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Abstract

This paper introduces the deep coordination
graph (DCQG) for collaborative multi-agent rein-
forcement learning. DCG strikes a flexible trade-
off between representational capacity and gener-
alization by factoring the joint value function of
all agents according to a coordination graph into
payoffs between pairs of agents. The value can
be maximized by local message passing along the
graph, which allows training of the value func-
tion end-to-end with @)-learning. Payoff func-
tions are approximated with deep neural networks
that employ parameter sharing and low-rank ap-
proximations to significantly improve sample ef-
ficiency. We show that DCG can solve predator-
prey tasks that highlight the relative overgeneral-
ization pathology, as well as challenging StarCraft
I micromanagement tasks.

1. Introduction

One of the central challenges in cooperative multi-agent rein-
forcement learning (MARL, Oroojlooy jadid & Hajinezhad,
2019) is coping with the size of the joint action space, which
grows exponentially in the number of agents. For example,
just eight agents, each with six actions, yield a joint action
space with more than a million actions. Efficient MARL
methods must thus generalize over large joint action spaces,
in the same way that convolutional neural networks allow
deep RL to generalize over large visual state spaces.

MARL often addresses the issue of large joint observation
and action spaces by assuming that the learned control pol-
icy is fully decentralized, that is, each agent acts indepen-
dently based on its own observations only. For example,
Figure 1a shows how the joint value function can be factored
into utility functions that each depend only on the actions
of one agent (Sunehag et al., 2018; Rashid et al., 2018).
Consequently, the joint value function can be efficiently
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maximized if each agent simply selects the action that max-
imizes its corresponding utility function. This factorization
can represent any deterministic (and thus at least one opti-
mal) joint policy. However, that policy may not be learnable
due to a game-theoretic pathology called relative overgen-
eralization' (Panait et al., 2006): during exploration other
agents act randomly and punishment caused by uncoopera-
tive agents may outweigh rewards that would be achievable
with coordinated actions. If the employed value function
does not have the representational capacity to distinguish the
values of coordinated and uncoordinated actions, an optimal
policy cannot be learned.

A higher-order value factorization can be expressed as an
undirected coordination graph (CG, Guestrin et al., 2002a),
where each vertex represents one agent and each (hyper-)
edge one payoff function over the joint action space of the
connected agents. Figure 1b shows a CG with pairwise
edges and the corresponding value factorization. Here the
value depends non-trivially on the actions of all agents,
yielding a richer representation. Although the value can no
longer be maximized by each agent individually, the greedy
action can be found using message passing along the edges
(also known as belief propagation, Pearl, 1988). Sparse
cooperative Q-learning (Kok & Vlassis, 2006) applies CGs
to MARL, but does not scale to real-world tasks, as each
payoff function (f!? and f23 in Figure 1b) is represented
as a table over the state and joint action space of the con-
nected agents. Castellini et al. (2019) use neural networks
to approximate payoff functions in the simplified case of
non-sequential one-shot games. Moreover, neither approach
shares parameters between the approximated payoff func-
tions, so agents in each factor, represented by an edge, must
experience all corresponding action combinations. This can
require visiting a large subset of the joint action space.

While decentralization can be a requirement of the task at
hand, for example when communication between agents
is impossible, many important applications that allow for
centralized or distributed controllers face the same issues.
Examples are power, water or heat grids (Correa-Posada
& Sanchez-Martin, 2015), electronic trading (Bacoyannis
et al., 2018), computer games (Vinyals et al., 2019), auto-

! Not to be confused with the general term generalization in
the context of function approximation mentioned earlier.
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Figure 1. Examples of value factorization for 3 agents: (a) sum of independent utilities (as in VDN, Sunehag et al., 2018) corresponds
to an unconnected CG. QMIX uses a monotonic mixture of utilities instead of a sum (Rashid et al., 2018); (b) sum of pairwise payoffs
(Castellini et al., 2019), which correspond to pairwise edges; (c) no factorization (as in QTRAN, Son et al., 2019) corresponds to one
hyper-edge connecting all agents. Factorization allows parameter sharing between factors, shown next to the CG, which can dramatically

improve the algorithm’s sample complexity.

matic factories (Dotoli et al., 2017), drone swarms (Alonso-
Mora et al., 2017a), driver simulations (Behbahani et al.,
2019), and routing of taxi fleets (Alonso-Mora et al., 2017b).

To address relative overgeneralization for centralized or dis-
tributed controllers, we propose the deep coordination graph
(DCG), a deep RL algorithm that scales CG for the first time
to the large state and action spaces of modern benchmark
tasks. DCG represents the value function as a CG with pair-
wise payoffs® (Figure 1b) and individual utilities (Figure 1a).
This improves the representational capacity beyond state-of-
the-art value factorization approaches like VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2018). To achieve
scalability, DCG employs parameter sharing between pay-
offs and utilities. Parameter sharing between agents has long
been a staple of decentralized MARL. Methods like VDN
and QMIX condition an agent’s utility on its history, that is,
its past observations and actions, and share the parameters
of all utility functions. Experiences of one agent are thus
used to train all. This can dramatically improve the sample
efficiency compared to methods with unfactored values (Fo-
erster et al., 2016; 2018; Lowe et al., 2017; Schroder de Witt
et al., 2019; Son et al., 2019), which correspond to a CG
with one hyper-edge connecting all agents (Figure 1¢). DCG
takes parameter sharing one step further by approximating
all payoff functions with the same neural network. To allow
unique outputs for each payoff, the network is conditioned
on a learned embedding of the participating agents’ histo-
ries. This requires only one linear layer more than VDN and
fewer parameters than QMIX.

DCG is trained end-to-end with deep @-learning (DQN,
Mnih et al., 2015), but uses message passing to coordinate
greedy action selection between all agents in the graph.
For k message passes over n agents with m actions each,
the time complexity of maximization is only O(km(n +
m)|€]), where |E] < "22’” is the number of (pairwise)
edges, compared to O(m™) for DQN without factorization.

2 The method can be easily generalized to CGs with hyper-
edges, i.e., payoff functions for more than 2 agents.

We compare DCG’s performance with that of other MARL
-learning algorithms in a challenging family of predator-
prey tasks that require coordinated actions and hard Star-
Craft II micromanagement tasks. In the former, DCG is the
only algorithm that solves the harder tasks and in the lat-
ter DCG outperforms state-of-the-art QMIX in some levels.
An open-source implementation of DCG and all discussed
algorithms and tasks is available for full reproducibility?.

