structural stability of the conditional

variance function (volatility function) in nonparametric heteroscedastic time series regres-

sion models. Those models have gained much attention over the last decades and contain

as special cases nonparametric AR-ARCH models, which are also called nonparametric

CHARN (conditional heteroscedastic autoregressive nonlinear) models; see Fan and Yao

(2003) or Gao (2007) for overviews. They have been successfully applied to model econo-

metric time series such as foreign exchange rates or stock market indices, see e.g. Yang

et al. (1999) and Zhao and Wu (2008). Here tests for structural changes in the volatility

function are of special importance.
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A lot of research has been devoted to the parametric case, notably for ARCH and

GARCH models. Among others, Kokoszka and Leipus (1999) suggested a CUSUM type

test for parameter stability in ARCH models, while Kulperger and Yu (2005) considered

partial sums of higher powers of residuals to test for a parameter change in GARCH

models. Berkes et al. (2004) considered tests for parameter stability in GARCH models

based on likelihood ratios. Kengne’s (2012) test, which is based on quasi likelihood

estimators, is applicable to more general parametric causal time series models. Lee and

Lee (2014) suggested a residual based CUSUM test for change points in parametric AR-

GARCH models, while Lee and Song (2008) and Song and Kang (2018) considered ARMA-

GARCH models. Very few results are available in the nonparametric framework. Chen

et al. (2005) studied a nonparametric heteroscedastic time series model with a scale change

in volatility. However, they assume a compact support of regressors, which is problematic

when considering autoregression models. Tests for change points in the unconditional

variance in time series models have been considered as well. Lee et al. (2003) considered

parametric autoregression models, as well as fixed design nonparametric regression models

with strongly mixing errors using a CUSUM testing procedure. Chen and Tian (2014)

constructed a ratio test for change point detection in the variance in random design

nonparametric regression models. However, their test does not allow for autoregressive

effects, as a compact support of regressors is assumed. A related strand of the literature

deals with change point detection in the error distribution of a time series regression model.

In the parametric framework Koul (1996) considered non-linear regression models and

Ling (1998) non-stationary AR models, to just mention a few, while Selk and Neumeyer

(2013) considered nonparametric heteroscedastic autoregression models.

Recently, Mohr and Neumeyer (2019) suggested a test for change point in the regres-

sion function in nonparametric time series models. They combine traditional CUSUM

tests as considered by Hidalgo (1995), Honda (1997) and Su and Xiao (2008) in the

nonparametric context with the marked empirical process approach originally suggested

by Stute (1997) and widely used in the goodness-of-fit literature. Compared with the

CUSUM approach the new test shows better power properties, in theory as well as in

finite sample simulations. In the paper at hand we will modify the CUSUM marked em-

pirical process test in order to test for a change point in the conditional volatility function.

We obtain tests with very simple limiting distributions, which are consistent against gen-

eral fixed alternatives. In the case of univariate covariates one can even obtain tests that

are asymptotically distribution-free.

The paper is organized as follows. In section 2 we define the process on which the

test statistics are built. In section 3 we give the limiting distribution of the process under

the null hypothesis of no change in the variance function. We further discuss consistency

against fixed alternatives of one change point. In section 4 we describe a simulation

study and discuss a real data example of currency exchange rates. Section 5 concludes

the paper, whereas in the appendix we list the regularity assumptions and prove the
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asymptotic results.

2 The model and test statistic

Consider a strictly stationary and strongly mixing time series (Yt,Xt), t ∈ Z, following

the nonparametric model

Yt = m(Xt) + Ut, (2.1)

where E[Ut|F t] = 0 a.s. for the sigma-field F t = σ(Uj−1,Xj : j ≤ t), and m : Rd → R
does not depend on t. Further, let the following representation for the innovations Ut
hold,

Ut = σt(Xt)εt, t ∈ Z, (2.2)

for some functions σt : Rd → R and an i.i.d. sequence (εt)t∈Z, such that εt is independent

ofXj for all j ≤ t and fulfills E[ε1] = 0, E[ε21] = 1 and E[ε41] <∞. With these restrictions,

σ2
t is the variance function of Yt, conditioned on Xt, as

Var(Yt|Xt) = E[U2
t |Xt] = σ2

t (Xt) a.s.

The d-dimensional absolutely continuous covariate Xt may include finitely many lagged

values of Yt, for instance Xt = (Yt−1, . . . , Yt−d)
T , such that the model includes nonpara-

metric AR-ARCH models.

Our aim is to test whether the function σ2
t (·) is stable in time t. Given observations

(Y1,X1), . . . , (Yn,Xn) the null hypothesis

H0 : σ2
t (·) = σ2(·), t = 1, . . . , n,

for some not further specified function σ2 : Rd → R (not depending on time t) will be

considered.

The idea is to base tests for H0 on a sequential marked empirical process of residuals,

T̂n(s, z) =
1√
n

bnsc∑
t=1

(
(Yt − m̂n(Xt))

2 − σ̂2
n(Xt)

)
ωn(Xt)I{Xt ≤ z} (2.3)

indexed in s ∈ [0, 1] and z ∈ Rd. Throughout I{. . . } denotes an indicator function.

