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Abstract—In the traditional game-theoretic set up, where
agents select actions and experience corresponding utilities, an
equilibrium is a configuration where no agent can improve their
utility by unilaterally switching to a different action. In this
work, we introduce the novel notion of inertial Nash equilibrium
to account for the fact that, in many practical situations,
action changes do not come for free. Specifically, we consider
a population game and introduce the coefficients cij describing
the cost an agent incurs by switching from action i to action j.
We define an inertial Nash equilibrium as a distribution over the
action space where no agent benefits in moving to a different
action, while taking into account the cost of this change. First,
we show that the set of inertial Nash equilibria contains all the
Nash equilibria, but is in general not convex. Second, we argue
that classical algorithms for computing Nash equilibria cannot
be used in the presence of switching costs. We then propose a
natural better-response dynamics and prove its convergence to
an inertial Nash equilibrium. We apply our results to predict the
drivers’ distribution of an on-demand ride-hailing platform.

I. INTRODUCTION

Game theory has originated as a set of tools to model
and describe the interaction of multiple decision makers, or
agents. The goal is typically to determine whether decision
makers will come to some form of equilibrium, the most
common of which is the Nash equilibrium. Informally, a set of
strategies constitutes a Nash equilibrium if no agent benefits
by unilaterally deviating form the current action, while the
other agents stay put. This notion of equilibrium has found
countless applications, among others to energy systems [1],
transmission networks [2], commodity markets [3], traffic flow
[4], and mechanism design [5].

While the original definition of Nash equilibrium does not
account for the cost incurred by agents when moving to a
different action, in practical situations decision makers often
incur a physical, psychological, or monetary cost for such
deviation. This is the case, for example, when relocating
to a new neighbourhood [6], or when switching financial
strategy in the stock market [7]. When the decision makers are
humans, the psychological resistance to change has been well
documented and studied at the professional and organizational
level [8] as well as at the individual and private level [9], or
at the customer level [10].

To take into account such phenomena, we introduce the
novel concept of inertial Nash equilibrium. Specifically, we
consider a setup where a large number of agents choose among
n common actions. Agents selecting a given action receive a
utility that depends only on the agents’ distribution over the
action space, in the same spirit of population games [11]. In
this context, a Nash equilibrium consists in an agent distri-
bution over the action space for which every utilized action
yields maximum utility. The same concept was proposed in
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the seminal work of Wardrop for a route-choice game in road
traffic networks [4]. We extend this framework and model
the cost incurred by any agent when moving from action i
to action j with the non-negative coefficients cij . We define
an inertial Nash equilibrium as a distribution over the action
space where no agent has any incentive to unilaterally change
action, where the quality of an alternative action is measured
by its net utility, i.e., the corresponding utility minus the cost
of the action change.

We show that introducing such costs leads to a larger set
of equilibria that is in general not convex, even if the set
of Nash equilibria without switching costs is so. We argue
that classical algorithms to compute a Nash equilibrium are
not suitable for computing inertial Nash equilibria, because
i) they may not terminate even if already at an inertial Nash
equilibrium, and ii) their execution is not compatible with the
agents’ rationality assumption, as agents might be required
to perform a detrimental move. To overcome these issues,
we propose an algorithm based on better-response dynamics,
where agents switch action only if it is to their advantage when
factoring the cost of such change.

Contributions. Our main contributions are as follows.
i) We introduce the notion of inertial Nash equilibrium

(Definition 2) and position it in the context of the existing
literature, notably in relation to population games [11] and
more specifically migration equilibria [12].

ii) We show that the set of inertial Nash equilibria can be
equivalently characterized through a variational inequality
(Theorem 1) and we prove a strong negative result: the
operator that arises in the resulting variational inequality
is non-monotone in all the meaningful instances of the
inertial Nash equilibrium problem (Theorem 2). This
implies that existing algorithms for computing equilib-
ria based on the solution of variational inequalities are
in general not suitable for computing an inertial Nash
equilibrium.

iii) We propose and analyse a novel algorithm and prove its
convergence to an inertial Nash equilibrium under weak
assumptions (Theorem 3).

Organization. In Section II we introduce the notion of inertial
Nash equilibrium, and show its non-uniqueness as well as
the non-convexity of the equilibrium set. A comparison with
related works is presented in Section II-C. In Section III
we reformulate the inertial Nash equilibrium problem as a
variational inequality, study the monotonicity properties of
the corresponding operator (more precisely, the lack thereof),
and present the issues associated with the use of existing
algorithms. In Section IV we propose a modified best-response
dynamics that provably converges to an inertial Nash equilib-
rium. Extensions of the model are presented in Section V.
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In Section VI we validate our model with a numerical study
of area coverage for on demand ride-hailing in Hong Kong.
Appendix A provides background material, while all the proofs
are reported in Appendix B.

Notation. The space of n-dimensional real vectors is de-
noted with Rn, while Rn≥0 is the space of non-negative n-
dimensional real vectors and Rn>0 is the space of strictly
positive n-dimensional real vectors. The symbol 1n indicates
the n-dimensional vector of unit entries, whereas 0n is the n-
dimensional vector of zero entries. If x, y ∈ Rn, the notation
x ≥ y indicates that xj ≥ yj for all j ∈ {1, . . ., n}. The
vector ei denotes the ith vector of the canonical basis. Given
A ∈ Rn×n, A � 0 (� 0) if and only if x>Ax = 1

2x
>(A +

A>)x > 0 (≥ 0), for all x 6= 0n. blkdiag(A1, . . . , AM ) is
the block diagonal matrix with blocks A1, . . . , AM . ‖A‖ is
the induced 2-norm on A. Given g(x) : Rn → Rm we define
∇xg(x) ∈ Rn×m with [∇xg(x)]i,j :=

∂gj(x)
∂xi . If n = m = 1,

we use g′(x) to denote the derivative of g at the point x. In
denotes the n × n identity matrix. Proj

X
[x] is the Euclidean

projection of the vector x onto a closed and convex set X .

II. INERTIAL NASH EQUILIBRIUM: DEFINITION AND
EXAMPLES

A. Definition of Inertial Equilibrium

We consider a large number of competing agents with a
finite set of common actions {1, . . . , n}. For selecting action
i ∈ {1, . . . , n}, an agent receives a utility ui(x), where
x = [x1, . . . , xn], and xi denotes the fraction of agents
selecting action i. Observe that, with the introduction of the
utility functions ui : Rn≥0 → R, we are implicitly assuming
that the utility received by playing action i only depends on
the distribution of the agents, and not on which agent selected
which action, a modelling assumption typically employed
in population games [11]. Within this framework, a Nash
equilibrium is a distribution over the action space where no
agent has any incentive in deviating to a different action.
This requirement can be formalized by introducing the unit
simplex1 in dimension n, denoted with S, and its relative
interior S+

S := {x ∈ Rn s.t. x ≥ 0, 1>n x = 1},
S+ := {x ∈ Rn s.t. x > 0, 1>n x = 1}.

Definition 1 (Nash equilibrium, [4]). Given n utilities {ui}ni=1

with ui : Rn≥0 → R, the vector x̄ ∈ S is a Nash equilibrium if

x̄i > 0 =⇒ ui(x̄) ≥ uj(x̄), ∀ i, j ∈ {1, . . ., n}. (1)

Despite being widely used in the applications, Definition 1
does not account for the cost associated with an action switch.
We extend the previous model by introducing the non-negative
coefficients cij to represent the cost experienced by any agent
when moving from action i to j. We then define an inertial
Nash equilibrium as a distribution over the action space where
no agent can benefit by moving to a different action, while
taking into account the cost of such change.

1The formulation with unitary mass and the corresponding results seam-
lessly generalise to agents of combined mass γ > 0.