2. Background

In this paper we assume a Dec-POMDP for n agents
(S, {A}™,, P,r, {0} {0'}™,,n,7) (Olichoek &
Amato, 2016). S denotes a discrete or continuous set of
environmental states and A’ the discrete set of actions avail-
able to agent i. At discrete time ¢, the next state s;11 € S
is drawn from transition kernel s;y; ~ P(:|s¢, a¢), con-
ditioned on the current state s; € S and joint action a; €
A= At x...x A" of all agents. A transition yields collab-
orative reward r; := 7(s¢, a;), and v € [0,1) denotes the
discount factor. Each agent ¢ observes the state only partially
by drawing observations of € O from its observation kernel
oi ~ o*(+|s;). The history of agent i’s observations o} € O*
and actions a; € A’ is in the following denoted as 7/ :=
(0}, ad,ol,...,0i_1,ai_i,0i) € (O x A x 0. Without
loss of generality, this paper considers episodic tasks, which
yield episodes (s, {0} }" 1, a0,70,-..,s7,{0%}" ) of
varying (but finite) length T'.

2.1. Deep ()-learning

The goal of collaborative multi-agent reinforcement learning
(MARL) is to find an optimal policy 7* : S x A — [0, 1],
that chooses joint actions a; € A such that the expected
discounted sum of future rewards is maximized. This can
be achieved by estimating the optimal (-value function*:

3https://github.com/wendelinboehmer/dcg
* We overload the notation f(y|x) to also indicate the inputs
and multivariate outputs y of multivariate functions f.
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The optimal policy 7*(+|s;) chooses greedily the action
a € A that maximizes the corresponding optimal Q)-value
g*(alst). In fully observable discrete state and action
spaces, ¢* can be learned in the limit from interactions with
the environment (Watkins & Dayan, 1992). For large or
continuous state spaces, ¢* can only be approximated, e.g.,
with a deep neural network ¢y (DQN, Mnih et al., 2015), pa-
rameterized by 6, by minimizing the mean-squared Bellman
error with gradient descent:

T—1

2
Loox = B[43 (v maxas(lse1) — aolads) |
t=0

The expectation is estimated with episodes from an expe-
rience replay buffer holding previously observed episodes
(Lin, 1992), and 6 denotes the parameter of a separate target
network, which is periodically replaced with a copy of 6 to
improve stability. Double Q-learning further stabilizes train-
ing by choosing the next action greedily w.r.t. the current
network gy, i.e., gg(arg max go(-|s¢+1)|St+1) instead of the
target network max gz(-|s¢+1) (van Hasselt et al., 2016).

In partially observable environments, the learned policy can-
not condition on the state s;. Instead, Hausknecht & Stone
(2015) approximate a (Q-function that conditions on the
agent’s history 7 := {7/} ,, i.e., go(a|7:), by condition-
ing a recurrent neural network (e.g., a GRU, Chung et al.,
2014) on the agents’ observations o; := (o}, ...,0}) and
last actions a;_1, that is, gy (a|h;) conditions on the recur-
rent network’s hidden state iy, (he|hi—1,0¢, ai—1), hog = 0.

Applying DQN to multi-agent tasks quickly becomes infea-
sible, due to the combinatorial growth of state and action
spaces. Moreover, DQN values cannot be maximized with-
out evaluating all actions. To allow efficient maximization
for MARL Q)-learning, various algorithms based on value
factorization have been developed. We derive IQL (Tan,
1993), VDN (Sunehag et al., 2018), QMIX (Rashid et al.,
2018) and QTRAN (Son et al., 2019) in Appendix A.1.

Sunehag et al. (2018) define the VDN value function
q"*(s,a) == >, fi(a’|s;) and introduce parameter
sharing between the agents’ utility functions f%(a’|s;) ~
12 (a*|7}) to dramatically improve the sample efficiency of
VDN. The utility function fj has a fixed number of outputs
A = | U™ A, but agent i can restrict maximization to
A® by setting the utilities of unavailable actions to —oc.
Specialized behavior between agents can be represented by
conditioning f4 on the agent’s role, or more generally on
the agent’s ID (Foerster et al., 2018; Rashid et al., 2018).

2.2. Coordination graphs

An undirected coordination graph (CG, Guestrin et al.,
2002a) G = (V, £) contains a vertex v; € V for each agent
1 <4 < n and a set of undirected edges {i,j} € £ between
vertices v; and v;. The graph is usually specified before
training, but Guestrin et al. (2002b) suggest that the graph
could also depend on the state, that is, each state can have
its own unique CG. A CG induces a factorization® of the
Q-function into utility functions f* and payoff functions ¥
(Fig. la and 1b):

)= fla'ls) + g _fU(a

vteY {i,j}€€

q“°(st,a ,allsy). (2)

The special case £ = & yields VDN, but each additional
edge enables the value representation of the joint actions of
a pair of agents and can thus help to avoid relative overgen-
eralization. Prior work also considers higher order coordi-
nation where the payoff functions depend on the actions of
larger sets of agents (Guestrin et al., 2002a; Kok & Vlassis,
2006; Castellini et al., 2019), corresponding to graphs with
hyper-edges (Figure 1c). For the sake of simplicity we re-
strict ourselves here to pairwise edges, which yield at most
|€] < 3(n? — n) edges, in comparison to up to m
hyper-edges of degree d. The induced Q-function ¢“°

be maximized locally using max-plus, also known as belief
propagation (Pearl, 1988). At time ¢ each node 7 sends
messages 1’ (a’) € IR over all adjacent edges {i,j} € €.
In a tree topology, this message contains the maximized
contributions of the sender’s sub-tree given that the receiver
chooses a/ € AJ. Messages can be computed locally as:

pie) %@X{ﬁf%aﬂswvﬂf%’?a”sﬂ
+ Y i) - e} @)

{k,i}e&

This process repeats for a number of iterations, after which
each agent ¢ can locally find the action a, that maximizes
the estimated joint Q-value ¢°°(s¢, a.):

> ua)}. @

{k,i}e€

i

al, = argmax{lvllfi(ai|st)+
a’

Convergence of messages is only guaranteed for acyclic CGs
(Pearl, 1988; Wainwright et al., 2004). However, subtracting
anormalization constant ¢;; :== > p’ (a) / |A’| from each
message 1/ before it is sent often leads to convergence in
cyclic graphs as well (Murphy et al., 1999; Crick & Pfeffer,
2002; Yedidia et al., 2003). See Algorithm 3 in the appendix.

