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Abstract

In this paper, we studied the finite time anti-synchronization of master-

slave coupled complex-valued neural networks (CVNNs) with bounded asyn-

chronous time-varying delays. With the decomposing technique and the

generalized {ξ,∞}-norm, several criteria for ensuring the finite-time anti-

synchronization are obtained. The whole anti-synchronization process can

be divided into two parts: first, the norm of each error state component will

change from initial values to 1 in finite time, then from 1 to 0 in fixed time.

Therefore, the whole time is finite. Finally, one typical numerical example is

presented to demonstrate the correctness of our obtained results.
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1. Introduction

Neural networks have been widely studied in the last thirty years and

found a large number of applications tightly associated with their dynami-

cal behaviors in many fields, such as signal processing, pattern recognition,

optimization problems, and associative memories [1]-[4]. However, although

real-valued neural networks(RVNNs) have achieved great success in many ar-

eas, they likely perform worse in some physical related applications, such as

2D affine transformation. As an extension of RVNNs, complex-valued neural

networks(CVNNs) have complex-valued states, complex-valued connection

weights, and complex-valued activation functions, which make them more

complicated. By virtue of the characteristic of complex number, CVNNs can

be applied to many physical systems related with electromagnetic, quantum

waves, ultrasonic, light and so on. Moreover, CVNNs make it possible to deal

with the problems which simple RVNNs cannot solve. For example, as far as

we know, it is infeasible to solve the XOR problem with only one signle real-

valued neuron, but it can be solved with the complex-valued one[5]. Besides,

it is natural to deduce CVNNs to more complicated quaternion-valued neu-

ral networks (QVNNs). Therefore, many scholars are attracted to study the

dynamical behaviors and properties of CVNNs, see [11],[22]-[27],[29, 30, 33].

Synchronization (SYN), which is a special case of dynamical behaviors,

has been extensively studied in the recent past because of its significant role

in combinatorial optimization, image processing, secure communication [6]

and many other fields since it was proposed by Pecora and Carroll [7]. Under

the concept of “drive-response”, various kinds of SYN have been put forward

so far, such as generalized SYN [8], phase SYN [9], lag SYN [10] and so
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on. In fact, there is another interesting phenomenon in chaotic oscillators,

anti-synchronization (A-SYN), when A-SYN happens, the sum of two cor-

respond state vectors can converge to zero. It can be used in many fields.

For example, in communication system, the system’s security and secrecy

can be deeply strengthened by transforming from SYN and A-SYN periodi-

cally in the process of digital signal transmission [12]. Hence, further study

of A-SYN for dynamical systems is of high significance in both theory and

practice [13, 14, 15].

On the other hand, in physical realization, time delay is inevitable owing

to the time cost on amplifier switching and information transmission between

different nodes, and it can cause undesirable impact theoretically. Thus, syn-

chronization problem under time delay is also a hot research topic [16]-[21].

In [16, 17], the authors propose a new way to investigate the SYN of a class

of linearly coupled ordinary differential systems. In [18], the global exponen-

tial SYN of linearly coupled neural networks with impulsive disturbances is

solved by using differential inequality method. In [19], the exponential SYN

of memristor neural networks (MNN) with time-varying delays is proved

based on fuzzy theory, while [20] solves the exponential A-SYN of MRNN

with bounded delays by using differential inclusions and inequality technique.

For CVNN, the SYN problem is much more difficult to solve than that of

RVNN, and the biggest challenge is how to choose an appropriate activation

function [22]. According to Liouville’s theorem, any regular analytic func-

tion cannot be bounded unless it reduces to a constant. Thus, activation

functions in CVNNs cannot be bounded and analytic simultaneously. One

common technique is to decompose the complex-valued activation functions
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to its real and imaginary parts, as a result, the original CVNNs are sepa-

rated into double RVNNs, many results have been obtained by applying this

method, see [22]-[30]. In [24, 27], the authors investigate the µ-stability of

CVNNs with unbounded time-varying delays when f(z) can be expressed

as f(z) = fR(x, y) + if I(x, y), where z = x + iy. [26] considers the ex-

ponential stability problem for CVNN with time-varying delays, sufficient

criteria are obtained based on the matrix measure method and Halanay in-

equality method, and in [28], the exponential SYN and A-SYN problems of

complex-valued MNN with bounded delays are also solved with these two

mathematical tools. [29] investigates the exponential stability for CVNNs

with asynchronous time delays by decomposing and recasting an equivalent

RVNN, some sufficient conditions are given under three generalized norms.

[30] studies the A-SYN of complex-valued MNN with bounded and derivable

time delays.

It should be noted that, the SYN problems presented above are under

the concept of classic asymptotic SYN. In fact, based on the convergence

time, synchronization can be divided into another three types: finite time

SYN, fixed time SYN [31]. Compared with asymptotic SYN, they are more

important and easier to be realized and verified in real situations. In [32], the

authors reveal the essence of finite time and fixed time convergence by dis-

cussing the typical function ṫ(V ) = µ−1(V ). In [33], the authors investigate

the problem of finite time SYN for CVNNs with mixed delays and uncer-

tain perturbations. In [34], the finite time A-SYN of MNN with stochastic

perturbations is addressed by using differential inclusions and linear matrix

inequalities (LMI). In [12, 35], the authors investigate the finite time A-SYN
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of RVNNs with bounded and unbounded time-varying delays by dividing the

whole process into two procedures. In [36], the finite time A-SYN problem

for the master-slave neural networks with bounded time delays is considered

by combining two inequalities with integral inequality skills. As far as we

know, there are few works devoted to the finite time A-SYN problem for

CVNNs with time delays.