Further ωn(·) = I{· ∈ Jn} is a weight function with Jn specified in assumption (J) in

appendix A. The regression and volatility functions are estimated as

m̂n(x) =

∑n
j=1K

(
x−Xj

hn

)
Yj∑n

j=1K
(

x−Xj

hn

)
and

σ̂2
n(x) =

∑n
j=1K

(
x−Xj

hn

)
(Yj − m̂n(x))2∑n

j=1K
(

x−Xj

hn

) ,
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respectively, with kernel function K and bandwidth hn as considered in the assumptions

in appendix A. The null hypothesis H0 of no change in the variance will be rejected for

large values of, e.g., a Kolmogorov-Smirnov type test statistic

Tn1 := sup
z∈Rd

sup
s∈[0,1]

∣∣∣T̂n(s, z)
∣∣∣

due to the following motivation. Note that the volatility function σ2
t from (2.2) can be

viewed as regression function in a regression model

U2
t = σ2

t (Xt) + ξt, t ∈ Z,

with covariate Xt, response variable U2
t and innovations ξt = U2

t − σ2
t (Xt), that satisfy

E[ξt|Xt] = 0 and E[ξ2t |Xt] = σ4
t (Xt)E[(ε2t −1)2] a.s. However, this is not a feasible model

as Ut = Yt −m(Xt) is unobservable and has to be estimated. The term

(Yt − m̂n(Xt))
2 − σ̂2

n(Xt) =: ξ̂t

in the definition of the process T̂n can be seen as estimator for the innovation ξt in the ‘non-

feasible’ model above under the null hypothesis σ2
t (·) = σ2(·)∀t. Thus n−1/2T̂n will vanish

for n→∞ under the null hypothesis. The limiting process of T̂n will be given in Corollary

3.2 below. From this result critical values for a test based on the Kolmogorov-Smirnov

type test statistic Tn1 can be approximated. The behavior of Tn1 under fixed alternatives

will be demonstrated in Remark 3.3 in order to motivate consistency of the test. The

process T̂n is a consistent improvement of CUSUM tests analogous to the procedure in

Mohr and Neumeyer (2019) developed for changes in the regression function.

Remark 2.1. In model (2.1) we assume a regression function m that is stable in time t.

For testing of a change in the variance function this assumption makes sense if beforehand

one can test for a change in the regression function applying a testing procedure which

only reacts sensitive to changes in the regression function, not to changes in the variance

function. Mohr and Neumeyer (2019) provide such a bootstrap test, which can be applied in

cases of unstable variances, but as desired only reacts sensitive to changes in the regression

function. Consecutively applying the bootstrap test in Mohr and Neumeyer (2019) and, if

it does not reject, the test in the paper at hand, gives the knowledge of whether a change

occurs in the mean or the variance function.

3 Asymptotic results

Under the regularity assumptions in appendix A one can derive the following decomposi-

tion of the process T̂n defined in (2.3) in terms of the process

Tn(s, z) =
1√
n

bnsc∑
t=1

ξtI{Xt ≤ z}, s ∈ [0, 1], z ∈ Rd, (3.1)

as well as the weak convergence of Tn.



3 ASYMPTOTIC RESULTS 5

Theorem 3.1. Assume model (2.1), (2.2) under the null hypothesis H0 and assumptions

(G), (ξ), (M), (J), (F1), (F2), (K), (B1) and (B2) from appendix A.

(i) Then, T̂n(s, z) = Tn(s, z)− sTn(1, z) + oP (1) uniformly in s ∈ [0, 1] and z ∈ Rd.

(ii) The process Tn = {Tn(s, z) : s ∈ [0, 1], z ∈ Rd} converges weakly in `∞([0, 1]×Rd)

to a centered Gaussian process G with

Cov (G(s1, z1), G(s2, z2)) = (s1 ∧ s2)Σ(z1 ∧ z2),

where Σ(z) := E[(ε21 − 1)2]
∫
(−∞,z]

σ4(x)f(x)dx.

Here and throughout we define (−∞, z] = (−∞, z1]×· · ·×(−∞, zd] for z = (z1, . . . , zd) ∈
Rd. The proof of Theorem 3.1 is given in appendix B. An application of the continuous

mapping theorem and Slutsky’s lemma give the following weak convergence result for the

process T̂n.

Corollary 3.2. Suppose that the assumptions of Theorem 3.1 and H0 are satisfied. Then

the process T̂n converges weakly in `∞([0, 1]×Rd) to a centered Gaussian process G0 with

Cov (G0(s1, z1), G0(s2, z2)) = (s1 ∧ s2 − s1s2)Σ(z1 ∧ z2).

The continuous mapping theorem then implies convergence in distribution of the Kolmogorov-

Smirnov test statistic,

Tn1
D→

n→∞
sup
z∈Rd

sup
s∈[0,1]

|G0(s, z)| .

In particular in the case d = 1 using continuity of Σ and the scaling property of the

Brownian motion, it holds that Tn1 converges in distribution to c1/2T , where

T = sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|

and K0 is a Kiefer-Müller process. The constant c = E[((Y1 −m(X1))
2 − σ2(X1))

2] can

be consistently estimated as

ĉn :=
1

n

n∑
i=1

(
(Yi − m̂n(Xi))

2 − σ̂2
n(Xi)

)2
ωn(Xi),

and the test statistic Tn1/ĉ
1/2
n is asymptotically distribution-free. We reject H0 at asymp-

totic level α if Tn1/ĉ
1/2
n is larger than the (known) (1− α)-quantile of T .