> The normalizations \V\ and IE] EI are not strictly necessary but

allow the potential transfer of learned DCG to other topologies.
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3. Method

We now introduce the deep coordination graph (DCG),
which learns the utility and payoff functions of a coordi-
nation graph (V, &) with deep neural networks. In their
state-free implementation, Castellini et al. (2019) learn a
separate network for each function f? and f%. However,
properly approximating these ()-values requires observing
the joint actions of each agent pair in the edge set £, which
can be a significant subset of the joint action space of all
agents A. We address this issue by focusing on an archi-
tecture that shares parameters across functions and restricts
them to locally available information, i.e., to the histories of
the participating agents. DCG takes inspiration from highly
scalable methods (Yang et al., 2018; Chen et al., 2018) and
improves upon Kok & Vlassis (2006) and Castellini et al.
(2019) by incorporating the following design principles:
i. Restricting the payoffs £ (a’, a’ |7, 77) to local infor-
mation of agents ¢ and j only;
ii. Sharing parameters between all payoff and utility func-
tions through a common recurrent neural network;
iii. Low-rank approximation of joint-action payoff matri-
ces f(-,-|r}, /) in large action spaces;
iv. Allowing transfer/generalization to different CGs (as
suggested in Guestrin et al., 2002b); and
v. Allowing the use of privileged information like the
global state during training.

Restricting the payoff’s input (i) and sharing parameters
(i), i.e., fo(u'|r{) = f§(u'lhy) and f9(a’,a’|7{,7]) ~
f ;(ai, a’|hi, h]), improves sample efficiency significantly.
Both utilities and payoffs share further parameters through a
common RNN A} := hy(-|hi_;, ok, al_,), initialized with
hi := hy (-0, 0}, 0). Note the difference to Castellini et al.
(2019), which do not condition on the state or the agents’
histories, and learn independent functions for each payoff.

The payoff function f§ has A outputs, A := U, A", one
for each possible joint action of the agent pair. For example,
each agent in a StarCraft II map with 8 enemies has 13
actions (SMAC, Samvelyan et al., 2019), which yields 169
outputs of f§. As only executed action-pairs are updated
during Q-learning, the parameters of many outputs remain
unchanged for long stretches of time, while the underlying
RNN A, keeps evolving. This can slow down training and
affect message passing. To reduce the number of parameters
and improve the frequency in which they are updated, we
propose a low-rank approximation® of the payoff (iii) with
rank K, similar to Chen et al. (2018):

L . K . L . L .
fola',a’|hi, hl) = 3 f5(a'|hi, b)) 5 (a’ |hi, Bi). (5)
k=1

The approximation can be computed in one forward pass
with 2KA outputs and parameters ¢ := {¢, ¢}. Note that

® Similar to how singular values and vectors represent matrices.

arank K = min{|A’|,|.A7|} approximation does not re-
strict the output’s expressiveness, while lower ranks share
parameters and updates to speed up learning.

To support further research in transfer between tasks (iv), the
represented value function must generalize to new topolo-
gies (i.e., zero-shot transfer). This requires DCG to be
invariant to reshuffling of agent indices. We solve this by av-
eraging payoffs computed from both agents’ perspectives.’
However, this paper does not evaluate (iv) and we leave the
transfer of a learned DCG onto different graphs/topologies
to future work. The DCG @-value function is:

1Y
qug?p(Tt,a) = WHZ o (a'|h}) (6)
=1 ) ) . ) .
ot 3 (500l b)) + f5 (0 ol ) ).
{i,j}e€ - »
{i,5}atal

However, some tasks allow access to privileged information
like the global state s; € S during training (but not execu-
tion). We therefore propose in (v) to use this information in
a privileged bias function v, : S — IR with parameters ¢:

Qoo (Te, @) +vp(se) . (T)

We call this approach DCG-S (similar to VDN-S from
Rashid et al., 2018) and train both variants end-to-end with
the DQN loss in Section 2.1 and Double )-learning (van
Hasselt et al., 2016). Given the tensors (multi-dimensional
arrays) fV € RIV*4 and fE € RIE*AXA where all
unavailable actions are set to —oo, the (J-value can be max-
imized by message passing as defined in (3) and (4). The
detailed procedures of computing the tensors (Algorithm
1), the Q-value (Algorithm 2) and greedy action selection
(Algorithm 3) are given in the appendix. Note that we do not
propagate gradients through the message passing loop, as
DQN maximizes the value computed by the target network.

qGDquSL-; (St » Tty a’)

The key benefit of DCG lies in its ability to prevent relative
overgeneralization during the exploration of agents: take
the example of two hunters who have cornered their prey.
The prey is dangerous and attempting to catch it alone can
lead to serious injuries. From the perspective of each hunter,
the expected reward for an attack depends on the actions
of the other agent, who initially behaves randomly. If the
punishment for attacking alone outweighs the reward for
catching the prey, agents that cannot represent the value for
joint actions (QMIX, VDN, IQL) cannot learn the optimal
policy. However, estimating a value function over the joint
action space (as in QTRAN) can be equally prohibitive,

7 Permutation invariance requires the payoff matrix f4, of
dimensionality |.A*| x |47 |, to be the same as (f7*) T with swapped
inputs. We enforce this by taking the average of both. This retains
the ability to learn asymmetric payoff matrices £ # (f%)T.
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as it requires many more samples for the same prediction
quality. DCG provides a flexible function class between
these extremes that can be tailored to the task at hand.

4. Related Work

Oroojlooy jadid & Hajinezhad (2019) provide a general
overview of cooperative deep MARL. Independent Q-
learning (IQL Tan, 1993) decentralizes the agents’ policy by
modeling each agent as an independent (-learner. However,
the task from the perspective of a single agent becomes
nonstationary as other agents change their policies. Foerster
et al. (2017) show how to stabilize IQL when using expe-
rience replay buffers. Another approach to decentralized
agents is centralized training and decentralized execution
(Kraemer & Banerjee, 2016) with a factored value func-
tion (Koller & Parr, 1999). Value decomposition networks
(VDN, Sunehag et al., 2018) perform central ()-learning
with a value function that is the sum of independent util-
ity functions for each agent (Figure 1a). The greedy pol-
icy can be executed by maximizing each utility indepen-
dently. QMIX (Rashid et al., 2018) improves upon this
approach by combining the agents’ utilities with a mixing
network, which is monotonic in the utilities and depends on
the global state. This allows different mixtures in different
states and the central value can be maximized independently
due to monotonicity. All of these approaches are derived in
Appendix A.1 and can use parameter sharing between the
value/utility functions. However, they represent the joint
value with independent values/utilities and are therefore sus-
ceptible to relative overgeneralization. We demonstrate this
by comparing DCG with all the above algorithms.

