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Bearing-Only Consensus and Formation Control under Directed

Topologies

Arman Karimian and Roberto Tron

Abstract— We address the problems of bearing-only con-
sensus and formation control, where each agent can only
measure the relative bearings of its neighbors and relative
distances are not available. We provide stability results for
the Filippov solutions of two gradient-descent laws from non-
smooth Lyapunov functions in the context of differential in-
clusion. For the consensus and formation control problems
with undirected sensing topologies, we prove finite-time and
asymptotic convergence of the proposed non-smooth gradient
flows. For the directed consensus problem, we prove asymptotic
convergence using a different non-smooth Lyapunov function
given that the sensing graph has a globally reachable node.
Finally, For the directed formation control problem we prove
asymptotic convergence for directed cycles and directed acyclic
graphs and also introduce a new notion of bearing persistence
which guarantees convergence to the desired bearings.

I. INTRODUCTION

Distributed and cooperative control of multi-agent systems

using relative bearing measurements has gained a growing

interest in recent years [3], [12], [13], [17]. Using bearing

measurements, which are relative directions between agents,

as opposed to relative positions is motivated by the use of

vision-based sensors. Such sensors provide precise measure-

ments of direction between agents while the corresponding

distances are generally not known exactly.

The first problem addressed in this paper is the multi-robot

rendezvous problem, which is the task of steering robots

such that they eventually converge to the same location.

For robots with single integrator dynamics, this problem is

essentially the same as the consensus problem and has been

extensively studied in the literature when difference between

the states are available to agents through communication [11].

However, this task is not fully explored for the bearings-only

case [20].

The bearing-only formation control problem, whose goal

is to steer a group of agents to a set of desired relative

positions, is the second problem we address. In the literature,

two general solutions for this task has been presented in

[19] and [14] for single integrator dynamics. The controller

given in [19] uses an ad hoc protocol based on projector

matrices while [14] is based on minimizing a positive definite

function through gradient descent. Both of these approaches,

however, are limited to undirected graphs, i.e. agents should

sense their relative bearings in a bidirectional manner. In

[18], a controller is presented for directed graphs, but relies

on relative positions and the stability of the controller is not
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proved. In [13], the controller in [19] was extended to the

Leader-First Follower structures.

The notion of bearing persistence, as was introduced in

[18], ensures that the desired formation is achievable in

directed interaction topologies. In addition, the notion of

infinitesimal bearing rigidity (or simply rigidity) [19] is key

in guaranteeing that for a given set of bearing measurements

between a group of agents, a unique class of solutions exist

which only differ by a global translation, rotation and scaling

of the agents’ positions. While the second notion has been

a subject of interest in the past years [1], [8] , bearing

persistence is fairly new and needs more attention.

The inherent discontinuous nature of bearing measure-

ments yields differential equations with discontinuous right-

hand side and their proof of stability usually requires non-

smooth Lyapunov functions. We present stability results

in the more general context of differential inclusion for

consensus and formation control problem using bearing

measurements only.

Paper motivation. For the consensus problem, in [20] a

proof of stability was presented for undirected graphs, how-

ever, proof of finite-time convergence was lacking. In [4],

a controller with bearings were proposed with finite-time

convergence, however, it was limited to one dimensional

space. For the formation control problem, the existing results

for directed graphs are very limited and also the definition

of bearing persistence given in [18] is based on a controller

that requires relative positions and is not compatible with a

bearing-only controller.

Paper contributions. In this paper, we focus on agents

with single integrator dynamics and assume that the agents

have agreed on a common reference frame. Furthermore,

we presume that there are no constraints on the field of

view of agents and their sensors are omni-directional. Under

these assumptions, for the consensus problem we extend the

controller in [4] to higher dimensions and to directed graphs.

For undirected graphs, we prove that convergence happens

in finite time. For the directed graphs, we only establish

asymptotic stability and leave finite time convergence as

a conjecture. For the formation control problem, we prove

that the controller in [14] stabilizes directed acyclic graphs

and also directed cycle graphs. We present a new definition

for bearing persistence and also provide a counter example

for the conjecture made in in [18] on stability of the given

controller.
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II. NOTATION AND PRELIMINARIES

A. General notation

We denote the dimension of workspace by d. The cardinal-

ity of a set S is given by |S| and its convex hull and convex

closure is given by co(S) and co(S). The euclidean norm is

denoted by ‖.‖ and the Kronecker product is denoted by ⊗.

The d−dimensional open and close ball centered at c with

radius r are denoted as Bd(c, r) and B̄d(c, r) respectively.

We denote the identity matrix by Id ∈ R
d×d and 1d ∈ R

d

denotes the column vector of all ones. The stack(.) and

diag(.) operators are used to stack column vectors vertically

into a bigger column vector and square matrices diagonally

into a bigger square matrix. A projection matrix P(v) for a

vector v ∈ R
d is defined by:

P(v) , Id −
vvT

‖v‖2 , (1)

and is symmetric and positive semidefinite with a single

zero eigenvalue that corresponds to the eigenvector v.

