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Optimization Based Planner-Tracker Design for Safety Guarantees

He Yin*, Monimoy Bujarbaruah*, Murat Arcak, and Andrew Packard

Abstract— We present a safe-by-design approach to path
planning and control for nonlinear systems. The planner uses a
low fidelity model of the plant to compute reference trajectories
by solving an MPC problem, while the plant being controlled
utilizes a feedback control law that tracks those trajectories
with an upper-bound on the tracking error. Our main goal
is to allow for maximum permissiveness (that is, room for
constraint feasibility) of the planner, while maintaining safety
after accounting for the tracking error bound. We achieve this
by parametrizing the state and input constraints imposed on
the planner and deriving corresponding parametrized tracking
control laws and tracking error bounds, which are computed
offline through Sum-of-Squares programming. The parameters
are then optimally chosen to maximize planner permissiveness,
while guaranteeing safety.

I. INTRODUCTION

Path planning and control of automated systems is a highly
researched topic and a number of approaches exist to tackle
this problem [1], [2], [3]. A widely used approach for path
planning and control is Model Predictive Control (MPC) [4],
[5], [6], where a model is used to predict system states
over a finite horizon, and a sequence of optimal inputs is
synthesized by solving a constrained finite time optimization
problem minimizing a suitably chosen cost function. The
first optimal input is applied to the system, and then the
process is repeated, thus resulting in a receding horizon
control strategy. If the “planning” model used for MPC
predictions and the plant have no discrepancy, then the so
called recursive feasibility, as well as stability of such an
MPC controller are ensured by suitably choosing “terminal
conditions” in the MPC problem [5, Chapter 12]. Such fea-
sibility certificates are crucial for safety critical applications,
where constraint violations are intolerable at any time during
operation. However, under mismatch of planning model and
the plant, the MPC optimization problem must be robustified.

Feasibility and stability properties of robust MPC have
been studied in detail over the past few decades [7], [8]. For
linear systems, Tube MPC [9], [10] is a widely used approach
that solves a computationally efficient convex optimization
problem for robust control synthesis. Although Tube MPC
design with feasibility and stability properties are proposed
for nonlinear systems in [11], [12], the control synthesis
problem becomes computationally demanding, due to non-
convexity of the resulting optimization problem [13].

To alleviate this issue, a typical approach in the path
planning community is a two layer control architecture of
planner—tracker design [14], [15], [16], [17], [18], [19].
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The high-level planning controller is synthesized and im-
plemented online using a low-fidelity planning model, and
imposes appropriately chosen constraints on the variables
of the planner. The low-level tracking controller applied to
the plant (referred to as the tracker) simultaneously ensures
robust constraint satisfaction in closed loop by bounding the
tracking error in a set. The tracking controller is compu-
tationally expensive to synthesize, but it is typically a state
feedback policy, making it cheaper to implement. Hence, it is
synthesized offline a-priori, and the policy is invoked during
run-time. However, if the constraints imposed on the planner
are not chosen appropriately, either the planner can become
infeasible, or the error bound can violate tolerable limits,
resulting in the tracker violating safety constraints.

In this paper we propose an optimization based approach
to designing a path planning—tracking algorithm for nonlinear
systems. We extend the class of applicable systems beyond
the ones considered in [15], [18]. Our contributions are:

1) We introduce an approach for parametrizing the state
and input constraints in the MPC planner with param-
eters 6. Using SOS programming [20], [21] offline, we
synthesize a parametric error bound ©? for the con-
tainment of error between planner and tracker states,
and an associated feedback control policy .

2) We then solve an optimization problem offline to pick
the optimal parameter 6*, that gives the “widest” plan-
ner state constraint set X?" such that, when enlarged
by the error bound oY , it is contained in the constraint
set X'. Contrary to approaches such as [18], [19], this
provides a systematic and optimal way of designing
the planner and the associated error bound.