Another straightforward way to decentralize in MARL is to
define the joint policy as a product of independent agent poli-
cies. This lends itself to the actor-critic framework, where
the critic is discarded during execution and can therefore
condition on the global state and all agents’ actions during
training. Examples are MADDPG (Lowe et al., 2017) for
continuous actions and COMA (Foerster et al., 2018) for
discrete actions. Wei et al. (2018) specifically investigate rel-
ative overgeneralization in continuous multi-agent tasks and
show improvement over MADDPG by introducing policy
entropy regularization. MACKRL (Schroder de Witt et al.,
2019) follows the approach in Foerster et al. (2018), but uses
common knowledge to coordinate agents during centralized
training. Son et al. (2019) define QTRAN, which also has
a centralized critic but uses a greedy actor w.r.t. a VDN
factorized function. The corresponding utility functions are
distilled from the critic under constraints that ensure proper
decentralization. Bohmer et al. (2019) present another ap-
proach to decentralize a centralized value function, which
is locally maximized by coordinate ascent and decentral-
ized by training IQL agents from the same replay buffer.

Centralized joint ()-value functions do not allow parameter
sharing to the same extent as value factorization, and we
compare DCG to QTRAN to demonstrate the advantage in
sample efficiency. Nonetheless, DCG value factorization
can in principle be applied to any of the above centralized
critics to equally improve sample efficiency at the same cost
of representational capacity.

Other work deals with huge numbers of agents, which re-
quires additional assumptions to reduce the sample complex-
ity. For example, Yang et al. (2018) introduce mean-field
multi-agent learning (MF-MARL), which factors a tabular
value function for hundreds of agents into pairwise payoff
functions between neighbors in a uniform grid of agents.
These payoffs share parameters similar to DCG. Chen et al.
(2018) introduce a value factorization (FQL) for a simi-
lar setup based on a low-rank approximation of the joint
value. This approach is restricted by uniformity assump-
tions between agents, but otherwise uses parameter sharing
similar to DCG. The value function cannot be maximized
globally and must be locally maximized with coordinate
ascent. These techniques are designed for much larger sets
of agents and the specific assumptions and design choices
are not well suited to the tasks considered in this paper. To
demonstrate this, we compare against a low-rank joint value
decomposition (called LRQ), similar to Chen et al. (2018).

Coordination graphs (CG) have been extensively studied in
multi-agent robotics with given payoffs (e.g. Rogers et al.,
2011; Yedidsion et al., 2018). Van der Pol & Oliehoek
(2016) learn a pairwise payoff function for traffic light con-
trol of connected intersections with DQN, which is used
for all edges in a CG of intersections. Sparse cooperative
Q@-learning (SCQL, Kok & Vlassis, 2006) uses CG in dis-
crete state and action spaces by representing all utility and
payoff functions as tables. However, the tabular approach
restricts practical application of SCQL to tasks with few
agents and small state and action spaces. Castellini et al.
(2019) use neural networks to approximate payoff functions,
but only in non-sequential games, and require a unique func-
tion for each edge in the CG. DCG addresses for the first
time the question how CG can efficiently solve tasks with
large state and action spaces, by introducing parameter shar-
ing between all payoffs (as in VDN/QMIX), conditioning
on local information (as in MF-MARL) and using low-rank
approximation of the payoffs’ outputs (as in FQL).

Graph Neural Networks (GNN, Battaglia et al., 2018) are
architectures to approximate functions on annotated graphs
by learning some message passing over the graph’s edges.
GNN can thus be used to estimate a joint Q-value in MARL,
which conditions on graphs annotated with the observations
of all agents. In contrast to the fixed message passing of CG,
however, GNN would have to learn the joint maximization
required for Q-learning, which would require additional
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Figure 2. Influence of punishment p for attempts to catch prey alone on greedy test episode return (mean and shaded standard error,
[number of seeds]) in the relative overgeneralization task where 8 agents hunt 8 prey (dotted line denotes best possible return). Fully
connected DCG (DCG) are able to represent the value of joint actions, which leads to a better performance for larger p, where DCG
without edges (VDN) has to fail eventually (p < —1). CG without parameter sharing (CG), learn very slowly due to sample inefficiency.

losses and might not be feasible in practice. Current MARL
literature uses GNN therefore either as independent (IQL)
value functions (Jiang et al., 2020; Luo et al., 2019) or as a
joint critic in actor-critic frameworks (Tacchetti et al., 2019;
Liu et al., 2019; Malysheva et al., 2019).

5. Empirical Results

In this section we compare the performance of DCG with
various topologies (see Table 1) to the state-of-the-art al-
gorithms QTRAN (Son et al., 2019), OMIX (Rashid et al.,
2018), VDN (Sunehag et al., 2018) and IQL (Tan, 1993).
We also compare a CG baseline without parameter sharing
between payoffs and utilities (CG, an extension of Castellini
etal., 2019), and a low-rank approximation of the joint value
of all agents (LRQ, similar to Chen et al., 2018) that is max-
imized by coordinate ascent. Both baselines condition on a
shared RNN that summarizes all agents’ histories. Lastly,
we investigate how well the DCG algorithm performs with-
out any parameter sharing (DCG (nps)). All algorithms are
implemented in the PYMARL framework (Samvelyan et al.,
2019); a detailed description can be found in the appendix.

We evaluate these methods in two complex grid-world tasks
and challenging Starcraft II micromanagement tasks from
the StarCraft Multi-Agent Challenge (SMAC, Samvelyan
et al., 2019). The first grid-world task formulates relative
overgeneralization as a family of predator-prey tasks and the
second investigates how artificial decentralization can hurt
tasks that demand non-local coordination between agents.
In the latter case, decentralized value functions (QMIX,

pcG | &:={{i,j}|1<i<n,i<j<n}
CYCLE | € := {{i,(i modn) +1}|1<i<n}
LINE | &:={{i,i+1}|1<i<n}

STAR | €:={{1,i}|2<i<n}

VDN | £:=0

Table 1. Tested graph topologies for DCG.

VDN, IQL) cannot learn coordinated action selection be-
tween agents that cannot see each other directly and thus
converge to a suboptimal policy. StarCraft II presents a
challenging real-world problem with privileged information
during training, and we compare DCG and DCG-S on 6
levels with varying complexity.

5.1. Relative Overgeneralization

To model relative overgeneralization, we consider a partially
observable grid-world predator-prey task: 8 agents have to
hunt 8 prey in a 10 x 10 grid. Each agent can either move
in one of the 4 compass directions, remain still, or try to
catch any adjacent prey. Impossible actions, i.e., moves into
an occupied target position or catching when there is no
adjacent prey, are treated as unavailable. The prey moves
by randomly selecting one available movement or remains
motionless if all surrounding positions are occupied. If two
adjacent agents execute the catch action, a prey is caught
and both the prey and the catching agents are removed from
the grid. An agent’s observation is a 5 x 5 sub-grid centered
around it, with one channel showing agents and another
indicating prey. Removed agents and prey are no longer
visible and removed agents receive a special observation of
all zeros. An episode ends if all agents have been removed
or after 200 time steps. Capturing a prey is rewarded with
r = 10, but unsuccessful attempts by single agents are
punished by a negative reward p. The task is similar to
one proposed by Son et al. (2019), but significantly more
complex, both in terms of the optimal policy and in the
number of agents.

