
Logical Methods in Computer Science
Volume 16, Issue 2, 2020, pp. 9:1–9:29
https://lmcs.episciences.org/

Submitted Oct. 05, 2019
Published Jun. 03, 2020

SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES:
BRIDGING THE GAP BETWEEN SUPERVISORY CONTROL AND

COORDINATION OF SERVICES

DAVIDE BASILE a, MAURICE H. TER BEEK a, AND ROSARIO PUGLIESE b

a ISTI–CNR, Pisa, Italy
e-mail address: {davide.basile,maurice.terbeek}@isti.cnr.it

b University of Florence, Italy
e-mail address: rosario.pugliese@unifi.it

Abstract. We present a number of contributions to bridging the gap between supervisory
control theory and coordination of services in order to explore the frontiers between
coordination and control systems. Firstly, we modify the classical synthesis algorithm from
supervisory control theory for obtaining the so-called most permissive controller in order
to synthesise orchestrations and choreographies of service contracts formalised as contract
automata. The key ingredient to make this possible is a novel notion of controllability. Then,
we present an abstract parametric synthesis algorithm and show that it generalises the
classical synthesis as well as the orchestration and choreography syntheses. Finally, through
the novel abstract synthesis, we show that the concrete syntheses are in a refinement order.
A running example from the service domain illustrates our contributions.

1. Introduction

Services are ubiquitous in today’s society. Examples include finances, healthcare, and tourism
(e.g. booking services). Service-oriented computing (SOC) is “the discipline that seeks to
develop computational abstractions, architectures, techniques, and tools to support services
broadly” [16]. According to this paradigm, services are well-defined, self-contained, and
stand-alone software modules that provide some standard business functionality. As such,
services can serve as building blocks for the rapid, low-cost development of distributed
applications in heterogeneous environments. Services used in composite applications are
not limited to new service implementations, but may also include adapted and wrapped
fragments of existing applications. The strength of SOC is composing multiple, distributed
services into more powerful applications. This reuse through composition provides businesses
a means to reduce the cost and risks of developing new applications.

Service composition is thus a key challenge for the full realisation of the SOC paradigm.
As such, it can benefit from and contribute to emerging research directions inspired by cloud
computing, IoT, social computing, and mobile computing, to name but a few. For instance,

Key words and phrases: Service Contracts, Contract Automata, Controller Synthesis, Orchestration,
Choreography.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(2:9)2020
c© D. Basile, M.H. ter Beek, and R. Pugliese
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

9:2 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

the composition of cloud services requires the coordination of hardware and software resources
across various layers. The IoT concept of smart cities concerns the large-scale composition of
diverse and heterogeneous digital devices and services to provide multiple real-time, end user
customised functionalities. Service composition based on relations in today’s large social
networks is challenging due to size and complexity of the resultant big data. In mobile
environments, service composition is required to consider the intrinsic dynamicity and its
effect on QoS aspects concerning security and reliability.

Two approaches are widely adopted for coordinating services by means of service compo-
sition: orchestration and choreography. Intuitively, an orchestration yields the description of
a distributed workflow from “one party’s perspective” [41], whereas a choreography describes
the behaviour of the involved parties from a “global viewpoint” [34]. In an orchestrated
model, the service components are coordinated by a special component, the orchestrator,
which, by interacting with them, dictates the workflow at runtime. In a choreographed model,
instead, the service components autonomously execute and interact with each other on the
basis of a local control flow expected to comply with their role as specified by the global
viewpoint. Ideally, a choreographed model is thought to be more efficient due to the absence
of the overhead of communications with the orchestrator. Any choreography can trivially be
transformed into an orchestration of services, by adding an idle orchestrator. Similarly, by
explicitly adding an orchestrator and its interactions with the service components, and hence
the relative overhead, an orchestration of services can be transformed into a choreography.

Despite the key impact that SOC can have on other contemporary computing paradigms,
as already mentioned before, the recent Service Computing Manifesto [16] points out that
“Service systems have so far been built without an adequate rigorous foundation that would
enable reasoning about them” and that “The design of service systems should build upon a
formal model of services”. Therefore, the principled design of service-based applications and
systems is identified as a primary research challenge for the coming years.

To tackle this challenge, in [10], two orchestrated and choreographed automata-based
models of services, called contract automata1 and communicating (finite-state) machines,
respectively, are studied and related. The goal of both formalisms is to compose the
automata such that each service is capable of reaching an accepting (final) state by synchro-
nous/asynchronous one-to-one interactions with the other services in the composition. The
main difference relies on the fact that contract automata are oblivious of their partners and
an orchestration is synthesised to drive their interactions, whereas communicating machines
name the recipient service of each interaction upfront and use FIFO buffers to interact with
each other. The model of contract automata was further developed in [8].

The orchestration synthesis was borrowed from the synthesis of the most permissive
controller (mpc) from Supervisory Control Theory (SCT) [43, 18], whose aim is to coordinate
an ensemble of (local) components into a (global) system that functions correctly. In the
context of contract automata, this amounts to refining the composition of service contracts
into its largest sub-portion whose behaviour is non-blocking and safe (a notion of service
compliance). The adaptation of the mpc synthesis for synthesising an orchestration of services
required the introduction of a novel notion of semi-controllability. Basically, the assumption
of the presence of an unpredictable environment was dropped in favour of a milder notion of
predictable necessary service requests to be fulfilled.

1Not to be confused with the accidentally homonymous contract automata of [6], which were introduced
to formalise legal contracts among two parties expressed in natural language.