Remark 3.3. To see that the test is consistent against simple fixed alternatives of one

change in the volatility function,

H1 : ∃s0 ∈ (0, 1) : σ2
n,t(·) =

{
σ2
(1)(·), t = 1, . . . , bns0c
σ2
(2)(·), t = bns0c+ 1, . . . , n,
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for some functions with σ2
(1) 6≡ σ2

(2), consider a triangular array

Yn,t = m(Xn,t) + Un,t, t = 1, . . . , n,

with regression function m stable in time and innovations such that E[Un,t|F tn] = 0 and

E[U2
n,t|Xn,t] = σ2

n,t(Xn,t) a.s. Further assume that the covariate Xn,t is absolutely con-

tinuous with density function fn,t. Then σ̂2
n(x) will estimate the function

σ̄2
n(x) =

1
n

n∑
i=1

fn,i(x)σ2
n,i(x)

1
n

n∑
i=1

fn,i(x)
=
(
σ2
(1)(x)− σ2

(2)(x)
) 1
n

bns0c∑
i=1

fn,i(x)

1
n

n∑
i=1

fn,i(x)
+ σ2

(2)(x).

Now assume that for each s ∈ (0, 1), the limit of n−1
∑bnsc

i=1 fn,i exists and denote it by

f̄ (s). Then n−1/2T̂n(s0, z) will converge in probability to the integral∫
(−∞,z]

(
σ2
(1)(u)− σ2

(2)(u)
)
f̄ (s0)(u)

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
du,

which, under H1, does not vanish for at least one z = z0 (provided that f̄ (s0) 6= f̄ (1)). As

Tn1 ≥ |T̂n(s0, z0)|, the test statistic will converge to infinity in probability and the test is

consistent.

Remark 3.4. A traditional CUSUM test statistic in our context would be defined as

sups∈[0,1] |T̂n(s,∞)|. With the same reasoning as in Remark 3.3, n−1/2T̂n(s0,∞) will con-

verge in probability to∫ (
σ2
(1)(u)− σ2

(2)(u)
)
f̄ (s0)(u)

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
du,

which could be zero, even under the alternative H1. In such a case the CUSUM test is

not consistent.

4 Finite sample properties

4.1 Simulations

A Monte Carlo study is conducted in order to compare the results for Tn1 from sec-

tion 2 and a Cramér-von Mises type test Tn2 := supz∈R
∫ 1

0
|T̂n(s, z)|2ds with those of

the traditional CUSUM versions denoted by KS := sups∈[0,1] |T̂n(s,∞)| and CM :=∫
|T̂n(s,∞)|2ds. All simulations are carried out with a level of 5%, 1000 replications and

for sample sizes n ∈ {100, 300, 500}. For the nonparametric estimators m̂n and σ̂2
n we use

an Epanechnikov kernel K and hn = n−1/3 as a simple ad hoc bandwidth. Furthermore,
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we set cn = log(n) for the weighting function. The data is simulated from the following

models.

(model 1) Yt = m(Xt) + σt(Xt)εt, εt ∼ N (0, 1),

σt(x) =

{
0.5 exp(−0.2x), t = 1, . . . , bns0c
0.5 exp(0.2x), t = bns0c+ 1, . . . , n,

where Xt is an exogenous variable following the AR(1) model Xt = 0.4Xt−1 + ξt with ξt
being i.i.d. ∼ N (0, 1).

(model 2) Yt = m(Yt−1) + σ(Yt−1)εt, εt ∼ N (0, 1),

σt(x) =

{√
0.1 + 0.1x2, t = 1, . . . , bns0c√
0.1 + 0.7x2, t = bns0c+ 1, . . . , n.

For both model 1 and 2 we consider s0 ∈ {0, 0.25, 0.5, 0.75, 1} and two different choices

for the regression function, namely m(x) = 0.5x (case (a)) and m(x) = −0.5x (case (b)).

Model 1 is a heteroscedastic regression model with autoregressive covariables while

model 2 is a heteroscedastic autoregression (AR-ARCH) model. In both cases H0 is

satisfied for s0 ∈ {0, 1} and H1 is satisfied for s0 ∈ {0.25, 0.5, 0.75}. Further, note that

data generated from both models fulfill the stationarity and mixing assumptions when

s0 ∈ {0, 1} (see Remark A.1 in appendix A).

Table 1 shows the rejection frequencies for model 1. To summarize the performance

of the tests it is to mention that all level simulations (s0 ∈ {0, 1}) show reasonably

good results. The tests based on Tn1 and Tn2 show nice consistency properties (s0 ∈
{0.25, 0.5, 0.75}), rejecting the null more frequently with increasing sample sizes, where

Tn2 has larger power. The classical CUSUM tests, however, clearly fail in detecting the

change, having a power that does not exceed 10% for all cases (see Remark 3.4). All of the

tests perform rather poorly when the sample size is small, i.e. for n = 100. Furthermore,

we note that changes occurring at s0 = 0.5 are easiest to detect.

The corresponding results in model 2 can be found in table 2. The level of 5% is

approximately hold for all tests, even in the case where the variance has a relatively large

influence (s0 = 0). The power simulations suggest that our tests as well as the classical

CUSUM tests result in reasonable rejection probabilities, detecting the change more often

for increasing sample sizes. Again changes in s0 = 0.5 are easiest to detect.