To demonstrate the effect of relative overgeneralization,
Figure 2 shows the average return of greedy test episodes
for varying punishment p as mean and standard error over
8 independent runs. In tasks without punishment (p = 0
in Figure 2a), fully connected DCG (DCG, solid) performs
as well as DCG without edges (VDN, dashed). However,
for stronger punishment VDN becomes more and more
unreliable, which is visible in the large standard errors in
Figures 2b and 2c, until it fails completely for p < —1.5
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Figure 3. Greedy test episode return for the coordination task of Figure 2 with punishment p = —2. Comparison (a) to baseline

algorithms; (b) between DCG topologies; (c) of different low-rank payoff approximations. Note that QMIX, IQL and VDN (dashed) do not
solve the task (return 0) due to relative overgeneralization. CG, QTRAN and LOR (K = 64) could represent the joint value, but are sample
inefficient due to the large joint action spaces. Note that without parameter sharing, DCG (nps) suffers the same fate. The reliability of
DCG depends on the CG-topology: all seeds with fully connected DCG solved the task, but the high standard error for CYCLE, LINE
and STAR topologies is caused by some seeds succeeding while others fail completely. Low-rank approximation (DCG (rank K))

dramatically improves sample efficiency without any significant impact on performance.

in Figure 2d. This is due to relative overgeneralization, as
VDN cannot represent the values of joint actions during
exploration. Note that a coordination graph (CG), where
utilities and payoffs condition on all agents’ observations,
can represent the value but struggles to learn the task without
parameter sharing. DCG, on the other hand, converges
reliably to the optimal solution (dotted line).

Figure 3a shows how well DCG performs in comparison to
the baseline algorithms in Appendix A.1 for a strong punish-
ment of p = —2. Note that QMIX, IQL and VDN completely
fail to learn the task (return 0) due to their restrictive value
factorization. While CG could in principle learn the same
policy as DCG, the lack of parameter sharing hurts perfor-
mance as in Figure 2. QTRAN estimates the values with a
centralized function, which conditions on all agents’ actions,
and can therefore learn the task. However, QTRAN requires
more samples before a useful policy can be learned than
DCG, due to the size of the joint action space. This is in line
with the findings of Son et al. (2019), which required signif-
icantly more samples to learn a task with four agents than
with two and also show the characteristic dip in performance
with more agents. LRQ can also represent the joint value
but learns extremely slow and with large deviations due to
imperfect maximization by coordinate ascend. In compari-
son with QTRAN, CG and LRQ, fully connected DCG (DCG)
learns near-optimal policies quickly and reliably.

We also investigate the performance of various DCG topolo-
gies defined in Table 1. Figure 3b shows that in particular
the reliability of the achieved test episode return depends
strongly on the graph topology. While all seeds of fully con-
nected DCG succeed (DCG), DCG with CYCLE, LINE and
STAR topologies have varying means with large standard
errors. The high deviations are caused by some runs finding

near-optimal policies, while others fail completely (return
0). One possible explanation is that for the failed seeds the
rewarded experiences, observed in the initial exploration,
are only amongst agents that do not share a payoff function.
Due to relative overgeneralization, the learned greedy policy
no longer explores catch actions and existing payoff func-
tions cannot experience the reward for coordinated actions
anymore. It is therefore not surprising that fully connected
graphs perform best, as they represent the largest function
class and require the fewest assumptions. The topology also
has little influence on the runtime of DCG, due to efficient
batching on the GPU.

The tested fully connected DCG only considers pairwise
edges. Hyper-edges between more than two agents (Figure
1c) would yield even richer value representations, but would
also require more samples to sufficiently approximate the
payoff functions. This effect can be seen in the slower
learning QTRAN and LRQ results in Figure 3a.

5.2. Artificial Decentralization

The choice of decentralized value functions is in some cases
purely artificial: it is motivated by the huge joint action
spaces and not because the task actually requires decentral-
ized execution. While this often works surprisingly well,
we want to investigate how existing algorithms deal with
tasks that cannot be fully decentralized. One obvious case
in which decentralization must fail is when the optimal pol-
icy cannot be represented by utility functions alone. For
example, decentralized policies behave sub-optimally in
tasks where the optimal policy would condition on multiple
agents’ observations in order to achieve the best return. Pay-
off functions in DCG, on the other hand, condition on pairs
of agents and can thus represent a richer class of policies.
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Figure 4. Greedy test episode return (mean and shaded standard error, [number of seeds]) in a non-decentralizable task where 8 agents
hunt 8 prey: (a) comparison to baseline algorithms; (b) comparison between DCG topologies; (c) comparison of low-rank payoff
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near-optimal policy (upper dotted line denotes best possible return), but without parameter sharing DCG (nps) and CG yield sub-optimal
performance in comparison to DCG. In this task low-rank approximations only marginally increase sample efficiency.

Note that dependencies on more agents can be modeled
as hyper-edges in the DCG (Figure 1c), but this hurts the
sample efficiency as discussed above.

We evaluate the advantage of a richer policy class with a
variation of the above predator-prey task. To disentangle
the effects of relative overgeneralization, in this task prey
can be caught by only one agent (without punishment). Un-
beknownst to the agent, however, a fair coin toss decides
at each time step whether catching the prey is rewarding
(r=1) or punishing (r =—1). The current coin flip can be
observe through an additional feature, which is placed in
a random corner at the beginning of each episode. Due to
the short visibility range of the agents, the feature is only
visible in one of the 9 positions closest to its corner.

Figure 4a shows the performance of QTRAN, QMIX, IQL
and VDN, all of which have decentralized policies, in com-
parison to fully connected DCG and CG. The baseline algo-
rithms have to learn a policy that first identifies the location
of the indicating feature and then herds prey into that corner,
where the agent is finally able to catch it without risk. By
contrast, DCG and CG can learn a policy where one agent
finds the indicator, allowing all agents that share an edge to
condition their payoffs on that agent’s current observation.
As a result, this policy can catch prey much more reliably,
as seen in the high performance of DCG compared to all
baseline algorithms. Interestingly, as CG conditions on all
agents’ histories simultaneously, the baseline shows an ad-
vantage in the beginning but then learns more slowly and
reaches a significantly lower performance. The joint value
of QTRAN conditions on all observations, but the algorithm’s
constraints enforce the greedy policy to be consistent with a
VDN factorized value function, which appears to prevent a
good performance. LRQ’s factorization architecture appears

too unstable to learn anything here. We also investigate the
influence of the DCG topologies in Table 1, shown in Figure
4b. While other topologies do not reach the same perfor-
mance as fully connected DCG, they still learn a policy that
significantly outperforms all baseline algorithms, around
the same performance as fully connected CG.

