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Q-learning for POMDP: An application to learning locomotion gaits

Tixian Wang, Amirhossein Taghvaei, and Prashant G. Mehta

Abstract— This paper presents a Q-learning framework for
learning optimal locomotion gaits in robotic systems modeled as
coupled rigid bodies. Inspired by prevalence of periodic gaits in
bio-locomotion, an open loop periodic input is assumed to (say)
affect a nominal gait. The learning problem is to learn a new
(modified) gait by using only partial noisy measurements of the
state. The objective of learning is to maximize a given reward

modeled as an objective function in optimal control settings.

The proposed control architecture has three main components:
(i) Phase modeling of dynamics by a single phase variable; (ii)
A coupled oscillator feedback particle filter to represent the
posterior distribution of the phase conditioned in the sensory
measurements; and (iii) A Q-learning algorithm to learn the
approximate optimal control law. The architecture is illustrated
with the aid of a planar two-body system. The performance of
the learning is demonstrated in a simulation environment.

I. INTRODUCTION

Biological locomotion is the movement of an animal from
one location to another location, through periodic changes
in the shape of the body, along with interaction with the
environment [7]. The periodic motion of the shape, which
constitutes the building block of locomotion, is called the
locomotion gait. Examples of the locomotion gait are legged
locomotion, flapping of the wings for flying, or wavelike
motion of the fish for swimming. It is a wonderful example for
learning because the dynamics are complicated but the goals
(reward function) are easily modeled. In direct application
of Q-learning to these problems, however, a problem arises
because the full state is not available.

The dynamics for such robotic systems are modeled using
coupled rigid bodies. The configuration space is split into
two sets of variables: (i) the shape variable that describes
the robot’s internal degrees of freedom; (ii) and the group
variable that describes the global position and orientation
of the robot. The dynamics of the shape variable is given
by a second-order differential equation driven by control
inputs. The dynamics of the group variable is given by a
first-order differential equation governed by non-holonomic
constraints in the system (e.g conversation laws or no slipping
conditions).

A typical approach to design the locomotion gait is to
search for a periodic orbit in the shape space that leads to
a desired net change in the group variable. This idea of
producing a net change through underlying periodic motion
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is known as mechanical rectification [3], [11] and the net
change in the group variable is called geometric phase [9],
[10], [12]. The optimal gait is obtained by searching over a
parameterized set of trajectories in the shape space to optimize
a given optimization criteria [2], [17], [26], [15], [18], [6].
The resulting control law is open-loop and can suffer from
issues due to uncertainties in the environment, or disturbance
which perturbs the trajectory away from the orbit.

The problem considered in this paper is to learn an
approximate optimal gait given an open-loop periodic input.
We do not assume any control over this input: for example,
it may correspond to the nominal gait or it may be exerted
from the environment. The presence of the periodic input
creates a limit cycle in the high-dimensional configuration
space. The control problem is to actuate some of the system
parameters to learn new types of gaits.

For the purpose of learning, no knowledge of dynamic
models is assumed. Furthermore, knowledge of full state is
not assumed. At each time, one only has access to partial noisy
measurements of the state. The proposed control architecture
builds upon our prior work on phase estimation [22] and its
use for optimal control of bio-locomotion [20]. As in [20],
the control problem is modeled as an optimal control problem.
Since full state feedback is not assumed, we are in the partially
observed settings. The original contribution of this work is to
extend our prior work to a reinforcement learning framework
whereby new gaits can be learned by the robot only through
the use of noisy measurements and observed rewards.

The proposed control architecture has three parts:

1. Phase modeling: Under the assumed periodic input, the
shape trajectory is a limit cycle in the high-dimensional
phase space. The main complexity reduction technique is to
introduce a phase variable 0(t) € [0,27] to parametrize the
low-dimensional periodic orbit. The inspiration comes from
neuroscience where phase reduction is a popular technique
to obtain reduced order model of neuronal dynamics [8], [4].

2. Coupled oscillator feedback particle filter: We construct
a nonlinear filtering algorithm to approximate the posterior
distribution of the phase variable 0(z), given time history
of sensory measurements. The coupled oscillator feedback
particle filter (FPF) is comprised of a system of N coupled
oscillators  [23], [21]. The empirical distribution of the
oscillators is used to approximate the posterior distribution.

