Automated Generation of Dimensioned
Rectangular Floorplans

Nitant Upasani, Krishnendra Shekhawat, Garv Sachdeva

Department of Mathematics, BITS Pilani, Pilani Campus, India-333031

Abstract. This paper proposes a methodology for the automated con-
struction of rectangular floorplans (RFPs) while addressing dimensional
constraints and adjacency relations. Here, adjacency relations are taken
in the form of a dimensionless rectangular arrangement (RA) ensuring
the existence of a RFP, while dimensional constraints are given in terms
of minimum width and aspect ratio range for each room. A linear opti-
mization model is then presented to obtain a feasible dimensioned RFP
for user-defined constraints. A GUI is also developed for the automated
generation of RFPs. The proposed model is able to generate feasible
solutions for every possible RA in a reasonable amount of time.

From the architectural prospective, this work can be seen as a re-generation
of well-known architectural plans with modified dimensions. At the end,
the regeneration of existing legacy RFPs (corresponding to the user de-
fined dimensions) has been demonstrated, taking their image as input.

Keywords 1 Floorplanning, Rectangular Floorplan, Network Flow, Graph The-
ory, Linear Optimization.

1 Introduction

Floorplanning is among the essential steps of an architectural design program
and has its applications in the compaction of electronic circuits as well. A floor-
plan is a partition of a finite-sized polygon P into a finite set of dimensioned
polygons { Py, P ... P, } called rooms. When the contained polygons Py, P ... P,
are all internally disjoint rectangles and the envelope P is convex, the floorplan
is said to be a rectangular floorplan (RFP) with n rooms. Ever since Levin [1]
pointed out graph-theoretical correlations in the design of RFPs, several studies
have made advancements showing a deeper relationship between the two.

It is stated that if G(V,E) is an adjacency graph, then each element of
the vertex set V' corresponds to a room and each edge e;;el, E is the edge
set, corresponds to an adjacency, i.e., a shared wall (or a section of the wall)
between rooms R; and R; (¢,j € V) in the corresponding RFP, also known as the
rectangular dual of graph G (Figure 1(a)).

Designers are interested in constructing a RFP compatible with the adjacency
relations provided by the graph; however, it is not always possible to do so
(refer to Figure 1(b) which illustrates that the non-existence of a rectangular

dual for a given adjacency graph G implies the non-existence of a RFP for G;
conversely, the existence of a rectangular dual does not guarantees the existence
of a RFP because of the dimensional constraints). Hence in 1973, Steadman [2]
proposed an algorithm to generate all topologically distinct rectangular duals
for small values of n. Here, the problem of constructing a floorplan conforming
to the adjacency graph was reduced to a problem of selecting an appropriate
solution from the catalogue. Extending the idea further, in 1976 Mitchell et
al. [3] provided a computer implementation of the algorithm, and proposed a
model for dimensioning of the dual. However, apart from the restriction on the
number of contained rectangles due to combinatorial considerations, the method
proposed for dimensioning also had a drawback; it added extra constraints on
the sizes of rooms. Roth et al. [4] were the first to give a step-by-step procedure

(@) (b)
1 1 5 1 1
2 4| 2| 5|4 1 3 2 5
3 4 2 33 4
3

Fig.1. (a) An adjacency graph and its rectangular dual. (b) Graphs for which rectan-
gular dual and rectangular floor plan do not exist.

for the construction of a dimensioned RFP from an adjacency graph, which did
not depend upon search through a given catalogue. The adjacency graph was
first split into two subgraphs using a colouring technique and extra connections
were added to the graph for the same. This was followed by a series of steps
before the two subgraphs were treated separately as flow networks to incorporate
the dimensional constraints. But modeling of the network flow was such that it
often led to the possibility of a loss of rectangularity in the solutions, i.e., either
Py, P ... P, were not all rectangles, or the enclosure P became non-convex.
Later in 2000, Recuero et al. [5] presented an exhaustive set of heuristics to
check whether extra connections are required to be added to a graph for the
generation of its corresponding rectangular dual, but gave no proof for the same.
After a thorough literature review we can claim that there is no algorithm in
the literature which talks about the existence/non-existence of a rectangular
dual for any arbitrary adjacency graph with certainty (there exist algorithms for
constructing rectangular dual corresponding to planar triangulated graphs only
[6, 7]). Hence, in this paper, we propose an alternative approach for representing
adjacency relations; in the form of a rectangular arrangement (RA). A RA is a
dimensionless ordering of rectangular rooms such that the enclosure is a rectangle
too. It can be seen as an RFP without dimensions. Hence, an approach of this
kind guarantees the existence of a RFP conforming to the user-inserted adjacency
requirements.