3) We solve an MPC problem for the planner imposing
constraints X% and /%", and use input policy %"
to control the plant. If the planner MPC problem is
feasible, then satisfaction of all safety constraints are
guaranteed for the plant. We demonstrate this with a
detailed numerical example.

A. Notation

For ¢ € R", R[{] represents the set of polynomials in
¢ with real coefficients, and R™[¢] and R™*P[¢] denote all
vector and matrix valued polynomial functions. The subset
S i={p=p3+p3+..+0% : p1,-,pm € R[{]} of R[¢]
is the set of SOS polynomials in £&. Row k of a matrix A,
and element k of a vector b are denoted by (A)x and (b)g
respectively. Unless defined otherwise, notation 27 denotes a
variable x used in the j’th iteration of an iterative algorithm.
The symbol “<” represents component-wise inequality.
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Fig. 1: Control framework

II. PROBLEM SETUP

In this paper, the control framework as shown in Fig. [I]
has two layers: (i) planning layer (planner), where a planning
trajectory with a long time-horizon is generated using a
planning model and Model Predictive Control (MPC); (ii)
tracking layer (tracker), where tracking control signals are
computed for the true plant to track the planned trajectories
with bounded error.

A. Tracking Model

The high-fidelity model of the plant is referred to as the
tracking model. This is an uncertain, input-affine, nonlinear
system with parametric uncertainty §(t), and is given as

#(t) = f(x(t),6(t)) + g((t), 6(t))u(t), V=0, (1)

where z(t) € X C R™ u(t) e U CR™, 6(t) € A C R"s,
fiR"xR™ — R™ and g : R” x R™ — R"*™_ The sets
X and U are state and control constraint sets imposed on
the tracking model, and the set A := {0 € R™ : ps(§) <
0} defines the set of disturbances, where ps : R — R is
specified by the designer.

B. Planning Model

The low-fidelity model, also referred to as the planning
model, is a simplified (e.g. linearized) and potentially low-
dimensional version of the tracking model, given by

#(t) = f(@(t) + g(a(t)a(t), vt >0, )

where &(t) € R, 4(t) € R™, f: R" - R™ and § : R* —
R"™ x R™. For now we assume the high- and low-fidelity
models have the same state dimension 7 = n. The notation
7 1s retained here for use in Section where the case when
n < n is addressed.

C. Error Dynamics

Accounting for the the difference between the states of the
low and high-fidelity models yields the error-states e(t) =
x(t) — Z(t). The error dynamics are given as, for all ¢ > 0,

é(t) = fE(e(t)’ i‘(t)a ﬁ(t)v 6(t)) + ge(e(t)v i‘(t)’ 6(t))u(t)(73)

where f.(e,#,4,0) = f(e + #,6) — f(2) — §(&)d, and
gele,2,8) == gle+2,0). Let Ky := {r : R® x R" x R™ x
R™ — U} define a set of admissible error-state feedback
control law. Notice that (3) allows for dependence on & which
is an extension to a richer class of systems than [18], [15].
Assumption 1: Assume the initial condition of error-state,
e(0), starts within the set Q2 := {e € R™ : p.(e) < 0}, that is,
e(0) € Q, where p. : R™ — R is specified by the designer.

D. Planner Formulation

In the planner, the MPC that generates online planning
trajectories solves

min

N—1
~T Aa N ~ ~T X
> (xk‘thkht + gy Rilg)) + $N|tPN~TN|t
U k=0

st Tpgape = Fd(ik\tv’l}Mths)a (4)
fjjk-‘t S X, ﬁk“t EZ/{,
vk € {0,...,N — 1},
By = 2(t), Tnp € Xy C A,

with @, R, Py > 0, where Fd is system (2) discretized
with sampling time 7. Let I be the predicted plan-
ner states at time ¢ with predicted planner inputs U, =
[toje, Wr)gs - - > U—1|e] € R™¥k for all k € {1,..., N}. Each
prediction instant k € {1, ..., N} represents look-ahead time
of kT;. The planner constraint sets are defined as