3. Reinforcement learning: The control problem is cast as
a partially observed optimal control problem. The posterior
distribution represents an information state for the problem.
A Q-learning algorithm is proposed where the Q-function
is approximated through a linear function approximation.



The weights are learned by implementing a gradient descent
algorithm to reduce the Bellman error [27], [25], [13].

The key component of the proposed architecture is the
system of coupled oscillators that is used to both represent
the posterior distribution (the belief state) and to learn the
optimal control policy. This control system can be viewed as
a central pattern generator (CPG) which integrates sensory
information to learn closed-loop optimal control policies for
bio-locomotion.

The proposed CPG control architecture is illustrated with
the aid of a two-body planar system depicted in Fig.[I] An
open-loop periodic torque is applied at the joint connecting
the two links, which results in the body to oscillate in a
periodic (but uncontrolled) manner. The control objective is
to turn the head clockwise by actuating the length of the tail
body. Although only a two-body system is considered in this
paper, the proposed architecture can easily be generalized
to coupled body models of snake-robots and swimming fish
robots. This is the subject of ongoing work.

The remainder of this paper is organized as follows: The
problem is formulated in Section [[Il The proposed solution
is described in Section The numerical results appear in
Section

II. PROBLEM FORMULATION
A. Modeling and dynamics

Consider a system of two planar rigid bodies, the head
body B; and the tail body B», connected by a single degree of
freedom pin joint as depicted in Figure [I] The configuration
variables of the system are divided into two sets: i) the shape
variable; ii) and the group variable. For the two-body system,
the shape variable is the relative orientation between two
bodies. It is denoted as the angle x. The group variable is
the absolute orientation of the frame rigidly affixed to head
body. It is denoted as the angle ¢.

There is no external force applied to the system, which
means that the total angular momentum is conserved. The
joint is assumed to be actuated by a motor with driven torque
7. An open-loop periodic input is assumed for the torque
actuation:

7(t) = 1o sin(wpt) (D

where @y is the frequency and 7y is the amplitude. There is
no control objective associated with this torque input, except
to have the shape variable x oscillate in a periodic manner.
It is assumed that there exists a control actuation that
changes the length of the tail body B, according to

d(t)=(1+u(t))d 2)
where d is the nominal length and u represents the control
input.

The dynamics of the two-body system is described by a
second-order ODE for the shape variable and a first-order
ODE for the group variable:

(r) = &x(1),%(1), (1), u(1)),
G(1) = f(x(1),(1), u(1))

(x(0),%(0)) = (x0,%0) (3a)
(3b)

By

By

Fig. 1. Schematic of the two-body system.

The explicit form of the functions f and g and their derivations
appear in [20]. In this paper, the explicit form of f and
g are assumed unknown. Rather, the dynamic model is
treated as a simulator (black-box) that is used to simulate the

dynamics (3a)-(3b).

Remark 1: The modeling procedure is easily generalized
to a chain of n planar rigid links, e.g used to model snake
robots as in [9]. In such systems, the group variable is the
position and orientation of the robot, and the configuration
space of shape variable is n— 1 dimensional. With 7 links, the
dimension of the system is 2n+ 1. An interesting problem for
the snake robot is to learn a turning maneuver by changing
the friction coefficients with respect to the surface.

B. Observation process

For the purposes of learning and control design, the state
(x,%) is assumed to be unknown. The following continuous-
time observation model is assumed for the sensor:

dz(t) = h(x(t),x(t)) dr + ow dW (¢) 4)

where Z(t) € R denotes the observation at time 7, W(z) is a
standard Wiener process, and ow > 0 is the noise strength.
The observation function /2 : R* — R is known and is assumed
to be C'.

C. Optimal control problem

The control objective is to turn the head body B clockwise
by actuating the control input u(¢). An uncontrolled periodic
torque input (I) is assumed to be present. The control
objective is modeled as a discounted infinite-horizon optimal
control problem:

f(xO,X()) =min E |:/
u(-) 0

subject to the dynamic constraints (3a). Here, y > 0 is the
discount rate and the cost function

oo

e "é(x(t),x(t),u(t))dr (5)

= 1
5()C,x, I/l) = f(X,x,M) + 278“2
with € > 0 as the control penalty parameter. The minimum
is over all control inputs u(-) adapted to the filtration 25 :=

6(Z(s);s € [0,7]) generated by the observation process.