Motivated by the aforementioned discussions, in this paper, we aim to

solve the finite time A-SYN of CVNNs with asynchronous time-varying de-

lays with generalized {ξ,∞}-norm, Lyapunov functional, and inequality tech-

nique. The considered master-slave CVNNs are decomposed into their real

and imaginary parts respectively. By designing a proper control law, some

criteria are given for the finite time A-SYN process.

In the follwing, we give the organization structure of the rest part of this

paper. In Section 2, we give the model description and decomposition, apart

from this, some definitions, assumptions, and notations used later are also

presented. In Section 3, we give some criteria for the finite time A-SYN for

our model, and the proof . In Section 4, one detailed numerical simulation

is given to demonstrate the correctness of our obtained results. Finally, we

summarize this paper and discuss about our future works in Section 5.

Notations Throughout this paper, Rm×n and Cm×n denote any m × n

dimensional real-valued and complex-valued matrices, where C is the set of

complex numbers. For any vector α = (αj)1×n, j = 1, · · · , n, denote αT as

the transposition of α, and denote |α| = (|αj|)1×n.
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2. Model description

At first, we present some matrices to show the property of the dot product

operation between any two complex-valued numbers a and b, where a =

aR + iaI , b = bR + ibI .

Define a 2-dimensional matrix

M =


 1 i

i −1


 = MR + iM I , (1)

where

MR =


 1 0

0 −1


 , M I =


 0 1

1 0


 .

Definition 1. For any two complex numbers a and b, denote

â = (aR, aI)T , b̂ = (bR, bI)T , (2)

then

a · b = âTMb̂ = âTMRb̂+ iâTM I b̂ (3)

i.e.,

âb = (âTMRb̂, âTM I b̂)T = (aRbR − aIbI , aRbI + aIbR)T (4)

In the following paper, this property is utilized to reduce the redundancy

of the calculation and representation.

Consider the following CVNN with asynchronous time-varying delays:

ẋj(t) = −djxj(t) +

n∑

k=1

ajkfk(xk(t)) +

n∑

k=1

bjkgk(xk(t− τjk(t))) +Hj (5)
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where xj = xR
j + ixI

j ∈ C is the state of j-th neuron, j = 1, · · · , n; D =

diag(d1, · · · , dn) ∈ R
n×n with dj > 0 is the feedback self-connection weight

matrix; fj(·) : C → C and gj(·) : C → C are complex-valued activation

functions without and with time delays; matrices A = (ajk) ∈ Cn×n and

B = (bjk) ∈ Cn×n represent the complex-valued connection weight matrices

without and with time delays; τjk(t) is bounded, asynchronous, and time-

varying with 0 ≤ τjk(t) ≤ τ ; Hj ∈ C is the j-th external input. The initial

functions of (5) are given by

xj(θ) = Φj(θ) = ΦR
j (θ) + iΦI

j (θ), for θ ∈ [−τ, 0], j = 1, · · · , n

For convenience, we denote

f ℓ
k(x; t) = f ℓ

k(xk(t)), gℓkτjk(x; t) = gℓk(xk(t− τjk(t))), (6)

then according to rule (3), CVNN (5) can be decomposed into two equivalent

RVNNs:

ẋR
j (t) = −djx

R
j (t) +

n∑

k=1

âTjkM
Rf̂k(x; t) +

n∑

k=1

b̂TjkM
Rĝkτjk(x; t) +HR

j , (7)

ẋI
j (t) = −djx

I
j (t) +

n∑

k=1

âTjkM
I f̂k(x; t) +

n∑

k=1

b̂TjkM
I ĝkτjk(x; t) +HI

j . (8)

Let (5) be the master system, then the slave system is defined as

ẏj(t) = −djyj(t) +
n∑

k=1

ajkfk(yk(t)) +
n∑

k=1

bjkgk(yk(t− τjk(t))) +Hj + uj(t)

(9)

with the initial state

yj(θ) = Ψj(θ) = ΨR
j (θ) + iΨI

j (θ), for θ ∈ [−τ, 0], j = 1, · · · , n
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The control scheme uj(t) ∈ C, j = 1, · · · , n is designed to be only de-

pending on the system state at the present time and will be defined later.

Similarly, CVNN (9) can be decomposed into two equivalent RVNNs:

ẏRj (t) = −djy
R
j (t) +

n∑

k=1

âTjkM
Rf̂k(y; t) +

n∑

k=1

b̂TjkM
Rĝkτjk(y; t) +HR

j + uR
j (t),

(10)

ẏIj (t) = −djy
I
j (t) +

n∑

k=1

âTjkM
I f̂k(y; t) +

n∑

k=1

b̂TjkM
I ĝkτjk(y; t) +HI

j + uI
j(t).