Some other notable studies are briefed in this paragraph. In 2010, Marson
et al. [8] presented an algorithm for the construction of sliceable RFP such that
the rooms are generated with an aspect ratio close to 1, given their areas. They
also included circulations in the obtained RFP which are useful for easy access
to each room. However, the objective of this study was not to preserve adja-
cency relations. In the same year, Merrel et al. [9] also gave a methodology for
automated generation of building layouts for computer applications considering
some thumb rules of architectural design for adjacencies and size of the rooms.
In 2012, Eppstein et al. [10] introduced the concept of area-universal rectangular
layouts and presented an algorithm for their construction from dual graphs, if
such an arrangement exists. The peculiarity about these layouts was that any
area could be assigned to each of the rooms and a feasible solution always ex-
isted. In 2013, Rodrigues et al. [11] developed an hybrid evolutionary approach
for floorplan generation, enhanced with a local search technique called stochastic
hill climbing (SHC) for complex dimensional and topological constraints. As a
second part of [11], Rodrigues et al. [12] presented an implementation of their
method, which although provided a feasible solution for highly detailed con-
straints, had a considerable amount of runtime and did not talk about retaining
the rectangularity. In 2018, Shekhawat [13] introduced a concept of generic rect-
angular floorplans and proposed an algorithm for their enumeration, given the
number of rooms. In the same year, Wang et al. [14] implemented a tool for
customizing legacy floorplans by adding or removing a room using transforma-
tion rules. The floorplans, however, were restricted to RFPs whose dual graphs
are planar triangulated graphs, and dimensional constraints were not considered
either. Veloso et al. [15], in the same year, presented a sophisticated system for
customized design of layouts, detailed as a Building Information Models (BIM),
and established on the rule based shape-grammar paradigm for ready industrial
use. More recently in 2019, Nisztuk et al. [16] developed an advanced applica-
tion for the automated generation of floorplans satisfying all the adjacency and
dimensional requirements but at the cost of rectangularity and additional spaces
in between the rooms.

After a detailed literature review and to the best of our knowledge, there is
no algorithm which addresses the dimensional constraints of a RFP while taking
care of all the adjacency relations. In this paper, the problem is to develop a
set of algorithms for constructing a RFP corresponding to given dimensional
constraints while preserving the adjacency requirements, which are given in the
form of a RA.

2 Preliminaries

In this section, we first define a few terminologies which are frequently used in
this paper. These terms have been previously defined in the literature [2,7,17]
and are reiterated here for a clear understanding.

Definition 1. Dual Graph of a RA

A dual graph is an undirected graph which can be constructed for any RA by
replacing each room with a vertex and adding an edge to the vertices corre-
sponding to the adjacent rooms (refer to Figure 2).

Fig. 2. Dual graph of a RA

Definition 2. ST graphs

An st-graph is a finite directed graph drawn without crossings in a plane, such
that it has one source node s (no incoming edges) and one sink node ¢ (no out-
going edges) on the exterior face and contains no directed cycle (refer to Figure

3(a)).

¢
743

Fig. 3. (a) Example of an st-graph (b) Example of a network flow

Definition 3. Network flow

A network flow is defined as a weighted st-graph G(V, E) such that each edge
e;j € E receives a flow w;; greater than a lower bound /;; and less than a capacity
u;; with the following restrictions: (i) the flow in each edge is non-negative (ii)
the amount of flow into a node is equal to the amount of flow out of it, except
for the source(s) and sink(¢) nodes (refer to Figure 3(b)).

3 Methodology

In this section we discuss an algorithmic approach for the construction of a RFP
for the given adjacency and dimensional constraints, where

(1) Adjacency constraints are given in the form of a RA.
(2) Dimensional constraints are given in the form of minimum width of each
room along with the aspect ratio range for each room.