Definition 2 (Inertial Nash equilibrium). Given n utilities
{ui}ni=1, ui : Rn≥0 → R, n2 non-negative switching costs
{cij}ni,j=1, the vector x̄ ∈ S is an Inertial Nash equilibrium
if

x̄i > 0 =⇒ ui(x̄) ≥ uj(x̄)− cij , ∀ i, j ∈ {1, . . ., n}. (2)

In the remainder of this manuscript we focus on problems
where there is no cost for staying put, as formalized next.

Standing assumption. The switching costs satisfy cii = 0 for
all i ∈ {1, . . . , n}.

Observe that conditions (1) and (2) do not impose any
constraint on actions that are not currently selected by any
agent (i.e., those with x̄i = 0). In other words, the utility of
one such action can be arbitrarily low, and the configuration
x̄ still be an equilibrium. Despite being a natural extension
to the traditional notions of equilibrium in game theory, to
the best of our knowledge, Definition 2 is novel. Its relevance
stems from the observation that the coefficients cij can model
different and common phenomena, such as:

- the tendency of agents to adhere to their habits, or their
reluctance to try something different;

- actual costs or fees that agents incur for switching action;
- the lack of accurate information about other options.
In the following, we provide two examples of problems that

can be captured within this framework.

On demand ride-hailing. Ride-hailing systems are platforms
that allow customers to travel from a given origin to a desired
destination, typically within the same city. Examples include
taxi companies as well as platforms such as Uber, Lyft or
Didi. In our framework, the drivers correspond to agents
and geographical locations to available actions. Each utility
describes the profitability of a given location, which depends
on the arrival rate of customers in that location, and on the
fraction of vehicles available in that same location. The cost
(fuel and time) that a driver incurs while moving between two
different physical locations is captured by cij . Such model can
predict how drivers distribute themselves over the city.

Task assignment in server network. We are given a finite
number of geographically dispersed servers represented with
nodes, and connected through a network. Each server cor-
responds to an action i ∈ {1, . . . , n}. A large number of
agents has a list of jobs that originates in various nodes on the
network and wishes to execute this list as swiftly as possible.
The speed at which each server can process a job depends on
the load on the server and is captured by ui(xi). Moving a
job between server i and j requires an amount of time and
resources captured by cij . This model can predict how agents
distribute their jobs over the set of servers.

We note that the set of inertial Nash equilibria contains the
set of Nash equilibria, due to the non negativity of cij .

Lemma 1. Every Nash equilibrium is an inertial Nash equi-
librium.

The proof follows from Definition 1 and 2, since condition
(1) implies condition (2), as cij ≥ 0 for all i, j ∈ {1, . . . , n}.
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In the following we refer to an (inertial) Nash equilibrium as
just an (inertial) equilibrium.

B. Non-uniqueness and non-convexity of the equilibrium set

The following example shows that the set of inertial equilib-
ria is in general neither convex, nor a singleton. This will pose
significant algorithmic challenges, as discussed in Section III.

Example 1. Let n = 3, and consider utilities and switching
costs of the form

u1(x) = 1.2− x1
u2(x) = 1.2− x2 C =

 0 0.2 0.3
1 0 0.8

0.1 1.2 0

 ,
u3(x) = 1− x3,

where the entry (i, j) of C equals cij . Note that x3 = 1 −
x1 − x2. The equilibrium conditions (2) then become

x1 > 0 ⇒ x2 ≥ x1 − 0.2 (3a)

x1 > 0 ⇒ x2 ≤ −2x1 + 1.5 (3b)

x2 > 0 ⇒ x2 ≤ x1 + 1 (3c)
x2 > 0 ⇒ x2 ≤ −0.5x1 + 1 (3d)

x3 > 0 ⇒ x2 ≥ −2x1 + 1.1 (3e)

x3 > 0 ⇒ 2x2 ≥ −x1, (3f)

where inequalities (3c), (3d), (3f) are already implied by
x ∈ S . We color the remaining three inequalities similarly to
Figure 1, which reports the solution to (3) (i.e., the inertial
equilibrium set) in gray.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

Nash equilibrium

Fig. 1: The shaded region, including the thick red, yellow, green,
and black lines, represents the inertial Nash equilibrium set for
Example 1 projected on the plane (x1, x2). The component x3 can
be reconstructed from x3 = 1− x1− x2. The dashed line represents
the simplex boundary, while the yellow, green and red lines describe
the inequalities in (3). The blue point is the unique Nash equilibrium
x̄ = [0.4, 0.4, 0, 2], which satisfies condition (1).

We note that the inertial equilibrium set is not a single-
ton. The lack of uniqueness is due to the positivity of the

coefficients cij . Indeed, if cij = 0 for all i, j, then the
inertial equilibrium set coincides with the equilibrium set of
Definition 1, which is a singleton marked in blue in Figure 1.
Moreover, the inertial equilibrium set is not convex. This is
due to the line joining the point (0.1, 0.9) to (0, 1) in Figure 1.
The points on this segment belong to the inertial equilibrium
set even though they do not satisfy x2 ≥ −2x1 + 1.1. This is
because (3e) is enforced only when x3 > 0, whereas x3 = 0
on the considered segment. The observed non-convexity of the
solution set is, in a sense, structural. To see this, note that, by
Definition 2, a point x ∈ S+ is an inertial equilibrium if and
only if it lies at the intersection of inequality constraints of the
form uj(x)−cij−ui(x) ≤ 0; these might be non convex, even
if we restrict attention to convex or concave utility functions.

C. Related Work

The notion of inertial equilibrium is, to the best of our
knowledge, novel, due to the presence of the switching costs
cij . A related line of works comes from population games
[13]. Here the focal point is the analysis and design of
(continuous-time) agent dynamics that achieve an equilibrium
in the sense of Definition 1. A particular class of dynamics is
imitation dynamics. These are reminiscent of the discrete-time
Algorithm 2 below, as agents move to more attractive actions.
Different works provide local [11], [14] and global [15], [16]
convergence guarantees. Rather than delving into the vast
literature of population games, we observe that in all of the
works there is no switching cost, i.e., cij = 0. Thus, the
literature of population games study the problem of finding an
equilibrium in the sense of Definition 1 and not an equilibrium
in the sense of Definition 2, which is the focus here. Finally,
we note that [11] and references therein provide convergence
results to an equilibrium set, whereas we provide convergence
to a point in the inertial equilibrium set.

A more closely related equilibrium concept was proposed
in the study of migration models in the seminal works [12],
[17], [18] by Nagurney. These works introduce the notion of
migration equilibrium, in a way that resembles Definition 2,
but with a number of important differences. First, the problem
formulation is different. In the migration equilibrium problem
we are given a fixed initial distribution x0 ∈ S , with x0j rep-
resenting the fraction of agents residing at a physical location
j. These agents receive utility uj(x0). The initial distribution
x0 is transformed into the final distribution x1 ∈ S, which is a
function of the migrations (fij)

n
i,j=1 (the decision variables).

Each migration comes with a migration cost cij(fij) which is
a function of the number fij of agents migrating. A migration
equilibrium consists of a set of migrations (fij)

n
i,j=1 such

that, considering the fixed initial utilities u(x0), the migration
costs cij(fij) and the final utilities u(x1), no other set of
migrations is more convenient. Second, while the better-
response algorithm we will introduce in Section IV can be
interpreted as the natural dynamics of the agents seeking an
equilibrium, this is not the case for the algorithms proposed to
find a migration equilibrium, which are instead VI algorithms
to be carried out offline.
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III. VARIATIONAL INEQUALITY REFORMULATION

In this section we first recall that the set of equilibria defined
by (1) can be described as the solution of a certain variational
inequality. We then show that a similar result holds for the
inertial equilibrium set of (2). While the former equivalence
is known, the latter connection is novel and requires the
careful definition of the variational inequality operator. The
interest in connecting the inertial equilibrium problem with
the theory of variational inequalities stems from the possibility
of inheriting readily available results, such as existence of
the solution, properties of the solution set, and algorithmic
convergence. Basic properties and results from the theory of
variational inequalities used in this manuscript are summarized
in Appendix A.