4.2 Data example

In this section we will apply our test to a financial data set that is concerned with exchange

rates of currencies. Exchange rate regimes indicate how a country manages its currency

with respect to other currencies, it can vary from ”fixed”, over ”pegged” to ”floating”.

In the case of a fixed regime, the currency is more or less fixed to some other currency.
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Table 1: Rejection frequencies in model 1

model 1 (a) model 1 (b)

s0 n Tn1 Tn2 KS CM Tn1 Tn2 KS CM

0 100 0.035 0.058 0.046 0.042 0.052 0.064 0.059 0.047

300 0.053 0.073 0.058 0.048 0.056 0.068 0.064 0.055

500 0.057 0.071 0.062 0.055 0.062 0.064 0.059 0.043

0.25 100 0.041 0.080 0.052 0.048 0.053 0.081 0.060 0.054

300 0.112 0.157 0.072 0.062 0.099 0.155 0.072 0.051

500 0.187 0.266 0.069 0.050 0.216 0.294 0.097 0.080

0.50 100 0.063 0.122 0.053 0.057 0.068 0.120 0.073 0.066

300 0.210 0.276 0.091 0.073 0.199 0.279 0.081 0.068

500 0.413 0.521 0.097 0.067 0.428 0.510 0.096 0.074

0.75 100 0.055 0.092 0.074 0.067 0.051 0.084 0.061 0.066

300 0.130 0.174 0.079 0.053 0.120 0.196 0.080 0.068

500 0.222 0.291 0.086 0.074 0.239 0.304 0.096 0.074

1 100 0.045 0.072 0.062 0.057 0.046 0.076 0.055 0.055

300 0.053 0.064 0.056 0.041 0.076 0.088 0.081 0.064

500 0.063 0.071 0.072 0.050 0.064 0.070 0.064 0.051

Table 2: Rejection frequencies in model 2

model 2 (a) model 2 (b)

s0 n Tn1 Tn2 KS CM Tn1 Tn2 KS CM

0 100 0.036 0.066 0.041 0.045 0.039 0.070 0.046 0.045

300 0.056 0.066 0.062 0.041 0.040 0.054 0.046 0.045

500 0.059 0.064 0.070 0.056 0.059 0.074 0.066 0.064

0.25 100 0.054 0.094 0.086 0.079 0.068 0.096 0.080 0.081

300 0.165 0.209 0.218 0.214 0.153 0.202 0.200 0.194

500 0.317 0.365 0.405 0.376 0.274 0.338 0.364 0.350

0.50 100 0.086 0.134 0.123 0.137 0.100 0.141 0.143 0.142

300 0.414 0.433 0.507 0.470 0.423 0.438 0.510 0.470

500 0.743 0.746 0.829 0.780 0.748 0.746 0.809 0.782

0.75 100 0.076 0.110 0.109 0.115 0.082 0.128 0.115 0.119

300 0.329 0.361 0.410 0.376 0.340 0.353 0.402 0.368

500 0.655 0.636 0.724 0.667 0.631 0.614 0.705 0.651

1 100 0.049 0.065 0.054 0.050 0.044 0.082 0.053 0.048

300 0.069 0.063 0.068 0.054 0.054 0.073 0.063 0.051

500 0.064 0.075 0.081 0.052 0.056 0.065 0.061 0.045
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Contrarily with a floating regime the currency is allowed to fluctuate freely by market

forces. Pegged regimes are somehow in between, the currency then has limited flexibility

when compared with other currencies. As Zeileis et al. (2010) point out, information on

the exchange rate regime of a country is not always fully disclosed by the corresponding

central bank. Hence, data driven methods such as linear regression became popular to

classify the exchange rate regime in operation. Zeileis et al. (2010) suggest that a vanishing

error variance can be interpreted as a fixed currency regime, while a small or large error

variance can indicate a pegged or floating regime respectively. This is illustrating that

the error variance is an important quantity when looking for changes in the exchange rate

regime. As such changes are often caused by policy interventions, tests for sudden breaks

(rather than smooth transitions) are of reasonable interest.

We consider the exchange rates of the Chinese Yuan Renminbi (CNY) regressed on

the exchange rates of the US Dollar (USD). The reason to do so is that China decided

to give up on a fixed exchange rate to the US dollar in 2005. More precisely, we consider

251 data points which are the daily log-difference returns from July 26nd, 2005 to July

25nd, 2006 of the CNY and USD each with respect to the Swiss franc (CHF) as numeraire

currency. This is the first year of observations of a data set considered by Zeileis et al.

(2010) as well as Kirch and Weber (2018). Both studies use a linear regression model

and a basket of four currencies as regressors, namely the USD, Japanese yen (JPY), Euro

(EUR) and the British Pound (GBP). However, the results of Zeileis et al. (2010) indicate

nearly vanishing regression coefficients for the JPY, the EUR and the GBP over the whole

investigated time period from July 26nd, 2005 to July 31st, 2009.

We first apply the bootstrap test by Mohr and Neumeyer (2019) to test for changes

in the unknown regression function. With a p-value of 90% it suggests a stable regression

function.

Secondly, we apply our test based on Tn1 using the 95%-quantile of the limiting dis-

tribution T as critical values. The test clearly rejects the null with a p-value smaller than

0.001%, indicating a change in the conditional variance function. The possible change

point can be estimated by argmaxs∈[0,1](supz∈R |T̂n(s, z)|) and suggests a change of the

exchange rate regime in March 3rd, 2006 which is consistent with the results of Zeileis

et al. (2010). Figure 1 shows the cumulative sum, supz∈R |T̂n(·, z)| (top plot), as well as

the exchange rates of the CNY plotted against the time (bottom plot). The green dashed

line is indicating the critical value while the red dashed line corresponds to the estimated

change point.