(11)

Denote ej(t) = xj(t) + yj(t) be the j-th component of A-SYN error be-

tween networks (5) and (9), then one can get

ėj(t) =− djej(t) +
n∑

k=1

ajk

(
fk(x; t) + fk(y; t)

)

+
n∑

k=1

bjk

(
gkτjk(x; t) + gkτjk(y; t))

)
+ 2Hj + uj(t), j = 1, · · · , n

(12)

Similarly, denote eRj (t) = xR
j (t) + yRj (t) and eIj (t) = xI

j (t) + yIj (t), then

system (12) can also be decomposed as

ėRj (t) =− dje
R
j (t) +

n∑

k=1

âTjkM
R

(
f̂k(x; t) + f̂k(y; t)

)

+

n∑

k=1

b̂TjkM
R

(
ĝkτjk(x; t) + ĝkτjk(y; t)

)
+ 2HR

j + uR
j (t), (13)

ėIj (t) =− dje
I
j (t) +

n∑

k=1

âTjkM
I

(
f̂k(x; t) + f̂k(y; t)

)

+
n∑

k=1

b̂TjkM
I

(
ĝkτjk(x; t) + ĝkτjk(y; t)

)
+ 2HI

j + uI
j(t). (14)
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As for the measurement of the A-SYN error, we choose the following

generalized {ξ,∞}-norm in this paper.

Definition 2. ([37]) For any vector v(t) = (v1(t), v2(t), · · · , vn(t))
T ∈ R

n×1,

its {ξ,∞}-norm is defined as:

‖v(t)‖{ξ,∞} = max{|ξ−1
j vj(t)|}, (15)

where ξ = (ξ1, · · · , ξn)
T with ξj > 0, j = 1, · · · , n. Obviously, when ξ =

(1, · · · , 1)T , this {ξ,∞}-norm is the conventional ∞-norm.

Now, we give some assumptions on the activation functions.

Assumption 1. Assume fk(xk) and gk(xk)can be decomposed into real and

imaginary part as fk(xk) = fR
k (x

R
k , x

I
k)+if I

k (x
R
k , x

I
k) and gk(xk) = gRk (x

R
k , x

I
k)+

igIk(x
R
k , x

I
k), f

ℓ
k and gℓk are all odd functions, for ℓ = R, I, i.e.,

f ℓ
k(x

R
k , x

I
k) = −f ℓ

k(−xR
k ,−xI

k), gℓk(x
R
k , x

I
k) = −gℓk(−xR

k ,−xI
k). (16)

Assumption 2. Suppose that f ℓ
k and gℓk are Lipschitz-continuous with respect

to (w.r.t.) each component, i.e., there exist positive constants λℓ1ℓ2
k , γℓ1ℓ2

k ,

ℓ1, ℓ2 = R, I, such that

0 ≤
∂f ℓ1

k (xR
k , x

I
k)

∂xℓ2
k

≤ λℓ1ℓ2
k ,

∣∣∣∣
∂gℓ1k (xR

k , x
I
k)

∂xℓ2
k

∣∣∣∣ ≤ γℓ1ℓ2
k (17)

Using these constants λℓ1ℓ2
k , κℓ1ℓ2

k , we can define four matrices which will

be used in the following analysis:

Λk =


 λRR

k λRI
k

λIR
k λII

k


 ,Γk =


 γRR

k γRI
k

γIR
k γII

k




Λ̃k =


 λIR

k λII
k

λRR
k λRI

k


 , Γ̃k =


 γIR

k γII
k

γRR
k γRI

k


 (18)
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3. Main results

In this section, we prove that the error systems (13) and (14) can achieve

A-SYN in finite time.

At first, let us define the external controller uj(t) = uR
j (t) + iuI

j (t) as

uR
j (t) = −sign(eRj (t))

[
µj|e

R
j (t)|+ ρj |e

R
j (t)|

β + ηj
]

(19)

uI
j(t) = −sign(eIj (t))

[
µ̃j|e

I
j (t)|+ ρ̃j |e

I
j (t)|

β + η̃j
]

(20)

where 0 < β < 1, µj, ρj, ηj , µ̃j , ρ̃j , η̃j will be defined in the next theorem.

Theorem 1. Assume Assumptions 1 and 2 hold, error systems (13) and

(14) will achieve A-SYN in finite time if there exists a vector

ξ = (ξ1, ξ2, · · · , ξn, φ1, φ2, · · · , φn)
T > 0 (21)

such that for any j = 1, 2, · · · , n, the following inequalities hold:

µj >− dj + ({aRjj}
+, {−aIjj}

+)(λRR
j , λIR

j )T + ξ−1
j φj(|a

R
jj|, |a

I
jj|)(λ

RI
j , λII

j )T

+ ξ−1
j

∑

k 6=j

|âTjk|Λk(ξk, φk)
T + ξ−1

j

n∑

k=1

|̂bTjk|Γk(ξk, φk)
T , (22)

µ̃j >− dj + φ−1
j ξj(|a

I
jj|, |a

R
jj|)(λ

RR
j , λIR

j )T + ({aIjj}
+, {aRjj}

+)(λRI
j , λII

j )T

+ φ−1
j

∑

k 6=j

|âTjk|Λ̃k(ξk, φk)
T + φ−1

j

n∑

k=1

|̂bTjk|Γ̃k(ξk, φk)
T , (23)

ρj >

(
− dj + ({aRjj}

+, {−aIjj}
+)(λRR

j , λIR
j )T

+ (φ−1
j ξj)

1
β−1 (|aRjj|, |a

I
jj|)(λ

RI
j , λII

j )T

+ ξ
1

β−1

j

∑

k 6=j

|âTjk|Λk(ξ
1

1−β

k , φ
1

1−β

k )T − µj

)+

, (24)
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ρ̃j >

(
− dj + ({aIjj}

+, {aRjj}
+)(λRI

j , λII
j )T

+ (ξ−1
j φj)

1
β−1 (|aIjj|, |a

R
jj|)(λ

RR
j , λIR

j )T

+ φ
1

β−1

j

∑

k 6=j

|âTjk|Λ̃k(ξ
1

1−β

k , φ
1

1−β

k )T − µ̃j

)+

, (25)

ηj ≥
n∑

k=1

|̂bTjk|Γk(1, 1)
T + 2|HR

j |, (26)

η̃j ≥
n∑

k=1

|̂bTjk|Γ̃k(1, 1)
T + 2|HI

j |, (27)

where a+ = max(0, a). There are two important time points, where T1 de-

notes the first time the {ξ,∞}-norm of the errors in (13) and (14) have all

crossed over 1, T2 denotes the first time the error values all become 0. Exact

values of T1 and T2 will be given in the proof.