5.3. Low-Rank Approximation

While the above experiments already show a significant
advantage of DCG with independent payoff outputs for each
action pair, we observe performance issues on StarCraft II
maps with this architecture. The most likely cause is the
difference in the number of actions per agent: predator-prey
agents choose between |A‘| = 6 actions, whereas SMAC
agents on comparable maps with 8 enemies have |A’| = 13
actions. While payoff matrices with 36 outputs in predator-
prey appear reasonable to learn, 169 outputs in StarCraft
IT would require significantly more samples to estimate the
payoff of each joint-action properly.

Figures 3c and 4c show the influence of low-rank payoff ap-
proximation (Equation 5, K € {1,...,4}) on the predator-
prey tasks from previous subsections. Figure 3c shows
that any low-rank approximation (DCG (rank K)) sig-
nificantly improves the sample efficiency over the default
architecture with independent payoffs for each action pair
(DCG (full)). The improvement in Figure 4c is less im-
pressive, but shows even rank K = 1 approximations (DCG
(rank 1)) perform slightly better than DCG (full).

5.4. Scaling Up to StarCraft II

The default architecture of DCG with independent payoffs
for each action pair performs poorly in StarCraft II. We
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therefore test a K =1 low-rank payoff approximation DCG
with (DCG-S) and without (DCG) privileged information
bias function v, defined in (7), on six StarCraft II maps
(from SMAC, Samvelyan et al., 2019). We report all learn-
ing curves in Figure 8 of the appendix and show as an
example the super hard map MMM?2 in Figure 5.

DCG is expected to
yield an advantage
on maps that struggle

g
=}

DCG-S (rank 1) [4]

with relative over- 4 4 DCG (rank 1) [4]
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Figure 5. Win rate of test episodes on
the SMAC map MMM2. Both DCG and
DCG-S use rank 1 approximation.

We conclude from the results presented in the appendix that,
in all likelihood, the SMAC benchmark does not suffer from
relative overgeneralization. However, the fact that DCG-S
matches QMIX, the state-of-the-art on SMAC, demonstrates
that the algorithm scales to complex domains like StarCraft
II. Furthermore, DCG and DCG-S perform comparable to
their VDN counterparts. This demonstrates that the added
payoffs and message passing, which allowed to overcome
relative overgeneralization in Section 5.1, do not affect the
algorithm’s sample efficiency. This is a clear advantage over
prior CG methods (CG in Figure 2, Castellini et al., 2019).

6. Conclusions & Future Work

This paper introduces the deep coordination graph (DCG),
an architecture for value factorization that is specified by a
coordination graph (CG) and can be maximized by message
passing. We evaluate deep Q-learning with DCG and show
that the architecture enables learning of tasks where relative
overgeneralization causes all decentralized baselines to fail,
whereas centralized critics are much less sample efficient
than DCG. We also demonstrate that artificial decentraliza-
tion can lead to suboptimal behavior in all compared meth-
ods except DCG. Our method significantly improves over
existing CG methods and allows for the first time to use CG
in tasks with large state and action spaces. Fully connected
DCG performed best in all experiments and should be pre-
ferred in the absence of prior knowledge about the task. The
computational complexity of this topology scales quadrat-
ically, which is a vast improvement over the exponential

scaling of joint value estimates. Additionally, we introduce
a low-rank payoff approximation for large action spaces and
a privileged bias function (DCG-S). Evaluated on StarCraft
IT micromanagement tasks, DCG-S performs competitive
with the state-of-the-art QMIX. DCG can also be defined
with hyper-edges that connect more than two agents. Similar
to our LRQ baseline, low-rank approximation can be used
to approximate the payoff of high-order hyper-edges, and
coordinate ascend can maximize them locally. Furhtermore,
due to its permutation invariance, DCG has the potential
to transfer/generalize to different graphs/topologies. This
would in principle allow the training of DCG on dynami-
cally generated graphs (e.g. using an attention mechanism,
Liu et al., 2019). By including hyper-edges with varying
degrees, one could allow the agents to flexibly decide in
each state with whom they want to coordinate. We plan to
investigate this in future work.
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A. Appendix
A.1. Baseline algorithms

All discussed algoorithms are implemented in the PYMARL
framework (Samvelyan et al., 2019) and can be found at
https://github.com/wendelinboehmer/dcg.

IQL Independent Q-learning (Tan, 1993) is a straightfor-
ward approach of value decentralization that allows efficient
maximization by modeling each agent as an independent

DQN ¢} (a’|7}). The value functions can be trained without
any knowledge of other agents, which are assumed to be
part of the environment. This violates the stationarity as-
sumption of P and can become therefore instable (see e.g.
Foerster et al., 2017). IQL is nonetheless widely used in
practice, as parameter sharing between agents can make it
very sample efficient.

Note that parameter sharing requires access to privileged
information during training, called centralized training and
decentralized execution (Foerster et al., 2016). This is partic-
ularly useful for actor-critic methods like MADDPG (Lowe
et al., 2017), Multi-agent soft Q-learning (Wei et al., 2018),
COMA (Foerster et al., 2018) and MACKRL (Schroder de
Witt et al., 2019), where the centralized critic can condition
on the underlying state s; and the joint action a; € A.

VDN Another way to exploit centralized training is value
function factorization. For example, value decomposition
networks (VDN, Sunehag et al., 2018) perform centralized
deep Q-learning on a joint ()-value function that factors as
the sum of independent utility functions f*, for each agent i:

g9 " (T,@) =

> fold'l) - ®)
i=1

This value function ¢"®N can be maximized by maximizing
each agent’s utility f; independently.

QMIX (Rashid et al., 2018) improves upon this concept
by factoring the value function as

qSZ‘X(St,Tt,a) = 0y (se, fo(a|)), ..., fiH(a"m")) .

Here ¢y is a monotonic mixing hypernetwork with non-
negative weights that retains monotonicity in the inputs
f4. Maximizing each utility f; therefore also maximizes
the joint value ¢°™'*, as in VDN. The mixing parameters
are generated by a neural network, parameterized by ¢,
that condition on the state s, allowing different mixing of
utilities in different states. QMIX improves performance
over VDN, in particular in StarCraft II micromanagement
tasks (SMAC, Samvelyan et al., 2019).