B. Graph Theory and Formations

A (directed) graph G = (V , E) is given by a set of vertices

V = {1, . . . , n} connected by directional edges given by the

set E ⊆ V × V . An undirected graph is a graph where for

every edge (i, j) ∈ E the opposite edge (j, i) is also in E . The

complement of E is given by Ē , {(j, i) : (i, j) ∈ E}. The

set of neighbors of a vertex v is given by N+
v and N−

v , where

the former contains the vertices to which an outgoing edge

from v exists and the later contains the vertices with ingoing

edges to v. For an undirected graph, these two sets are equal

and denoted as Nv. A weighted graph G = (V , E ,A) is a

graph with positive weights aij ∈ R associated to every edge

(i, j) in E such that aij = aji if (j, i) is also in E , and the

adjacency matrix A = [aij ] ∈ R
n×n holds all the weights

such that weight of edges not in E is zero. The degree matrix

∆ = diag(ai) ∈ R
n×n is a diagonal matrix with entries equal

to the sum of the rows of A, i.e., ai =
∑

j∈V aij .
An orientation of a graph G = (V , E) is given by Gσ =

(V , Eσ) with |Eσ| = m such that every edge e ∈ E only

appears in one direction in Eσ = {ek}mk=1 in some arbitrary

ordering. The Oriented Incidence matrix H = [hve] ∈
{±1, 0}n×m is such that for every ek = (i, j) ∈ Eσ we have

hik = 1 and hjk = −1 and zero otherwise. The Directed

Oriented Incidence matrix is given by H+ = [gve] ∈
{±1, 0}n×m where

gik =











1 ek = (i, j) ∈ E and ek ∈ Eσ
−1 (i, j) ∈ E and ek = (j, i) ∈ Eσ
0 otherwise.

(2)

If the graph is undirected we have H+ = H. The Laplacian

matrix is given by L , ∆ − A = H+ diag(w1, . . . , wm)H
where wk = max(aij , aji) for ek = (i, j) ∈ Eσ . In this

paper, we make the standing assumption that graphs are

free of self-loops (i.e. (i, i) /∈ E , ∀i ∈ V), and weights are

nonnegative.

A formation F = (G,x) is a pairing of the vertices of G
with the vector x = stack(x1, . . . ,xn) ∈ R

nd where vertex v
is assigned to xv ∈ R

d for all v ∈ V . For an edge (i, j) ∈ Eσ ,

the corresponding bearing measurement uij ∈ R
d is defined

by:

uij ,







xj − xi

dij
dij 6= 0

0 dij = 0
(3)

with dij , ‖xj − xi‖ being the Euclidean distance between

vertices i and j.

C. Formation Equivalence and Bearing Rigidity

Two formations F = (G,x) and F̃ = (G, x̃) are:

• Identical if x = x̃.

• Congruent if x = x̃+ 1n ⊗ t for some t ∈ R
d.

• Similar if x = sx̃+ 1n⊗ t for some s > 0 and t ∈ R
d.

• Equivalent if uij = ũij for every (i, j) ∈ E .

A framework F is said to be (infinitesimally bearing) rigid

if every framework F̃ that is equivalent to F is also similar

to F . Intuitively, any two rigid frameworks with the same

underlying graphs G and equal bearing measurements must

have a similar shape up to a translation and a scaling factor.

III. BEARING-ONLY CONSENSUS

Linear consensus problems in networks with fixed undi-

rected topologies reach consensus on a common state by

minimizing the Laplacian potential which is the sum of

squared differences between the states of neighboring agents

[11]. In formation consensus application, for a formation

F with a connected and undirected graph G = (V , E), the

Laplacian potential is defined as:

φ(x) =
1

2

∑

{(i,j),(j,i)}⊆E

‖xj − xi‖2 =
1

2
xTLx (4)

with L = L ⊗ Id being the inflated Laplacian matrix with

constant unit weights for edges in E . The potential function

(4) is obtained by summing the smooth edge potentials

φ{i,j}(xi,xj) =
1
2d

2
ij over all edges. By setting the velocity

of each agent to negative of the derivative of φ with respect

to its position, we get:

ẋi = − ∂φ

∂xi
=

∑

j∈Ni

xj − xi (5)

or equivalently ẋ = −Lx. Since L is a constant and positive

semi-definite matrix, the agents converge exponentially to

their centroid and the rate of convergence is lower-bounded

by the algebraic connectivity of G. Moreover, the centroid

does not change at all times and agents converge to the

centroid of their initial formation. However, this controller

requires every agent to know its relative position with respect

to all its neighbors, i.e. ẋi =
∑

j∈Ni
dijuij .