Limit Cycle Solution (x, x)
---- Approximation (r=0.56)

Fig. 2. The limit cycle solution for the shape dynamics (x(),%(7)) together
with its limit cycle approximation (see (2I)).

The particular form of the cost function is assumed to
maximize the rate of change, in the clockwise direction, in
the group variable ¢. Indeed, by (BB), f(x,%,u) = ¢. Therefore,
minimizing the cost leads to net negative change in the head
orientation ¢(¢). This corresponds to the clockwise rotation.

III. SOLUTION APPROACH

Solving the optimal control problem (5) is challenging
because of the following reasons:

1) The function g in the dynamic model is not known.
For coupled rigid bodies, the model is nonlinear and
complicated due to the details of the geometry, models
of contact forces with the environment, uncertain
parameters, etc.

2) The problem is partially observed, i.e., the state (x,x)
is not known. As the number of links grow, the state
can be very high dimensional.

3) The explicit form of the function f which captures the
relationship between shape and group dynamics is not
known.

These challenges are tackled by the following three-step
procedure:

A. Step 1. Phase modeling

Consider the second-order equation (3a) for the shape
variable x under the open-loop periodic input 7(¢) given
by (I). The following assumption is made concerning its
solution:

Assumption A1 Under periodic forcing 7(¢) as in (T)), the
solution to (3a) is given by an isolated asymptotically
stable periodic orbit (limit cycle) with period 27/ .

Denote the set of points on limit cycle as &2 C R?. The
limit cycle solution is parameterized by a phase coordinate
0 € [0,27) in the sense that there exists an invertible map
Xic:10,27) — &7 such that Xpc(6(7)) = (x(¢),%(¢)), where
6(t) = (ot +6(0)) mod 27 (see Figure [2). The definition of
the phase variable is extended locally in a small neighborhood
of the limit cycle by using the notion of isochrons [8].

In terms of the phase variable, the first-order dynamics of
the group variable is expressed as

q(t) = F(Xec(0(1)),ut)) =: £(0(1),u(r)) (6)
and the observation model (@) is expressed as
dZ(t) = h(6(r))dt + ow dW (r) @)

where 1(0) := h(Xpc(0)).
The optimal control problem (3) in terms of the phase
variable is given by

(@) = min E [ /0 e T e(B(1), u(r)) dr @®)
e
where ¢(6,u) = f(6,u) + 5-u* and the minimum is over all
control inputs u(-) adapted to the filtration Z;.

In contrast to the original problem, the new problem is
described by a single phase variable. With u(¢) = 0, the
dynamics is described by the oscillator model 8(¢) = (ot +
6p) mod 2. Now, in the presence of (small) control input,
the dynamics need to be augmented by additional terms due
to control:

d0(1) = (wn+eg(6(1)),u(r)) dr ©)

B. Step 2. Feedback particle filter (FPF)

A feedback particle filter is constructed to obtain the
posterior distribution of the phase variable 6(r) given the
noisy observations (7). The filter is comprised of N stochastic
processes {0(¢) : 1 <i < N}, where the value 6(¢) € [0,27]
is the state of the i-th particle (oscillator) at time ¢. The
dynamics evolves according to

do'(t) = w'dt +£g(0'(t)),u(t))de

%
where @' ~ Unif([wy — 8,0y + 8]) is the frequency of
the i-th oscillator, the initial condition 6'(0) = 6} ~
Unif([0,27]), and h(r) := E[h(0(r))|25]. The notation o
denotes Stratonovich integration. In the numerical imple-
mentation, /(t) ~ N"'YN  h(6(r)).

Based on the FPF theory, the gain function K(8,¢) is the
solution of the Poisson equation, expressed in the weak-form
as

E[K(6(1),)¥'(6:)| 2] = E[(h(6,) = )y (6(1))| 2] (1)

for all test functions W where Y’ is the derivative. In the nu-
merical implementation, the gain function is approximated by
choosing y from the Fourier basis functions {sin(0),cos(0)}
and approximating the expectations with empirical distribution
of the oscillators {67(¢) : 1 <i < N}. The detailed numerical
algorithm to approximate the gain function appears in [23].

Remark 2: There are two manners in which control input
u(t) affects the dynamics of the filter state 6'(¢):
1) The O(¢) term eg(-,u(z)) which models the effect of
dynamics;



2) The FPF update term which models the effect of sensor
measurements. This is because the control input u(r)
affects the state x(¢) (see (3a)) which in turn affects
the sensor measurements Z(z) (see (@)).