Proof: For real-valued systems (13) and (14), if sup
−τ≤s≤0

(
max

j=1,··· ,n
|eRj (s)|

)
≤ 1

and sup
−τ≤s≤0

(
max

j=1,··· ,n
|eIj (s)|

)
≤ 1, then we can deduce that T1 = 0. Otherwise,

by conditions (22) and (23), we can choose a constant ǫ > 0 small enough so

that

(ǫ− dj − µj) + ({aRjj}
+, {−aIjj}

+)(λRR
j , λIR

j )T + ξ−1
j φj(|a

R
jj|, |a

I
jj|)(λ

RI
j , λII

j )T

+ ξ−1
j

∑

k 6=j

|âTjk|Λk(ξk, φk)
T + ξ−1

j eǫτ
n∑

k=1

|̂bTjk|Γk(ξk, φk)
T < 0, (28)

(ǫ− dj − µ̃j) + φ−1
j ξj(|a

I
jj|, |a

R
jj|)(λ

RR
j , λIR

j )T + ({aIjj}
+, {aRjj}

+)(λRI
j , λII

j )T

+ φ−1
j

∑

k 6=j

|âTjk|Λ̃k(ξk, φk)
T + φ−1

j eǫτ
n∑

k=1

|̂bTjk|Γ̃k(ξk, φk)
T < 0. (29)

For all t ≥ 0, denote

E1(t) = (eR1 , e
R
2 , · · · , e

R
n , e

I
1, e

I
2, · · · , e

I
n)

T

11



with

‖E1(t)‖{ξ,∞} = max
{

max
j=1,··· ,n

{
|ξ−1

j eRj (t)|
}
, max
j=1,··· ,n

{
|φ−1

j eIj (t)|
}}

, (30)

and

M(E1(t)) = sup
t−τ≤s≤t

(
eǫs‖E1(s)‖{ξ,∞}

)
. (31)

Obviously, eǫt|ξ−1
j eRj (t)| ≤ M(E1(t)), and eǫt|φ−1

j eIj (t)| ≤ M(E1(t)).

In the following, we only discuss the condition eǫt|ξ−1
j eRj (t)| ≤ M(E1(t)).

The other case can also be discussed with the same process.

(I) If eǫt|ξ−1
j eRj (t)| < M(E1(t)) for all j = 1, · · · , n, we know that there

must be a constant δ1 > 0 with which eǫs|ξ−1
j eRj (s)| < M(E1(t)) andM(E1(s)

)
≤

M(E1(t)) for s ∈ (t, t + δ1).

(II) If there exist an index j0 and a time point t0 ≥ 0 such that

eǫt0 |ξ−1

j0
eR
j0
(t0)| = M(E1(t0)), (32)

then one gets

ξ
j0

dM(E1(t))

dt

∣∣∣∣
t=t0

=
deǫt|eR

j0
(t)|

dt

∣∣∣∣
t=t0

=ǫeǫt0 |eR
j0
|+ eǫt0sign(eR

j0
) ·

{
− d

j0
eR
j0
+

n∑

k=1

âT
j0k

MR

(
f̂k(x; t0) + f̂k(y; t0)

)

+
n∑

k=1

b̂T
j0k

MR

(
ĝkτ

j0k
(x; t0) + ĝkτ

j0k
(y; t0)

)
+ 2HR

j0

− sign(eR
j0
)

(
µ
j0
|eR

j0
|+ ρ

j0
|eR

j0
|β + η

j0

)}

≤eǫt0
{
(ǫ− d

j0
)|eR

j0
(t0)|+ sign(eR

j0
)âT

j0j0
MR

(
f̂
j0
(x; t0) + f̂

j0
(y; t0)

)

+
∑

k 6=j0

|â
j0k

|T |f̂k(x; t0) + f̂k(y; t0)|

12



+
n∑

k=1

|̂b
j0k

|T |ĝkτ
j0k

(x; t0) + ĝkτ
j0k

(y; t0)|+ 2|HR

j0
|

− µ
j0
|eR

j0
(t0)| − ρ

j0
|eR

j0
(t0)|

β
− η

j0

}

≤eǫt0
{
(ǫ− d

j0
)|eR

j0
(t0)|+ ({aR

j0j0
}+, {−aI

j0j0
}+)(λRR

j0
, λIR

j0
)T |eR

j0
(t0)|

+ (|aR
j0j0

|, |aI
j0j0

|)(λRI

j0
, λII

j0
)T |eI

j0
(t0)|+

∑

k 6=j0

|âT
j0k

|Λk|êk(t0)|

+
n∑

k=1

|̂bT
j0k

|Γk|êkτ
j0k

(t0)| − µ
j0
|eR

j0
(t0)|

}

=ξ
j0
(ǫ− d

j0
)eǫt0ξ−1

j0
|eR

j0
(t0)|

+ ξ
j0
({aR

j0j0
}+, {−aI

j0j0
}+)(λRR

j0
, λIR

j0
)T eǫt0ξ−1

j0
|eR

j0
(t0)|

+ φ
j0
(|aR

j0j0
|, |aI

j0j0
|)(λRI

j0
, λII

j0
)T eǫt0φ−1

j0
|eI

j0
(t0)|

+
∑

k 6=j0

|âT
j0k

|Λkdiag(ξk, φk)e
ǫt0(ξ−1

k |êRk (t0)|, φ
−1
k |êIk(t0)|)