Note that applying the tests to the full data set, no change in the regression function

is detected (p-value 16%), but a change in the variance is clearly detected (p-value smaller

than 0.001%). However, as the data set is rather large and from the findings of Zeileis

et al. (2010) we expect more than one change in the variance when looking at the full set

of observations, which makes the estimation of possible changes more complicated (see

also section 5).
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Figure 1: Exchange rate data: CUSUM and time series

5 Concluding remarks

This paper closes a gap in the change point testing theory for nonparametric time series

models. Assume that one already has accepted that there is no change in the (nonpara-

metric) regression function, but one suspects a change in the (nonparametric) volatility

function. In such a case the new test gives a valid procedure. To the best knowledge of

the authors the new test is the first that can be applied to (nonparametric) autoregressive

models (no assumption of bounded support of the covariates) and is consistent against

general alternatives of a change point in the variance function.

Under the assumption that only one change occurs, an estimator for the change point

is given by argmaxs∈[0,1](supz∈Rd |T̂n(s, z)|). Asymptotic properties of this estimator will

be considered in future research. If more than one change occurs it might be necessary to

modify this estimator. For instance Fryzlewicz (2014) proposes a wild binary segmentation

procedure for the estimation of multiple changes in a simple piecewise-constant signal

model, which possibly can be adapted to our setting.

For our theoretical result Theorem 3.1 we need stationarity under the null. However,

if there are no changes in both regression function m and variance function σ2, there still

could be a change in the error distribution of εt. In this case, a bootstrap test similar

to the wild bootstrap proposal of Mohr and Neumeyer (2019) can be conducted that is

sensible to changes in the variance function but not to changes in the error distribution. If

both tests of Mohr and Neumeyer (2019) and the bootstrap version of the test at hand do

not indicate a change in the regression and variance function respectively, the procedure
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of Selk and Neumeyer (2013) can be used to detect changes in the error distribution.

A Assumptions

(G) Let (Yt,Xt)t∈Z be strictly stationary and α-mixing with mixing coefficient α(·) such

that α(t) = O(a−t) for some a ∈ (1,∞).

(ξ) For ξt := U2
t − σ2(Xt) let there exist some γ > 0 and some even Q > (d+ 1)(2 + γ)

such that E[ξt|F t] = 0, where F t = σ(Uj−1,Xj : j ≤ t), E[ξ2t |Xt] = τ 2(Xt) and

E[|ξt|Q
2+γ
2 |Xt] ≤ c(Xt)

Q a.s. for all t ∈ Z, for some functions c, τ 2 : Rd → R with∫
c̄(u)f(u)d(u) ≤M1 for some M1 <∞ and c̄(u) = max

{
τ 2(u), c(u)2, . . . , c(u)Q

}
.

(σ) For Q, γ from assumption (ξ) let
∫
|σ2(u)|Q 2+γ

2 f(u)d(u) ≤M2 for some M2 <∞.

(M) For some b > 2 let E[|Y1|2b] < ∞ and let X1 be absolutely continuous with den-

sity function f : Rd → R that satisfies supx∈Rd E[|Y1|2b|X0 = x]f(x) < ∞ and

supx∈Rd f(x) < ∞. Let there exist some j∗ < ∞ such that supx1,xj
E[Y 2

1 Y
2
j |X1 =

x1,Xj = xj]f1j(x1,xj) < ∞ for all j ≥ j∗, where f1j is the density function of

(X1,Xj).

(J) Let (cn)n∈N be a positive sequence of real numbers satisfying cn → ∞ and cn =

O((log n)1/d) and let Jn = [−cn, cn]d.

(F1) For some C < ∞ and cn from assumption (J) let In = [−cn − Chn, cn + Chn]d,

where hn is from assumption (B1) and (B2) and let δ−1n = infx∈Jn f(x) > 0 for all

n ∈ N. Further, let for some r, l ∈ N and for all n ∈ N

pn = max
k∈Nd0

1≤|k|≤l+1+r

sup
x∈In
|Dkf(x)| <∞

0 < qn = max

 max
k∈Nd0

0≤|k|≤l+1+r

sup
x∈In
|Dkm(x)|, max

k∈Nd0
0≤|k|≤l+1+r

sup
x∈In
|Dkσ(x)|

 <∞,

where |i| =
∑d

j=1 ij and Di = ∂|i|

∂x
i1
1 ...∂x

id
d

for i = (i1, . . . , id) ∈ Nd
0.

(F2) For qn from assumption (F1), cn from assumption (J) and C from assumption (K),

let for all k ∈ Nd
0 with |k| = 2,

max

{
sup

x∈[−cn−2hnC,cn+2hnC]d

∣∣Dkm(x)
∣∣ , sup

x∈[−cn−2hnC,cn+2hnC]d

∣∣Dkσ(x)
∣∣} = O(qn).

(K) Let K : Rd → R be symmetric in each component, l + 1 times differentiable with∫
Rd K(z)dz = 1 and compact support [−C,C]d. Additionally, let r ≥ 2 and
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∫
Rd K(z)zkdz = 0 for all k ∈ Nd

0 with 1 ≤ |k| ≤ r − 1, where zk = zk11 · · · z
kd
d .