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:3

In this paper, we contribute to the research efforts on rigorously modelling service
orchestration and choreography. More specifically, building on [14], we report on the efforts
to relate the mpc synthesis and the orchestration synthesis of contract automata through a
polished, homogeneous formalisation. The need for semi-controllability is showcased with
intuitive examples and its expressiveness is evaluated with respect to standard SCT notions
of controllable and uncontrollable actions. Moreover, we introduce a novel choreography
synthesis algorithm and a novel abstract synthesis algorithm. We then show that each
of the three synthesis algorithms can be obtained through a different instantiation of this
abstract synthesis algorithm. This paper extends [14] in several ways. We include all proofs
and as an additional contribution we demonstrate that the different instantiations of the
abstract synthesis algorithm are related through a notion of refinement, which allows us
to formally prove that the orchestration synthesis is an abstraction of the mpc synthesis.
Furthermore, we illustrate each of the synthesis algorithms through a running example from
the service domain. Finally, we have also extended the prototypical tool FMCAT2 with the
implementation of the novel choreography synthesis algorithm and then used it to compute
all the automata compositions and syntheses shown in our running example.

The paper is organised as follows. Section 2 contains background notions and results
concerning contract automata and SCT, and introduces our running example. Section 3 and
Section 4 introduce the synthesis of orchestrations and the novel synthesis of choreographies
in the setting of (modal service) contract automata. Section 5 demonstrates that each of the
introduced synthesis algorithms is an instantiation of a more abstract, parametric synthesis
algorithm, and Section 6 shows that these different instantiations are related. Section 7
discusses related work, while Section 8 concludes the paper and provides some hints for
future work. Appendix A contains the full proofs of two results only sketched in Section 5.

2. Background

In this section, we provide some background useful to better appreciate our contributions on
the crossroads of supervisory control theory and coordination of services formalised as modal
service contract automata. We also introduce a running example from the service domain
that will be used throughout the paper to illustrate our contributions.

2.1. Contract Automata. A Contract Automaton (CA) represents either a single service
(in which case it is called a principal) or a multi-party composition of services performing
actions. The number of principals of a CA is called its rank. The states of a CA are vectors
of states of principals. In the following, ~v denotes a vector and ~v(i) denotes its ith element.

The transitions of CA are labelled with actions, which are vectors of elements in the
finite set of basic actions L = R ∪ O ∪ {•}, with R ∩ O = ∅ and • 6∈ R ∪ O. Intuitively,
R is the set of requests (depicted as non-overlined labels on arcs, e.g. a), O is the set of
offers (depicted as overlined labels on arcs, e.g. a) with O = { a | a ∈ R }, and • is a
distinguished symbol representing the idle action. To establish if a pair of a request and
an offer are complementary, we use the involution function co : L → L defined as follows:
∀a ∈ R : co(a) = a, ∀a ∈ O : co(a) = a, and co(•) = •. By abusing notation, we let co(R) = O
and co(O) = R.

2FMCAT is available at https://github.com/davidebasile/FMCAT. A video-tutorial showcasing the
specification, composition, and syntheses of the contract automata from our running example is available at
https://github.com/davidebasile/FMCAT/tree/master/demoLMCS2020.

https://github.com/davidebasile/FMCAT
https://github.com/davidebasile/FMCAT/tree/master/demoLMCS2020

9:4 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

An action is a vector ~a of basic actions with either a single offer, or a single request, or
a single pair of request-offer that match, i.e. there exist i and j such that ~a(i) is an offer and
~a(j) is the complementary request (formally co(~a(i)) = ~a(j)); all other elements of the vector
are •, meaning that the corresponding principals remain idle. Such action is called request,
offer, or match, respectively. A transition is said to be a request, offer, or match according to
its labelling action.

The goal of each principal is to reach an accepting (final) state such that all its requests
and offers are matched.

In [11], CA are equipped with modalities, i.e. permitted (3) and necessary (2), that
are associated to requests. Offers remain without modalities, i.e. they are interpreted as
always permitted, like in the original CA formalism. Matches, on the other hand, inherit the
modality of the involved request. The resulting formalism, called Modal Service Contract
Automata (MSCA), is formally defined next. Differently from standard SCT, all transitions
of MSCA are observable, since MSCA model the execution of services in terms of their
requests and offers.

Definition 2.1 (MSCA [11]). Given a finite set of states Q = {q1, q2, . . .}, a Modal Service
Contract Automata (MSCA) A of rank n is a septuple 〈Q, ~q0, A3, A2, Ao, T, F 〉, with set of
states Q ⊆ Qn, initial state ~q0 ∈ Q, set of permitted requests A3 and of necessary request
A2 partitioning the set of requests Ar ⊆ R, set of offers Ao ⊆ O, set of final states F ⊆ Q,
set of transitions T ⊆ Q×A×Q, where A ⊆ (Ar ∪Ao ∪ {•})n, partitioned into permitted
transitions T3 and necessary transitions T2, such that: (i) given t = (~q,~a, ~q ′) ∈ T , ~a is either
a request, or an offer, or a match; (ii) ∀i ∈ 1 . . . n, ~a(i) = • implies ~q(i) = ~q ′(i); (iii) t ∈ T

3

if and only if ~a is either a request, or a match on a ∈ A3, or an offer on a ∈ Ao; otherwise
t ∈ T2.

Remarkably, it follows that the set of transitions of an MSCA is finite.
A principal is an MSCA of rank 1 such that Ar∩co(Ao) = ∅. Unless stated differently, we

assume that it is given an MSCA A = 〈QA, ~q0A, A3
A, A

2
A, A

o
A, TA, FA〉 of rank n. Subscript

A may be omitted if no confusion may arise.
A step (w, ~q) ~a−→(w′, ~q ′) occurs in A if and only if w = ~aw′, w′ ∈ A∗, and (~q,~a, ~q ′) ∈ T .

Let →∗ be the reflexive and transitive closure of →. The language of A is L(A) = {w |
(w, ~q0)

w−→∗(ε, ~q), ~q ∈ F }. A step may be denoted as ~q ~a−→ if w, w′, and ~q ′ are irrelevant, and
as ~q → ~q ′ if w, w′, and ~a are irrelevant.