‘XA :{JA; = Rﬁ ﬁI(.’i‘) S ilz}a
U :={a € R™ : p,(a) < hy},

(5a)
(5b)
with p, : R* - R, p, : R" > R, h, € R, h, € R
chosen by the designer. Terminal conditions Xy and Py are
chosen to ensure feasibility and stability properties [5]. After
solving @) at any time ¢, we apply the first optimal input
a*(t) = g, only to low-fidelity planner system (). We then
re-solve (@) at next time instant ¢ + Ts.

E. Tracker Formulation

Definition 1: Robust Infinite-Time Forward Reachable
Set: Consider the closed-loop error dynamics obtained from
(@) for all ¢ > 0, under a given control law x € Ky, as

é(t) = fele(t), &(t),a(t),d(t))+
ge(e(t), (t),6(t))r(e(t), &(t),a(t), 6(t),  (6)
with #(t) and 4(t) constrained by (B) for all times ¢ > 0.
Then a robust infinite-time forward reachable set O of Q,
for a given feedback k, is defined as
O:={e(t)eR":3e(0)eQ, 2:Ry - X, 4: R, = U,
§: Ry — A, t>0, s.t. e(t) is a solution to (6)}.



We assume that O is a compact set. The tracking con-
trol synthesizes a error-state feedback policy wu(t) =
k(e(t), (), a(t),d(t)) with k € Ky ensuring containment
of the error-states within such an O. We refer to that O as an
“error bound”, and & as the corresponding “tracking control”
law and they can be obtained by following [19] using Sum-
of-Squares (SOS) programming. O is a function of X, U and
A. As the volumes of X, 2/ and A increase, we tend to get
a larger error bound O.

Remark 1: Note that since the planner MPC problem (@)
is not posed in continuous time, the guarantees of feasibility
of planner constraints (3) hold only at sampled time instants,
assuming perfect discretization (although this is valid for
linear systems, for nonlinear systems variational methods
can be used for obtaining arbitrarily low discretization errors
[22]). We hereby assume that the planner sample frequency
is chosen high enough that all continuous time guarantees
hold for this planner-tracker synthesis work.

III. PARAMETRIC APPROACH TO PLANNER-TRACKER
DESIGN

The primary goal is to ensure constraint satisfaction on
the state x(t) of the tracker evolving according to under
the control law «, i.e x(t) € X for all ¢ > 0. For this we
must make sure

XpOCX. (7N

Note that if X is chosen to be of small volume, the
corresponding O is small, and it is very likely that will
hold, but it might leave too small room for (4) to be feasible.
If X is chosen to be too large, might be violated. To
address this trade-off between planner permissiveness and
tracker safety, we propose a parametric approach, where we
parametrize planner constraint sets () as X? and /%, 6 € ©.
The set © is defined as © := {# € R™ : py(0) < 0}, where

9 : R? — R is picked by the user. Correspondingly, we
compute a parametric forward reachable set O of Q, where

.= {e(t): 3e(0) e, &: Ry = X% 0:Ry —U°,

§:Ry = A, t>0, s.t. e(t) is a solution to (6)},

and its associated parametric control law . O is referred

to as a “parametric error bound”. The existence of a specific
parameter § € © which satisfies

ool cu, ®)

and for which (@) is feasible, ensures safety: z(t) € X for

all t > 0. We parametrize constraint sets (3)) using 6 € © as

.={& e R": p,(2) < hf}, 9)

U ={i e R™: p,(a) < hf}. (10)

where h¢ : R™ — R and h? : R™ — R. Given the

parametrized constraint sets (O)—(T0), we take two steps, A)

1) compute a parametric error bound ©?, and an associ-
ated feedback policy denoted by Y, which may vary
as the parameter 6 is varied,;

2) solve an optimization problem to pick the “best” 6 that
gives the most permissive planner (widest X'%) subject
to the safety constraint ().

