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Abstract—Imaging-based early diagnosis of Alzheimer Dis-
ease (AD) has become an effective approach, especially by
using nuclear medicine imaging techniques such as Positron
Emission Topography (PET). In various literature it has been
found that PET images can be better modeled as signals (e.g.
uptake of florbetapir) defined on a network (non-Euclidean)
structure which is governed by its underlying graph patterns
of pathological progression and metabolic connectivity. In order
to effectively apply deep learning framework for PET image
analysis to overcome its limitation on Euclidean grid, we develop
a solution for 3D PET image representation and analysis under
a generalized, graph-based CNN architecture (PETNet), which
analyzes PET signals defined on a group-wise inferred graph
structure. Computations in PETNet are defined in non-Euclidean,
graph (network) domain, as it performs feature extraction by
convolution operations on spectral-filtered signals on the graph
and pooling operations based on hierarchical graph clustering.
Effectiveness of the PETNet is evaluated on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, which shows im-
proved performance over both deep learning and other machine
learning-based methods.

Index Terms—Positron Emission Topography, Graph Convo-
lution Network

I. INTRODUCTION

Imaging studies on human brain reveal that organization
architecture of brain network forms a consistent pattern which
is related to its cognition, behavior, and diseases [1]]. In the
field of analysis and diagnosis of Alzheimer’s Disease (AD),
studies from various imaging techniques including Positron
Emission Tomography (PET) [2]], Magnetic Resonance Imag-
ing (MRI) [3], functional imaging [4]], diffusion imaging [5],
or a combination of these [[6] have all confirmed that AD
is associated with dysfunction of brain connectivity, thus
considered as a connectopathy (connectivity disorder) [/7].
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Brain network analysis based on graph theory and topology
has achieved good performance in diagnosis and staging of
AD [88]], and group-wise network atlas have been inferred from
multiple imaging modalities [9]], [10].

From a computation and imaging analytics perspective, both
machine learning methods [11]], [12] have achieved tremen-
dous success in the characterization and classification of AD.
The intrinsic nature of connectivity disorder of AD further
motivates studies that can identify the optimized representation
for brain images [13]], which can be generalized as the task
of learning low-dimensional manifold embedded in a high-
dimensional space [14]]. While deep learning methods such
as Convolutional Neural Network (CNN) can effectively learn
the lower-to-higher representation of images and be used for
AD classification [[15], [16], it is important to incorporate
irregular structures (comparing with regular image grid) of
graph into the deep learning scheme [17]. By defining PET
data extracted from Regions of Interest (ROIs) as signals
on the nodes of a graph, we can perform signal filtering
and representation learning on graph, similar to the signal
filtering and feature extraction (e.g. through convolution filters)
in Euclidean space. Inspired by the algorithmic architecture
proposed by Defferrard et. al [18] which learns localized
spectral filters from the given graph and performs graph
filtering through Chebyshev polynomial approximation, in this
work we develop and implement a PET image analytics
framework, the PETNet, to learn graph-based features and
an effective classification system which can perform early
diagnosis of Alzheimers disease i.e. prediction and staging of
Mild Cognitive Impairment (MCI).
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Fig. 1. Algorithmic pipeline of PETNet. (a) input PET images; (b) extracted average signals on ROIs; (c) aggregation of extracted signals across all subjects
(x-axis) in each ROI (y-axis); (d) graph inferred from group-wise signals and its hierarchical clustering; (e) structure of graph convolution network, where

both the extracted signals and the inferred graph are used as input.

II. MATERIAL AND METHOD

As visualized in Fig.1 for the algorithmic pipeline, PETNet
consists of four steps including 3D PET image [I] (a) to ROI-
based signal conversion (b), graph inference and hierarchical
clustering (d), and a graph convolutional network for signal-
to-label prediction (e).

A. Data acquisition, preprocessing and signal extraction

We use the Florbetapir (F18-AV-45) PET images provided
by Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2)
dataset (dynamic 3D scan, four 5-min frames, 50-70 min post
injection) [[19] for model validation and evaluation. As in
this study our goal is to perform early AD diagnosis from
PET images, we use patients who has been diagnosed as
Early Mild Cognitive Impairment (EMCI, 131 subjects) or
LMCI (Late Mild Cognitive Impairment, 96 subjects), as well
as normal controls (NC, 100 subjects) for model input. For
binary classification task, we combine EMCI and LMCI as
MCI positive versus normal control (i.e. MCI negative) to
differentiate disease and normal population. For multiclass
classification task, we use the three labels simultaneously.
Voxel values on PET images are defined by standard-uptake-
value ratios (SUVR). PET images are co-registered, averaged
across frames, and standardized according to preprocessing
protocol of ADNI-2 [19]. PET images are then registered to
the standard 2mm-MNI152 space based on their corresponding
MR images, with the shape of (91, 109, 91). Using AAL-
2 atlas [20]] consisting 120 Regions of Interest (ROI), we
extract ROI-averaged PET signals from each individual 3D
PET image, and aggregate extracted signals from all subjects

into a data matrix of shape (120, 327). It should be noted
that selection of atlas for ROI definition is fully customizable
in PETNet, where the possibility of using other atlases are
discussed later in the result section.