Composition of services is rendered through the composition of their MSCA models. This
amounts to interleaving or matching the transitions of the component MSCA, forcing the
match whenever two components are ready on their respective complementary request/offer
actions. In the resulting MSCA, states and actions are vectors of states and actions of the
component MSCA, respectively. The composition is non-associative, i.e. pre-existing matches
are not rearranged if a new MSCA joins the composition afterwards.

In a composition of MSCA, typically various properties are analysed. We are especially
interested in agreement and strong agreement (which in the literature is also known as
progress of interactions, deadlock freedom, compliance or conformance of contracts). In an
MSCA in strong agreement, all requests and offers must be matched. Instead, the property
of agreement only requires matching all requests. An MSCA admits (strong) agreement if it
has a trace satisfying the corresponding property, and it is safe if all its traces are such.

The MSCA formalism has its origins in [8], where CA were first introduced, but in
this paper we build on the version with modalities from [11] to cater for controllable and

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:5

c0 c1 c2

c3

c4

c′0 c′1 c′2

c′3

c′4

qry3 bst3
ok3

nok3

qry2 bst3
ok3

nok3

Figure 1: MSCA Client (left) and PrivilegedClient (right)

h0 h1 h2

h3

h4

h′0 h′1 h′2

h′3

h′4

chk3 rsp3
bk3

nbk3

chk3 rsp3
bk2

nbk3

Figure 2: MSCA Hotel (left) and PrivilegedHotel (right)

uncontrollable (and thus semi-controllable) actions. The branching condition for CA from [10]
will be recalled in Section 4 as a condition for obtaining a choreography from an orchestration,
and it is satisfied by construction by the output MSCA of the synthesis of the choreography.

Example 2.2. We introduce a running example that will be used throughout the paper
to showcase the synthesis of orchestration and choreography. We anticipate, as discussed
in detail in Section 4, that a modified version of MSCA is used for the synthesis of a
choreography, in which offers can be necessary whilst requests are only permitted.

Figures 1, 3, and 2 show five MSCA of rank 1. These automata model an example of a
hotel booking service, where clients and hotels interact by means of a broker for booking
hotel rooms. There are two types of clients, Client and PrivilegedClient. Both clients
can either terminate without interactions (final states are drawn as double circles), or they
can engage in interactions with the broker to possibly book a room. The first interaction is
to ask for a room, by means of the offer qry (query). After this action, the clients receive
the best room option from the broker, by means of the request bst (best). Then, each client
can either decide to accept (offer ok) or refuse (offer nok) the option offered by the broker.
PrivilegedClient will be used to showcase a choreography in Section 4. Accordingly,
PrivilegedClient only differs from Client with respect to the first offer qry, which is
declared necessary. Basically, PrivilegedClient reaches an agreement only if there exists a
trace in which its offer is necessarily matched. All other actions are permitted.

Similarly, there are two types of hotels, Hotel and PrivilegedHotel. Also both hotels
can either terminate without interactions, or they can engage in interactions with the broker
to possibly have their rooms booked. The first interaction is to receive a request for a room,
by means of the request chk (check). After this check, a response is sent to the broker through
the offer rsp (response). Then, each hotel can either receive a booking or a no booking reply
by means of requests bk (book) or nbk (no book), respectively. PrivilegedHotel will be
used to showcase an orchestration in Section 3. Accordingly, PrivilegedHotel only differs
from Hotel with respect to the request bk, declared necessary. Basically, PrivilegedHotel
admits non-empty orchestrations only if there exists a trace in which one of its rooms is
booked (i.e. the necessary request is matched). All other actions are permitted.

Finally, the Broker acts as an intermediary between a client and at least two hotels.
The broker starts by receiving a request for a room by a client through the request qry. At
this point, it starts to interact with the hotels to search for a possible option to propose to
the client. This is done by (twice) repeating the offer chk (sending a room enquiry) followed

9:6 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

b0 b1 b2 b3 b4 b5 b6

b7 b8 b9

b10 b11 b12

qry3 chk3 rsp3 chk3
rsp3

chk3

bst3
ok3

nok3

bk3 nbk3
nbk3

nbk3 nbk3
nbk3

Figure 3: MSCA Broker

by the request rsp (receiving the room response by one hotel). Indeed, at least two hotels
must be enquired to speak of a best offer. After that, the Broker can engage with further
hotels, from state b5, or it can proceed with the best offer bst to the client. At this point,
it receives through the requests ok or nok either the acceptance or rejection, respectively,
of its offer. If the offer is accepted, Broker proceeds to book the room with offer bk to the
selected hotel (abstracted away in the contract) and replying to all other hotels with a nbk
offer. Otherwise, if the offer is rejected, Broker sends to all hotels waiting for a reply the
offer nbk. All actions of Broker are permitted.

2.2. Supervisory Control Theory. The aim of Supervisory Control Theory [43, 18] (SCT)
is to provide an algorithm to synthesise a finite-state automaton model of a supervisory
controller from given (component) finite-state automata models of the uncontrolled system and
its requirements, themselves expressed as automata. The synthesised supervisory controller,
if successfully generated, is such that the controlled system, which is the composition (i.e.
synchronous product) of the uncontrolled system and the supervisory controller, satisfies the
requirements and is additionally non-blocking, controllable, and maximally permissive.

An automaton is non-blocking if from each state at least one of the so-called marked
states (distinguished stable states representing completed ‘tasks’ [43], e.g. a final state) can
be reached without passing through so-called forbidden states, meaning that the system
always has the possibility to return to an accepted stable state. The algorithm assumes that
marked states and forbidden states are indicated for each component model.