These steps are elaborated in the following sections.

A. Parametric Error Bound ©O°

We use the following Theorem [I]to compute a parametric
error bound O, as well as an associated feedback control
policy, denoted as x?. Note that we use the same symbol for
a particular real variable in the algebraic statements as well
as the corresponding signal in the dynamical systems, after
dropping the time-series argument.

Consider tracker input u defined in (I)). We assume the set
of constraints on w is a polytope U = {u € R™ : Hu < h},
where H € RNoxm | e RNo_ and we overload the notation
Ky as Ky := {k : R" x R?* x R™ x R" x R" — {}.

Theorem 1: Let Assumption [I] hold. Given the error dy-
namics with mappings f. : R” x R"™ x R™ x R™ — R",
ge - R" x R* x R — R™, v € R, X? C R, U’ C R™,
O CR™, ACR™, QCR", HeRNX™ and h € RN,
if there exists a C! function V : R™® x R™ — R, and
ko R" x R" x R™ x R x R™ — R™, such that for
all § € A,z € X% 4 €U, the following constraints hold,

WD) (fufe,.0.6) + gele 2. O)x(e 2,3,0,6) < 0
V(e,@) ER" x O, s.t. V(e,0) =+, (11a)

{e:V(e,0) <~} C{e: Hk(e,Z,4,6,0) < h}, V0 € O,
(11b)

Qx0 C{(e,0):Vie,0) <~} (11¢)

then the #-dependent sub-level set
Pi={e:V(e,0) <7}

is a parametric forward reachable set of {2 under the control
policy s := k(-,-,-,-,0) € Ky.

Proof: We have, 0 as a vector of uncertain parameters
with dynamics = 0. Let 8(0) = 6°, for all possible §° € ©.
For all the augmented states (e(0), 8(0)) € 2x© C {(e, ) :
Ve, 0) < v}, (e e(0) € {e: V(e,0°) < 7}), we have
e(t) € {e: V(e,0°) < ~}, implying {e : V(e,0) <~} isa
parametric forward reachable set of (. [ ]

Remark 2: Since 07 is also a positive invariant set for
error-states for all € ©, after we obtain it based on (2, it
can then serve as the set of initial conditions for error-states.

We use Sum-of-Squares (SOS) programming [20], [21] in
finding storage function V' and control law x? by solving
the following non-convex optimization problem. We restrict
pe € Rle], po € R[0], ps € R[0], p, € R[Z], p, € R[a],
fe € R™[(e,&,4,9)], ge € R"™™[(e,#,9)], V € R[(e, )]
and k € R[(e, i a,0,0)].

min volume(O%)
V,k,s

0)]7 513, S14 S E[(G,G)},
sj € X(e, &,1,6,0)], Vje{3,...,6},
(s1)k € Z[(e, £,4,0,0)], VI € {8,...,12}, (12a)



_ (Z‘g)l + (s7): - po € X[(e,0)], (s7): € Z[(e,0)]

Vie{1,...,n9}, (12b)

ov o,

—%'(fe+9eff)—52'(V—’Y)+53'(px—hw)

+ 84+ (Pu — 1) + 55 - po + 56 - Ds

€ X[(e, &,4,0,0)], (12¢)

(W) — (H) gk + (ss)ie - (V =) + (s0) - (o — 1)
+ (s10)k - (Pu — h8) + (s11)k - Po + (s12)1 - Ps

€ S[(e,#,4,6,0)], Yk € {1,... No}, (12d)

— (V=) + 513 -pe + 514 - po € X[(e,0)], (12e)

SOS polynomials s serve as the S-procedure certificates, and
are usually referred to as “multiplier polynomials”. Con-
straints (12d)—(12¢), when feasible, are sufficient conditions
for (TTa)—(TIc), respectively. The rationale for constraint
(I2b) is elaborated in Proposition [T} Solving optimization
(I2) directly can be challenging, since it is bi-linear in
decision variables V' and (k, s2 and (sg)g). Similar to [23],
in Algorithm [I] we decompose optimization (T2) into two
convex sub-problems to iteratively search between two sets
of decision variables. Note that the initialization V° to
Algorithm [I] can be computed using [19, Algorithm 2].