In this section we will show that only knowing the relative

bearing measurements uij is enough for reaching consensus



in finite time. We will prove that for a directed graph,

consensus is reached by the controller:

ẋi =
∑

i∈N+

i

uij , (6)

if the graph has a globally reachable node. We first begin with

undirected graphs as a special case, then we will discuss the

general case of directed graphs.

A. Undirected graphs

Consider the convex and non-smooth edge potential func-

tion ϕ{i,j}(xi,xj) = dij , summed over all edges in E :

ϕ(x) =
∑

{(i,j),(j,i)}⊆E

ϕ{i,j} (7)

By setting the velocity of each of the single-integrator agents

to the opposite of the gradient of (7), we obtain the following

controller:

ẋi = − ∂ϕ

∂xi
=

∑

j∈Ni

uij (8)

Let wk = 1
dk

if dk = ‖xjk − xik‖ is not zero and wk = 0
otherwise, for every ek = (ik, jk) ∈ Eσ . Using variable

weights wk over edges, we define the wighted laplacian

matrix as L̆ , H diag({wk}mk=1)HT and L̆ , L̆ ⊗ Id =
H diag({wkId}mk=1)H

T where H , H ⊗ Id. Hence, the

potential function in (7) can be written as:

ϕ = xTL̆x (9)

and controller in (8) is given by:

ẋ = −∂ϕ
∂x

= −L̆x, (10)

or also as ẋ = Hu. However, ϕ{i,j} is not differentiable

when xi = xj . Consequently, ϕ is not differentiable when-

ever the distance between any pair of agents connected by

an edge reaches zero. In such circumstances, we pick the

zero vector as a sub-gradient of ϕ{i,j} (which is always non-

negative), as uij was defined in (3). This sudden change

in magnitude of uij will make the right hand side of (10)

discontinuous.

Therefore, we resort to solutions in the Filippov sense

in terms of differential inclusion [5] and use non-smooth

analysis to prove stability. Consider the differential equation

with discontinuous right hand side:

ẋ = X (x) (11)

We consider solutions in the form of differential inclusion

ẋ ∈ K[X ](x), where K : Rdn → 2R
dn

is a set-valued map

evaluated around x excluding any set S of measure zero:

K[X ](x) =
⋂

δ>0

⋂

µ(S)=0

co
(

X
(

Bdn(x, δ) \ S
)

)

. (12)

where µ(.) is the Lebesgue measure. This yields X (x) if

X is continuous at x or convexification of the limits of X
about points where X is discontinuous. Also, for a locally

Lipschitz and regular function f : R
dn → R, the Clarke

generalized gradient is defined as:

Df(x) = co
(

lim
q→+∞

∂

∂x
f(xq) | xq → x,xq /∈ Ωf

)

(13)

where Ωf is the set of points where f is not differentiable,

and the set-valued Lie derivative of f is given by:

L̃X f(x) =
{

ℓ ∈ R | ∃v ∈ K[X ](x) s.t.

ζTv = ℓ, ∀ζ ∈ Df(x)
} (14)

which can possibly be empty. Now, we introduce the

LaSalle Invariance Principle for discontinuous systems:

Theorem 1 (LaSalle Invariance Principle [2]): Let f :
R
d 7→ R be a locally Lipschitz and regular function. Let

x0 ∈ S ⊂ R
d, with S compact and strongly invariant for

(11). Assume that either max L̃X f(x) ≤ 0 or L̃X f(x) = ∅
for all x ∈ S. Let ZX ,f = {x ∈ R

d | 0 ∈ L̃X f(x)}. Then,

any solution x : [t0,+∞) 7→ R
d of (11) starting from x0

converges to the largest weakly invariant set M contained

in ZX ,f ∩ S. Moreover, if the set M is an affine collection

of points, then the limit of all solutions starting at x0 exists

and equals one of them.

Proposition 1 (Finite-time convergence [6]): Under the

same assumptions of Theorem 1, further assume that there

exists a neighborhood U of ZX ,f ∩ S in S such that

max L̃X f ≤ ǫ < 0 almost everywhere on U \ ZX ,f ∩ S.

Then, any solution x : [t0,+∞) 7→ R
d of (11) starting

at x0 ∈ S reaches ZX ,f ∩ S in finite time. Moreover, if

U = S, then the convergence time is upper bounded by

ǫ−1(f(x0)−minx∈S f(x)).
By setting X to be (10), we see that due to X being

bounded and upper semicontinuous with nonempty, compact,

and convex values, Filippov solutions of (10) exists. The

generalized gradient of ϕ{i,j} with respect to stack(xi,xj)
is given by:

Dϕ{i,j} =

{

{stack(−uij ,−uji)} dij 6= 0

{stack(ǫij ,−ǫij)}, ǫij ∈ B̄d(0, 1) dij = 0
(15)

Let N •
i denote neighbors of i whose distance to i is zero.