T

+ e
ǫτ

j0k
(t0)

n∑

k=1

|̂bT
j0k

|Γkdiag(ξk, φk)e
ǫ(t0−τ

j0k
(t0))

·

(ξ−1
k |êRkτ

j0k
(t0)|, φ

−1
k |êIkτ

j0k
(t0)|)

T − ξ
j0
µ
j0
eǫt0ξ−1

j0
|eR

j0
(t0)|

≤ξ
j0

{
(ǫ− d

j0
− µ

j0
) + ({aR

j0j0
}+, {−aI

j0j0
}+)(λRR

j0
, λIR

j0
)T

+ ξ−1

j0
φ
j0
(|aR

j0j0
|, |aI

j0j0
|)(λRI

j0
, λII

j0
)T + ξ−1

j0

∑

k 6=j0

|âT
j0k

|Λk(ξk, φk)
T

+ ξ−1

j0
eǫτ

n∑

k=1

|̂bT
j0k

|Γk(ξk, φk)
T

}
‖eǫt0E1(t0)‖{ξ,+∞}

≤0

Otherwise, eǫt|φ−1
j eIj (t)| ≤ M(E1(t)), there also exists two cases, and the

derivation procedure is similar to the content above, so it is omitted here.
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Therefore, for all t ≥ 0, M(E1(t)) is non-increasing and M(E1(t)) ≤

M(E1(0)), which means that

min
j=1,··· ,n

{ξ−1
j }eǫ(t−τ) sup

t−τ≤s≤t

(
max

j=1,··· ,n
|eRj (s)|

)
≤ M(E1(t)) ≤ M(E1(0))

i.e.,

sup
t−τ≤s≤t

(
max

j=1,··· ,n
|eRj (s)|

)
≤

max
j=1,··· ,n

{ξj}M(E1(0))

eǫ(t−τ)

Thus, as time t increases, sup
t−τ≤s≤t

(
max

j=1,··· ,n
|eRj (s)|

)
would be less than 1.

We denote TR
1 as the first time point such that

max
j=1,··· ,n

{ξj}M(E1(0))

e
ǫ(TR

1 −τ)
= 1, and

sup
t−τ≤s≤t

(
max

j=1,··· ,n
|eRj (s)|

)
≤ 1 for t ≥ TR

1 , here

TR
1 = ǫ−1 ln

(
max

j=1,··· ,n
{ξj}M(E1(0))

)
+ τ. (33)

Similarly, we denote the first time point that
max

j=1,··· ,n
{φj}M(E1(0))

e
ǫ(TI

1 −τ)
= 1 as T I

1 ,

and sup
t−τ≤s≤t

(
max

j=1,··· ,n
|eIj (s)|

)
≤ 1 for t ≥ T I

1 , here

T I
1 = ǫ−1 ln

(
max

j=1,··· ,n
{φj}M(E1(0))

)
+ τ. (34)

Denote T1 = max(TR
1 , T I

1 ), the absolute values of real-valued error sys-

tems (13) and (14) are all no more than than 1 for t ≥ T1. It completes the

first part of the proof.

In the following, we prove the values of error systems will flow from 1 to

0 no more than time T2.

Pick two small constants ρ∗, ρ⋆ > 0 such that for all j = 1, · · · , n,

0 < ρ∗ < ξ−1
j

{
ρj −

(
− dj + ({aRjj}

+, {−aIjj}
+)(λRR

j , λIR
j )T

14



+ (φ−1
j ξj)

1
β−1 (|aRjj|, |a

I
jj|)(λ

RI
j , λII

j )T (35)

+ ξ
1

β−1

j

∑

k 6=j

|âTjk|Λk(ξ
1

1−β

k , φ
1

1−β

k )T − µj

)+}
(36)

and

0 < ρ⋆ < φ−1
j

{
ρ̃j −

(
− dj + ({aIjj}

+, {aRjj}
+)(λRI

j , λII
j )T

+ (ξ−1
j φj)

1
β−1 (|aIjj|, |a

R
jj|)(λ

RR
j , λIR

j )T (37)

+ φ
1

β−1

j

∑

k 6=j

|âTjk|Λ̃k(ξ
1

1−β

k , φ
1

1−β

k )T − µ̃j

)+}
(38)

Denote

ρ = min(ρ∗, ρ⋆). (39)

For all t ≥ T1, denote

E2(t) =

(
eR1 (t)

1−β

1− β
, · · · ,

eRn (t)
1−β

1− β
,
eI1(t)

1−β

1− β
, · · · ,

eIn(t)
1−β

1− β

)T

with

‖E2(t)‖{ξ,∞} = max
{

max
j=1,··· ,n

{
ξ−1
j

|eRj (t)|
1−β

1− β

}
, max
j=1,··· ,n

{
φ−1
j

|eIj(t)|
1−β

1− β

}}

(40)

and

V (E2(t)) = sup
t−τ≤s≤t

(
‖E2(s)‖{ξ,∞} + ρs

)
(41)

Obviously, ξ−1
j

|eRj (t)|1−β

1−β
+ ρt ≤ V (E2(t)) and φ−1

j

|eIj (t)|
1−β

1−β
+ ρt ≤ V (E2(t)).