For all L ∈ {K} ∪ {DkK : k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1} let |L(u)| < ∞ for all

u ∈ Rd and |L(u) − L(u′)| ≤ Λ‖u − u′‖ for some Λ < ∞ and for all u,u′ ∈ Rd.

(Here, r, l and C are from assumption (F1).)

(B1) For δn, pn, qn and r, l from assumption (F1) let(√
log n

nh
d+2(l+1)
n

+ hrnpn

)
pl+1
n δl+2

n = O(1),

and for some η ∈ (0, 1) let(√
log n

nh
d+2(l+1)
n

+ hrnpn

)
pl+ηn q2nδ

l+1+η
n = o(1).

(B2) For l, pn, qn, δn from assumption (F1) and η from assumption (B1) let

(log n)3+
d
l+η√

n1− d
l+ηhdn

q3nδ
2
n = o(1),

log hn√
nhdn

= o(1),
√
nhrnpnq

2
n = o(1), (log n)3hnq

3
n = o(1)

and
(log n)2+

d
l+η√

n1− 1
q
− d
l+η

qnδn = o(1) for q = Q2+γ
2

with Q and γ from assumption (ξ).

Remark A.1. Assumption (G) is fulfilled by data following causal and stationary ARMA

models as they have an MA(∞) representation with coefficients that decay exponentially

fast (see for instance Fan and Yao (2003) Subsection 2.6.1 (iii), p. 69). For more gen-

eral nonlinear AR-ARCH processes both Lu (1998) and Liebscher (2005) give sufficient

conditions on regression function, volatility function and the innovations under which the

mixing condition in (G) holds. In the linear model

Yt = a1Yt−1 + · · ·+ adYt−d + (b0 + b1Y
2
t−1 + · · ·+ bdY

2
t−d)

1/2εt, t ∈ Z,

where (εt)t
i.i.d.∼ N (0, 1), the condition in Lu (1998) simplifies to (

∑d
i=1 |ai|)2+

∑d
i=1 bi < 1.

Remark A.2. In order to satisfy the first bandwidth assumption in (B2), a necessary

condition is l+ η > d, hence for higher dimensional covariate Xt, the existence of higher

order partial derivatives of f and m is needed. In order to satisfy both the first and

third bandwidth assumption in (B2) at the same time, depending on the dimension d

and the smoothness parameters l and η, the order of the kernel r needs to be chosen

such that r > d
2

l+η
l+η−d holds. As a rule of thumb, one can choose hn = O(n−k) for some

0 < k < 1
d
− 1

l+η
and a kernel, such that r > 1

2k
. That choice satisfies the assumptions

given negligible rates for qn and δn.

Further note that the last constraint in (B2) is merely a trade off between existence of

moments of ξt, dimension d and smoothness parameters l and η. It is satisfied if q > l+η
l+η−d

(given negligible rates for qn and δn).
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B Proofs

Lemma B.1. Under the assumptions of Theorem 3.1 and under H0 the following rates

of convergence can be obtained for the kernel estimators m̂n and σ̂2
n,

(i) (a) sup
x∈Jn
|m̂n(x)−m(x)| = OP

((√
logn
nhdn

+ hrnpn

)
qnδn

)
,

(b) sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ = OP

((√
logn

nh
d+2|k|
n

+ hrnpn

)
p
|k|
n qnδ

|k|+1
n

)
for all 1 ≤

|k| ≤ l + 1,

(c) sup
x,y∈Jn
x6=y

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
= oP (1) for all |k| = l,

(ii) (a) sup
x∈Jn
|σ̂2
n(x)− σ2(x)| = OP

((√
logn
nhdn

+ hrnpn

)
q2nδn

)
,

(b) sup
x∈Jn

∣∣Dk (σ̂2
n(x)− σ2(x))

∣∣ = OP

((√
logn

nh
d+2|k|
n

+ hrnpn

)
p
|k|
n q2nδ

|k|+1
n

)
for all 1 ≤

|k| ≤ l + 1,

(c) sup
x,y∈Jn
x6=y

∣∣Dk (σ̂2
n(x)− σ2(x))−Dk (σ̂2

n(y)− σ2(y))
∣∣

‖x− y‖η
= oP (1) for all |k| = l.

Note that the results for the Nadaraya-Watson estimator m̂n in (i) are also stated in

Lemma A.1 in Mohr and Neumeyer (2019). The proof of Lemma B.1 is similar to the

proof of Theorem 8 in Hansen (2008) and omitted for the sake of brevity.

Lemma B.2. Under the assumptions of Theorem 3.1 and under H0 we have uniformly

in s ∈ [0, 1] and z ∈ Rd

1√
n

bnsc∑
i=1

Ui(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z} = oP (1).