C. Step 3. Q-learning

Using the FPF, following the approach presented in [14],
express the partially observed optimal control problem as
a fully observed optimal control problem in terms of oscillator
states O™) (1) = (0'(1),...,0"(r)) according to

u(-)

subject to (T0), where the cost (™ (6™, u) := LYV | ¢(6,u)
and the minimization is over all control laws adapted to the
filtration 27 := {6(s); s <t,1<i < N}. The problem is now
fully observed because the states of oscillators §() (t) are
known.

The analogue of the Q-function for continuous-time sys-
tems is the Hamiltonian function:

HM (W) u)y =cM (6™ u)+ 2,0M (6W)

T™ (0™ = min E { / T e ™M OM () u)yde|  (12)
0

13)

where 2, is the generator for (I0) defined such that
GEVM (O (1)) = 2N (6™ (1)).
The dynamic programming principle for the discounted
problem implies:
min HM (6™ 1) = ys™) (™))

u

(14)

Substituting this into the definition of the Hamiltonian (T3)
yields the fixed-point equation:

Zu HM(0™) = (™ (6™),u) = HM (6™ ) (15)

where HM (6™)) := min, H™ (0™ 4). This is the fixed-
point equation that appears in the Q-learning.

Linear function approximation: Learning the exact Hamil-
tonian (Q-function) is an infinite-dimensional problem. There-
fore, we set the goal to learn an approximation. For this
purpose, consider a fixed set of M real-valued functions
{(j)(’”)(e,u) M_,. The Hamiltonian is approximated as the
linear combination of the basis functions as follows:

A

N

AN (W) u;w :i wl 9i7u 16

(0% uiw) = 7 Yow 00" (16)
where w € RM is a vector of parameters (or weights) and
o= (01, 0@, ... 0MN)T is a vector of basis functions. Thus,
the infinite-dimensional problem of learning the Hamiltonian
function is converted into the problem of learning the M-
dimensional weight vector w.

Define the point-wise Bellman error according to

£OM uw) =2, 4" (0™ w)
+ (™M (O™, 1) =AM (0™, u;w))

M (9™ 1) := min, AM(OW, u;w).

a7

where ﬂ

The following learning algorithm is proposed to find the
optimal parameters

d 1

V0= —Ea(t)Vw@’”‘z(G(N) (0),u(t);w(r))
where a(t) is the time-varying learning gain and u(t) is
chosen to explore the state-action space. For convergence
analysis of the Q-learning algorithm see [24], [19], [5], [16].

(18)

Given a learned weight vector w*, the learned optimal
control policy is given by:

a* (0™, w*) = argmin A™ (6W) v;w*) (19)

D. Information structure

In order to implement the algorithm, one requires knowl-
edge of the following models:
1) A model for g(6,u) which represents the reduced order
model of dynamics as these affect the phase variable;
2) A model for h(0) which represents the reduced order
model of the sensor.

These models are needed to implement the coupled oscillator
FPF (10). It is noted that both the models are described with
respect to the phase variable 0.

In the simulation results presented next, we assume
knowledge of i(6) and ignore the term £g(6(t),u(t)) in
the FPF. The formal reason for ignoring the term is that it
is small (O(¢g)) compared to other terms, O(1) frequency @y
and the update term. Although, we assume knowledge of the
sensor model 4(0) for this paper, a learning algorithm could
also be implemented to learn the sensor model in an online
manner. This is the subject of future work.

In numerical implementation, the generator &, is approxi-
mated as

o™ (1 1 ar) — Y (6™ (1))

At
where Ar is the discrete time step-size in the numerical
algorithm and {0(r)}Y | is the state of the oscillators at
time 7.

The reward function f(0(¢),u(r)) in the cost function is
approximated as

5|

2,8N (0™ (1)) ~

Sy AU A —q(t)

F0(),ut)) = glo) ~ LEEI=0E)

where ¢(t) is available through the (black-box) simulator.
The overall algorithm appears in Table [1}

E. Approximate formula for optimal control input

Assuming the knowledge of the explicit form of the
function f(6,u), a semi-analytic approach is presented in [20]
to derive the following approximate formula for optimal
control:

* eC y i
u(t) = N ZCOS(G ) (20)
i=1
where C is a constant that depends on the parameters of the
model. The formula was shown to be valid in the asymptotic
limit as € — 0. The control policy is implemented in [20]



Algorithm 1 Q-learning for Optimal Contol of Two-body
System
Input: Parameters in Table[|and a simulator for (3a)-(3b)-#)
Output: Optimal control policy &*(6™);w).