Definition 3 (Variational inequality). Consider a set X ⊆ Rn
and an operator F : X → Rn. A point x̄ ∈ X is a solution of
the variational inequality VI(X , F ) if

F (x̄)>(x− x̄) ≥ 0, ∀x ∈ X .

The variational inequality problem was first introduced in in-
finite dimensional spaces in [19], while the finite-dimensional
problem in Definition 3 was identified and studied for the
first time in [20]. The monograph [21] includes a wide range
of results on VI, amongst which their connection to Nash
equilibria.

Proposition 1 (Equilibria as VI solutions, [13, Thm 2.3.2]).
A point x̄ ∈ S is an equilibrium if and only if it is a solution
of VI(S,−u), where u(x) := [ui(x)]ni=1.

The following theorem shows that inertial equilibria can also
be described by suitable variational inequalities.

Theorem 1 (Inertial equilibria as VI solutions). A point x̄ ∈ S
is an inertial equilibrium if and only if it is a solution of
VI(S, F ), where

F (x) := [Fi(x)]ni=1,

Fi(x) := max
j∈{1,. . .,n}

(uj(x)− ui(x)− cij). (4)

If the utilities are continuous, the existence of an inertial
equilibrium is guaranteed.

A. Lack of monotonicity

If the operator F in VI(S, F ) is monotone (see Definition 6
in Appendix A), an inertial equilibrium can be computed
efficiently using one of the many algorithms available in the
literature of variational inequalities, see [21, Chapter 12]. On
the contrary, if this is not the case, the problem is known
to be intractable in general. Since the inertial equilibrium
set of Figure 1 is not convex, the corresponding variational
inequality operator F cannot be monotone (see Proposition 7
in Appendix A). The question is whether this observation
extends to more general settings. In the following we provide
a strong negative result showing that the variational inequality
operator is non monotone in many meaningful instances of the
inertial equilibrium problem.

Theorem 2 (F is not monotone). Assume that for all i ∈
{1, . . ., n} the function ui is Lipschitz and that ∇xiui(x) < 0
for all x ∈ S. If there exists a point x̂ ∈ S which is not an
inertial equilibrium, then F is not monotone in S.

The theorem certifies that either every point of the simplex
is an equilibrium, or F is not monotone and consequently
the variational inequality problem is hard. The only technical
assumption is that ∇xi

ui(x) < 0. We observe that this
is the situation for many applications; indeed the condition
implies that ui(x) decreases if the number of agents on action
i increases, as commonly assumed in congestion problems.
Moreover, the condition can be further weakened, as for the
proof it suffices that ∇xi?

ui?(x?) < 0, only for a specific x?

and i? defined in Appendix B.
We conclude this section by pointing out that Example 1 sat-

isfies the conditions of Theorem 2. The lack of monotonicity
of the corresponding operator F is confirmed by the fact that
∇xF (x) is not positive semidefinite for all x ∈ S (a condition
equivalent to monotonicity, see Proposition 6 in Appendix
A). Indeed, there are points where ∇xF (x) + ∇xF (x)> is
indefinite, e.g., x̃ = [0.2, 0.2, 0.6], where

∇xF (x̃) +∇xF (x̃)> =

 0 0 −1
0 0 0
−1 0 2

 .
B. Three drawbacks of existing algorithms

Lemma 1 ensures that any equilibrium is an inertial equi-
librium. Thus, one might be tempted to use an algorithm for
computing an equilibrium to determine an inertial equilibrium.
Unfortunately, a number of difficulties make this approach
impractical. In this section we describe one such algorithm
and highlight its drawbacks in the computation of an inertial
equilibrium, which generalise to other algorithms that con-
verge to an equilibrium. We consider the projection algorithm
[21, Alg. 12.1.1] for the solution of VI(S,−u), where x(k)
indicates the iterate k of the algorithm. Note that the projection
step necessitates the presence of a central operator.

Algorithm 1 Projection algorithm

Initialization: ρ > 0, k = 0, x(0) ∈ S
Iterate: x(k + 1) = Proj

S
[x(k) + ρu(x(k))]

k ← k + 1

Proposition 2. If ui is L-Lipschitz for all i, ρ ≤ 2/L, and
if there exists a concave function θ : Rn → R such that
∇xθ(x) = u(x) for all x ∈ S, then Algorithm 1 converges
to an equilibrium, and thus an inertial equilibrium.2

2 For this proposition to hold, we have to assume the existence of a
concave function θ whose gradient matches u(x). One such case is when
the utility function ui depends only on the number of agents on action i,
i.e. ui(x) = ui(xi) for all i, and is decreasing. This case covers a wide
range of applications. If no θ whose gradient matches u(x) exists, but −u is
monotone, one can resort to a different algorithm such as the extra-gradient
algorithm [21, Thm. 12.1.11]. Finally, observe that if−u is strongly monotone
(see [21, Def. 2.3.1]), the projection algorithm converges without requiring
the existence of θ(x), see [21, Alg. 12.1.1].
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Three fundamental shortcomings

In the following we analyse the behaviour of Algorithm 1
on Example 1, and use it to highlight three fundamental
shortcomings of this approach. We begin by observing that
x̄ = [x̄1, x̄2, x̄3] = [0.4, 0.4, 0.2] is an equilibrium, as it solves
VI(S ,−u), since for all x ∈ S[
−u1(x̄1)
−u2(x̄2)
−u3(x̄3)

]>([
x1
x2
x3

]
−

[
x̄1
x̄2
x̄3

])
=

[
−0.8
−0.8
−0.8

]>([
x1
x2
x3

]
−

[
x̄1
x̄2
x̄3

])
= 0.

Additonally, [x̄1, x̄2, x̄3] = [0.4, 0.4, 0.2] is the unique solution
of VI(S,−u) and thus the unique equilibrium (see [21, Thm.
2.3.3]). This is consistent with Lemma 1 and Figure 1 where
the equilibrium point x̄ belongs to the inertial equilibrium set.
Thanks to Proposition 2, Algorithm 1 converges to x̄ (L = 1
for the utilities in (3), so that we have to select ρ < 2). With
the choice of ρ = 1, it is immediate to verify that Algorithm 1
converges in one iteration for any initial condition x(0).

In the following we consider two cases: i) the case in which
x(0) is neither an inertial equilibrium nor an equilibrium; ii)
the case in which x(0) is an inertial equilibrium, but not
an equilibrium. Case i): consider x(0) = [0.4, 0.2, 0.4]. The
point x(0) is not an inertial equilibrium (and thus not an
equilibrium), because x3(0) > 0 and u3(x(0)) = 1 − 0.4 =
0.6 < 0.7 = 0.8− 0.1 = u1(x(0))− c31. The first iteration of
Algorithm 1 amounts to a mass of 0.2 being moved from ac-
tion i = 3 to action i = 2. Nevertheless, we observe that agents
selecting action i = 3 are not interested in moving to action
i = 2. Indeed u3(x(0)) = 0.6 ≥ −0.2 = u2(x(0)) − c32, so
the switch from i = 3 to i = 2 is detrimental for the agents
performing it. Case ii): Consider x(0) = [0.4, 0.3, 0.3], and
note that x(0) is already an inertial equilibrium. Nonetheless,
the first iteration of Algorithm 1 forces a mass of 0.1 to move
from action 3 to 2.

The drawbacks of Algorithm 1 are summarized next:
i) Agents are forced to switch action even when such switch

is detrimental to their well being.
ii) Agents are forced to switch action even if already at an

inertial equilibrium.
iii) The projection step necessitates the presence of a central

operator. Such operator requires information not only on
the utilities ui(x(k)) for all i, but also on x(k).