Algorithm 1 Computing ©? and «?

Input: function V° such that (T2a)—(12¢) are feasible by
proper choice of s,x,7 and sub-level sets of VO are
bounded. Maximum iteration count Njier.

Output: (k, v, V) such that with the volume of O having
been shrunk.

1: for j =1 : Njter do

2: ~-step: decision variables: (s, k,7).

Minimize + subject to (12a), (I2c)-(12¢) using
V = VI~ This yields (s}, (ss)3,~7), for all
k€ {1,...,No} and optimal cost 7.

3: V -step: decision variables: V' and all the multiplier
polynomials s except (s2 and (ss)g). Maximize the
feasibility [23] subject to (12a)—-(12¢) as well as
0,51 € X[(e, 0)], and

—so- (VITh =)+ (V —+7)
+ 51+ py € Z[(e, 0)],

(13)

using (7 = 77, 5 = s, (s3)x = (58} 5 = K9,
for all k € {1,..., No}. This yields V7.
4: end for

The constraint (I3) enforces the sub-level set certified by
the V-step, {(e,0) : VI(e,0) < ~7}, to be contained by the
sub-level set from the ~-step, {(e,0) : Vi~1(e,0) < ~7}, for
all 0 € ©.

B. Optimal Parameter Selection

Next, we need to pick the “optimal” 6, denoted by 6%,
which gives the “widest” X? subject to (8). The Minkowski

sum of X% and O in (§) can be expressed as follows:
X 0f
={zeR":z=3d+e, p.(2) <h’, V(e ) <A},
={w € R": o (&) < hf, V(e —,0) <~}

or ={z eR":py(x—e) <h’, Vieb) <~} (14)

We assume X is a semi-algebraic set, which is a sub-level
set of a given polynomial function p(-). That is X = {z €
R™: p(x) > 0}.

Optimal Parameter Selection by Sum-of-Squares: Replac-
ing the constraint (8) with the reformulation as in (T4), we
pose the following optimization problem by applying the
polynomial S-procedure to to obtain #*. Assume that
hY and h? are chosen in a way that when 6 grows, h? and
h? grow as well, by making sure

oh? ono
T > U o> .
50 >0 and 50 >0, Ve O (15)

Therefore, to find the most permissive constraint sets for the
MPC in (@), the summation of all the elements of 6 is chosen
as the reward function in

max

max 5 (60,
38aSh

st. 0€0, s, 8 € X(x,e)],

P+ sa- (Pu(z —€) — ﬁg)
+sp - (V(e’ 9) - '7) € Z[(x’ e)]a

(16)

where s, and s; are polynomial multipliers. However, (I6)
is bi-linear in two sets of decision variables: multipliers
(Sa, sp) and (V (e, )), fzg) that are nonlinear functions in 6.
Although (T6) is convex in (s, sp) wWhen 6 is fixed, (I6) is
not necessarily convex in # when fixing (s,, sp). We resolve
this issue with the following Proposition.

Proposition 1: Imposing constraints (I2b) on V, that is,
%—‘9/ <0, for all (e,0) € R™ x O, ensures

0% C 0, Voo < @b, (17)

where ¢,0° € O.