SCT distinguishes between observable and unobservable, as well as controllable and
uncontrollable actions, where unobservable actions are also uncontrollable. Intuitively, the
supervisory controller cannot distinguish one unobservable action from the other, whereas it
can take observable actions apart. Moreover, it is not permitted to directly block uncontrol-
lable actions from occurring; the controller is only allowed to disable them by preventing
controllable actions from occurring. Intuitively, controllable actions correspond to stimulating
the system, while uncontrollable actions correspond to messages provided by the environment,
like sensors, which may be neglected but cannot be denied from existing.

Finally, the fact that the resulting supervisory controller is maximally permissive (or
least restrictive) means that as much behaviour of the uncontrolled system as possible
remains present in the controlled system without violating neither the requirements, nor
controllability, nor the non-blocking condition.

From the seminal work of Ramadge and Wonham [43], we know that a unique maximally
permissive supervisory controller exists, provided that all actions are observable. This is
called the most permissive controller (mpc); it coordinates an ensemble of (local) components
into a (global) system that works correctly. The synthesis algorithm suffers from the same

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:7

state space explosion problem as model checking [31]. However, SCT has successfully been
applied to industrial size case studies [29, 49].

Intuitively, the synthesis algorithm for computing the mpc of a finite-state automaton A
works as follows. The mpc is computed through an iterative procedure that at each step i
updates incrementally a set of states Ri containing the bad states, i.e. those states that
cannot prevent a forbidden state to be eventually reached, and refines an automaton Ki.

The algorithm starts with an automaton K0 equal to A and a set R0 containing all
dangling states in A, where a state is dangling if it cannot be reached from the initial state
or cannot reach a final state. At each step i, the algorithm prunes from Ki−1 in a backwards
fashion transitions with target state in Ri−1 or forbidden source state. The set Ri is obtained
by adding to Ri−1 dangling states in Ki and source states of uncontrollable transitions of A
with target state in Ri−1. When no more updates are possible, the algorithm terminates.
Termination is ensured since A is finite-state and has a finite set of transitions, and at each
step the subsets of its states Ri cannot decrease while the set of its transitions TKi cannot
increase. Now, suppose that at its termination the algorithm returns the pair (Ks, Rs). We
have that the mpc is empty, if the initial state of A is in Rs; otherwise, the mpc is obtained
from Ks by removing the states Rs.

We report below the standard synthesis algorithm, but we homogenise the notation and
simplify the formulation, to align the algorithm with those presented in the next sections. For
this purpose, we assume the standard mpc synthesis to operate on MSCA where necessary
transitions (T2) are uncontrollable whilst permitted transitions (T3) are controllable.

We use 〈 〉 to denote the empty automaton. A state q ∈ Q is said to be dangling if and
only if @w such that q0 w−→∗q or q w−→∗qf ∈ F . Let Dangling(A) denote the set of dangling
states of A. Given two MSCA A and A′, we say that A′ is a sub-automaton of A, denoted
by A′ ⊆ A, whenever the components of A′ are included in the corresponding ones of A.
Moreover, given two sets of states R and R′, we let (A, R) ≤ (A′, R′) if A′ ⊆ A and R ⊆ R′.
It is straightforward to show that (MSCA× 2Q,≤) is a complete partial order (cpo).

The algorithm to compute the mpc is now defined in terms of the least fixed point of a
monotone function on the cpo (MSCA× 2Q,≤).

Definition 2.3 (Standard synthesis, adapted from [43]). Let A be an MSCA, and let K0 = A
and R0 = Dangling(K0). We let the synthesis function f : MSCA× 2Q → MSCA× 2Q be
defined as follows:

f(Ki−1, Ri−1) = (Ki, Ri), with
TKi = TKi−1 \ { (~q −→ ~q ′) ∈ TKi−1 | ~q ′ ∈ Ri−1 ∨ ~q is forbidden }
Ri = Ri−1 ∪ { ~q | (~q −→ ~q ′) ∈ T2

A , ~q
′ ∈ Ri−1 } ∪Dangling(Ki)

Theorem 2.4 (Standard mpc, adapted from [43]). The synthesis function f is monotone
on the cpo (MSCA× 2Q,≤) and its least fixed point is:

(Ks, Rs) = sup({ fn(K0, R0) | n ∈ N })
The mpc of A, denoted by KA, is:

KA =

{
〈 〉 if ~q0 ∈ Rs
〈Q \Rs, ~q0, A3, A2, Ao, TKs , F \Rs〉 otherwise

We now want to estimate an upper bound of the complexity of the mpc synthesis
algorithm as results from Definition 2.3 and Theorem 2.4. In the worst case, deciding if
a state is dangling requires to visit the whole state space. Thus, an upper bound of the

9:8 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

complexity of the procedure for deciding if a state is dangling is O(|Q|), and the upper-bound
complexity for computing the set of dangling states is O(|Q|2). At each iteration, in the
worst case, the algorithm either removes a single transition from T or adds a single state
to R, and each iteration requires to compute the set of dangling states. Thus, an upper
bound of the complexity of the mpc synthesis algorithm is O((|T |+ |Q|)×|Q|2). To conclude,
it is worth noticing that our analysis focusses on the abstract specification of the algorithm
while its implementation could be optimised, for example by using parallelism and dedicated
data structures, in order to perform better than the complexity sketched above.

Example 2.5. We continue the running example by discussing the synthesis of the mpc
for the composition of two clients, the broker, one normal hotel, and one privileged hotel,
denoted as

A1 = Client⊗ Client⊗ Broker⊗ Hotel⊗ PrivilegedHotel
The property to be enforced is agreement: each request must be matched by a corresponding
offer. Basically, this property is an invariant stating that all request transitions are forbidden.
Since the synthesis works on forbidden states, we need to preprocess A1 accordingly. In
particular, the algorithm starts from the automaton A1 from which all permitted requests
have been removed. Forbidden states are those featuring an outgoing necessary request.