QTRAN Recently Son et al. (2019) introduced QTRAN,
which learns the centralized critic of a greedy policy w.r.t. a
VDN factorized function, which in turn is distilled from the
critic by regression under constraints. The algorithm defines
three value functions ¢"°~, ¢ and v, where ¢(7¢, a) is the
centralized Q-value function, as in Section 2.1, and

v(ty) = maxq(r, ) —maxq (1), (9)

They prove that the greedy policies w.r.t. ¢ and ¢"°N are
identical under the constraints:

q¢""N(m,a) — q(my,a) +v(r) > 0, (10)
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Va € A,V € {(OF x AY)t x O}, with strict equality
if and only if @ = argmax¢*® (7, ). QTRAN mini-
mizes the parameters ¢ of the centrahzed asymmetric value
gy(a’|m,a™), a™ = (a',...,a" " a"th, L a”), for
each agent (which is similar to Foerster et al., 2018) with
the combined loss Lp:

1 n N2
Lo = B[ & 3 (re+ 70— dhlaiima ) |

t=0 i=1
where 7; .= ¢} (aj|T:,a, %) denotes the centralized asym-
metric value and @1 := argmaxqy®" (741, ), Vt, de-
notes what a greedy decentralized agent would have chosen.
The decentralized value gy and the greedy difference vy,
with parameters 6 and v respectively, are distilled by re-
gression of the each qé in the constraints. First the equality
constraint:

T n i 2

Lopr = ﬁtzoZI(Q(XDN(Ttadt)—l§§+vw(Tt)) } ;
where the ‘detach’ operator L stops the gradient flow
through qé). The inequality constraints are more compli-
cated. In principle one would have to compute a loss for

every action which has a negative left hand side in (10). Son
et al. (2019) suggest to only constraint executed actions a;:

B[ > (min {0, (1)

t=01i=1

Lyorr 1=

2
@™ (i a0) = Lab(ailriar ) +vu(m) }) |-

We use this loss, called QTRAN-base, which performed
better in our experiments than QTRAN-alt (see Son et al.,
2019). The losses are combined to Lorran = Lrp +
)\OPT ‘COPT + )\NOPT LNOPT , with )\OPTa )\NOPT > 0.

CG To compare the effect of parameter sharing and restric-
tion to local information in DCG, we evaluate a variation of
Castellini et al. (2019) that can solve sequential tasks. In this
baseline all agents share a RNN encoder of their belief over
the current global state hy := hy(-|hi—1, 04, @i—1) With
hg := hy(+]0, 00, 0), as introduced in Section 2.1. How-
ever, the parameters of the utility or payoff functions are
not shared, that is, 6 := {6;}7_, and ¢ := {¢;;|{i,j} € £}.
Each set of parameters 0; and ¢;; represents one linear layer
from h; to A® and A’ x A7 outputs, respectively. Other wise
the baseline uses the same code as DCG, that is, Algorithms
1,2 and 3.

LRQ As DCG uses low-rank approximation of the payoff
outputs, it is a fair question how a low-rank approximation
of the full joint value function (LRQ) would perform (akin
to one hyper-edge shown in Figure 1c). This approach
is similar to FQL (Chen et al., 2018), but we drop here
the homogeneity assumptions between agents. Instead, we

low-rank approximation of the joint value (LRQ)

DCG [8]
VDN [8]
LRQ (K=1) [8]
LRQ (K=4) [8]
LRQ (K=16) [8]
LRQ (K=64) [8]
LRQ (K=256) [8]
LRQ (K=1024) [8]

Test Episode Return

-40 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environmental Steps le6

Figure 6. Low-rank approximation of the joint value function
(LRQ) in the relative overgeneralization task of Section 5.1 for
varying numbers of factors K € {1,4, 16, 64, 256,1024}.

define the joint value function as a sum of I}' factors, which
each are the product of n factor functions f ik one for each
agent:

K n
¢ (i, a) = ZH fo (a’ |72). (12)

The joint histories of all agents 7, are encoded with a com-
mon RNN with 512 hidden neurons. In difference to DCG,
LQR cannot be maximized by message passing. Instead
we perform coordinate ascend by choosing a random joint
action @ and iterating, Vi € {1,...,n},

G = argmaXZf”“ ol [T 4@l (3

a’eAn T i

The iteration finishes if the value ¢**?! (7, a@;) no longer
increases of after a maximum of [ = & iterations.

Experiments on the predator-prey tasks with K €
{1,4, 16, 64, 256, 1024} revealed that, due to the large input
space of 7, the above approximation did not learn anything.
To allow a better comparison, we use the same input re-
strictions and parameter sharing tricks as DCG, that is, we
restrict the input of each factor function to the history of the
corresponding agent and share all agents’ parameters:

hi = hy(-|hi_y,0l,ai_1) (14

qLRQ2 — Z H fe |h7 (15)

k=11i=1

Figures 3 and 4 show that this architecture learns the task
with K = 64, albeit slowly. Figure 6 demonstrates the
effect of the number of factors K on the solution of the rela-
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tive overgeneralization task of Section 5.1. Given enough
factors, LRQ learns the task, albeit slowly and with a lot
of variance between seeds, probably due to imperfect maxi-
mization by coordinate ascend.

A.2. DCG Algorithms

All algorithms defined in this paper are given in pseudo-
code on Page 16: Algorithm 1 computes the utility and
payoff tensors, which are used by Algorithm 2 to com-
pute the joint ()-value and by Algorithm 3 to return the
joint actions that greedily maximize the joint ()-value. An
open-source python implementation within the PyYMARL
framework (Samvelyan et al., 2019) can be found online at
https://github.com/wendelinboehmer/dcg.

A.3. Hyper-parameters

All algorithms are implemented in the PYMARL framework
(Samvelyan et al., 2019). We aimed to keep the hyper-
parameters close to those given in the framework and con-
sistent for all algorithms.

All tasks used discount factor v = 0.99 and e-greedy explo-
ration, which was linearly decayed from e = 1 to € = 0.05
within the first 50, 000 time steps. Every 2000 time steps we
evaluated 20 greedy test trajectories with e = 0. Results are
plotted by first applying histogram-smoothing (100 bins) to
each seed, and then computing the mean and standard error
between seeds.