Proof. For some l-times differentiable function h : Jn → R define the norm

‖h‖l+η := max
k∈Nd0

1≤|k|≤l

sup
x∈Jn

∣∣Dkh(x)
∣∣+ max

k∈Nd0
|k|=l

sup
x,y∈Jn
x6=y

∣∣Dkh(x)−Dkh(y)
∣∣

‖x− y‖η

and the function class H := Cl+η1,n (Jn) := {h : Jn → R : ‖h‖l+η ≤ 1, supx∈Jn |h(x)| ≤
zn(log n)1/2} with zn := qnδn((log n)/(nhdn))1/2. The third bandwidth condition in (B2)

implies (√
log n

nhdn
+ hrnpn

)
qnδn = O

(√
log n

nhdn
qnδn

)
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and thus Lemma B.1 (i) implies that P (ĥn ∈ Cl+η1,n (Jn))→ 1 as n→∞ holds for ĥn(x) =

(m(x)− m̂n(x))ωn(x). It is then sufficient to consider n−1/2
∑bnsc

i=1 h(Xi)UiI{Xi ≤ z} for

s ∈ [0, 1], z ∈ Rd and h ∈ H. Furthermore, using (ξ) and (σ) it can be shown that for

q := Q2+γ
2
> 2

1√
n

bnsc∑
i=1

h(Xi)UiI{Xi ≤ z}

=
1√
n

bnsc∑
i=1

(
h(Xi)UiI{|Ui| ≤ n1/q}I{Xi ≤ z} − E[h(Xi)UiI{|Ui| ≤ n1/q}I{Xi ≤ z}]

)
+ oP (1)

holds uniformly in s ∈ [0, 1] and z ∈ Rd. Defining the function class F := {(u,x) 7→
uI{|u| ≤ n1/q}I{x ≤ z} : z ∈ Rd} and imposing (U1,X1) ∼ P , the assertion then follows

if we show

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈H

∣∣∣∣ 1√
n

bnsc∑
i=1

(
h(Xi)ϕ(Ui,Xi)−

∫
hϕdP

)∣∣∣∣ = oP (1).

To this end let εn1 = n−1/2n−1/q, εn2 = n−1/2 and εn3 = n−1/2/(log n) and let further

0 = s1 < · · · < sKn = 1 partition [0, 1] in intervals of length 2εn1 such that Kn = O(ε−1n1 ).

Furthermore, we use the bracketing numbers Jn := N[ ]

(
εn2,F , ‖ · ‖L2(P )

)
and Mn :=

N[ ] (εn3,H, ‖ · ‖∞), where ‖ · ‖∞ is the supremum norm on Jn. Let [ϕl1, ϕ
u
1 ], . . . , [ϕlJn , ϕ

u
Jn

]

denote the brackets needed to cover F . Let furthermore [hl1, h
u
1 ], . . . , [hlMn

, huMn
] define

the brackets needed to cover H. It can be shown that Jn = O
(
ε−2dn2

)
and Mn =

O(exp(cdnε
−d/(l+η)
n3 )) and further

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈F

∣∣∣∣ 1√
n

bnsc∑
i=1

(
h(Xi)ϕ(Ui,Xi)−

∫
hϕdP

)∣∣∣∣
≤ max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

sup
ϕ∈[ϕlj ,ϕuj ]

sup
h∈[hlm,hum]

∣∣∣∣ 1√
n

bnskc∑
i=1

(
h(Xi)ϕ(Ui,Xi)−

∫
hϕdP

)∣∣∣∣+ oP (1)

≤ max
1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

{∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)ϕ

u
j (Ui,Xi)I{hum(Xi)ϕ

u
j (Ui,Xi) ≥ 0} −

∫
humϕ

u
j I{humϕuj ≥ 0}dP

)∣∣∣∣,
∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)ϕ

l
j(Ui,Xi)I{hlm(Xi)ϕ

l
j(Ui,Xi) < 0} −

∫
hlmϕ

l
jI{hlmϕlj < 0}dP

)∣∣∣∣,∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)ϕ

l
j(Ui,Xi)I{hlm(Xi)ϕ

l
j(Ui,Xi) ≥ 0} −

∫
hlmϕ

l
jI{hlmϕlj ≥ 0}dP

)∣∣∣∣,
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∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)ϕ

u
j (Ui,Xi)I{hum(Xi)ϕ

u
j (Ui,Xi) < 0} −

∫
humϕ

u
j I{humϕuj < 0}dP

)∣∣∣∣}
+ oP (1).

In what follows we only consider the first line on the right hand side, while the other

ones can be treated similarly. We apply Theorem 2.1 of Liebscher (1996) to the random

variable (for m, j, k fixed)

Zi :=

(
hum(Xi)ϕ

u
j (Ui,Xi)I{hum(Xi)ϕ

u
j (Ui,Xi) ≥ 0} −

∫
humϕ

u
j I{humϕuj ≥ 0}dP

)
I
{
i
n
≤ sk

}
.

The mixing coefficient of {Zt : 1 ≤ t ≤ n} can be bounded by the mixing coefficient of

{(Ut,Xt) : t ∈ Z} due to Bradley (1985), Section 2, remark (iv). Further, the variables

are centered and have a bound of order O(zn(log n)1/2n1/q). Applying Theorem 2.1 to∑n
i=1 Zi yields for all ε > 0 and n ∈ N large enough

P

(
max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)ϕ

u
j (Ui,Xi)I{hum(Xi)ϕ

u
j (Ui,Xi) ≥ 0}

−
∫
humϕ

u
j I{humϕuj ≥ 0}dP

)∣∣∣∣ > ε

)
≤
∑

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

P

(∣∣∣∣ bnskc∑
i=1

(
hum(Xi)ϕ

u
j (Ui,Xi)I{hum(Xi)ϕ

u
j (Ui,Xi) ≥ 0}

−
∫
humϕ

u
j I{humϕuj ≥ 0}dP

)∣∣∣∣ > √nε)
≤KnJnMn4 exp

(
− nε2

64n b(nhdn)1/2c z2n log(n) + 8
3
n1/2ε b(nhdn)1/2c zn log(n)1/2n1/q

)
+KnJnMn4

n

b(nhdn)1/2c
α
(⌊

(nhdn)1/2
⌋)

=o(1),

where the first, second and last bandwidth constraint in (B2) were used in the last

equality. Details are omitted for the sake of brevity.