The resulting mpc only consists of the initial (and final) state (c0, c
′
0, b0, h0, h

′
0), and its

behaviour is empty. Hence, agreement cannot be enforced in A1 using the standard synthesis
algorithm. This is an indication of the fact that standard mpc synthesis is not useful for the
scope of synthesising a correct service composition (i.e. in which agreement is satisfied). The
reason is that necessary transitions are not to be interpreted as uncontrollable. The notion of
uncontrollable transition stems from the necessity of modelling an unpredictable environment,
which is not suitable to model necessary service requests. Basically, PrivilegedHotel has a
necessary request that should be matched in at least one trace of the composition. However,
by interpreting such necessary request as uncontrollable, the synthesis is enforcing the
necessary requests to be satisfied in every trace of the composition. Intuitively, this would
require that a client is not allowed to refuse to book a room.

As will become clear in the forthcoming sections, A1 admits a non-empty orchestration
in which agreement is enforced, because necessary transitions will not be interpreted as fully
uncontrollable.

We have used our tool FMCAT to calculate the automaton A1 and its mpc synthesis.
Their computation time and state-space dimension are reported in Table 1 (on page 17).

3. Synthesis of Orchestrations

In this section, we discuss how we revised the classical synthesis algorithm from SCT to
obtain the mpc (cf. Theorem 2.4) and synthesise orchestrations of MSCA.

Originally, MSCA were capable of expressing only permitted requirements, corresponding
to actions that are controllable by the orchestrator. Hence, in the synthesis of the orchestra-
tion, all transitions labelled by actions violating the property to be enforced were pruned,
and all dangling states were removed (cf. [8]).

While permitted requests of MSCA are in one-to-one correspondence with controllable
actions, interestingly this is not the case for necessary requests and uncontrollable actions. A
necessary (request) action is indeed a weaker constraint than an uncontrollable one. This
stems from the fact that traditionally uncontrollable actions relate to an unpredictable

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:9

· a2 // · ·

a3
""

b3
// ·

a3
// · (·,·)

(a,a)2
""

(•,b)3
// (·,·)

(a,a)2
##. . . 7 3

Figure 4: Two MSCA (left and middle) and a possible composition A of them (right)

environment. However, the interpretation of such actions as necessary service requests to
be fulfilled in a service contract, as is the case in the setting of MSCA, implies that it
suffices that in the synthesised orchestration at least one such synchronisation (i.e. match)
actually occurs. This is precisely what is modelled by the notion of semi-controllable actions,
anticipated in [11] and formally introduced in [12, 13], discussed next.

The importance of this novel notion in the synthesis algorithm is showcased by an
intuitive example. Consider the two MSCA interacting on the necessary service request a
depicted in Fig. 4 (left and middle), and their possible composition A depicted in Fig. 4 (right).
Note that A models two possibilities of fulfilling request a from the leftmost automaton by
matching it with a service offer a from the middle one. Note that a similar composition can be
obtained in other automata-based formalisms (such as, e.g., (timed) I/O automata [39, 2, 25]).
Now assume that a must be matched with a to obtain an agreement (i.e. it is necessary),
and that for some reason the bad state 7 is to be avoided in favour of the successful state 3,
i.e. in some sense we would like to express that a must be matched at some point, rather
than always. In most automata-based formalisms this is not allowed and the resulting mpc
is empty. In the MSCA formalism, it is possible to orchestrate the composition of the two
automata on the left in such a way that the result is the automaton A on the right, but
without the state 7 and its incident transition.

In fact, in the MSCA formalism, A depicts a composition in which the automata on the
left can synchronise on a so-called semi-controllable action a2 either in their initial state or
after the middle automaton has performed some other action b3, ignoring in this case whether
a bad or a successful state is reached in the end. Indeed, the notion of semi-controllability is
independent from both the specific formalism being used and the requirement (e.g. agreement
in case of MSCA) to be enforced.

As far as we know, we were the first to define a synthesis algorithm, in [13], that is capable
of producing a controller that guarantees that at least one of these two synchronisations
actually occurs. Indeed, in the standard synthesis algorithm (cf. Theorem 2.4), action a can
either be controllable and hence not necessary as we want, or uncontrollable thus requiring
that a must always be matched, a stronger requirement than the one posed by declaring a
as necessary.

To formalise the intuitions above3, a semi-controllable transition t becomes controllable
if in a given portion of A there exists a semi-controllable match transition t′, with source
and target states not dangling, such that in both t and t′ the same principal, in the same
local state, does the same request. Otherwise, t is uncontrollable.

Definition 3.1 (Controllability). Let A be an MSCA and let t = (~q1,~a1, ~q1
′) ∈ TA. Then:

• if ~a1 is an action on a ∈ A3 ∪Ao, then t is controllable (in A) and part of T3;
• if ~a1 is a request or match on a ∈ A2, then t is semi-controllable (in A) and part of T2.

3We refer the interested reader to [12, 13] for more complete accounts.

9:10 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

Moreover, given A′ ⊆ A, if t is semi-controllable and ∃ t′ = (~q2, ~a2, ~q2
′) ∈ T2

A′ in A′ such that
~a2 is a match, ~q2, ~q2′ 6∈ Dangling(A′), ~q1(i) = ~q2(i), and ~a1(i) = ~a2(i) = a, then t is controllable
in A′ (via t′); otherwise, t is uncontrollable in A′.

The algorithm for synthesising an orchestration enforcing agreement of MSCA follows.
The main adaptation of the mpc synthesis of Theorem 2.4 is that transitions are no longer
declared uncontrollable, but instead they can be either controllable or semi-controllable.
More importantly, a semi-controllable transition switches from controllable to uncontrollable
only after it has been pruned in a previous iteration, in which case its source state becomes
bad. Finally, in this case there are no forbidden states but rather forbidden transitions (i.e.
requests, according to the property of agreement).