Dimensional Constraints
Rectangularity | Adjacency

w(l) =w(2)
2 > 7 w(3) =w(4) h(1) > h(3)
W(3) + w(7) = w(4)+w(6)+w(8) h(3) + h(4) > k(1)
4 6 8 h(6) = h(8) h(2) > h(5)
1 3 h(5) = h(7) w(7) <w(8)

h(3) + h(4) = h(6) w(5) > w(4) + w(6)

h(D) + h(2) = h(7) + h(8)

Fig.4. RFP with 8 rooms and intrinsic dimensional constraints for preserving rectan-
gularity and adjacency relations

The construction of a RFP from the given constraints is not straightfor-
ward. Additional dimensional constraints, other than the input, are required for
preserving adjacency relations as well as rectangularity. For example, Figure 4
shows such additional constraints for a RA with 8 rooms. It can be clearly seen
that mere listing of these additional constraints manually for all the rooms is
a tedious task for even slightly higher values of n. In this paper, we not only
generate all the constraints through our algorithm but also provide an optimiza-
tion model to get a feasible RFP as the solution satisfying all these constraints
along with the user-defined constraints. To proceed, a detailed methodology is
presented below with the following major steps:

i. Input a RA with dimensional constraints
ii. Construction of st-graphs
iii. Flow network formulation
iv. Optimization framework
v. Solving for the RFP

For a better illustration, a RFP will be constructed step-by-step in this section,
for the RA and dimensional constraints shown in figure 5. Keeping in mind the
computer implementation, we will now discuss the steps of our methodology.

3 Rooms Min. Width AR, AR, .«
10
1 4 T T
2 7
1 3 8
4 2
2 8|9 s 5
7 6 12 0.5 2
7 6
4 8 10
5 9 9
1 1 10 14
6 11 13 L 1
Minimum door size = 2 units

Fig. 5. Input RA with constraints

3.1 Input RA and dimensional constraints

For storing the RA in a computer memory, a data representation scheme is
required. The data structure we use for storing RAs is a 2D matrix. It is not
only an intuitive and simple way of storing data, but also reduces effort to extract
relevant information like adjacency graphs, at the cost of space.

For its construction, the enveloping rectangle of the RA is divided into uniform
rectangular grids such that every room is spanned by at least one grid element
as shown in Figure 6. Each grid inside the enveloping rectangle is numbered

3 13 3 1 3 3

e T e e Foeee -
1145 1 4 5

- 4-foslo S — -
2 2 4 5 2 4 5

Fig. 6. Encoded Matrix

according to the index of the enclosing room, resulting in the encoded matriz
(EM) of the RA.

3.2 Construction of ST-graphs

In this paper, we use st-graphs as a tool to extract adjacency relations from the
input RA. These st-graphs, namely horizontal and vertical st-graphs (HST and
VST) store adjacency relations in the X and Y direction respectively.

Corresponding to the input rectangular arrangement, HST and VST will have
n + 2 vertices each, where each room is represented by a vertex, and the two
additional vertices, correspond to the source and sink vertices. The steps for the
construction of both st-graphs are given below and shown in Figure 7.

i. The first step is to add a rectangle to each side of the RA such that the overall
composition is rectangular, as shown in Figure 7(a). The EM is updated
accordingly.

ii. Next, a dual graph of the given RA is constructed, as shown in Figure 7(b).

iii. The dual graph is split into two graphs based on the horizontal and vertical
adjacencies. They are referred to as horizontal adjacency graph (HAG) and
vertical adjacency graphs (VAG) respectively.

iv. Source and sink nodes are assigned for converting the undirected HAG and
VAG to directed st-graphs. North(N)/South(S) are assigned as source/sink
for VAG and West(W)/East(E) as source/sink for HAG. According to the
definition of st-graphs, all the edges connected to the source nodes are out-
going whereas those connected to the sink nodes are incoming. The rest of
the edges are directed from top to bottom for VAG and left to right for
HAG.

The resulting directed HAG and VAG are the two required st-graphs HST
and VST respectively (Figure 7d). From a programming perspective, we can ob-
tain the HST and VST directly from the EM (Figure 7(c)) using the following
steps.