1: Initialize particles {6]}Y ; ~ Unif([0,27]);

2: Initialize weight vector wy according to (22).

3: for k=0totr/Ar—1 do

4. Choose control input u; according to (23));

5

6

Input u; to the simulator and output Z; and g
Update particles in FPF
K(6;)

2
Ow

61 = 6f + ©'Ar + (Ziy1 —Z—

7: Compute the cost ¢ = i(qkﬂ —qr)+ éuﬁ
8: Compute

AN L) p (v AN) (N

28" = =@ (0w A" (8:wy))
9: Compute Bellman error
~ (N N

b = %H,E )+ Y(ck —H(N)(G,EN),uk; wi))
10: Update weight vector wyi | = wy — At0y. 8V,
11: end for

12: Output the learned control policy @*(8™);w;) from (T9).

where it is numerically shown to lead to clockwise rotation
of the head body.

The formula (20) serves as a baseline for comparison with
the results of the numerical implementation of the Q-learning
algorithm.

IV. NUMERICS

In this section, we present the numerical results. These
results illustrate the i) phase modeling; ii) the performance
of coupled oscillator FPF; and iii) the performance of Q-
learning algorithm. The numerical results are based on the
use of Algorithm [T} The simulation parameters are tabulated
in Table [l

A. Simulator

The simulator takes the control input u(¢) and outputs
the shape variable x(r), the head orientation ¢(z), and the
observation Z(¢) according to (3d), (3b), and (@) respectively.
The explicit form of the simulated dynamics (3a)-(3b) are as
follows:

1 . A1A2
. |
* A Sln(x)Al +A;

L+ Acos(x)

L +h+2A cos(x)x
where the parameters are defined in Table [I]; cf., [20] for
additional details on modeling. The resulting state trajectory
x(t) and head orientation ¢(¢), under periodic open-loop
torque 7(¢) (see (T)), are depicted in Figure[3(a)| It is observed
that without control input, the head orientation oscillates,
without any net change.

%+ (A1 +A2) (t(t) — Kx — bx)

TABLE I
PARAMETERS FOR NUMERICAL SIMULATION

Parameter Description Numerical value
Two-body system
m; Mass of body B; m=1 m= %
I; Moment of inertia of body B; L = % L= %
d; Span of body B; dy=1 d) =1
Some auxiliary parameters
m= e f=l+md}, A =mdd
Ai(x) =L+ 2Acos(x), A(x) =I5 —A%cos?(x)
Dynamic model
) Input torque frequency 1.0
T Input torque amplitude 1.0
K Torsional spring coefficient 2.0
b Viscous friction coefficient 0.1
Sensor & FPF
At Discrete time step-size 0.01
ow Noise process std. dev. 0.1
N Number of particles 1000
9] Heterogeneous parameter 0.12
Q-learning
tr simulation terminal time 10027/ wy
Y Discount rate 1.0
£ Control penalty parameter 1.0
o7 Learning gain 0.5
A Control exploration amplitude 0.25

The observation signal y(¢) := (Z(¢ + At) — Z(t)) /At, with
the step-size Ar = 0.01 is depicted in Figure [3(b)l The
observation model is taken as A(x,x) = x. The noise strength
o, =0.1.

B. Phase modeling

The limit cycle solution for the shape dynamics is
depicted in Figure 2| The map X;c(0(t)) = (x(¢),%(t)) is
approximated as

X1c(0) =~ (rsin(8),rapcos(0)) 21

where r = (0.56 is numerically determined.

C. Coupled oscillator feedback particle filter

The trajectories of N = 1000 particles in the FPF algo-
rithm are depicted in Figure The initial conditions
6} are drawn from a uniform distribution in [0,27]. The initial
transients due to the initial condition converge rapidly. The
true phase variable 6(r) is also depicted as a solid line. It
is observed that the ensemble of particles synchronize and
track the true phase.

The true state (x(¢),%(¢)), along with the empirical distri-
bution of the particles, at two time instants, are shown in
Figure fi(b)] The particles are positioned on the approximate
limit cycle map (ZI). These results show that the filter is able
to track the true state on the limit cycle accurately.