The set-valued map for ẋ = X (x) is then given by:

K[X ](x) = −Dϕ(x) = −L̆x⊕ I (16)

where ⊕ is the Minkowski sum and I is the set given by:

I = {stack(ǫ1, . . . , ǫn) | ∀i ∈ V , ǫi ∈ B̄d(0, |N •
i |),

ǫi +
∑

j∈N•

i

ǫj = 0} (17)

Let x̄ = 1
n

∑

i∈V xi be the centroid of the formation. We

define the disagreement vector for each agent by δi = xi−x̄.

This can be written in the aggregate form by δ = Jx, where

J = (In − 1
n
1n1

T

n) ⊗ Id is the matrix that removes the

component of x in the linear subspace J = span(1n ⊗ Id).
Now, we will show that the controller given in (10) is lower-

bounded by the constant ν defined by:

ν = min
x

‖L̆x‖
s.t. ‖Jx‖ = 1

(18)



Intuitively, ν depends on the topology of the graph, and

similar to algebraic connectivity and is greater than zero if

the graph is connected.

Lemma 1: ν > 0 if G is connected.

Proof: Notice that (18) can be rewritten as:

ν = min
y

‖L̆y‖

s.t. ‖y‖ = 1

y ∈ J⊥

Since y belongs to the intersection of a sphere with a

linear subspace, which is compact, the minimum exists.

Furthermore, ‖L̆y‖ is non-negative and therefore ν ≥ 0. We

will show that ν 6= 0 for connected graphs by contradiction.

If ν is zero and dij 6= 0 for all edges in E , then L̆ is

of rank n − 1 and y ∈ null(L̆) = span(1n ⊗ Id) = J .

Since we assumed y ∈ J ⊥, then y = 0, which violates

‖y‖ = 1. If there are coincident adjacent agents, given the

definition of a bearing vector in (3), the corresponding weight

of edges connecting them is zero as if those edges were

absent. Hence, the non-zero edges can be partitioned into

κ connected components (κ ≥ 1) with weighted laplacians

{L̆k}κk=1 such that L̆ = diag(L̆k) after some permutation

over nodes. Since each component is connected, L̆kyk equals

zero if and only if all nodes in component k are coincident,

where xk denotes the coordinates of nodes from component

k. Hence, L̆y is zero if and only if all nodes of each

component are coincident. Given that the nodes connected

by zero-weight edges are also coincident, and these edges

connect these components to form a connected graph, all the

nodes need to be coincident, violating the ‖y‖ = 1 condition.

For the next step, we will show finite-time stability of (10).

Theorem 2: max L̃Xϕ(x) = −‖L̆x‖2 ≤ −ν2
Proof: By definition, we have that Dϕ(x) = L̆x⊕ I

and K[X ](x) = −L̆x⊕ I. Based on (14), we will show the

intersection of inner products of members of Dϕ(x) with

K[X ](x) is either empty or equals −‖L̆x‖2. If none of the

nodes are intersecting, I is empty and we have L̃Xϕ(x) =
−‖L̆x‖2. If I is not empty, suppose exists α ∈ I and ℓ ∈
L̃Xϕ(x) such that:

⋂

β∈I

(L̆x+α)T(−L̆x+ β) = ℓ

Since for every β ∈ I, −β is also in I, then by picking

the values −α and α for β we get ℓ = −‖L̆x + α‖2 and

ℓ = −‖L̆x‖2 + ‖α‖2. By setting these two terms equal and

simplifying them, we have ‖α‖2 +αTL̆x = 0.

This is true only if α = 0, which means ℓ = −‖L̆x‖2, or

if α = −L̆x. This cannot happen since α ∈ I, its non-zero

entries only correspond to agents that are intersecting and

the non-zero entries of L̆x correspond to agents that are not

intersecting. Furthermore, since ‖L̆(x)x‖ = ‖L̆(βx)βx‖ for

any β > 0 the magnitude of L̆x does not change with scale

and the inequality ‖L̆(x)x‖ ≥ ν from Lemma 1 also stands

for ‖L̆(βx)βx‖. Hence, the proof is complete.

As was shown in Theorem 2, the set-valued Lie-derivative

of ϕ(x) is upper bounded by a negative constant, which

indicates that the convergence happens in finite-time, with

treach ≤ ϕ
(

x(t=0)
)

ν2 .

Lemma 2: The centroid of a formation under controller

(8) is invariant.

Proof: Let Ξκ = 1
n

∑n
i=1 x

(κ)
i be the average of

coordinates of all agents along dimension κ ≤ d. Since

K[X ](x) = −L̆x ⊕ I, for any χ ∈ K[X ](x) we have that
∑n

i=1 χi = 0. Therefore, DΞκ =
⋃

χ∈K[X ](x)

∑n
i=1 χ

(κ)
i =

0 for any κ ≤ d and the proof is complete.

From lemma 2 we can see that the agents converge to the

average value of their initial positions and this centroid is

invariant along time.