Proof: As %—V < 0, for all (e,0) € R™ x ©, we have
Ve, 0*) > V(e,0°). If an error-state e satisfies V' (e, 0%) <
7, then it also satisfies V (e, %) < ~. ]

Reformulation for Iterative Convex Optimization: We can
iteratively solve with Linear Matrix Inequalities (LMIs)
if we do not make 6 a decision variable, and instead look
for its maximum allowable box bound @ such that 6 € [0, 4].
Thus, we solve the following reformulated SOS optimization
problem as a tractable relaxation to (I6):

“max Y2 (0);
0,8a,Sb,Sc

s.t. 0eco,

Sas Sbs (SC)Z € E[(xv €, 6)}7 Vi€ {]-a s 7”9}7
P+ Sq- (ﬁx(x - 6) - hZ) + Sy (V(eve) - ’Y)
= 0 (se)i - (0):((0)i — (0):) € Sl(a,e.0)]:



When feasible, (I8) is a sufficient condition for

xXa 0% Ccx voelo,d). (19)
Most importantly, optimization problem (T8)) is only bi-linear
in (s.); and (0);, and can be solved by iteratively searching
between (s.); and (6); using Algorithm

Algorithm 2 Optimal 6 Selection

Input: 0° such that constraints in (T8) are feasible by proper

choice of sg, sp, (sc);, for all 4 € {1,...,np}.
Output: 0 that has been maximized
1: for j =1 : Njter do
2: s-step: decision variables: (sq, Sp, (S¢)s)-

Maximize the feasibility subject to the constraints
in (T8), using § = 67~!. This yields (s.)?.

3: -step: decision variables: (s, 53, 0).
Maximize 6 subject to the constraints in (I8) using
(S¢)i = (sc)! forall i € {1,...,ng}. This yields
an optima 67 to (T8).

4: end for

Assumption 2: We assume O is a box constraint set, and
without loss of generality we choose 0 as the lower bound.
Proposition 2: Assume Proposition [I] and Assumption 2]
hold. Assume 6* and 6* as the global optima to and
respectively. Then, the optimization problems and
(18] are equivalent. That is, 6* = 0*. i
Proof: For all § < 6*, by ([3), it yields X C X% 1t
follows from (T7) that O C ©Y". Since 6% satisfies X" ®
0% C X, we have X9 & 0 C X, for all § < 6*. It
follows from Assumption [2] that the feasible set of 6 for (I6)
is Fp := {0 € ©:0 <0 <6}, which from (I9) implies
6* = 0. This proves the Proposition. [ ]

IV. MODEL REDUCTION

In practice it may be desirable to simplify the low-fidelity
model further by reducing the state dimension. To make the
reduced states comparable to the original states, we define
an appropriate map 7 : R® — R", A < n, and redefine the
error-states as e(t) = x(t) — w(&(¢)). The map 7(-) needs to
be chosen with care according to the specific application and
control objective. Accordingly, for the newly defined error-
states, f. and g, in (@) become

fele, 2,1,
ge(e, 2,0) :=

Without any modification, optimization can still be used
to compute parametric error bounds and control law for the
error dynamics with model reduction. However, the optimiza-
tion for finding optimal parameter will need to change, since

the constraint (8) now becomes 7 ()\? 9) @ 0% C X, where

T (z’\?(’) = {n e R" : y = 7(&), pu(#) < hP}. Then, the

6) := fle+m(%),0) —
gle +7(&),9).

Minkowski sum of ()3 9) and ©f amounts to
71'()29) O’ ={zcR":x=n+e, n=mn(2),

pao(®) < hY, Ve, 0) <7},
={z €R": p,(2) <hY, V(z —n(2),0) <~}
To render the parameter selection process tractable, we look
for a maximum allowable box bound @ that makes 7 (.)2 ‘9) ®

0% C X, V0 € [0, 0] feasible by replacing the constraint in
(T8) with the following constraint

P+ sq- (ﬁx(i) _ izg) Y5 (V(z — (), 0) — )

~2 e @ (0

where $q, S¢, (sf); € X[(z,£,0)] for all j € {1,...,np}.