Definition 3.2 (MSCA orchestration synthesis, adapted from [11]). Let A be an MSCA,
and let K0 = A and R0 = Dangling(K0). We let the orchestration synthesis function
fo : MSCA× 2Q → MSCA× 2Q be defined as follows:

fo(Ki−1, Ri−1) = (Ki, Ri), with
TKi = TKi−1 \ { (~q −→ ~q ′) = t ∈ TKi−1 | (~q ′∈ Ri−1 ∨ t is a request)}
Ri = Ri−1 ∪ { ~q | (~q −→) ∈ T2

A is uncontrollable in Ki } ∪Dangling(Ki)

Theorem 3.3 (MSCA orchestration, adapted from [11]). The orchestration synthesis function
fo is monotone on the cpo (MSCA× 2Q,≤) and its least fixed point is:

(Ks, Rs) = sup({ fno (K0, R0) | n ∈ N })
The orchestration KA of A is:

KA =

{
〈 〉 if ~q0 ∈ Rs
〈Q \Rs, ~q0, A3, A2, Ao, TKs\ T ′, F \Rs〉 otherwise

where T ′ = { t = ~q −→ ∈ Ks | t is controllable in Ks, ~q ∈ Rs }.

We now estimate the complexity of the orchestration synthesis algorithm. In the synthesis
of the mpc, deciding whether a transition is controllable or uncontrollable has a complexity
of O(1). On the converse, for the orchestration case, deciding whether a semi-controllable
transition is controllable or uncontrollable requires in the worst case to check all transitions
of the automaton. Accordingly, the procedure for computing the set of uncontrollable
transitions has an upper-bound complexity of O(|T |2). Since this is the only difference with
respect to the mpc synthesis, a first upper bound of the complexity of the orchestration
synthesis is O((|T |+ |Q|)× |Q|2 × |T |2). The computation of the set of dangling states and
uncontrollable transitions could be done in parallel through a single visit of the automaton.
Thus, the upper-bound complexity of the orchestration synthesis can be lowered to be the
same as the complexity of the mpc synthesis, i.e. O((|T |+ |Q|)× |Q|2). Finally, we want to
underline that our complexity estimation refers to the abstract specification of the algorithm,
resulting from Definition 3.2 and Theorem 3.3. As already observed for the mpc synthesis,
when implementing the algorithm further optimisations could be achieved that can lower its
complexity.

Example 3.4. We further continue the running example by discussing the synthesis of the
orchestration for the composition

A1 = Client⊗ Client⊗ Broker⊗ Hotel⊗ PrivilegedHotel

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:11

c0
c′0
b0
h0
h′0

c1
c′0
b1
h0
h′0

c1
c′0
b2
h1
h′0

c1
c′0
b3
h2
h′0

c1
c′0
b4
h2
h′1

c1
c′0
b2
h0
h′1

c1
c′0
b3
h0
h′2

c1
c′0
b4
h1
h′2

c1
c′0
b5
h2
h′2

c2
c′0
b6
h2
h′2

c3
c′0
b7
h2
h′2

c3
c′0
b8
h3
h′2

c3
c′0
b9
h4
h′2

c3
c′0
b8
h2
h′3

c3
c′0
b9
h2
h′4

c4
c′0
b10
h2
h′2

c4
c′0
b11
h4
h′2

c4
c′0
b11
h2
h′4

c4
c′0
b12
h4
h′4

c0
c′1
b1
h0
h′0

c0
c′1
b2
h1
h′0

c0
c′1
b3
h2
h′0

c0
c′1
b4
h2
h′1

c0
c′1
b2
h0
h′1

c0
c′1
b3
h0
h′2

c0
c′1
b4
h1
h′2

c0
c′1
b5
h2
h′2

c0
c′2
b6
h2
h′2

c0
c′3
b7
h2
h′2

c0
c′3
b8
h3
h′2

c0
c′3
b9
h4
h′2

c0
c′3
b8
h2
h′3

c0
c′3
b9
h2
h′4

c0
c′4
b10
h2
h′2

c0
c′4
b11
h4
h′2

c0
c′4
b11
h2
h′4

c0
c′4
b12
h4
h′4


qry
•
qry
•
•

2


•
•
chk
chk
•

3


•
•
rsp
rsp
•

3


•
•
chk
•
chk

3

•
•
rsp
•
rsp

3


•
•
chk
•
chk

3

•
•
rsp
•
rsp

3


•
•
chk
chk
•

3


•
•
rsp
rsp
•

3


bst
•
bst
•
•

3


ok
•
ok
•
•

3


•
•
bk
bk
•

3


•
•
nbk
•
nbk

3 
•
•
nbk
•
•

3


•
•
bk
•
bk

2


•
•
nbk
nbk
•

3 
•
•
nbk
•
•

3


nok
•

nok
•
•

3


•
•
nbk
nbk
•

3


•
•
nbk
•
nbk

3


•
•
nbk
•
nbk

3


•
•
nbk
nbk
•

3


•
•
nbk
•
•

3


•
qry
qry
•
•

2

•
•
chk
chk
•

3


•
•
rsp
rsp
•

3


•
•
chk
•
chk

3

•
•
rsp
•
rsp

3


•
•
chk
•
chk

3

•
•
rsp
•
rsp

3


•
•
chk
chk
•

3


•
•
rsp
rsp
•

3


•
bst
bst
•
•

3


•
ok
ok
•
•

3


•
•
bk
bk
•

3


•
•
nbk
•
nbk

3 
•
•
nbk
•
•

3


•
•
bk
•
bk

2


•
•
nbk
nbk
•

3 
•
•
nbk
•
•

3


•

nok
nok
•
•

3


•
•
nbk
nbk
•

3


•
•
nbk
•
nbk

3


•
•
nbk
•
nbk

3


•
•
nbk
nbk
•

3


•
•
nbk
•
•

3

Figure 5: Orchestration of Client⊗ Client⊗ Broker⊗ Hotel⊗ PrivilegedHotel

The orchestration of A1 is depicted in Fig. 5 and the time needed to compute it by using
FMCAT is reported in Table 1 (on page 17). We recall that the orchestration is the largest
sub-portion of the composition that is in agreement, i.e. in which requests are matched by
offers.