In the next section we overcome these issues and present
a natural dynamics that i) provably converges to an inertial
equilibrium, ii) respects the agent’s strategic nature, and iii)
requires limited coordination.

IV. A BETTER-RESPONSE ALGORITHM

We begin by introducing the definition of the envy set.

Definition 4 (Envy set). Given x ∈ S, for each i such that
xi > 0, we define the envy set of i as

Eout
i (x) := {j ∈ {1, . . ., n} s.t. ui(x) < uj(x)− cij} ,

whereas for i such that xi = 0, we define Eout
i (x) = ∅.

Informally, the envy set Eout
i (x) contains all the actions j to

which agents currently selecting action i would rather move

to. The following fact immediately follows from Definition 4
and Definition 2 of inertial equilibrium.

Proposition 3. A point x̄ ∈ S is an inertial equilibrium if and
only if x̄ ∈ S and Eout

i (x̄) = ∅, for all i ∈ {1, . . ., n}.

The proposed Algorithm 2 involves a single, intuitive step.
At iteration k, let x(k) ∈ S denote the distribution of
the agents on the resources. For every action i, a mass
xi→j(k) ∈ [0, xi(k)] is moved from action i to some other
action j ∈ Eout

i (x(k)), that is, the movement takes place only if
the alternative action j is attractive for agents currently select-
ing action i. This simple dynamics is described in Algorithm 2,
where we denote with ui(k) = ui(x(k)), Eout

i (k) = Eout
i (x(k))

for brevity.

Algorithm 2 Better-response algorithm
Initialization: k = 0, x(0) ∈ S
Iterate: ∆x(k)← 0

repeat for all i, j ∈ Eout
i (k)

choose xi→j(k) ∈ [0, xi(k)]
∆xi(k)← ∆xi(k)− xi→j(k),
∆xj(k)← ∆xj(k) + xi→j(k),

end repeat
x(k + 1)← x(k) + ∆x(k)
k ← k + 1

The agents’ dynamics presented in Algorithm 2 is fully
specified once we define the mass xi→j(k) moving from
action i to j ∈ Eout

j (k) as a function of xi(k) and xj(k).
At this stage we rather not give a particular expression to
xi→j(k), as the convergence of Algorithm 2 is guaranteed
under very weak conditions and different choices of xi→j(k).
A possible modelling assumption sees agents moving from a
less attractive action i to a more favourable action j ∈ Eout

i (k)
independently from the value of the utility uj(k). For instance,
this can be achieved by setting xi→j(k) = βxi(k) with
β > 0. A different modelling assumption entails agents being
responsive to the level of the utility uj(k) over all j ∈ Eout

i (k),
and thus redistributing themselves based on the perceived gain.
Both these cases (and many more) are covered by Theorem 3.

We observe that Algorithm 2 does not present any of the
issues encountered with the use of Algorithm 1. First, agents
switch action only if the switch is convenient. Second, no
agent moves if the current allocation is an inertial equilibrium.
Third, there is no need for a central operator, and each agent
requires information only regarding the other actions’ utilities
u(x(k)). As a consequence, Algorithm 2 can be interpreted as
the natural dynamics of agents switching to a more favourable
action whenever one is available. Finally, agents are not limited
to moving to the best alternative action (as in best-response
dynamics), but can instead choose any action providing a better
net utility (hence the term better-response dynamics).

Theorem 3 (Convergence of Algorithm 2). Assume that

- for each i ∈ {1, . . ., n} the utility ui depends only on xi,
that ui is non-increasing and L-Lipschitz.
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- there exists cmin > 0 such that cij ≥ cmin for all i 6= j
with i, j ∈ {1, . . ., n}.

- there exist 0 < τ ≤ 1, and ε > 0 such that at each
iteration k ∈ N, xi→j(k) ≥ 0 for all i ∈ {1, . . ., n},
j ∈ Eout

i (xk), and

τxi(k)≤
∑

j∈Eout
i (k)

xi→j(k) ≤ xi(k), i ∈ {1, . . . , n}, (5a)

∑
i:j∈Eout

i (k)

xi→j(k) ≤ cmin

L
− ε, j ∈ {1, . . . , n}. (5b)

Then x(k) in Algorithm 2 converges to an inertial equilibrium
x̄. If additionally x̄ ∈ S+, then the algorithm terminates in a
finite number of steps.

The first assumption is typical of many congestion-like
problems. The second assumption is technical, and requires
the switching costs between different actions to be strictly
positive. With respect to the third assumption, the requirement
on the right hand side of (5a) together with the condition
xi→j(k) ≥ 0 for all i ∈ {1, . . ., n}, j ∈ Eout

i (xk), is needed to
ensure that x(k) remains in the simplex. Thus, the only non-
trivial constraint imposed on xi→j(k) is that on the left hand
side of (5a), and that of (5b); these are discussed in detail in
Remark 1 below. Finally, we note that the proof of Theorem 3
does not require the agents to move synchronously. As a
consequence, an asynchronous implementation of Algorithm
2 is also guaranteed to converge.

Remark 1 (Tightness of conditions (5a) and (5b)). Condi-
tion (5a) is a mild requirement. It merely asks for a minimum
proportion of agents to move from their current unfavourable
action to a better one. Equation (5b), on the other hand,
requires the switching to happen sufficiently slowly. Without
this condition, the algorithm may not converge, as shown
with the following example. Consider n = 2, u1(x1) =
1 − x1, u2(x2) = 1 − x2, c12 = c21 = 0.5, and note
that cmin/L = 0.5. Take δ > 0 small enough and initial
condition x1(0) = 0.75 + δ/2, x2(0) = 0.25 − δ/2. Since
u1(0) = 0.25 − δ/2 and u2(0) = 0.75 + δ/2, then x(0) is
not an inertial equilibrium. Assume that, as a consequence,
0.5 + δ > cmin/L units of mass move from action 1 to action
2, resulting in x1(1) = 0.25− δ/2, x2(1) = 0.75 + δ/2, and
thus u1(1) = 0.75+δ/2, u2(1) = 0.25−δ/2, so x(1) is not an
inertial equilibrium either. A repeated transfer of 0.5+δ mass
from the action which is worse-off to the one which is better-
off results in x(2k) = x(0) and x(2k + 1) = x(1). Thus, a
slight violation of (5b) brakes the convergence of Algorithm 2.

V. EXTENSIONS

We present three modifications of the inertial equilibrium
problem, and highlight how the results can be adapted.

Non-engaging agents. With the current Definition 2 all
the agents are forced to engage, i.e. to choose one of the
actions in {1, . . ., n}. Let us now consider an extra action
labeled e, so that the extended actions set it {1, . . . , n, e}.
Set cje = cej = 0 for all j ∈ {1, . . ., n} and ue(x) as some
constant value representing, for instance, the utility perceived

when not participating in the game. Within this setup, an
agent that does not engage in the game at time k = 0, will
revise his decision at every time-step k ≥ 1, and will rejoin
whenever more favourable actions appear. For example, in
the ride-hailing application presented in Section VI, action e
could represent electing to temporarily not work as a driver.

Atomic agents with discrete action set. Instead of a
continuum of agents, one could consider a finite number M
of atomic agents. Each agent possesses unitary mass and can
choose only one of the actions {1, . . . , n}. The utility uj
is then a function of how agents distribute themselves over
the actions. The definition of inertial equilibrium requires
that no agent i ∈ {1, . . .,M} has an incentive to switch
action, considering the utilities of the alternative actions
and the corresponding switching costs. The model with a
continuum of agents studied above represents, in a sense,
the limiting case obtained as the number of agents M
grows. Since the action space is discrete, the reformulation
as a VI is not possible. Nonetheless, one can formulate
Algorithm 2 by letting an agent i switch to an arbitrary action
whenever such action is attractive. Convergence is guaranteed
upon substituting the expression

∑
j∈Eout

i (k) xi→j(k) in (5a)
and (5b) with the number of agents that move at the same time.