D. Q-learning

To approximate the Hamiltonian function in (I6), the basis
functions are selected to be the product of Fourier basis
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Summary of numerical results for the two-body system simulator: (a) Trajectory for the shape variable x(¢) and the the head orientation g(¢) under
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Summary of estimation results: (a) Time trace of N = 1000 particles in the FPF algorithm compared with the true phase 6(¢); (b) Empirical

distribution of the particles compared with the true state (x,x) at two time instants #; and 7,.

functions of 6 and polynomial functions of u as follows:
¢(6,u) = (cos(0),sin(),cos(26),sin(26),
ucos(8),usin(8),ucos(20),usin(28), %MZ)T
(9

T
The weight vector wy = (w(()l), W )) is initialized ran-
domly as follows:

w(()m) ~ Unif([-1,1]) form=1,...,8

o) (22)
ws) ~ Unif([0.9,1.1])

The reason for choosing the particular initialization for w(()9)is
to avoid numerical issues due to large control values whenever
w(()9) is small.

The exploration control input u(f) to be used in (I8)
is chosen as a combination of sinusoidal functions with

irrationally related frequencies as follows:
u(t) = Asin(wot) +Asin(wayt) (23)

The rationale for doing so is to explore the state-action
space [1].

The L*-norm of the point-wise Bellman error (T7)), over
the j-th period is denoted as e; and defined to be:
1T

£OM @) @ @

e j = =
T Ji-nr
The average of the error e; and its variance over fifty Monte-
Carlo runs are depicted in Figure [5(a)} It is observed that the
Bellman error drops by over three orders of magnitude. This
suggests that the algorithm is able to learn the Hamiltonian
function that solves the dynamic programming fixed-point
equation (T3).
The learned optimal control policy (I9) in terms of the
selected basis functions is given by:

1Y (wG) o w(©) .
~xn(N). _ . w i w i
a (oW w) = N,; o) cos(0') + ) sin(0")
1YW ; w® ;
-3 ; WO cos(20') + ¥ sin(26")

(25)
The traces of the four components of the weight vector
WO (), w© (2),w (t),w®(r)} are depicted in Figure
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Summary of control results: (a) Comparison of the control input learned from Q-learning 23 and the semi-analytical optimal control input 20);

(b) Time trace of the orientation with no control input (u(r) = 0), semi-analytical control input, and the learned control input.

It is observed that the components (weights) converge quickly.
Also, the component w®®)(r), which corresponds to cos(-),
dominates while other components converge to zero.

Figure [6(a)] depicts the learned optimal control policy as
a function of time. Also depicted is a comparison with the
semi-analytical solution (20). It is observed that the learned
optimal control coincides with the analytical formula in terms
of both phase and amplitude.

Figure depicts the resulting head orientation with 1)
the learned optimal control policy (23); ii) the analytical
control law (20); and iii) with no control input (u(¢) = 0). It
is observed that the learned optimal control input induces
nearly the same net change in the head orientation as the
analytical control law. That is, the Q-learning algorithm is
able to learn the optimal control policy to rotate the head
body clockwise.

V. CONCLUSIONS AND FUTURE WORK

We introduced a coupled oscillator-based framework for
learning the optimal control of periodic locomotory gaits.
The framework does not require knowledge of the explicit

form of the dynamic models or observation of the full state.
The framework was illustrated on the problem of turning the
two-body planar system. One direction for future work, is to
apply the framework to more complicated models such as
coupled kinematic chains and continuum models. Another
direction of future work is to consider more advanced tasks
such as turning to a certain angle or locating a target.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming,
volume 5. Athena Scientific Belmont, MA, 1996.

[2] J. Blair and T. Iwasaki. Optimal gaits for mechanical rectifier systems.
IEEE Transactions on Automatic Control, 56(1):59-71, 2011.

[3] R. W. Brockett. Pattern generation and the control of nonlinear systems.

IEEE transactions on automatic control, 48(10):1699-1711, 2003.

E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and

response dynamics of neural oscillator populations. Neural computation,

16(4):673-715, 2004.

[5] E. Even-Dar and Y. Mansour. Learning rates for q-learning. Journal
of Machine Learning Research, 5(Dec):1-25, 2003.

[6] R. L. Hatton and H. Choset. Generating gaits for snake robots:
annealed chain fitting and keyframe wave extraction. Autonomous
Robots, 28(3):271-281, 2010.