All methods are based on agents’ histories, which were in-
dividually summarized with h,, by conditioning a linear
layer of 64 neurons on the current observation and pre-
vious action, followed by a ReLU activation and a GRU
(Chung et al., 2014) of the same dimensionality. Both lay-
ers’ parameters are shared amongst agents, which can be
identified by a one-hot encoded ID in the input. For the
CG baseline, the linear layer and the GRU had 64n = 512
neurons. This allows a fair comparison with DCG and also
had the best final performance amongst tested dimension-
alities {64,256,512,1024} in the task of Figure 4. Inde-
pendent value functions ¢}, (for TOL), utility functions f
(for VDN/QMIX/QTRAN/DCG) and payoff functions fg
(for DCG) are linear layers from the GRU output to the cor-
responding number of actions. The hyper-network ¢4 of
QMIX produces a mixing network with two layers connected
with an ELU activation function, where the weights of each
mixing-layer are generated by a linear hyper-layer with 32
neurons conditioned on the global state, that is, the full
grid-world. For QTRAN, the critic qu, computes the Q-value
for an agent 7 by taking all agents’ GRU outputs, all other
agents’ one-hot encoded actions, and the one-hot encoded
agent ID i as input. The critic contains four successive
linear layers with 64 neurons each and ReLLU activations
between them. The greedy difference vy, also conditions

prey moves prey moves

randomly ' randomly ‘
§ redator agents § ﬁredator agents
choose a direction choose a direction
agents can agent can
JFrenDey catch'prey coin toss:
r REWARDED &‘ REWARDED
or
prey cannot.he PUNISHED

caught a6
3 :
PUNISHED B feature in random corner

shows current coin toss

Figure 7. lllustrations of the relative overgeneralization task (left,
Sec. 5.1) and the artificial decentralization task (right, Sec. 5.2).

on all agents’ GRU outputs and uses three successive linear
layers with 64 neurons each and ReLU activations between
them. After some coarse hyper-parameter exploration for
QTRAN with Aopr, Anopr € {0.1, 1,10}, we chose the loss
parameters Aopr = 1, Axopr = 10. The LROQ results in the
main text used the state-encoding from CG and K = 64.

All algorithms were trained with one RMSprop gradient step
after each observed episode based on a batch of 32 episodes,
which always contains the newest, from a replay buffer
holding the last 500 episodes. The optimizer uses learning
rate 0.0005, o = 0.99 and € = 0.00001. Gradients with a
norm > 10 were clipped. The target network parameters
were replaced by a copy of the current parameters every 200
episodes.

A.4. StarCraft II details

We kept all hyper-parameters the same and evaluated the
six maps in Table 2. All maps are from SMAC (Samvelyan
et al., 2019), except micro_focus, which was provided
to us by the SMAC authors. The results for DCG-S, DCG,
QMIX and VDN are given in Figure 8 on Page 15, where both
DCG variants use a rank-1 payoff approximation. Note that

Name Agents Enemies Diff.
so_many_baneling|7 Zealots 32 Banelings easy
8m_vs_9m 8 Marines 9 Marines hard
3s_vs_5z 3 Stalker 5 Zealots hard

3 Stalker 3 Stalker
3852 5 Zealots 5 Zealots hard
1 Medivac 1 Medivac super
MMM2 2 Marauders 3 Marauders e{)r d

7 Marines 8 Marines
micro_focus |6 Hydralisks 8 Stalker ~ -Por
hard

Table 2. Types of agents, enemies and difficulty of all tested Star-
Craft II maps for SMAC (Samvelyan et al., 2019).
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Figure 8. Cumulative reward for test episodes on SMAC maps (mean and shaded standard error, [number of seeds]) for QMIX, VDN,
VDN-S and fully connected DCG with rank K = 1 payoff approximation (DCG (rank 1)) and additional state-dependent bias
function (DCG-S (rank 1)).

our results differ from those in Samvelyan et al. (2019), due
to slightly different parameters and an update after every
episode. The latter differs from the original publication
because we use the the episode_runner instead of the
parallel_runner of PYMARL. These choices ended up
improving the performance of QMIX significantly.

As expected, a direct comparison with the state-of-the-
art method OQMIX depends strongly on the StarCraft II
map. On the one hand, DCG-S clearly outperforms QMIX
on MMM2 (Figure 8a), which is classified as super hard
by SMAC. We also learn much faster on the easy map
somany_baneling (Figure 8b). On the other hand,
QMIX performs better on the hard map 3s_vs_5z (Fig-
ure 8d), which might be due to the low number of 3 agents.
For that amount of agents, the added representational ca-
pacity of DCG may not improve the task as much as the
non-linear state-dependent mixing of QMIX. It is hard to
pin-point why state dependent mixing is an advantage here,
though. However, given that DCG-S and VDN-S perform
equally well on all maps except so_many_baneling in-
dicates that the SMAC benchmark probably does not suffer
much from the relative overgeneralization pathology.
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Algorithm 1 Annotates a CG by computing the utility and payoff tensors (rank K approximation).

function ANNOTATE({h!_,,ai_;,0}" & {A}",, K € N) > A=|U; A
V=0 e RVA > initialize utility tensor
FEi=0 € RRIExAxA > initialize payoff tensor
forie {1,...,n} do > compute batch with all agents

hi = h¢ (ht 1,0bal ) > new hidden state
I« o) € BA > compute utility
forae {1,...,A}\ A" do > set unavailable actions ...
Y+ — D ... t0 —00
fore = (i,7) € Edo > compute batch with all edges
if K = 0 then _ _ > if no low-rank approximation
FE e L5 ) + S A AT e RACA > symmetric payoffs
else > if low-rank approximation

(B F) = f5( hi,hi) € RIAXK

B F']:=f5(-,,-|h],h}) € R¥>K
fE— iFFT + LFFT e RYA > symmetric payoffs
return {hi}" . Y, fE > return hidden states hi, utility tensor £V and payoff tensor £

Algorithm 2 Q-value computed from utility and payoff tensors (and potentially global state s;).

function QVALUE(fY € RVI*4 fE e RIEXAXA g c A s, e SU{2}) >,(2) =0
v
return \V\ Z i T TET 5‘ S I Fue(s) > return the Q-value of the given actions a
e=(i,j)EE

Algorithm 3 Greedy action selection with £ message passes in a coordination graph.

function GREEDY(fV e RIVIXA fB ¢ RIEXAXA y g 1AVl py > A= |U; A
pl pm’:=0 ¢ RIEIxA > messages forward (u) and backward ()
q° = ﬁ v > initialize “Q-value” without messages
Qmax ‘= —00;  Qmax ‘= [arg max qaZ ‘ i€ V] > initialize best found solution

At .
for t € {1,...,k} do < > loop with k message passes
for e = (i,j) € 5 do > update forward and backward messages
pt = max {( qm — il + ? e} > forward: maximize sender
ac Al
L= max {(d}, Ja —pb) + Iflf\( e} > backward: maximizes receiver
c Al
if message,normali zation then I> to ensure converging messages
put < pt — > normalize forward message
aG.AJ
nt o pt — AT AL Sk, > normalize backward message
acA?
for: € Vdo > update “Q-value” with messages
q! = ﬁfzv + ZME, + Z it > utility plus incoming messages
e=(-,1)€E  e=(i,)€E
al := argmax{q’,} > select greedy action of agent i
acA?
q + QVALUE(fY, fE, at, ) > get true Q-value of greedy actions
if ¢’ > Gmax then {amax <+ a®; qmax < ¢’} > remember only the best actions

return @, € A' x ... x AlVI > return actions that maximize the joint Q-value