Multi-class inertial equilibrium. The concept of inertial equi-
librium relies on the idea that each agent perceives the same
utility uj and the same switching costs cij . This assumption
can be relaxed by introducing different agents’ classes. Let A
be the total number of classes, and xαi be the mass of agents
belonging to class α ∈ A which choose action j. We denote
xi =

∑A
α=1 x

α
i and xα = {xαi }ni=1.

Definition 5. Consider utilities uαi : Rn≥0 → R, switching
costs cαij ≥ 0 and masses γα > 0, with i, j ∈ {1, . . ., n},
α ∈ {1, . . ., A}. The vector x̄ = [x̄1, . . . , x̄A] ∈ RnA is a
multi-class inertial equilibrium if x̄ ≥ 0nA, 1>n x̄

α = γα for
all α, and

x̄αi > 0 =⇒ uαi (x̄r) ≥ uαj (x̄r)− cαij , ∀ j ∈ {1, . . ., n},

for all i ∈ {1, . . ., n} and α ∈ {1, . . ., A}, where the vector
x̄r :=

∑A
α=1 x̄

α.

Note that even though different classes might perceive dif-
ferent utilities at the same action i, each of these utilities
is a function of the sole distribution of the agents on the
actions i.e. of the reduced variable xr. This is indeed what
couples the different classes together. Upon redefining S =
S̃1×· · ·×S̃A ⊂ RnA as the Cartesian product of the weighted
simplexes S̃α = {xα ∈ Rn≥0, 1>n x

α = γα}, one can redefine
F : S → RnA≥0 , where

F (x) = [[Fαj (x)]Aα=1]nj=1,

Fαj (x) = max
h∈{1,. . .,n}

(
uαh

(
A∑
α=1

xα

)
− uαj

(
A∑
α=1

xα

)
− cαjh

)
.

Using a straightforward extension of the proof of Theorem 1,
one can show that the set of multi-class inertial equilibria
coincides with the solution set of VI(S, F ). Theorem 2 about
lack of monotonicity also extends to the multi-class case.
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Finally, Algorithm 2 can also be modified appropriately to
account for the presence of multiple classes, and a similar
convergence result to that of Theorem 3 follows.

VI. APPLICATION: AREA COVERAGE FOR TAXI DRIVERS

In this section we apply the theory developed to the problem
of area coverage for taxi drivers. Understanding the spatial
behavior of taxi drivers has attracted the interest of the trans-
portation community [22], [23], as it allows to infer informa-
tion for diverse scopes, including land-use classification [24]
and analysis of collective behaviour of a city’s population [25].

We focus on the urban area of Hong Kong, as the work [26]
provides relevant data for our model. The authors of [26]
divide the region of interest into n = 18 neighborhoods,
which represent the resources in our game. We assume that
a taxi driver in neighborhood i enjoys the utility ui(xi),
depending on the fraction xi of taxi drivers covering the
same neighborhood. We aim at determining an equilibrium
distribution of the drivers, across the different neighborhoods
of the urban area. The problem can be described through the
introduction of an undirected graph, where the nodes represent
the neighborhoods. We construct an edge from i to j (and from
j to i) if and only if the two neighborhoods are adjacent.
The cost cij is taken as the fuel cost of a trip from i to
j according to [27] and cij = cji, with the fuel cost set
as extremely high for non-adjacent neighborhoods, so that
movement cannot occur between those. A taxi driver stationing
in node i experiences a utility ui(xi) describing his revenue
minus the costs. This takes the form of

ui(xi) = αivi(xi)− (1− vi(xi))β

where αi is the average profit per trip starting from location
i (ranging from 30 to 140 HK$ according to [26]), β = 6.34
HK$ is the operational cost of vacant taxi trips inclusive of
fuel costs, rental costs and toll charges associated with the
trips. The function vi(xi) describes the percentage of the time
a taxi is occupied and according to [28, Eq. (1)] is modeled by

vi(xi) = 1−
(

xi
1 + xi

)pi
,

where pi > 1 is the number of passengers requesting a taxi at
node i. We select pi to be proportional to the values in Figure
3 of [26]. Note that vi(0) = 1 and limxi→∞ vi(xi) = 0, as
one would expect. Moreover, through simple algebraic manip-
ulations, ui(xi) can be shown to be decreasing for xi ≥ 0 and
to have Lipschitz constant Li = 4(αi−β)pi

(pi−1)pi−1

(pi+1)pi+1 . In our
numerical study we compare the projection algorithm (Algo-
rithm 1) with the better-response algorithm proposed in Algo-
rithm 2, with stopping criterion ‖x(k+1)−x(k)‖ ≤ 10−6, and
equal neighbour redistribution function xi→j(k) = τxi(k),
j ∈ Eout

i (k). For Algorithm 1, ρ is chosen slightly smaller
than 1/L = 1.7 · 10−3 as required to achieve convergence
by Proposition 2. Similarly, τ is chosen slightly smaller than
cmin/(Lγ) = 1.4 · 10−4 in accordance to the requirement of
Theorem 3. Table I (top) shows a comparison in terms of
iterations needed to reach convergence by both algorithms.
Note that a single iteration of Algorithm 1 is more costly

20 30 40 50 60
km

0

10

20

30

40

km

Fig. 2: The equilibrium x̄ achieved by Algorithm 2 with initial
condition x(0) = 1n/γ. The radius of each node is proportional
to its utility ui(x̄i), while the thickness of edge (i, j) is proportional
to the corresponding cost cij .

than one of Algorithm 2. Indeed, Algorithm 1 requires the
computation of a projection step, while Algorithm 2 requires
simple addition and multiplication operations.

We note that the number of required iterations to reach
convergence is rather high, due to the small values of ρ and τ
imposed by the theoretical bounds of Proposition 2 and Theo-
rem 3. For this reason we perform another simulation with the
values ρ = τ = 10−2, which provide no theoretical guarantees
of convergence. Nonetheless, both algorithms converge in
100 different repetitions with random initial conditions. The
number of iterations is reported in Table I (bottom) and is
considerably smaller than those in Table I (top). Moreover,
Algorithm 1 outperforms Algorithm 2 in the first case, but
the viceversa happens in the second case. Finally, Figure
2 shows the steady state distribution of taxi drivers across
the n neighbourhood of Hong Kong, with initial condition
x(0) = 1n/γ.

Algorithm # iterations mean # iterations St. Dev.

Alg. 1, ρ = 10−3 26 311 3329

Alg. 2, τ = 10−4 152 856 9130

Alg. 1, ρ = 10−2 12 672 3472

Alg. 2, τ = 10−2 2168 125

TABLE I: Number of iterations needed to reach convergence with
ρ = 1.5 · 10−3 , τ = 10−4 (top), and τ = ρ = 10−2 (bottom). We
report mean and standard deviation for 100 repetitions of the two
algorithms, starting from random initial conditions in the simplex.

VII. CONCLUSIONS

We proposed the novel notion of inertial Nash equilibrium
to model the cost incurred by agents when switching to an al-
ternative action. While the set of inertial Nash equilibria can be
characterized by means of a suitable variational inequality, the
resulting operator is often non monotone. Thus, we proposed
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a natural dynamics that is distributed, and provably converges
to an inertial Nash equilibrium. As future research direction,
it would be interesting to provide convergence rate guarantees
for Algorithm 2, and more broadly to extend the notion
of inertial equilibrium beyond the framework of population
games.

APPENDIX A
PRELIMINARIES ON VARIATIONAL INEQUALITIES

In the following we present those result on the theory
of variational inequality that are used to characterize the
equilibrium concepts introduced in Section II.