From the initial (and final) state there are two possible evolutions: either one of the
clients is served while the other one does not interact. Without loss of generality, assume that
the first client is served. The orchestration continues with the broker enquiring the hotels (in
both possible orders). After these enquiries, the reached state is ~q = (c1, c

′
0, b5, h2, h

′
2). From

~q, the broker sends the best offer received from one of the hotels to the client, and the client
decides whether or not to accept this best offer. The broker then communicates the selected

9:12 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

choice to the hotels it interacted with. Note that in the orchestration it is possible that the
client does not book any room.

We now explain why the mpc is empty (cf. Example 2.5). First, note that ~q must be
traversed to reach a final successful state. The composition A1 (which is not displayed for
space limitations) contains the transition t = ~q (•, •, •, •, bk)2−−−−−−−−→ (c1, c

′
0, b5, h2, h

′
3). The state ~q is

then forbidden, since its outgoing transition t is uncontrollable and cannot be pruned. It
follows that all states traversed from the initial state to ~q would eventually become dangling
during the mpc synthesis, and thus the mpc is empty.

On the converse, for the case of synthesising the orchestration, we have that t is semi-
controllable and it is controllable via t′ = (c3, c

′
0, b7, h2, h

′
2)

(•, •, bk, •, bk)2−−−−−−−−−→ (c1, c
′
0, b8, h2, h

′
3).

Thus, t is pruned by the orchestration synthesis algorithm. Intuitively, in the orchestration
there exists a trace in which the necessary request bk is matched.

This example shows that the notion of semi-controllability is best suited for necessary
requests of service contracts. We argue that semi-controllability is not specific to the context
of service contracts; rather it is independent of the used formalism and can be applied in
other contexts as well. Semi-controllability can be interpreted as the ‘existentially quantified’
counterpart of the universally quantified notion of uncontrollability, originally stemming from
Supervisory Control Theory, in much the same way that Computation Tree Logic allows
existential quantification of paths that can only be universally quantified in Linear Temporal
Logic.

However, in the next section we will see that the notion of semi-controllability is too
relaxed for the case of choreography, which thus demands a revisited version.

3.1. On encoding semi-controllability. We now show, by means of an example adapted
from [13], that the encoding of an automaton A with semi-controllable actions into an
automaton A′ without, such that the same synthesised orchestrations are obtained, results
in an exponential blow-up of the state space. More precisely, the encoding is intended to
preserve safety: the orchestration of A equals that of A′.

The encoding is sketched in Fig. 6. Intuitively, the encoded automaton A′ is obtained
by first applying the following construction to the automaton A from Fig. 4 (right):

if the synchronisation on a specific semi-controllable action a occurs in
n different transitions in A (two in our example), then the encoding creates
an automaton A′ that is the union of 2n− 1 automata (three in our example),
which are obtained by all possible combinations of pruning a subset of the
n semi-controllable transitions of A, minus the one in which all n semi-
controllable transitions are pruned;

and then turning all semi-controllable transitions into uncontrollable transitions.
We now explain why, without knowing a priori the set of forbidden and successful states,

it is impossible to provide a more efficient encoding and refer to [13, Theorems 3 and 4] for
a formal account. Assume, by contradiction, that there exists an encoding that results in
a ‘smaller’ automaton A′′, in which one of the 2n − 1 combinations of pruned transitions
(say, P) is discarded. It then suffices to specify as a counterexample a property in A such
that all source states of transitions in P are forbidden and all target states of the remaining
semi-controllable transitions are successful. The synthesis of A against such a property would
prune exactly the semi-controllable transitions in P . However, in the synthesis of A′′ such
an orchestration would not be present, a contradiction.

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:13

(·,·)

�� �� ��

(·,·)
(•,b)3

// (·,·)
(a,a)2

unc ""

(·,·)
(a,a)2

unc ""

(•,b)3
// (·,·)
(a,a)2

unc ""

(·,·)
(a,a)2

unc ""

(•,b)3
// (·,·)

(·,·) (·,·) (·,·) (·,·)

Figure 6: Automaton A′ uses uncontrollable transitions to encode automaton A from Fig. 4

4. Synthesis of Choreographies

In the previous section, we have seen that the orchestration of MSCA is similar to a most
permissive controller. The orchestrator is however implicit, in the sense that its interactions
with the principals are hidden. Basically, one could assume that before interacting, each
principal expects a message from the orchestrator and answers with an acknowledgement
after the interaction terminates. The main intuition behind switching from an orchestrated
to a choreographic coordination of contracts is that there is no longer the need for such
‘hidden’ interactions. Ideally, the principals moving autonomously are able to accomplish
the behaviour foreseen by the synthesis, which in this case acts as a global type. Differently
from the traditional choreographic approach, where the starting point is a global type, in
MSCA the global type is synthesised automatically.

The requirements for ensuring that the synthesised automaton is a (form of) choreography
were studied in [10, 37]. Roughly, they amount to the so-called branching condition requiring
that principals perform their offers/outputs independently of the other principals in the
composition. To formalise this notion, we let snd(~a) = i when ~a is a match action or an offer
action and ~a(i) ∈ O.

Definition 4.1 (Branching condition [10]). An MSCA A satisfies the branching condition if
and only if the following holds for each pair of states ~q1, ~q2 reachable in A:

∀~a match action . (~q1 ~a−→∧ snd(~a) = i ∧ ~q1(i) = ~q2(i)) implies ~q2 ~a−→.