B. Directed graphs

In the previous section, we investigated consensus for undi-

rected graphs. In practice, however, agents may not sense the

bearing vectors of their neighbors in a bidirectional manner

or through communication. As we will show in this section,

having bidirectional sensing information is not necessary. We

model these interactions with a directed sensing graph G,

where (i, j) ∈ E means that i can measure uij . As we

showed earlier, for an undirected graph it suffices for the

graph to be connected in order to reach consensus. In this

section, we investigate the controller given in (8) but for the

directed graph G, which is:

ẋi =
∑

j∈N+

i

uij (19)

or as ẋ = H+u. We will show that it suffices for G to have

a globally reachable node, or equivalently, the complement

of G to have a directed spanning tree in order to reach

consensus.

Assumption 1: The directed graph G has a globally reach-

able node.

The intuition behind (19) is that each agent i has a private

convex objective function ϕi(x) =
∑

j∈N+

i
dij which tries to

minimize by moving in the direction of −∂ϕi

∂xi
. The minimizer

of ϕi with respect to xi is unique if {xj}j∈N+

i
are not

collinear and is called the geometric median or Fermat point

[9]. The geometric median is always inside the convex hull

of neighbors of i and hence i reaches consensus with its

neighbors if they all converge to the same point.

Assumption 1 ensures that all nodes converge to the

same point determined by the globally reachable node or

nodes. The globally reachable node can be unique, which is

referred to as leader, or belongs to a strongly connected

component of the graph in which case all the nodes in

the strongly connected component are reachable by other

nodes of the graph. Leader is stationary since it has no

neighbors and all other nodes converge to it. If there is more

than one globally reachable node, the convergence point

of the strongly connected component composed of globally

reachable nodes determines the final convergence point.



In the linear consensus problem with controller ẋi =
∑

j∈N+

i
xj − xi, the same assumption is sufficient for con-

sensus [16]. Instead of sensing graphs, the convention is to

use communication graphs where edges show the direction of

information flow and are essentially the the reverted version

of the sensing graphs by definition. For a communication

graph, the assumption 1 is equivalent to Ḡ having a directed

spanning tree.

First we show that the equilibrium points of (19) are in J .

Later, we introduce the maximum distance between any pair

of nodes as a Lyapunov function for (19) and prove stability.

Lemma 3: Under assumption 1, ẋ = 0 if and only if

consensus is reached.

Proof: If no two neighboring agents are colliding at

an instance, all edge weights are positive (wk > 0) and ẋ =
L̆+x where L̆+ = L+⊗Id and L+ is the weighted Laplacian

of a graph with a globally reachable node. L+ has rank n−1
[15, Lemma 2] with 1n being the eigenvector corresponding

to the single zero eigenvalue while other eigenvalues are

positive. Therefore, null(L̆+) = J and ẋ is zero whenever

x ∈ J which means that agents are in consensus. If there

are some coincident neighbors in formation F = (G,x), say

xp = xq for q ∈ N •
p , since the weight of edges connecting

coinciding agents is zero we can assume those edges (i.e.

(p, q)) are removed. We group such nodes p and all q ∈ N •
p

and all r ∈ N •
q and so on recursively into sets {Qi}n

′

i=1 with

n′ < n. We introduce a new formation F ′ = (G′,x′) with

n′ vertices where node i is connected to j in G′ if exists at

least a vertex in Qi connected to a vertex in Qj in G. Since

connectivity is maintained in this transformation, G′ also has

a globally reachable node. We set x′
i = xq for any q ∈ Qi

and ẋ′
i =

∑

q∈Qi
ẋq . Since nodes of G′ are not coincident,

ẋ′ 6= 0 which yields ẋ 6= 0.

Now, we will show global stability of controller (19).

Theorem 3: Controller (19) achieves consensus under as-

sumption 1.

Proof: Take the non-smooth Lyapunov function

V (x) = maxp,q∈V ‖xp − xq‖ to be maximum euclidean

distance between the nodes of G. Since V (x) = 0 means

all nodes are coincident, x must belong to the subspace J .

Now we only need to show that L̃XV (x) < 0. Let p and

q be the only two nodes with maximum distance dpq . Let

epq =
xq−xp

‖xq−xp‖
be the unit vector pointing to q from p.

Hence, ∂V
∂xp

= −epq and ∂V
∂xq

= epq while other derivatives

are zero. Unless either p or q is the leader, both nodes

have neighbors. For any k ∈ Np, we can write xq − xp =
xq−xk+xk−xp, or equivalently dpqepq = dpkupk+dkqekq
with dpk, dkq < dpq . Taking a dot product of both sides with

epq , we get eTpqupk > 0. Therefore, since ẋp =
∑

k∈Np
upk

we get eTpqẋp > 0. Same argument is valid for q if q is not the

leader. Hence, L̃XV (x) = eTpq(ẋq − ẋp) < 0. Now suppose

there is more than a single pair of nodes with maximum

distance between them, probably with some coinciding nodes.