Step 1: For HST, each row of the EM is traversed (left to right), and for ev-
ery distinct pair of consecutive entries, a directed edge is added between their
corresponding vertices. The direction of the edges is from the former entry to
the latter. However, the vertices North (N) and South (S) are deleted from the
HST.

Step 2: For VST, each column of the EM is traversed (top to bottom), and for
every distinct pair of consecutive entries, a directed edge is added between their
corresponding vertices. The direction of the edges is from the former entry to
the latter. However, the vertices West (W) and East (E) are deleted from the
HST.

10

11

NNNNNNNN
W2 3 3 31010E
W=21111010E

W211189E

W2 477 89E

W2 4 5111111 E
W26 6111111 E

SSSSSSSS

()

(a)

Fig. 7. Worked out example: Construction of st-graphs

3.3 Flow network formulation

The HST and VST are intuitive ways for representing the respective adjacencies.
This intuitiveness can further be extended by modelling the st-graphs as flow
networks, where each edge carries a non-zero, non-negative flow. Corresponding
to the unweighted HST and VST, a weighted HST (HNF) and VST (VNF) are
designed as network flows (refer to Figure 8). For a proper correlation between
the st-graphs and flow networks, the following assumptions have been made:

i. The amount of flow through each edge represents the magnitude of wall
section common to two rooms in the respective RFP.

ii. In HNF/VNF, the amount of inward or outward flow in a node is a measure
of the height /width of the room corresponding to the node.

Fig.8. HNF and VNF for worked out example

Before moving on to the optimization framework, a few redundant edges in
the directed st-graphs may also be removed. Since the inflow is equal to the
outflow through any node, edges entering the nodes south and east, can be
removed safely.

3.4 Optimization Framework

Linear optimization techniques have been used on the two obtained flow networks
to incorporate the dimensional constraints and to obtain a feasible solution of
minimum area satisfying the given adjacencies. The framework essentially re-
mains the same for VNF as well as HNF and is explained below.

Design Variables

Let G(V,E) denotes the network flow that is being considered, and m be the
cardinality of the directed edge set FE.

Corresponding to each directed edge, we have a design variable. Hence the
total number of design variables are m.

Objective Function
The objective function chosen is such that it minimizes the total dimension
of the rectangular floorplan corresponding to the respective flow network. That

is, VNF will minimize the overall width whereas HNF will minimize the total
height of the floorplan. The objective function f is defined as

f=2 wley) (1)
where w(-) denotes the weight function, e,; denotes the directed edge from node
s to node j, and s € (N, W) is the source node.

Design constraints

Equality constraints: The equation for equality constraints are obtained from
the condition stated in assumption (2) in Definition 3.

D wleji) =Y wlew) VieV(G) (2)
where > w(e;;) denotes the total inflow and) w(e;) denotes the total outflow

from node 3.

Inequality constraints: The minimum and maximum dimensional constraints of
each room will be used as the inequality constraints.

min (d) < Zw(eik) < max (d) Vi e V(Q) (3)

where d is the dimension corresponding to flow network in consideration, i.e.,
width for VNF and height for HNF.

Bounds for the design variables

Each design variable corresponds to the magnitude of wall section common to
the two rooms and hence a lower bound for the size of the door is selected for
the framework. The algorithm is also capable of handling multiple door sizes for
distinct room connections.

3.5 Solving for the RFP

A series of steps have been proposed in this section which involves solving
VNF/HNF using linear optimization techniques multiple times. It should be
noted that for a given flow network, the design variables, objective function and
equality constraints always remain the same, and only the inequality constraints,
i.e., minimum dimensional constraints govern the optimization process.

Step 1: Input dimensional constraints

Dimensional constraints are taken as an input from the user in the form of min-
imum width (w;) and the permitted aspect ratio range (AR; min, ARi maz)
for each room . Figure 5 shows the dimensional constraints of the solved exam-
ple in consideration.

Step 2: Solving for width

The width constraints are taken as inequality constraints from the input for
optimization on VNF, and solved for a minimum width of the rectangular floor-
plan using simplex method, however, any other linear optimization technique
may be used. Hence an optimal solution of minimum width (of the complete
RFP), giving values of each design variable, is obtained. The width of each room
w; is calculated by summing the total inflow (3 w(ej;)) towards a room.