Similar to the procedure in the first part, we will first discuss the case

that ξ−1
j

|eRj (t)|1−β

1−β
+ ρt ≤ V (E2(t)), j = 1, 2, · · · , n.

15



(I) If ξ−1
j

|eRj (t)|1−β

1−β
+ ρt < V (E2(t)), there must be a constant δ2 > 0 such

that ξ−1
j

|eRj (s)|1−β

1−β
+ρs < V (E2(t)), and V (E2(s)) ≤ V (E2(t)) for s ∈ (t, t+δ2).

(II) If there exist an index j1 and a time point t1 ≥ T1 such that

ξ−1

j1

|eR
j1
(t1)|1−β

1−β
+ ρt1 = V (E2(t1)), then we have

ξ
j1

dV (E2(t))

dt

∣∣∣∣
t=t1

=
d

dt

( |eR
j1
(t)|1−β

1− β
+ ξ

j1
ρt

)∣∣∣∣
t=t1

≤|eR
j1
(t1)|

−β

{
− d

j1
|eR

j1
(t1)|+ ({aR

j1j1
}+, {−aI

j1j1
}+)(λRR

j1
, λIR

j1
)T |eR

j1
(t1)|

+ (|aR
j1j1

|, |aI
j1j1

|)(λRI

j1
, λII

j1
)T |eI

j1
(t1)|+

∑

k 6=j1

|âT
j1k

|Λk|êk(t1)|

+
n∑

k=1

|̂bT
j1k

|Γk|êkτ
j1k

(t1)|+ 2|HR

j1
| − µ

j1
|eR

j1
(t1)| − ρ

j1
|eR

j1
(t1)|

β
− ηR

j1

}

+ ξ
j1
ρ (42)

From (40), we have

ξ−1
k

|eRk (t1)|
1−β

1− β
≤ ξ−1

j1

|eR
j1
(t1)|

1−β

1− β
,

i.e.,

ξ
1

β−1

k |eRk (t1)| ≤ ξ
1

β−1

j1
|eR

j1
(t1)|, k = 1, · · · , n (43)

Moreover, note that sup
T1−τ≤s≤T1

(
max

j=1,··· ,n
|eRj (s)|

)
≤ 1, and as long as

sup
t−τ≤s≤t

(
max

j=1,··· ,n
|eRj (s)|

)
≤ 1, then

|eRj (t− τjk(t))| ≤ 1, j, k = 1, · · · , n (44)

Similarly, we can also get that

φ
1

β−1

k |eIk(t1)| ≤ ξ
1

β−1

j1
|eR

j1
(t1)|. (45)
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Therefore, combining with (42)-(45), one can get

ξ
j1

dV (E2(t))

dt

∣∣∣∣
t=t1

≤|eR
j1
(t1)|

−β

{
− d

j1
|eR

j1
(t1)|+ ({aR

j1j1
}+, {−aI

j1j1
}+)(λRR

j1
, λIR

j1
)T |eR

j1
(t1)|

+ (|aR
j1j1

|, |aI
j1j1

|)(λRI

j1
, λII

j1
)T (φ−1

j1
ξ
j1
)

1
β−1 |eR

j1
(t1)|

+
∑

k 6=j1

|âT
j1k

|Λkdiag(ξ
1

1−β

k , φ
1

1−β

k )

(
ξ

1
β−1

k |eRk (t1)|, φ
1

β−1

k |eIk(t1)|

)T

+
n∑

k=1

|̂bT
j1k

|Γk(1, 1)
T + 2|HR

j1
| − µ

j1
|eR

j1
(t1)| − ρ

j1
|eR

j1
(t1)|

β
− ηR

j1

}

+ ξ
j1
ρ

≤|eR
j1
(t1)|

−β

{(
− d

j1
+ ({aR

j1j1
}+, {−aI

j1j1
}+)(λRR

j1
, λIR

j1
)T

+ (φ−1

j1
ξ
j1
)

1
β−1 (|aR

j1j1
|, |aI

j1j1
|)(λRI

j1
, λII

j1
)T

+ ξ
1

β−1

j1

∑

k 6=j1

|âT
j1k

|Λk(ξ
1

1−β

k , φ
1

1−β

k )T − µ
j1

)
|eR

j1
(t1)|

+

( n∑

k=1

|̂bT
j1k

|Γk(1, 1)
T + 2|HR

j1
| − ηR

j1

)}
+

(
− ρ

j1
+ ξ

j1
ρ

)

≤

(
− d

j1
+ ({aR

j1j1
}+, {−aI

j1j1
}+)(λRR

j1
, λIR

j1
)T

+ (φ−1

j1
ξ
j1
)

1
β−1 (|aR

j1j1
|, |aI

j1j1
|)(λRI

j1
, λII

j1
)T

+ ξ
1

β−1

j1

∑

k 6=j1

|âT
j1k

|Λk(ξ
1

1−β

k , φ
1

1−β

k )T − µ
j1

)+

+

(
− ρ

j1
+ ξ

j1
ρ

)
< 0

which implies that there must exist σ2 > 0 such that ξ−1
j

|eRj (s)|1−β

1−β
+ ρs <

ξ−1

j1

|eR
j1
(t1)|1−β

1−β
+ ρt1 holds for all s ∈ (t1, t1 + σ2).