In this case, ΩV is the set of all positions such that there

exists more than one pair of nodes with maximum distance

and DV (x) is the convex hull of limits of derivatives of

V (x) as x is approached from outside of ΩV . Therefore, for

any pair {p, q} with maximum distance we have y ∈ DV
such that yp = −yq = −epq and other entries are zero, and

DV is the convex hull of such vectors. Moreover, from the

earlier argument we have ẋTy < 0. If none of the pairs with

maximum distance are coincident with any of their neighbors,

we have K[X ](x)p = ẋp for any node p from the pairs and

consequently ẋTζ < 0 for any ζ ∈ DV . Therefore, L̃XV (x)
is the intersection of negative values which is either negative

or empty. In the case that a node from a pair is coincident

with a neighbor, say p is coincident with p′ ∈ Np from {p, q},

then {p′, q} is also a pair with maximum distance. We have

K[X ](x)p = ẋp + ǫ for ǫ ∈ B̄d(0, 1) and K[X ](x)p′ = ẋp′ .

In this case L̃XV becomes the intersection over the inner

product of members of two sets, and since for the pair {p′, q}
the Lie derivative is negative, the intersection is again either

negative or empty. Therefore, from Theorem 1 asymptotic

stability of consensus follows.

Theorem 3 only establishes asymptotic stability. However,

from observation it can be seen the convergence happens in

finite time. A framework with a directed graph G satisfying

assumption 1 and with dynamics given in (19) can be seen

as a cascade system. Partitioning G into strongly connected

components, each component is seen as a subsystem. Since

there is path between every subsystem to the component

containing the globally reachable node(s), subsystems form a

directed acyclic graph with a single leaf. Therefore, the first

step in proving finite-time convergence of (19) is to show

finite-time convergence in strongly connected graphs. Here,

we present a conjectured upper bound on the convergence

time in strongly connected graphs.

Conjecture 1: In a strongly connected graph with n nodes,

convergence of controller (19) happens in finite time and the

convergence time is upper bounded by l
2n sec2(π

n
) where

l is the sum of distances between nodes over the longest

hamiltonian cycle in the initial formation at t0.

IV. BEARING-ONLY FORMATION CONTROL

The goal of bearing-only formation control is to achieve

and maintain a desired formation specified by bearings for

each edge in the sensing graph using only bearing measure-

ments, as opposed to linear formation control which requires

relative positions instead of bearings.

Linear formation control problems draw advantage from

the linearity of the controller ẋ = −Lx in the consensus

problem. A simple change of variables leads to exponential

convergence to a desired formation congruent to x∗ by means

of ẋ = −L(x − x∗) which only differs by a constant term

Lx∗. In this section, we address the nonlinear formation

control problem using bearings for undirected and directed

sensing graphs. Similar to the linear problem, the controllers

proposed are of the form ẋ = f(x) − f(x∗) and differ by

a constant term −f(x∗) compared to consensus controllers

ẋ = f(x) introduced in the previous section.

Specifically, we prove Lyapunov stability of Filippov solu-

tions of the controller given in [14] for undirected graphs and

also prove cascade stability of the aforementioned controller



for directed acyclic graphs. For directed cyclic graphs, we

present an example which shows that the Jacobian matrix

of the controller in [14] may have eigenvalues with positive

real parts. Along the same line, we present another example

that shows directed bearing Laplacian matrix may have

eigenvalues with negative real parts, rejecting the conjecture

in [18].

A. Undirected graphs

Given an undirected graph G, the following non-smooth

and non-convex edge potential function was suggested in

[14] (as reformulated in [18]):

ψ{i,j}(xi,xj ,u
∗
ij) =

1

2
dij‖uij − u∗

ij‖2, (20)

which is zero only if uij equals to u∗
ij or if dij is zero.

Similar to the undirected consensus problem, summing these

terms over all edges yields the following objective function:

ψ(x,u∗) =
∑

{(i,j),(j,i)}⊆E

ψ{i,j}(xi,xj ,u
∗
ij) (21)

By setting the velocity of each node to be the negative of

the gradient of ψ with respect to its position, we obtain the

controller given in [14]:

ẋi = − ∂ψ

∂xi
=

∑

j∈Ni

uij − u∗
ij , (22)

which can be written in the aggregated form as:

ẋ = H(u− u∗). (23)

Similar to the potential function in the consensus problem,

ψ{i,j} is not differentiable when dij is zero and (23) there-

fore becomes discontinuous when two agents are coliding.

Denoting (23) by X , the set valued map of X is given by:

K[X ](x) = −Dψ(x) = H(u− u∗)⊕ I (24)

where I is defined in (17). Similar to the undirected

consensus problem, asymptotic stability can be established

by using (21) as Lyapunov function.

Proposition 2: Controller (23) is asymptotically stable.