Proposition 4 ([21, Prop. 2.3.3]). Let X ⊂ Rn be a compact,
convex set and F : X → Rn be continuous. Then VI(X ,F )
admits at least one solution.

The next proposition introduces the KKT system of a
variational inequality, which is analogous to the KKT system
of an optimization program.

Proposition 5 ([21, Prop. 1.3.4]). Assume that the set X can
be described as X = {x ∈ Rn | g(x) ≤ 0m, h(x) = 0p},
and that it satisfies Slater’s constraint qualification in [29, eq.
(5.27)]. Then x̄ solves VI(X ,F ) if and only if there exist λ̄ and
µ̄ such that (x̄, λ̄, µ̄) solves the KKT system (6)

F (x) +∇xg(x)λ+∇xh(x)µ = 0n (6a)
0m ≤ λ ⊥ g(x) ≤ 0m (6b)
h(x) = 0p. (6c)

We next recall the notion of monotonicity, which is a suffi-
cient condition for convergence of a plethora of VI algorithms,
see [21, Chapter 12].

Definition 6 (Monotonicity). An operator F : X ⊆ Rn → Rn
is monotone if for all x, y ∈ X .

(F (x)− F (y))>(x− y) ≥ 0,

Proposition 6. [30, Prop. 2.1] Let X ⊆ Rn be convex. An
operator F is monotone in X if and only if for every x ∈ X
each generalized Jacobian φ ∈ ∂F (x) is positive semi-definite.

The definition of generalized Jacobian ∂F (x) can be found
in [31, Definition 2.6.1]; we do not report it here because for
our scope it suffices to know that if F is differentiable in
x, then the generalized Jacobian coincides with the Jacobian,
i.e., ∂F (x) = {∇xF (x)}, with positive-definite interpreted as
(∇xF (x) +∇xF (x)>)/2 � 0. We conclude this section with
a result on the convexity of the VI solution set.

Proposition 7 ([21, Thm. 2.3.5]). Let X ⊆ Rn be closed,
convex and F : X → Rn be continuous and monotone. Then
the solution set of VI(X , F ) is convex.

APPENDIX B
PROOFS

Proof of Theorem 1
Proof: The proof consists in showing that the KKT

system of VI(S, F ) is equivalent to Definition 2 of inertial

Nash. Since the set S satisfies Slater’s constraint qualification,
by Proposition 5 VI(S, F ) is equivalent to its KKT system

F (x) + µ1n − λ = 0n
0m ≤ λ ⊥ x ≥ 0m

1>n x = 1

where µ ∈ R is the dual variable corresponding to the
constraint 1>n x = 1 and λ ∈ Rn is the dual variable
corresponding to the constraint x ≥ 0n. The system (7) can
be compactly rewritten as

0n ≤ µ1n + F (x) ⊥ x ≥ 0n, (8a)

1>n x = 1. (8b)

Observe that for any x ∈ S there exists i? ∈ {1, . . ., n} such
that Fi?(x) = 0. Indeed, setting

i? ∈ argmax
i∈{1,. . .,n}

ui(x),

gives Fi?(x) = 0 by the definition of F in (4).
It follows that µ < 0 is not possible, otherwise the non-

negativity condition on µ1n + F (x) is violated. Moreover,
since F (x) ≥ 0n, µ > 0 is not possible, as by (8a) this would
imply x = 0n thus violating (8b). We can conclude that µ = 0
and (8) becomes

0n ≤ F (x) ⊥ x ≥ 0n, (9a)

1>n x = 1.

The system (9) is equivalent to

x ∈ S, and
xi > 0 ⇒

(9a)
ui(x) ≥ uj(x)− cij , ∀ i, j ∈ {1, . . ., n}.

which coincides with Definition 2.
Existence of an inertial equilibrium follows readily from

Proposition 4 on the existence of VI solutions. The continuity
of the VI operator therein required is satisfied because F is
the point-wise maximum of continuous functions. �

Proof of Theorem 2
Proof: The proof is composed of four parts.

1) We first show that there exists x̃ ∈ S+ such that x̃ is not
an inertial equilibrium (by assumption x̂ belongs to S and not
necessarily to S+).
For the sake of contradiction, assume that each x ∈ S+ is
an inertial equilibrium. Since x̂ belongs to the closure of
S+, we can construct a sequence (x(m))∞m=1 ∈ S+ such
that limm→∞ x(m) = x̂. Since each x(m) is an inertial
equilibrium and it is positive, then for all i, j it holds
ui(x(m)) ≥ uj(x(m)) − cij . Taking the limit and exploiting
continuity of {ui}ni=1 we obtain

lim
m→∞

ui(x(m)) ≥ lim
m→∞

uj(x(m))− cij ,

⇔ ui(x̂) ≥ uj(x̂)− cij ,
(10)

for all j, h ∈ {1, . . ., n}, hence x̂ is an inertial equilibrium,
against the assumption.
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2) After establishing the existence of x̃ ∈ S+ which is not an
inertial equilibrium, we now show that there exists an open
ball Bε̃(x̃) centered around x̃ of radius ε̃ > 0 such that none
of the points in Bε̃(x̃) ∩ S+ is an inertial equilibrium. Let us
reason again for the sake of contradiction. If for each ε > 0
there exists an inertial equilibrium in Bε(x̃) ∩ S+, then we
can construct a sequence of inertial equilibria converging to
x̃. With the same continuity argument used in (10), we can
conclude that x̃ is an inertial equilibrium, which is false by
assumption. This demonstrates the existence of ε̃ > 0 such that
none of the points in Bε̃(x̃) ∩ S+ is an inertial equilibrium.
By Rademacher’s theorem [32, Thm. 2.14], Lipschitzianity of
{ui}ni=1 guarantees3 existence of x? ∈ Bε̃(x̃) ∩ S+ such that
F is differentiable at x?.
3) The previous part guarantees differentiability of F at a point
x? ∈ S+ which is not an inertial equilibrium. This third part is
dedicated to showing that there exist i?, j? ∈ {1, . . ., n} such
that i? ∈ A(j?, x?) and A(i?, x?) = {i?}, where we denote

A(k, x) := argmax
`∈{1,. . .,n}

{u`(x)− uk(x)− ck`}.

Since x? is not an inertial equilibrium, then there exist `1, `2
such that

u`1(x?) < u`2(x?)− c`1`2 . (11)

Condition (11) is equivalent to `2 ∈ A(`1, x
?) and `1 /∈

A(`1, x
?). If A(`2, x

?) = {`2} then the statement is proven
with j? = `1, i

? = `2, otherwise there exists `3 ∈
A(`2, x

?)\{`2}. Note that it cannot be `3 = `1, because this
means

u`2(x?) ≤ u`1(x?)− c`2`1 ,

which together with (11) results in

u`1(x?) < u`1(x?)− c`2`1 − c`1`2 ,

which is not possible, because c`1`2 , c`2`1 ≥ 0 by assumption.
Hence we established that `3 6= `1. If A(`3, x

?) = {`3} then
the statement is proven with j? = `2, i

? = `3, otherwise
there exists `4 /∈ {`1, `2, `3} such that `4 ∈ A(`3, x

?). Since
there are only n different actions, by continuing the chain of
reasoning we conclude that there exists k ∈ {2, . . . , n} such
that `k ∈ A(`k−1, x

?) and A(`k, x
?) = {`k}, thus proving the

statement with j? = `k−1 and i? = `k.
We now proceed to show that not only i? ∈ A(j?, x?), but
actually A(j?, x?) = {i?}. For the sake of contradiction,
assume that there exists ` 6= i? such that ` ∈ A(j?, x?).
This means that Fj?(x?) = ui?(x?) − uj?(x?) − cj?i? =
u`(x