[71 P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer. The
dynamics of legged locomotion: Models, analyses, and challenges.
SIAM review, 48(2):207-304, 2006.

[4

=



[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

E. M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.
S. D. Kelly and R. M. Murray. Geometric phases and robotic
locomotion. Journal of Robotic Systems, 12(6):417-431, 1995.

P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration
for multibody systems. In 1990 American Control Conference, pages
2440-2444. 1IEEE, 1990.

P. S. Krishnaprasad. Motion control and coupled oscillators. In Proc.
Symposium on Motion, Control, and Geometry, 1997.

J. E. Marsden, R. Montgomery, and T. S. Ratiu. Reduction, symmetry,
and phases in mechanics, volume 436. American Mathematical Soc.,
1990.

P. G. Mehta and S. P. Meyn. Q-learning and pontryagin’s minimum
principle. In Proceedings of the 48h IEEE Conference on Decision and
Control (CDC) held jointly with 2009 28th Chinese Control Conference,
pages 3598-3605. IEEE, 2009.

P. G. Mehta and S. P. Meyn. A feedback particle filter-based approach
to optimal control with partial observations. In 52nd IEEE conference
on decision and control, pages 3121-3127. 1EEE, 2013.

J. B Melli, C. W. Rowley, and D. S. Rufat. Motion planning for an
articulated body in a perfect planar fluid. SIAM Journal on applied
dynamical systems, 5(4):650-669, 2006.

E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. In Advances in Neural
Information Processing Systems, pages 451-459, 2011.

R. M. Murray and S. S. Sastry. Nonholonomic motion planning:
Steering using sinusoids. IEEE transactions on Automatic Control,
38(5):700-716, 1993.

J. Ostrowski, A. Lewis, R. Murray, and J. Burdick. Nonholonomic
mechanics and locomotion: the snakeboard example. In Proceedings of
the 1994 IEEE International Conference on Robotics and Automation,
pages 2391-2397. IEEE, 1994.

C. Szepesvari. The asymptotic convergence-rate of g-learning. In
Advances in Neural Information Processing Systems, pages 1064-1070,
1998.

A. Taghvaei, S. A. Hutchinson, and P. G. Mehta. A coupled oscillators-
based control architecture for locomotory gaits. In Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 3487—
3492. 1IEEE, 2014.

A. K. Tilton, E. T. Hsiao-Wecksler, and P. G. Mehta. Filtering with
rhythms: Application to estimation of gait cycle. In 2012 American
Control Conference (ACC), pages 3433-3438. IEEE, 2012.

A. K. Tilton and P. G. Mehta. Control with rhythms: A cpg architecture
for pumping a swing. In American Control Conference (ACC), 2014,
pages 584-589. IEEE, 2014.

A. K. Tilton, P. G. Mehta, and S. P. Meyn. Multi-dimensional feedback
particle filter for coupled oscillators. In 2013 American Control
Conference, pages 2415-2421. IEEE, 2013.

J. N. Tsitsiklis and B. Van Roy. Optimal stopping of markov processes:
Hilbert space theory, approximation algorithms, and an application to
pricing high-dimensional financial derivatives. /[EEE Transactions on
Automatic Control, 44(10):1840-1851, 1999.

D. Vrabie, M. Abu-Khalaf, F. L. Lewis, and Y. Wang. Continuous-time
adp for linear systems with partially unknown dynamics. In 2007 IEEE
International Symposium on Approximate Dynamic Programming and
Reinforcement Learning, pages 247-253. IEEE, 2007.

G. C. Walsh and S. S. Sastry. On reorienting linked rigid bodies using
internal motions. IEEE Transactions on Robotics and Automation,
11(1):139-146, 1995.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis,
King’s College, Cambridge, 1989.



	I INTRODUCTION
	II Problem Formulation
	II-A Modeling and dynamics
	II-B Observation process
	II-C Optimal control problem

	III Solution Approach
	III-A Step 1. Phase modeling
	III-B Step 2. Feedback particle filter (FPF)
	III-C Step 3. Q-learning 
	III-D Information structure
	III-E Approximate formula for optimal control input

	IV Numerics
	IV-A Simulator
	IV-B Phase modeling
	IV-C Coupled oscillator feedback particle filter
	IV-D Q-learning

	V Conclusions and Future Work
	References