Lemma B.3. Under the assumptions of Theorem 3.1 and under H0 we have uniformly

in s ∈ [0, 1] and z ∈ Rd

1√
n

bnsc∑
i=1

(
U2
i − σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z} = Tn(s, z)− sTn(1, z) + oP (1).
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Note that the proof of Lemma B.3 is similar to the proof of Theorem 3.1 (i) in Mohr

and Neumeyer (2019). It will only be sketched for the sake of brevity.

Proof. Using ξt = U2
t − σ2(Xt) under H0, it holds that

1√
n

bnsc∑
i=1

(
U2
i − σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}

=
1√
n

bnsc∑
i=1

ξiωn(Xi)I{Xi ≤ z}+
1√
n

bnsc∑
i=1

(
σ2(Xi)− σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}.

By strict stationarity of {(ξt,Xt) : t ∈ Z} and the moment constraints from (ξ) we deduce

that uniformly in s ∈ [0, 1] and z ∈ Rd

1√
n

bnsc∑
i=1

ξiωn(Xi)I{Xi ≤ z} = Tn(s, z) + oP (1).

Making use of the uniform convergence rates of σ̂2
n stated in Lemma B.1 (ii) we furthermore

obtain

1√
n

bnsc∑
i=1

(
σ2(Xi)− σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}

= s
√
n

∫ (
σ2(x)− σ̂2

n(x)
)
ωn(x)I{x ≤ z}f(x)dx+ oP (1),

uniformly in s ∈ [0, 1] and z ∈ Rd. Continuing by inserting the definition of σ̂2
n, using

Yi = m(Xi) + Ui and finally ξi = U2
i − σ2(Xi) under H0, it holds that

√
n

∫ (
σ2(x)− σ̂2

n(x)
)
ωn(x)I{x ≤ z}f(x)dx

=
√
n

∫ (
σ2(x)− 1

n

n∑
i=1

Khn(x−Xi)(Yi − m̂n(x))2
1

f̂n(x)

)
ωn(x)I{x ≤ z}f(x)dx

=
1√
n

n∑
i=1

∫ (
σ2(x)− (Yi − m̂n(x))2

)
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx

= − 1√
n

n∑
i=1

ξi

∫
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (B.1)

+
1√
n

n∑
i=1

∫ (
σ2(x)− σ2(Xi)

)
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (B.2)

+
1√
n

n∑
i=1

∫
(m(Xi)− m̂n(x))2Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (B.3)

+
2√
n

n∑
i=1

Ui

∫
(m(Xi)− m̂n(x))Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx. (B.4)
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Concerning (B.1) and (B.2), it can be shown that

1√
n

n∑
i=1

ξi

∫
(−∞,z]

Khn(x−Xi)ωn(x)
f(x)

f̂n(x)
dx =

1√
n

n∑
i=1

ξiωn(Xi)I{Xi ≤ z}+ oP (1),

= Tn(1, z) + oP (1),

and

1√
n

n∑
i=1

∫
(−∞,z]

(
σ2(x)− σ2(Xi)

)
Khn(x−Xi)ωn(x)

f(x)

f̂n(x)
dx = oP (1),

uniformly in z ∈ Rd respectively. Using the uniform rates of convergences of m̂n from

Lemma B.1 (i) (a), which also hold on the slightly larger set In = [−cn−Chn, cn+Chn]d,

it can be shown that the term (B.3) is negligible uniformly in z ∈ Rd. Finally, using

similar methods as for the proof of Lemma B.2, it can be shown that the term (B.4) is

as well negligible uniformly in z ∈ Rd. Putting the results together, the assertion of the

lemma follows.

Proof of Theorem 3.1. The assertion (i) follows by Lemma B.2 and Lemma B.3 and by

Lemma B.1 (i) (a) together with the bandwidth constraints as

T̂n(s, z) =
1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))
2ωn(Xi)I{Xi ≤ z}

+
2√
n

bnsc∑
i=1

Ui(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z}

+
1√
n

bnsc∑
i=1

(
U2
i − σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}.

For (ii) note that {(ξt,Xt) : t ∈ Z} is strictly stationary and strongly mixing under H0

and assumption (G). Denote by P the marginal distribution of (ξ1,X1). The assertion

then follows by an application of Corollary 2.7 in Mohr (2019) to the sequential empirical

process {n−1/2
∑bnsc

i=1 (ϕ(ξi,Xi)−
∫
ϕdP ) : s ∈ [0, 1], ϕ ∈ F} indexed in the function class

F := {(ξ,x) 7→ ξI{x ≤ z} : z ∈ Rd}. The conditions that are needed for the asymptotic

equicontinuity of the process are implied by assumptions (G) and (ξ). The convergence

of the finite dimensional distributions can be shown by applying Corollary 1 in Rio (1995),

which is a central limit theorem for strongly mixing triangular arrays.
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