?) − uj?(x?) − cj?`. Then consider the vector of the

3Rademacher’s theorem assumes F to be defined on an open subset of
Rn, but S+ is not open in Rn. Indeed, one just needs to define F on the
n− 1 dimensional open set {x ∈ Rn−1

>0 |1>n−1x < 1}, by using xn = 1−∑n−1
j=1 xj and then apply the Rademacher’s Theorem to conclude existence

of a differentiable point in {x ∈ Rn−1
>0 |1>n−1x < 1} which implies existence

of a differentiable point in the original S+.

canonical basis ei? ∈ Rn and compute

lim
t→0+

Fj?(x? + tei?)− Fj?(x?)

t
=

lim
t→0+

[u`(x
?)−uj?(x?)−cj?`]−[u`(x

?)−uj?(x?)−cj?`]
t

= 0,
(12)

where the first equality holds because for t > 0 we have

ui?(x? + tei?)−uj?(x?)−cj?i?<ui?(x?)−uj?(x?)−cj?i?
= u`(x

?)− uj?(x?)− cj?`,

due to ∇xi?
ui?(x?) < 0 by assumption. Moreover,

lim
t→0−

Fj?(x? + tei?)− Fj?(x?)

t
=

lim
t→0−

[ui?(x
? + tei?)−uj?(x?)−cj?i?]−[ui?(x

?)−uj?(x?)−cj?i?]
t

= lim
t→0−

ui?(x? + tei?)− ui?(x?)

t
= ∇xi?

ui?(x?) < 0,

(13)
where the first equality holds because for t < 0 we have

ui?(x? + tei?)−uj?(x?)−cj?i?>ui?(x?)−uj?(x?)−cj?i?
= u`(x

?)−uj?(x?)−cj?`,

due to ∇xi?
ui?(x?) < 0 by assumption. From (12) and (13)

we obtain that Fj? is not differentiable at x?, against what
proved in the second part. Hence we must conclude that there
cannot exist ` 6= i? such that ` ∈ A(j?, x?), thus A(j?, x?) =
{i?}.
4) Since F is differentiable in x? by the second part of
the proof, then ∂F (x?) = {∇xF (x?)} is a singleton. As
A(j?, x?) = A(i?, x?) = {i?} by the third part of the proof,
then

ui?(x?)− cj?i? > u`(x
?)− cj?`, ∀ ` 6= i?,

ui?(x?)− ci?i? > u`(x
?)− ci?`, ∀ ` 6= i?.

(14)

As a consequence of (14) there exists a small enough open ball
around x? where Fi?(x?) = ui?(x?) − ui?(x?) − ci?i? = 0
and Fj?(x?) = ui?(x?)− uj?(x?)− cj?i? . Thus

[∇xF (x?)]i?j?×i?j? =[
∂Fi? (x

?)
∂xi?

∂Fi? (x
?)

∂xj?

∂Fj? (x
?)

∂xi?

∂Fj? (x
?)

∂xj?

]
=

[
0 0

∇xi?
ui?(x?) −∇xj?

uj?(x?)

]
,

whose symmetric part has determinant 0 · ∇xj?
uj?(x?) −

(∇xi?
ui?(x?))2/4 < 0, which makes [∇xF (x?)]i?j?×i?j?

indefinite. Thus ∇xF (x?) itself is indefinite and F is not
monotone in S due to Proposition 6. �

Proof of Proposition 2
Proof: Algorithm 1 is the projection algorithm in [21,

Alg. 12.1.1], applied to VI(S,−u). A solution of VI(S,−u)
exists by Proposition 4. The operator −u is monotone in S , be-
cause θ is concave [33, eq. (12)]. Moreover, due to existence of
θ, L-Lipschitzianity is equivalent to (1/L)-cocoercitivity [34,
Thm. 18.15]. Then, for ρ < 2/L, Algorithm 1 is guaranteed to
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converge to a solution of VI(S,−u) by [21, Thm. 12.1.8]. The
final claim follows by observing that any Wardrop equilibrium
is also an inertial Wardrop equilibrium (Lemma 1). �

Proof of Theorem 3
Proof: First, observe that if x(0) ∈ S, then x(k) remains

in S for all k ≥ 1. This is consequence of the two following
observations. i) At every fixed time-step k, and for every pair
i, j with j ∈ Eout

i (k), the mass xi→j(k) is removed from
node i and simultaneously added to node j (see Algorithm 2).
Therefore, the total mass must be conserved at each iteration,
and so it must be

∑
i∈{1 ...,n} xi(k) =

∑
i∈{1 ...,n} xi(0) = 1.

ii) For every node i ∈ {1, . . . , n}, the evolution of xi(k), as
dictated by Algorithm 2, can be compactly written as

xi(k + 1) = xi(k)−
∑

j∈Eout
i (k)

xi→j(k) +
∑

` s.t. i∈Eout
` (k)

x`→i(k).

Since by assumption
∑
j∈Eout

i (k) xi→j(k) ≤ xi(k)

for every time-step k, we have that xi(k + 1) ≥∑
` s.t. i∈Eout

` (k) x`→i(k) ≥ 0, where the last inequality
follows from x`→i(k) ≥ 0. Repeating the reasoning
for every k ensures that xi(k) ≥ 0 at every time-
step. Finally, since

∑
j∈Eout

i (k) xi→j(k) ≤ xi(k),
it must be that x`→i(k) ≤ x`(k). Therefore∑
` s.t. i∈Eout

` (k) x`→i(k) ≤
∑
` s.t. i∈Eout

` (k) x`(k) ≤
∑
` 6=i x`(k).

Hence xi(k+ 1) ≤
∑
`∈{1,...,n} xl(k)−

∑
j∈Eout

i (k) xi→j(k) ≤
1, where the last inequality follows from the fact that∑
`∈{1,...,n} xl(k) = 1 (as shown above) and from the fact

that xi→j(k) ≥ 0.
We now move our attention to proving the desired con-

vergence statement. To do so, we will show that x(k) → x̄
such that Eout

i (x̄) = ∅ for all i ∈ {1, . . ., n}, thanks to
the equivalence in Proposition 3. Let us denote for brevity
ui(k) := ui(xi(k)) and define µ(k) = min

i∈{1,. . .,n}
ui(k). We

show in the following that µ(k) is a non-decreasing sequence.
First, for any action i we have xi(k+1)−xi(k) ≤ cmin/L−ε

due to (5b). Then we can bound the maximum utility decrease

ui(k + 1)− ui(k) ≥ −L|xi(k + 1)− xi(k)|
≥ −L(cmin/L− ε) = −cmin + Lε =: −βcmin,

(15)

where the first inequality follows by Lipschitz continuity and
we define β := 1− (Lε)/cmin ∈]0, 1[.

Secondly, note that if some action i faces a utility decrease,
that is, if ui(k+1) < ui(k), then it must be xi(k+1) > xi(k),
because ui is non-increasing. Then there exists j such that
i ∈ Eout

j (x(k)). It follows that

i faces utility decrease at step k ⇒
ui(k) > uj(k) + cji ≥ µ(k) + cmin.

(16)

Combining (15) with (16) we obtain

i faces utility decrease at step k ⇒
ui(k + 1) > µ(k) + (1− β)cmin,

which implies µ(k+ 1) ≥ µ(k). Since µ(k) is non-decreasing
and bounded ({ui}ni=1 are continuous functions in a compact

set), there exists a value µ? such that

lim
k→∞

µ(k) = µ?. (17)

We show in the following that there exists an action i? such
that

lim
k→∞

ui?(k) = µ?. (18)

As limk→∞ µ(k) = µ?, there exists k̂ such that

µ(k) > µ? − cmin(1− β)/2, ∀k ≥ k̂. (19)

Then
i faces utility decrease at step k ≥ k̂ ⇒
ui(k) ≥ µ? − cmin(1− β)/2 + cmin

= µ? + cmin(1 + β)/2,

(20)

where the first inequality follows from combining (16)
and (19). Combining (15) and (20) we obtain

i faces utility decrease at step k ≥ k̂ ⇒
ui(k + 1) ≥ µ? − cmin(1− β)/2 + cmin(1− β)

= µ? + cmin(1− β)/2.