For the other condition φ−1
j

|eIj (t)|
1−β

1−β
+ ρt ≤ V (E2(t)), it can be analysed

17



in the same way, so it is omitted here.

Thus, we conclude that

min
j=1,··· ,n

{ξ−1
j } max

j=1,··· ,n

|eRj (t)|
1−β

1− β
+ ρt ≤ V (E2(t)) ≤ V (E2(T1))

min
j=1,··· ,n

{φ−1
j } max

j=1,··· ,n

|eIj (t)|
1−β

1− β
+ ρt ≤ V (E2(t)) ≤ V (E2(T1))

i.e.,

max
j=1,··· ,n

|eRj (t)|
1−β ≤ (1− β) max

j=1,··· ,n
ξj ·

(
sup

T1−τ≤s≤T1

‖E2(s)‖{ξ,∞} − ρ(t− T1)
)

max
j=1,··· ,n

|eIj (t)|
1−β ≤ (1− β) max

j=1,··· ,n
φj ·

(
sup

T1−τ≤s≤T1

‖E2(s)‖{ξ,∞} − ρ(t− T1)
)

It is obvious that max
j=1,··· ,n

|eRj (t)| and max
j=1,··· ,n

|eIj (t)| will decrease to 0, denote

T2 as the first time they all become 0, then max
j=1,··· ,n

|eRj (T2)|
1−β = 0 and

max
j=1,··· ,n

|eIj(T2)|
1−β = 0. Thus we obtain

T2 =
1

min{ξ} · ρ(1 − β)
+ T1 (46)

here min{ξ} = min{ min
j=1,··· ,n

{ξj}, min
j=1,··· ,n

{φj}}, which means that, the absolute

value of real-valued error systems will flow from 1 to 0 no longer than T2. It

completes the proof.

Remark 1. If we do not consider the effect of sign, i.e., the condition for f

in (17) is replaced by the Lipschitz condition, i.e.,
∣∣∣∣
∂f ℓ1

k (xR
k , x

I
k)

∂xℓ2
k

∣∣∣∣ ≤ λℓ1ℓ2
k , (47)

then the conditions (22)-(25) in Theorem 1 are replaced by the following:

µj > −dj + ξ−1
j

( n∑

k=1

|âTjk|Λk(ξk, φk)
T +

n∑

k=1

|̂bTjk|Γk(ξk, φk)
T
)

(48)
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µ̃j > −dj + φ−1
j

( n∑

k=1

|âTjk|Λ̃k(ξk, φk)
T +

n∑

k=1

|̂bTjk|Γ̃k(ξk, φk)
T
)

(49)

ρj > max
(
0,−dj + ξ

1
β−1

j

n∑

k=1

|âTjk|Λk(ξ
1

1−β

k , φ
1

1−β

k )T − µj

)
(50)

ρ̃j > max
(
0,−dj + φ

1
β−1

j

n∑

k=1

|âTjk|Λ̃k(ξ
1

1−β

k , φ
1

1−β

k )T − µ̃j

)
(51)

Remark 2. When ξ = (1, · · · , 1)T and the CVNN is RVNN, then it becomes

the case discussed in [12], so this paper can be regarded as a generalization

of the result in [12].

Remark 3. In fact, the problem can be solved without using the matrix rep-

resentation, but the advantage of the matrix method is that it can be easier to

be extended to higher dimension neural networks, such as quaternion-valued

neural networks [38].

Remark 4. SYN can also be solved by the same process as in this theorem,

and in some aspect, the process is easier than A-SYN, interested readers are

encouraged to complete the proof.

Remark 5. In this paper, we deal with the A-SYN by decomposing the CVNN

into RVNNs, in order to compensate the condition that the time-varying delay

is asynchronous. In fact, we can also solve this paper by regarding the CVNN

as a whole, but in this case, the time-varying delay should be restrict to be

the same, which will be considered in our following papers.

4. Numerical simulations

In this part, a numerical example is given to show the correctness of our

results.
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Consider a two-neuron master-slave CVNN described as follows:




ẋ1(t) = −d1x1(t) + a11f1(x1(t)) + a12f2(x2(t))

+b11g1(x1(t− τ11(t))) + b12g2(x2(t− τ12(t))) +H1

ẋ2(t) = −d2x2(t) + a21f1(x1(t)) + a22f2(x2(t))

+b21g1(x1(t− τ21(t))) + b22g2(x2(t− τ22(t))) +H2

ẏ1(t) = −d1y1(t) + a11f1(y1(t)) + a12f2(y2(t))

+b11g1(y1(t− τ11(t))) + b12g2(y2(t− τ12(t))) +H1 + u1

ẏ2(t) = −d2y2(t) + a21f1(y1(t)) + a22f2(y2(t))

+b21g1(y1(t− τ21(t))) + b22g2(y2(t− τ22(t))) +H2 + u2

(52)

where xj = xR
j + ixI

j , yj = yRj + iyIj , j = 1, 2, d1 = 0.5, d2 = 1,

A = (ajk)2×2 =


 1.2 + 0.2i 0.8 + 1.2i

1 + 1.5i 0.4 + 0.2i


 ,

B = (bjk)2×2 =


 0.2 + 1.2i 0.2 + 0.8i

1.5 + i 0.2 + 0.4i


 ,

fk(xk) =
1− exp(−xR

k − 2xI
k)