Step 3: Solving for height

Width of rooms (w;) is multiplied by lower limit of the aspect ratio (AR; min)
to get the minimum height (A;) of each room.

hi min = wi X AR; min (4)

Considering the minimum height of each room as inequality constraints, HNF is
solved using a linear optimization technique to get height of each room (similar
to step 2). Since the total height of the RFP (objective function) is to be min-
imized, not inserting the maximum height constraints of each room would not
render the optimization problem unbounded.

Step 4: Check for aspect ratio bounds and update minimum width

After step 3, the initial dimensions (w;, ki min) of each room are obtained. The
aspect ratio of some of the rooms however may exceed the permissible value
(AR; mag) considering that the height constraints were not bounded. Since the
initial h; pmin of these rooms, calculated using w;, give an aspect ratio beyond

AR; maz, Wi min is updated using the following equation.

Wi min(up) = hi,min/ARi,mar (5)

Once the minimum width is updated, steps 1-4 are repeated till the aspect ratios
of all the rooms lie in between the specified range. The final updated heights and
widths are the final feasible dimensions of the rooms.

Step 5: Constructing the floorplan

After getting the final dimensions of all the rooms, the RFP is constructed
using the EM. The columns are traversed from left to right, and the rooms are
constructed in order of occurrence of their respective entries.

For a better understanding of how the proposed optimization model con-
verges to a feasible solution, Figure 9 illustrates intermediate RFPs obtained
from each iteration of the steps in this subsection.

4 Results

A prototype has been developed as an implementation of the algorithm presented
in this paper, using MATLAB R2018a. It prompts a GUI for the user to draw any
desirable RA, and takes dimensional constraints for the rooms as input (refer to
Figure 10). Since linear optimization has been used to obtain a feasible solution,
the algorithm takes few seconds to produce a feasible RFP. Figure 10(c) shows
the final RFP with dimensions written in parenthesis under each room index.
It can be seen that the adjacency relations are retained in the dimensioned
solution, providing wall section of at least a minimum width (decided by the
user) to accommodate doors between the adjacent rooms. Moreover, the position
(geometry) of the rooms as in the RA is also retained in the final RFP.

From an architectural perspective, the RA provided by the user may not
have an architectural meaning. Hence, this work can be seen as a re-generation
of architecturally well-known rectangular floorplans (RFPs) for user-defined di-
mensional constraints. The adjacency relations, as well as aspect ratios inferred
from existing RFPs have architectural significance and must be preserved in the
regenerated solution along with the user-constraints.

Here, designers can give images of existing RFPs as input to regenerate a so-
lution conforming to user-defined dimensional constraints. First, the adjacency
relations are extracted from these images with the help of image processing tools,
to construct a dual graph of the existing RFP. Then the aspect ratios are ex-
tracted from the input image for defining an approximate range for each room
(adhering to these aspect ratios has a significant meaning here, as certain rect-
angular spaces, such as circulations, have a typically distinct aspect ratio which
must not be altered from an architectural and aesthetic viewpoint).

Figure 11 shows the image of a well-known floorplan, i.e. Palladio floorplan

Iteration 1:

6

add height
T ——
wrt ARmin

Floorplan with optimal width (wi)
and nominal unit height.

Iteration 2:

Continue (1)

8539

Continue (2)

3015

]

i)

(10110

(108

'

update
eight

4sm)

6

(20}

(052)

Continue (3)

ARi > ARi,max? (2)

Iteration 3:

gy ,m
9509
1
9
m?"])
1
(55x1)
4
)
4509
11
Hos1)
6
ARi > ARi,max? (1)
3
o)
(101§
o)
(13 159
(38ut8)
81
4
i0xg)
#54)
(115)
(L

2
(83x165)

®x

16)

8x16)

10
(10x19)

(65x11)

8
(115x10)

9
(115x0)

(10x5)

6
7 x18)

o

1
5x21)

ARi > ARi,max? (3)

Fig. 9. Step-by-step convergence of optimization

Since ARi < ARi,max —— TERMINATE

Ele Edit View Insert Tool: Desktop Window Help

DE WS [A ARUDEL-(E(0E a0

(a) Inserting the adjacency relations among the given rooms via a di i ar

02 11

Ele Edt View Inset Took Desktop Window Help >
DEde M RRUDELAL- B0 nD

(b)