(21)

Figure 3 illustrates inequalities (20) and (21).

no decrease possible

possible utility after decrease

µ(k)

µ? µ? +
cmin

2
(1� �) µ? +

cmin

2
(1 + �)

Fig. 3: Illustration of µ(k)→ µ? from below and of inequalities (20)
and (21) after iteration k̂ (with β = 0.5).

Combining inequalities (20) and (21) we obtain that

∃ k1 ≥ k̂ such that ui(k1) ≥ µ? + ρ > µ? ⇒
ui(k) ≥ min{µ? + ρ, µ? + cmin(1− β)/2} for all k ≥ k1.

(22)
It then follows

∃ k1 ≥ k̂ such that ui(k1) > µ? ⇒ lim
k→∞

ui(k) 6= µ?. (23)

By (23) and (17) it follows that there exists at least an action
i? such that ui?(k) ≤ µ? for all k ≥ k̂. Using again (17) and
the “squeeze theorem” [35, Thm. 3.3.6], we can conclude that
i? satisfies (18). Upon defining

E in
j (x) = {i ∈ {1, . . ., n} s.t. j ∈ Eout

i (x)},

for any j ∈ {1, . . ., n} and x ∈ S , we note that the set
E in
i?(x(k)) is empty for k ≥ k̂ due to (16) and ui?(k) ≤ µ?. In

words, no other action can envy i? after step k̂. This implies
that ui?(k) is a non-decreasing sequence, and in turn xi?(k)
is a non-increasing sequence. As a consequence

lim
k→∞

xi?(k) = x̄i? ≥ 0. (24)

If x̄i? = 0, then clearly Eout
i? (x̄i? , x−i?) = ∅ by definition, for

any x−i? . If instead x̄i? > 0, since xi?(k+1) ≤ (1−τ)xi?(k)
due to (5a), then convergence is achieved in a finite number of
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steps. In other words, there exists k̃ such that xi?(k) = x̄i? for
all k ≥ k̃. In this case, for k ≥ k̃ not only E in

i?(x(k)) = ∅, but
also Eout

i? (x(k)) = ∅, because otherwise i? would encounter a
mass decrease.

Having concluded that there exists i? ∈ {1, . . ., n} such that
its mass converges (in a finite number of steps if x̄i? > 0),
we propose a last argument to show that there exists j? ∈
{1, . . ., n}\{i?} such that its mass converges to x̄j? (in a finite
number of steps if x̄i? , x̄j? > 0). Applying the same argument
recursively to {1, . . ., n}\{i?, j?} concludes the proof.

The last argument distinguishes two cases: x̄i? > 0 and
x̄i? = 0. In the first case x̄i? > 0, we already showed that
there exists k̃ such that E in

i?(x(k)) = Eout
i? (x(k)) = ∅ for all

k > k̃. Then action i? has no interaction with any the other
action and considering k ≥ k̃ we apply to {1, . . ., n}\i? the
previous reasoning until equation (24) to show that there is an
action j? ∈ {1, . . ., n}\{i?} with mass that converges to x̄j?

(in a finite number of steps if x̄j? > 0).
In the second case x̄i? = 0. Even though Eout

i? does not
become the empty set at any finite iteration k, the mass xi?
becomes so small that transferring mass to the other n − 1
actions does not have an influence on their convergence.
Proving this requires a cumbersome analysis that does not
add much to the intuition already provided. Let us denote
η(k) = min

j∈{1,. . .,n}\{i?}
uj(k). Contrary to µ(k), the sequence

η(k) is not non-decreasing in general because the analogous
of (16) does not hold, as action i? could transfer some of its
mass to {1, . . ., n}\{i?} thus making their utilities decrease.
Nonetheless, we show that there exists η? such that

lim
k→∞

η(k) = η?. (25)

To this end, we fix ε > 0 and we show that there exists
k? such that |η(k)− η?| < ε for all k ≥ k?. By definition of
limk→∞ xi?(k) = 0, there exists k∞ such that

xi?(k) < ε/(2L), ∀ k ≥ k∞. (26)

Let us now construct the sequence

η0(k) = η(k) + δ(k),

δ(k + 1) = δ(k) + max{0, η(k)− η(k + 1)}, δ(k∞) = 0.

In words, the sequence δ(k) accumulates the (absolute value of
the) decreases of η(k) due to i?, and summing it to η(k) results
in a sequence η0(k) which is non-decreasing and bounded
from above, hence it admits a limit η?. By definition, there
exists k0 such that η0(k) > η?−ε/2 for all k ≥ k0. Moreover,
δ(k + 1) − δ(k) = max{0, η(k) − η(k + 1)} > 0 only if
Eout
i? (x(k)) 6= ∅ and in this case max{0, η(k) − η(k + 1)} ≤
L·
∑
j 6=i? xi?→j(k). In words, the only way η(k) can decrease

is if action i? transfers some mass to the others, and even then
we have a bound on the utility decrease that this can cause.
Summing up

lim
k→∞

δ(k) =

∞∑
k=k∞

max{0, η(k)− η(k + 1)}

≤ Lxi?(k∞) <
(26)

ε/2,

hence, since δ(k) is non-decreasing, δ(k) < ε/2 for all k ≥
k∞. Then for k ≥ max{k∞, k0} it holds

η? − η(k) = η? − η0(k) + η0(k)− η(k)

= η? − η0(k)

<ε/2

+ δ(k)

<ε/2

< ε

which proves (25).
Finally, we want to show that there exists j? ∈

{1, . . ., n}\{i?} such that

lim
k→∞

uj?(k) = η?. (27)

Consider an action ` 6= i? such that

lim
k→∞

u`(x`(k)) 6= η?. (28)

Since η(k)→ η?, then max{0, η(k)− η(k+ 1)} → 0 as k →
∞. This, together with η(k)→ η?, implies that condition (28)
is equivalent to the existence of θ > 0 such that for all k′ ≥ 0
there exists k′′ ≥ k′ such that

u`(k
′′) > η? + θ. (29)

There are two possibilities in which ` can face a utility
decrease after k′′, namely through a mass transfer from some
action {1, . . ., n}\{i?, `} or through a mass transfer from
action i?. If the mass transfer happens through some action
{1, . . ., n}\{i?, `}, we can use the same argument of Figure 3
and in particular of implication (22) to conclude from (29)
that

u`(k) ≥ min{η? + θ, η? + cmin(1− β)/2}, ∀ k ≥ k′′. (30)

If instead the mass transfer happens through i?, by xi?(k)→ 0
one can take k′ such that

xi?(k) < θ/(2L), ∀k ≥ k′ (31)

and take k′′ such that (29) holds. Then

u`(k) ≥ u`(k′′)− L
θ

2L
> η? + θ − θ

2
= η? +

θ

2
. (32)

for all k ≥ k′′, where the first inequality holds due to Lipschitz
continuity and to (31), while the second inequality holds due
to (29). We can conclude that if (28) holds for action `,
then either (30) or (32) holds. Consequently, after k′′ action
` does not attain the minimum η(k). If (28) holds for all
` ∈ {1, . . ., n}\i?, then the minimum η(k) is not attained by
any action after k′′, which is a contradiction. Then there must
exist j? such that (27) holds. With the same argument that led
to (24), we can conclude that there exists x̄j? ≥ 0 such that
limk→∞ xj?(k) = x̄j? ≥ 0. As done for i?, we can conclude
that Eout

j? = ∅. �
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