Proof: Following the proof of Theorem 2, we have

max L̃Xψ(x) = −‖H(u − u∗)‖2 ≤ 0. It was shown in

[14][Proposition 3] that H(u− u∗) equals zero if and only

if uij = u∗
ij for every (i, j) ∈ E .

As a result of this, a formation F = (G,x) with initial

position x0 will converge to a formation x⋆ which is similar

to x∗. If the formation is bearing rigid, x⋆ is also similar to

x∗. Furthermore, following the same argument from Lemma

2, it can be shown that the centroid of Filippov solutions of

(23) is invariant.

B. Directed graphs

In this section we consider the controller (23) for directed

sensing graphs, given by:

ẋi =
∑

j∈N+

i

uij − u∗
ij , (25)

which can be written in the aggregate form as:

ẋ = H+(u− u∗). (26)

We assume that each agent only acts based on the

measurements directly obtained by itself. Similar to the

directed consensus problem, each agent i has its own private

function ψi(x,u
∗) =

∑

j∈N+

i
ψ{i,j} which tries to minimize

thorough gradient descent. Evaluating the rate at which ψi de-

creases is difficult since it is also dependent on the dynamics

of neighbors of i. In the directed consensus problem, we were

able to use the maximum distance between nodes as a global

metric to measure how far the system is from equilibrium.

For the problem at hand, finding a similar global metric

seems unrealistic and the only option left is to investigate

the evolution of private functions.

We begin by showing that if the sensing graph is a

directed cycle, we can use ψ(x,u∗) to prove stability of

(26). Later we give intuition on the equilibria of ψis and

prove convergence of directed acyclic graphs.

Proposition 3: Controller (26) is asymptotically stable for

a directed cycle graph.

Proof: In a directed cycle, we have ẋi = uij − u∗
ij

where j ∈ N+
i is the only neighbor of i. Also, we have

∂ψ
∂xi

= −(uij−u∗
ij)− (uik−u∗

ik) where i ∈ N+
k . Assuming

collisions do not occur, we have:

ψ̇ =
∑

i∈V

−[uij − u∗
ij + uik − u∗

ik]
T(uij − u∗

ij)

=
∑

i∈V

(−‖ẋi‖2 + ẋT

i ẋk)

which is due to ẋk = uki − u∗
ki. Since there are as many

edges as nodes, we can rewrite ψ̇ over edges as:

ψ̇ =
∑

(k,i)∈E

−1

2
‖ẋi‖2 + ẋT

i ẋk −
1

2
‖ẋk‖2

=
∑

(k,i)∈E

−1

2
‖ẋi − ẋk‖2 ≤ 0

Hence ψ̇ is always negative unless all nodes have the same

velocity ẋi = ẋk . Suppose all ẋi = w, then we have

uij − w = u∗
ij . Taking the norm of both sides, we get

wTuij = 1
2‖w‖2. Furthermore, we have

∑

i∈V dijuij = 0,

hence taking a dot product with w we get
∑

i∈V dijw
Tuij =

∑

i∈V
dij
2 ‖w‖2 = 0 which means w = 0.

When the out-degree of a node i is one, as in a directed

cycle graph, the equilibrium points of its objective function

ψi is a half-line that starts at the position of its neighbor

and extends to infinity in the direction of −u∗
ij . If the out-

degree is more than one, the equilibrium point(s) of ψi are
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Fig. 1: In (a) and (b) sum of the bearing measurements of

nodes with the same index is equal but the formations are not

equivalent, which means the underlying graph is not bearing

persistent. (c) and (d) are bearing persistent graphs. Graph

in (c) is bearing rigid as well while (d) is not.

such that
∑

j∈N+

i
uij =

∑

j∈N+

i
u∗
ij . This, however, does

not necessarily mean that the bearing measurement of each

neighbor uij is equal to the desired bearing u∗
ij assuming the

equilibrium point(s) exists. Before we discuss the existence

of equilibrium points, we present the the following definition

which is motivated by this problem.

Definition 1 (Bearing Persistence): A directed graph G is

bearing persistent such that for any x and x∗ ∈ R
dn and all

i ∈ V ,
∑

j∈N+

i
uij − u∗

ij = 0 if and only if x and x∗ are

equivalent.

Remark 1: A bearing persistent framework may not be

baring rigid. The opposite direction is also true (see Fig.

1). Also, It can be immediately deduced that undirected

graphs and directed graphs with out-degree one are bearing

persistent.

Even if the sensing graph is not bearing persistent, it is not

trivial to study the equilibria of (26). In some applications,

achieving the exact bearings between the agents might not

be important, but rather the overall placement of an agent

with respect to those it observes is. Here we present a short

and informal proof on uniqueness of equilibrium of (25).