B. Graph inference, hierarchical clustering and graph convo-
lution network

In the proposed PETNet framework, we are interested in
a supervised learning task where input signal x, defined on
a constant graph structure G consisting of n nodes, are used
to predict its corresponding output y. As constant G needs
to be defined prior to the analysis, we infer the group-wise
graph from signal matrix by its correlation. In other words,
group-wise patterns of amyloid deposition among different
regions is used to assist the model in performing signal
filtering, as it reflects underlying short/long range metabolic
connectivity and possible pathological progression pathways
[21]]. In the current framework a single graph G inferred from
both patient and normal controls is used to characterize the
common connectivity patterns, and we apply a threshold (0.7)
on the correlation values on G to make it sparse. Other graph
inference methods can also be used based on different premise
of data distribution. With a given G, the graph convolution
filtering can be defined in spectral domain [22]:

K-1
Grx:0)=> 0,UNU"z
k=0

)

where graph Laplacian L of G can be diagonalized by its
Fourier basis U € R"*™ such that L = UAU” and A =



diag(A1, A1, ..., A ). The first K number out of the totally n
basis, termed kernel, is used for filtering. According to [22],
kernel size K exactly corresponds to the maximum shortest
distance (hops) between two nodes on the graph, thus Eq[T]is
localized to the K — th neighborhood of each node. In other
words, we can make analogous of kernel size K to the field
of view (FOV) of convolution kernels (e.g. 3 x 3 or 5 X 5) in
classic CNNs. @ is the learnable coefficients (i.e. convolutional
kernel parameters). Notice that since G is constant through
computation, its Laplacian and corresponding Fourier basis
needs only be calculated once. Yet the matrix computation
operation in Eq still involves O(n?) complexity, thus we
further approximate it by Chebyshev polynomial in same way
as introduced in [[18]:
K—-1
GL(x : 0) = Hka(L)JC (2)
k=0

where T}, is the & — th Chebyshev polynomial (to the total
number of K) of L, and 6 becomes coefficient for each
polynomial. As Chebyshev approximation can be recursively
computed, computation complexity reduces to O(K x |E|),
|E| is the total number of edges. | F/| is normally much smaller
than n?, especially for sparse graphs.

C. Image-based method (CNN) for performance comparison

CNN has been commonly applied for medical image anal-
ysis, including prediction of AD from PET imaging [16[]. Due
to the limitation in sample size of medical images, transfer
learning techniques (i.e. pre-training) are usually needed dur-
ing the training phase, especially for networks with complex
structures. As pre-training is based on existing large image
databases composed of 2D natural images (such as ImageNet),
the network used for analyzing 3D medical images has to be
limited to 2D input. In this work we use the same heuristics
as in [16]], where a ResNet-50 [26] is trained by using
16 evenly-spaced z-sections from the 3D volumetric image,
distributed into a 44 grid. The network is either trained from
raw (initialized by random weights) or pre-trained (initialized
by training on ImageNet).

III. RESULT
A. Performance comparison

Performance evaluation of PETNet and comparison methods
is based on 5-folds cross-validation (80% for training the
model, 20% for testing), repeated for 10 times. Graph structure
for PETNet is inferred from the training data in each run
and clustered by hierarchical clustering method, as visualized
by their adjacency matrices in [2] Commonly-used machine
learning methods including XGBoost [27] and SVM with
RBF kernel are also tested using the same ROI-based signal
matrix as input. In order to investigate how the graph structure
contribute to classification, we test PETNet with its graph
replaced by:

1) An empty graph with only self-loops, which makes its
Laplacian matrix L equals to zero. In such case its

Fig. 2. Adjacency matrices of the (a) correlation-inferred graph among 120
regions; (b-d) first-to-third level clustering results, consisting of 60, 30 and
15 nodes respectively.

graph convolution layers degrade to a fully connected
layers, as spectral of an empty graph degrades to a single
eigenvector.

2) Random graphs constructed by setting a fixed number
of randomly-selected edges to random non-zero weights.
We keep the number of edges in random graphs the same
with graph inferred from correlation for comparability.