V. PLANNER FEASIBILITY AND TRACKER CONSTRAINT
SATISFACTION

Once 6* is fixed, the high level planner, that is the MPC
just has to solve the following reformulation of (@):

N-1

. AT o N N AT A
H[ljm > ($k|thk|t + U Rl ) + l‘N‘tPNOUNp
t k=0

)i = (0);) € (=, &,0)],

S.t. ask+1|t = Fd($k|t7 uklt, ),
xk|t S X s uk|t cu?
vk € {0,.. -1},
[i‘t|t:i'(t), .%'N|t€XNCX0
(20)
with @, R, Py = 0. We solve (20) at any time ¢ and then
apply the first input

a(t) = iy, @1

to (). We then re-solve at the next instant ¢ + T and
repeat in receding horizon fashion.

Assumption 3: We assume recursive feasibility of (20).
That is, if (1215]} is feasible at time ¢ = 0, it remains feasible
for all times ¢ > 0, when 1)) is applied to (2).

Recursive feasibility of a nonlinear planner can be
achieved by picking a “long” prediction horizon N as
mentioned in [24], [8]. However in this case, problem
(20) remains non-convex. An alternative way of ensuring
recursive feasibility of while solving a convex problem
is by resorting to linear time invariant planner dynamics
#(t+T,) = A2(t) 4+ Bia(t) and then appropriately choosing
terminal conditions .)QN and Pp. Matrices A,B can be
chosen with OLS approximation [25] of (2).

Proposition 3: Let problem (I8) be feasible. Let Assump-
tion [3| hold true. Assume initial error-states satisfy e(0) € Q.
Then system variable x(t) associated to tracker evolving
according to satisfies z(t) € X for all times ¢ > 0 under
the policy x’

Proof:  Let ( (I8) be feasible and Assumption [3] hold.
Since, ©" is a forward reachable set of © under policy
k%", we have e(0) € Q = e(t) € O, for all t > 0.
Therefore, feasibility of (20) guarantees X9 ¢ 0% Cc X,
implying z(t) € X for all ¢ > 0. [ |



VI. NUMERICAL EXAMPLE: DOUBLE PENDULUM

In this section we present a numerical example with
our proposed Algorithm 1 and Algorithm 2. For the fully-
actuated double pendulum example from [19], the polyno-
mial dynamics obtained from a least-squares approximation
for (x1,2z3) € [-1,1] x [-1,1] are

T T2 0 0

x.2 f2($17l‘2,$3,$4) 8 —31.2 Ul

. = + ,
€3 Ty 0 0 U9
&g fa(x1, 22,23, 24) —31.2 391.2

fo = —3.4472% + 2.35022 23 + 1.303z1 23 + 3.9392

+ 21.5202; — 5.000z3,
4.023z% — 36.551x3 25 — 4.1312525 — 27.060x3
— 25.115z1 + 77.700x3,

fa

where x; and x3 are angular positions of the first and
second links (relative to the first link), x2 and x4 are angular
velocities of the first and second links (relative to the first
link), u; and wuo are torques applied at the joint 1 and
joint 2. The angular positions and applied torques are shown
in Fig. 2| The control objectives are: (¢) to bring x from
initialized (—0.57,0.52,0,0.02) to target (0.3,0,0,0) and
maintain it there, and (i4) to satisfy state constraints

X = {($1,$2) . |l’1| S 06, |ZL'2| S 13} (22)

A. Planner Parametrization

Based on the control objective, we use a single inverted
pendulum as the low-fidelity model to generate planning
trajectories (Z1(t), #2(t)) for the planner. The polynomial
dynamics of this low-fidelity planner are given as

) o L[97,
Zo| | —5.1312% + 32.12 9.1
where z; represents the angular position of the single in-

verted pendulum (shown in Fig.[2), &5 is the angular velocity,
and 4 is the torque applied at joint 1. We want (z1(¢), z2(t))

Fig. 2: Double pendulum and its abstraction as a single
pendulum. The angular positions are labelled.

to track (&1 (t), £2(t)), while enforcing (z5(t), x4(t)) to stay
close to the origin. Therefore, the map 7(-) is chosen to be