Generated Adjacency Graph

4 Input dimensions of blocks -
| o o o Enerthe mimumidth of oo 1 [
Enerthe mimumuith of o2
06
Enerthe mimumidth of o 3
- Enerthe mimumidth of o 4
Ener e mimumidth of a5
02
Entertho mimumidh o oom 1
o Enerthe mimumidth of oan 7
Ener e miimumith of e (1
02
Enerthe mimumith of oam 9
- a o a Ener o mimumdh of oam 10
Enertommum wdhf e 11,9
06
08
< I I I I I I I I I |
1 08 06 04 02 0 02 04 06 08 1
4] Figure 3: Generated Rectangular Floorplan SHIECE)
(C) File Edit View Inset Tools Desktop Window Help =
DEES M ARRUPEL- 2| 0EH aD

3
(®x16) 10
(10x19)
(®x16)
(15 x10) (11.5x9)
(33x16.5)
(6.5x11)
(10x8)
(@.5x9)
11
(1.5x21)
@ x14)

Fig. 10. Interface of the prototype (a) Input RA (b) Input dimensional constraints (c)
Final generated RFP

zzz /////////////////////// / //////

2

‘k\\\\\k\\\\\\\

\

\

Ny

\
T
\\\\\\\\\\\
TETTRY

\\\\\\\\\\\\\\g\\‘\\\
N
\\\}\N‘&\\

L2222

A\

\

A2, / /

N
\
§

\\

\\\\\\\\\\!\\\\\\\\\
\\\\\\\\Q\\\\\ AR

N TR

Z
7277777 /////// 77772

- \
MR

\\\\\\\\‘.\\\\\\\\\\

NN

///

N

\\

\l
N
\ S

TN

\\\\\\\\\\\\\\\\\\\

\ﬁ\\\\\\\\\\\\
RN

\\\

R

2222 /M/////// PN / Lz

Fig.11. (a) Input image of renowned Palladio floorplan (image from Stingy et al. [18])
and its adjacency graph as extracted from the image

[18] and its extracted adjacency graph. The adjacency graph and aspect ra-
tios of rooms derived from the image are used to regenerate the RFP using
the network-flow optimization algorithm proposed in Section 3. The regener-
ated RFP (Figure 12) is in compliance with the dimensional constraints shown
alongside, as an example.

1 2 6 9 10 Rooms |Min. Width [Max. Width| Derived AR

(5x8) (5x3) (5x10) (5x3) (6x7) 1 6 10 0.7

2 3 5 1.5

3 8 12 0.7

4 2 5 1.5

5 10 14 0.5

3 4 7 11 12 6 6 10 07
(5x8) (5x3) (5x10) (5x3) (6x7) 7 10 14 1
8 8 1 1

9 2 5 1.5

10 5 8 0.7

1 3 5 1.5

2 8 L3 12 7 10 07

(6.5x11) (6.5x10) (6.5x10) 13 10 13 05

Fig.12. Regenerated Palladio RFP with new dimensions

5 Conclusions and Future Work

This paper presents an algorithmic approach for the generation of feasible RFPs,
preserving adjacency relations extracted from a given RA and satisfying dimen-
sional constraints provided by the user. In addition, the RFPs generated are not
only unrestricted to sliceable REPs [8] or to the RFPs whose dual graph is a pla-
nar triangulated graph [14], but cover all those RFPs which contain four rooms

meeting at a common vertex, which is a rarely discussed issue in the literature.
To the best of our knowledge, existing literature does not provide an algorithm
for the construction of a RFP while preserving adjacencies and simultaneously
incorporating dimensional constraints, and we are the first to provide a detailed
methodology for the same.

The concept of regenerating existing RFPs, presented towards the end of this
paper, is eminently essential for architects, as they generally have a catalogue
of floorplan designs to choose from but need assistance in dimensioning, abiding
the user-requirements and then choosing the most appropriate design.