From the performance comparison in Table 1 2-Classes
(i.e. MCI/NC) column, it can be observed that PETNet can
achieve same-level performance with state-of-art pre-trained
ResNet-50 method, where similar prediction accuracy for
other dataset using ResNet-50 has been reported in [16]. It
should be noted that without pre-training, performance of
image-based deep learning decreased significantly (from 95%
down to 83%, p;0.01 for 10 experiments) because of the lack
of samples to fully train such a complex model (50 layers). In
contrast, PETNet uses much less number of mode parameters
(5 layers in total), does not need pre-train, and uses much
shorter time for training. Further, PETNet using empty/random
graph results in lowered performance as well as unstable
training process, as also illustrated by the learning curve in [3}

In addition, as patients diagnosed with MCI are staged by
early stage (EMCI) and late stage (LMCI), we are interested
in whether the two sub-groups can be differentiated. Using
the same experiment setting, we evaluate these methods on
the 3-labels prediction task. Both XGBoost and SVM are
extended to their multi-class versions. Results are summarized
in Table 1, column “3-classes” (i.e. EMCI/LMCI/NC). It can
be found that while both ResNet and PETNet can achieve
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Fig. 3. Learning curve of (a) PETNet using correlation-inferred graph, and
(b) PETNet using random graph, for one experiment run of ADNI binary
classification task.

TABLE I
PERFORMANCE COMPARISON AMONG THE PROPOSED PETNET (AND ITS
VARIATIONS), RESNET50 WITH/WITHOUT PRE-TRAINING, AS WELL AS
OTHER MACHINE LEARNING METHODS. METHODS WITH THE BEST
PERFORMANCE FOR THE TWO TASKS (2-CLASSES FOR MCI/NC
CLASSIFICATION, AND 4-CLASSES FOR EMCI/LMCI/NC
CLASSIFICATION) ARE HIGHLIGHTED IN BOLD.

Accuracy Accuracy

Method (2-Classes)  (3-Classes)
PETNet 93% 77 %
PETNet (empty graph) 88% 55%
PETNet (random graph) 86% 64%
ResNet (without pre-training) 83% 58%
ResNet (with pre-training) 95% 65%
XGBoost 88% 62%
SVM 69% 57%

good performance for binary classification, the task of MCI
staging is more difficult. ResNet mislabeled most of the EMCI
patients to either NC or LMCI, which reduces its classification
accuracy from 95% to 65%. PETNet shows higher prediction
power over other method and avoids the problem of EMCI
mis-classification. Further, both ResNet without pre-training
and PETNet defined on empty graph suffer from over-fitting,
because of the lack of training samples, and the fact that
PETNet on empty graph is effectively composed of all fully-
connected layers without dropouts in its first three layers.

B. Discussion of atlas selection and kernel size parameter on
model performance

An important premise of PETNet is that we can effec-
tively represent 3D volumetric PET images by its region-wise
definition (i.e. averaged signals in ROIs). While ROI-based
analysis has been commonly used for brain imaging studies,
the selection of atlas and its corresponding ROI definitions
can potentially affect model performance. Thus, in addition to
the AAL-2 atlas (120 regions), we also tried Harvard-Oxford
atlas (69 regions), MMP atlas (180 regions) and Power atlas
(264 seed points with a pre-defined radius) for the analysis
of ADNI dataset. Following the same experiment settings, it
is found that performance of the proposed framework is very
stable (accuracy changes < 1%) using different atlas.
PETNet features an important model parameter of kernel size
K, which indicates the premise on effective neighborhood
distance (i.e. K-hop) of the graph. A larger K will incorporate
nodes that are more far apart into filtering operation, at the

cost of increasing model complexity and training time. The
default value of K (25) is used in this work based on both
parameter tuning and experience, as for the 120-nodes graph,
a large portion of the nodes can be connected within a shortest
distance of 25. Experiments on ADNI dataset using different
values of K show a near-monotonic trend between K and
model performance, where classification accuracy of PETNet
is 84% for K =5, 86% for K = 10 and 95% for K = 40.

IV. CONCLUSION AND DISCUSSION

Preliminary results from PETNet show that deep learning
based on graph-based representation can offer a more flexible
and computational inexpensive approach for medical image
analysis comparing with voxel-level modeling. An important
premise of this work is that imaging data can be better modeled
on a learnable graph, based on biological and anatomical
evidence that brain regions physically/geometrically distant
apart can be consistently correlated for their structural and
functional properties including amyloid burden, cortical thick-
ness, and cognitive roles. Such properties are less evidential in
natural images, where distribution of pixel values are locally
governed. The critical question for further development of
graph-based analysis including the current PETNet framework
is thus the graph construction/inference, which is an important,
well-discussed yet still inconclusive topic in neuroimaging
and medical image analysis in general. A specific lucrative
approach is to incorporate graph inference process into the
classification framework in order to learn the optimized graph
definition. Other approaches including metrics learning (e.g.
weight among different graph inference methods) and mani-
fold learning can also be applicable.
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