(&) = P&, where P = [12,02x2]—r~

The constraint sets for the planner are parametrized by
U ={ack:|a <5}, (23a)
XY = {2 eR?: |#1] < 0.6601, || <1.36;},  (23b)

for all § = (61, 63) such that 61,05 € [0,1]. Take the set
of initial conditions for error-states as 2 = {e € R* : ¢; =
€9 — €3 — O, —0.03 S €4 S 003}

B. Parametric Error Bound Computation

In this example, V is chosen to be a degree-2 polynomial
in (e,0), and k is chosen to be a degree-4 polynomial
in (e, ,1,0). The SOS optimizations in Algorithm |1| are
formulated using the sum-of-squares module SOSOPT [26]
on MATLAB. and solved by Mosek [27]. After solving (12)),
we obtain the parametric error bound O and the associated
feedback controller for tracker, x°.

C. Optimal Planner-Tracker Design

In this section we highlight the “safety by design™ aspect
of Algorithm P2} as a consequence of solving (T8). Instead
of fixing the planner constraint sets X and U heuristically
as in [19], we enmesh the planner-tracker design phases,
looking for the best parameter 6* in (2Z3) that satisfies
(8). The inclusion of Algorithm [2] inherently ensures safety
(satisfaction of constraints (22) by tracker states x(t) for
all times t) by design, while simultaneously allowing for
the maximum permissiveness of the planner in (20). For
the following simulations, we set Z(0) = (—0.57,0.52), i.e.
e(0) = (0,0,0,0.02).

1) Failure of Heuristics: In search for the most per-
missive planner, the first planner design scenario involves
setting XY = X, ie. § = (1,1) in (23). As expected,
the tracker can easily violate safety constraints (22). For
satisfying (22) by the tracker, we next use our heuristics
and set # = (0.99,0.99) and (0.98,0.98) in the next two
cases respectively. We see from Fig. [3] and Fig. [ that
both ©(0-:99:0:99) and ((0:98,0.98) ¢rogs the safety constraints
X given in (22). Hence both the heuristic parameters are
rendered invalid. In fact in Fig. 3] we also see the tracker
trajectory violating (22).

Tracker Constraint X’

Planner Constraint X(0-99:0-99)

-0‘.6 -0‘.4 -0‘.2 l; 0.‘2 014 0.‘6
L1
Fig. 3: Planner design using 6 = (0.99, 0.99). Dashed purple
curve denotes planner trajectory and solid black curve is
corresponding tracker trajectory.




T2
o
.

Tracker Constraint A’
-0.5

Planner Constraint X(0-98.0-98)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 4: Planner design using 6= (0.98,0.98).

2) Optimal Parametrization: Using our Algorithm 2] the
computed 6* = (0.954, 0.940), i.e. the most permissive
planner state constraint set is X7 = {& € R? : |&] <
0.5724, || < 1.2220}. In Fig. |5, the planner uses X"
as_the state constraint. We can see that the error bound
O%" around the planner trajectory remains within X', which
guarantees the safety of the tracker trajectory. The tracker
trajectory never violates X'. This highlights that Algorithm 2]
provides safety guarantees, and enables the designer to avoid
repeated planner-tracker design in search for safety.

Tracker Constraint X

-0.5 ) Planner Constraint x| |l

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 5: Planner and tracker design with optimal #*.

VII. CONCLUSIONS

We presented an optimization based safe-by-design ap-
proach of trajectory planning—tracking for nonlinear systems.
Instead of heuristically picking the constraints imposed on
the planner, we parametrized them with additional design
parameters. Consequently, the tracking error bound and the
tracking control law are parametrized too, and are com-
puted through Sum-of-Squares programming (Algorithm [T).
The optimal design parameters are chosen (Algorithm [2)
specifically ensuring tracker safety along with maximum
permissiveness of the planner.
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