The equilibrium point of (25) for agent i with |N+
i | > 1

is a point such that
∑

j∈N+

i
uij =

∑

j∈N+

i
u∗
ij = v∗. If

‖v∗‖ = |N+
i |, then xi → ∞ if neighbors of i are not all

coincident. Hence we assume that always ‖v∗‖ < |N+
i |,

or the given desired bearings for an agent are not collinear.

Controller (25) steers i to a point where the sum of its

bearing measurements equals v∗. The following definition

is motivated by this behavior.

Definition 2: a k-ellipsoid is the set of points such that

sum of their euclidean distances from k fixed points {pi ∈
R
d}ki=1 called foci is constant. Let ϑ(y) ,

∑k
i=1 ‖y − pi‖

be the sum of distances to foci from point y. A k-ellipsoid

denoted as Υ(ρ) is the boundary of the set-valued map

•
p1

p2

p3

p

Fig. 2: Multiple concentric 3-ellipses (blue curves) with foci

{pi}3i=1. Point p is the geometric median of focal points.

Direction of gradient of ϑ(.) does not change along each

black curve starting from p, and its magnitude does not

change along red curve.

Θ(ρ) = {y ∈ R
d | ϑ(y) ≤ ρ} for a given ρ ≥ ρ⋆ where

ρ⋆ = miny ϑ(y).

Θ(ρ) is a sublevel set of of a convex function and is

therefore a bounded convex set. Υ is a closed convex surface

and is smooth if it does not contain any of the focal points

[10].

Let vi ,
pi−y

‖pi−y‖ be the unit vector pointing towards pi

from y. Gradient of the function ϑ(y) at a point y 6= pi
is given by ∂ϑ

∂y
=

∑k
i=i−vi and its Hessian is given by

∂2ϑ
∂y2 =

∑k
i=i

1
‖pi−y‖P(vi). Hessian of ϑ(y) is positive

definite unless foci are collinear. Even if that is the case,

it can easily be shown that ϑ(y) is strictly convex along any

line except the line that contains the foci.

Using this fact, it can be argued that Υ(ρ) for ρ > ρ⋆

does not contain a line segment and the direction of gradient

of ϑ(y) or
∑k

i=1 −vi which is parallel to the tangent

hyperplane of Υ(ρ) is unique on Υ(ρ). Furthermore, at the

geometric median (or line segment) ‖∑k
i=1 vi‖ is zero but as

‖y‖ → ∞ we have ‖∑k
i=1 vi‖ → |N+

i |. Due to convexity

of ϑ(.), Dϑ(y) must attain any direction and any length

between zero and |N+
i | due to being a monotone function

[7] (see Fig. 2).

Having established uniqueness of the equilibrium point,

it is straightforward to prove stability of (26) for directed

acyclic graphs. Leaves of a directed acyclic graph does not

have any neighbors and are stationary. We define the degree

of cascade of a node to be the length of the longest path from

that node to a leaf of the graph and is unique due to absence

of cycles. Starting from degree one to higher degrees, nodes

reach their equilibrium.
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Fig. 3: The red points correspond to the undirected version of the graph in (a) and the blue points correspond to the directed

graph. The magenta plot in (b) corresponds to the strongly connected component 1-2-3-4. The proposed upper-bound on

convergence time l
4 sec

2 π
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√
2 which is exact in this case for the strongly connected component 1-2-3-4.
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Fig. 4: Trajectories of an undirected graph (red), a directed graph (blue), and the cycle graph 1-2-4-3 (green).

For the case of directed graphs with cycles, proving

stability still remains a challenge. One natural first step

could be to see if equilibrium points of (26) are Hurwitz-

stable with respect to perturbations. Jacobian matrix of (26)

is given by H+RB|x∗ or -H+ diag( 1
d∗
ij

P(u∗
ij))H

T, where

RB is called the bearing rigidity matrix. This matrix is

very similar to the directed bearing Laplacian matrix LB =
H+ diag(P(u∗

ij))H
T defined in [18]. For the graph given

in Fig. 1c with positions x1 = [0, 0]T, x2 = [2, 0]T, x3 =
[3,−4]T, and x4 = [2,−2]T, Jacobian matrix of (26) and

−LB both have an eigenvalue with a positive real part, which

rejects the conjecture made in [18] on bearing Laplacian

matrix having eigenvalues with nonnegative real parts.

V. SIMULATION RESULTS

In this section, we present simulation results for the both

bearing-only consensus and formation control problems. In

Fig. 3, the trajectory of an undirected and directed graph

with the same vertices is given for the consensus problem.

In Fig. 4, trajectories of an undirected graph, a strongly

connected graph and a directed cycle graph is presented for

the formation control problem.

VI. CONCLUSIONS

We presented stability results for the bearing-only consen-

sus and formation control problems. There are remaining

problems which need further attention. In the consensus

problem of strongly connected directed graphs, finite-time

convergence remains unsolved. Also, bearing-only formation

control in cyclic directed graphs is not addressed yet and the

notion of bearing persistence needs more study in the future.
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