The future work has two major facets which can be seen as follows:

1. Mathematically, the final RFP derived is programmed to have an area as
small as possible, but no comments have been made about the optimality of the
obtained solution. Studies in the literature have employed non-linear optimiza-
tion techniques for reducing the total area of the floorplan, however, no one has
come close to provide an algorithm for finding the optimal solution. In future,
the derivation of such an algorithm by extending the network flow optimization
model looks promising.
2. Architecturally, the restriction to rectangularity can be eliminated by consid-
ering orthogonal floorplans, which will further broaden the scope of the study to
a majority of the floorplans. The challenge in its implementation lies not in trans-
forming the orthogonal floorplans to RFPs, but in incorporating the constraints
of these orthogonal rooms in the network flow model.

Moreover, the prototype developed as a proof-of-concept in this paper will
be integrated with softwares like Rhinoceros and Grasshopper, in the future,
pertaining to its importance in the architectural industry.

Acknowledgement

The research described in this paper evolved as part of the research project
Mathematics-aided Architectural Design Layouts (File Number: ECR/2017/000356)
funded by the Science and Engineering Research Board, India.

References

1. P.H. Levin, Use of graphs to decide the optimum layout of buildings, Archit. J. 140(15) (1964)
809-817.

2. P. Steadman, Graph theoretic representation of architectural arrangement, Architectural Re-
search and Teaching 2(3) (1973) 161-172.

3. W.J. Mitchell, J.P. Steadman, R.S. Liggett, Synthesis and Optimisation of small rectangular
floorplans, Environment and Planning B 3 (1976) 37-70.

4. J. Roth, R. Hashimony, A. Wachman, Turning a Graph into a Rectangular Floorplan, Building
and Environment 17(3) (1982) 163-173.

5. A. Recuero, O. Rio, M. Alvarez, Heurestic method to check the realisability of a graph into a
rectangular floorplan, Advances in Engineering Software 31 (2000) 223-231.

6. J. Bhasker, S. Sahni, A linear time algorithm to check for the existence of a rectangular dual of
a planar triangulated graph, Networks 17(3) (1987) 307-317.

7.

10.

11.

12.

13.

14.

15.

16.

17.

G. Kant, X. He, Two algorithms for finding rectangular duals of planar graphs, in Proc. 19th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’93), Lecture
Notes in Computer Science 790 (1994) 396-410.

F. Marson, S.R. Musse, Automatic generation of floor plans based on squarified treemaps algo-
rithm, International Journal of Computer Games Technology 2010 (2010) 1-10.

P. Merrell, E. Schkufza, V. Koltun, Computer-generated residential building layouts, ACM Trans-
actions on Graphics 29(5) (2010), 181:1-181:12.

D. Eppstein, E. Mumford, B. Speckmann, K. Verbeek, Area-universal and constrained rectan-
gular layouts, SIAM J. Comput. 41(3) (2009) 537-564.

E. Rodrigues, A. Gaspar, A. Gomes, An evolutionary strategy enhanced with a local search
technique for the space allocation problem in architecture, part 1: methodology, Computer Aided-
Design 5 (2013), 887-897.

E. Rodrigues, A. Gaspar, A. Gomes, An evolutionary strategy enhanced with a local search
technique for the space allocation problem in architecture, part 2: validation and performance
tests, Computer Aided-Design 45(5) (2013) 898-910.

K. Shekhawat, Enumerating generic rectangular floor plans, Automation in Construction 92
(2018) 151-165.

X.Y. Wang, Y Yang, K. Zhang, Customization and generation of floor plans based on graph
transformations, Automation in Construction 94 (2018) 405-16.

P. Veloso, G. Celani, R. Scheeren, From the generation of layouts to the production of con-
struction documents: An application in the customization of apartment plans, Automation in
Construction 96 (2018) 224-235.

M. Nisztuk, P. Myszkowski, Hybrid Evolutionary Algorithm Applied to Automated Floor Plan
Generation, International Journal of Architectural Computing 17(3) (2019) 260-283.

R. Ahuja, T. Magnanti, J. Orlin, Network flows: Theory, Algorithms and Applications, Prentice
Hall, New York (1993).

G. Stiny, W.J. Mitchell, The Palladian Grammar, Environment and Planning B 5 (1978) 5-18.

	Automated Generation of Dimensioned Rectangular Floorplans