1 + exp(−xR
k − 2xI

k)
+ i

1− exp(−2xR
k − xI

k)

1 + exp(−2xR
k − xI

k)
,

gk(xk) =
|xR

k + xI
k + 1| − |xR

k + xI
k − 1|

2
+ i

|xR
k + xI

k + 1| − |xR
k + xI

k − 1|

2
,

τ11 =
et

1 + et
, τ12 =

et − 0.5

1 + et
, τ21 =

1

1 + | cos(10t)|
, τ22 =

1

1 + | sin(10t)|
,

obviously τjk(t) ≤ τ = 1 for j, k = 1, · · · , n,

H1 = 0.1 + 0.1i,

H2 = 0.2 + 0.2i,

Φ(θ) = (Φ1(θ),Φ2(θ))
T = (−1− 2i, 1.5− 1.5i)T , θ ∈ [−1, 0],

Ψ(θ) = (Ψ1(θ),Ψ2(θ))
T = (5 + 5.4i,−5.4− 3.5i)T , θ ∈ [−1, 0]
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Figure 1: Real part trajectories of error system (52) without control.

and with some simple calculations, we have

Λk =


 0.5 1

1 0.5


 , Λ̃k =


 1 0.5

0.5 1


 ,Γk = Γ̃k =


 1 1

1 1


 , k = 1, 2

Figures 1 and 2 show the trajectories of error system (52) without control,

as time increases, it is obvious that system cannot achieve anti-synchronization

even they are at the equilibrium point.

Then we choose ξ = (ξ1, ξ2, φ1, φ2)
T = (0.4, 0.8, 0.5, 0.6)T , β = 0.5, and

from calculations, inequalities (22)-(27) are:

µ1 > 14.675, µ̃1 > 11.9, µ2 > 7.531, µ̃2 > 10.008,

ρ1 > (12.681− µ1)
+ = 0, ρ̃1 > (8.244− µ̃1)

+ = 0,

ρ2 > (2.665− µ2)
+ = 0, ρ̃2 > (4.393− µ̃2)

+ = 0,

η1 ≥ 5, η̃1 ≥ 5, η2 ≥ 6.6, η̃2 ≥ 6.6
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Figure 2: Imaginary part trajectories of error system (52) without control.

as a result, the control scheme can be defined as follows,




uR
1 = −sign(eR1 (t))

[
18|eR1 (t)|+ 0.2|eR1 (t)|

0.5 + 5
]
,

uI
1 = −sign(eI1(t))

[
15|eI1(t)|+ 0.2|eI1(t)|

0.5 + 5
]
,

uR
2 = −sign(eR2 (t))

[
10|eR2 (t)|+ 0.4|eR2 (t)|

0.5 + 6.6
]
,

uI
2 = −sign(eI2(t))

[
12|eI2(t)|+ 0.4|eI2(t)|

0.5 + 6.6
]

(53)

Figures 3 and 4 show trajectories of error system (52) with above control,

we can see that error system reaches anti-synchronization in finite time.

In our proof part, we use the {ξ,∞}-norm as a measure, the defined error

function (30) will flow from initial value to 1 in finite time, then decrease to

0 in fixed time theoretically. Figure 5 shows the trajectories of {ξ,∞}-norm

errors under different random initial values. Actually, as we have discussed

in the proof process, the theoretical finite time T1 and T2 can be calculated

directly. Pick ǫ = 0.25, ρ = 0.4, which makes inequalities (28), (36), and
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Figure 3: Real part trajectories of error system (52) under control scheme (53).
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Figure 4: Imaginary part trajectories of error system (52) under control scheme (53).
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Figure 5: Imaginary part trajectories of error system (52) under control scheme (53).

(38) holds, from (33) and (34), we have

T1 = TR
1 = 0.25−1 ln(0.8 ∗ 10) + 1 = 9.318,

T2 =
1

0.4 · 0.4 · (1− 0.5)
+ T1 = 21.818

which means that system (52) will achieve finite time A-SYN no longer than

T2. However, we find that there is some distance between the theoretical

result and the practical one. That is to say, the intensity of control (53) is

too high and can be smaller while system (52) can still achieve finite time A-

SYN. Figures 6 and 7 show the trajectories under the following control with

parameters µ1 = 0.18, µ̃1 = 0.15, ρ1 = ρ̃1 = 0.02, µ2 = 0.1, µ̃2 = 0.12, ρ1 =

ρ̃1 = 0.04 and other parameters are not changed.
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Figure 6: Real part trajectories of error system (52) under weaker control parameter.
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Figure 7: Imaginary part trajectories of error system (52) under weaker control parameter.
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5. Conclusion

In this paper, the A-SYN problem for CVNNs with bounded and asyn-

chronous time delays is investigated. By decomposing the CVNNs toto multi

equivalent RVNNs and utilizing the {ξ,∞}-norm, we give some sufficient cri-

teria for A-SYN. Finally, in numerical simulation part, we present an example

to show the validity of these obtained criteria. It is worth noting that, the

method using in this paper can be extended to solve both SYN and A-SYN

problem for higher dimensional neural networks, such as quaternion-valued

neural networks, the generalized norm also has some other choices, and we

can also solve the problem by regarding the CVNN as a whole rather than

decomposing it into several parts. These will be studied in our future work.
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