The branching condition is related to a phenomenon known as ‘state sharing’ in other
coordination models (cf., e.g., [45]) according to which system components can influence
potential synchronisations through their local (component) states even if they are not involved
in the actual global (system) transition.

In [10], it is proved that the synthesised automaton corresponds to a well-behaving
choreography if and only if it satisfies the branching condition and is strongly safe. Notably,
in case the two conditions are not satisfied, that paper does not provide any algorithm
for automatically synthesising a choreography; rather, the contracts have to be manually
amended. Instead, in the remainder of this section, we introduce a novel algorithm for
automatically synthesising a well-behaving choreography. Note that, differently from the
orchestration and the controller synthesis, in this case there could be more than one possible
choreography (cf. Example 4.6).

The property to be enforced during the synthesis is strong agreement: all offers and
requests have to be matched, because all messages have to be read (i.e. offers matched).
Moreover, in the case of choreography, service contract requests are always permitted whereas

9:14 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

(q0, ·, ·)

(a,
a,•)

xx

(a,•,a)
''

... // (q0, ·, ·)

(a,a,•)
&&

7 3

Figure 7: Fragment of a possible service composition

service contract offers can be necessary. That is, the roles of service requests and offers are
swapped with respect to the case of orchestration.

In principle, the synthesis could trivially introduce a coordinator component and its
interactions to coordinate the principals. However, this would reduce the choreography to a
centralised coordination of contracts. To prevent this, the synthesis can only remove and
never add behaviour. Hence, a choreography can only be synthesised if all principals are
capable of interacting on their own without resorting to a central coordinator.

Similarly to orchestration synthesis, indicating transitions as either controllable or
uncontrollable does not suffice for synthesising a choreography. Moreover, the notion of
semi-controllability introduced for the orchestration case does not suffice for expressing
necessary offers. Indeed, orchestration synthesis does not ensure the branching condition to
be satisfied by the synthesised automaton, as the following example shows.

Example 4.2. In Fig. 7, a fragment of a service composition is shown. Two global states
are depicted, and in both the first service, say Alice, is in its initial local state (say, q0). Alice
performs an output (i.e. offer) a that can be directed to either Bob (second service) or Carol
(third service), from the initial global state, or only to Bob from the other state. It is possible
to reach either a successful (3) or a bad (7) state, left unspecified for the moment. Notably,
the output of Alice is neither controllable, nor uncontrollable, nor semi-controllable by the
synthesis.

Now assume that the a is controllable and from the initial global state both interactions
eventually lead to a bad state (7). In this case, those transitions are pruned by the synthesis,
and the resulting automaton is erroneously approved. Indeed, Alice has no mean to understand
when her output a is enabled, because she has not changed state. The branching condition,
which is necessary for obtaining a well-behaving choreography, would be violated. Note that
this would happen also if a were semi-controllable. In fact, to satisfy the branching condition,
the synthesis should remove all outputs a.

Conversely, assume that the a is uncontrollable and that it is possible from the initial
global state to reach a successful state (3) if the message a is received by Bob. In this case,
it would not be possible to prune the transition from the initial state leading to 7, because it
is also uncontrollable. The synthesis would thus be empty, an erroneous rejection, because a
choreography exists in which Alice autonomously interacts with Bob.

In conclusion, a necessary action is rendered neither as uncontrollable nor as semi-
controllable, and permitted actions require extra pruning operations during the synthesis.
A novel notion of semi-controllability for a necessary action is required, which is weaker
than uncontrollable but stronger than the semi-controllable notion used in the synthesis of
orchestration.

Basically, for the choreography synthesis, a (semi-controllable) necessary transition
t = (~q

~a1−→) ∈ T2 is detected to be uncontrollable if and only if no necessary transition

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:15

t′ = (~q
~a2−→) ∈ T2 exists from the same source state such that in both t and t′ the same offer

is provided by the same principal, but possibly with different receivers. We now define this
formally.
Definition 4.3. Let A be an MSCA and let t = (~q,~a1, ~q1

′) ∈ TA. Then:
- if ~a1 is an action on a ∈ A3, then t is controllable (in A);
- if ~a1 is an offer or match on a ∈ A2, then t is semi-controllable (in A).
Moreover, given A′ ⊆ A, if t is semi-controllable and ∃ t′ = (~q,~a2, ~q2

′) ∈ T2
A′ such that ~a2 is a

match, ~q, ~q2′ 6∈ Dangling(A′), and ~a1(i) = ~a2(i) where i = snd(~a1), then t is controllable in A′
(via t′); otherwise, t is uncontrollable in A′.

Hence, again a necessary transition is a particular type of transition that switches from
being controllable to uncontrollable in case a condition on the global automaton is not met.
Note that this condition is stronger than the one required for the case of orchestration (semi-
controllability), because for the case of choreography transitions t and t′ in Definition 4.3
share the source state. Moreover, also in this case it can be shown that the encoding of this
type of semi-controllable transition into an uncontrollable one would result in an exponential
growth of the state space of the model.

Similarly to the orchestration synthesis in Definition 3.2, when a semi-controllable
transition previously removed by the synthesis switches from controllable to uncontrollable,
its source state is detected to be bad. Apart from the different notion of semi-controllability,
another difference with respect to the orchestration synthesis is that the transitions violating
the branching condition must also be removed. Depending on which transitions violating
the branching condition are pruned at a certain iteration, different choreographies can be
obtained (cf. Example 4.6). Indeed, a maximal choreography is not always guaranteed to
exist (as is the case for the running example). A concrete implementation should fix the
criterion under which transitions are selected for the set T̂Ki,Ri (cf. Definition 4.4).

Finally, according to the property of strong agreement, both request and offer transitions
are forbidden. The formalisation is provided next.
Definition 4.4 (MSCA choreography synthesis). Let A be an MSCA, and let K0 = A and
R0 = Dangling(K0). We let a choreography synthesis function fc : MSCA×2Q → MSCA×2Q

be defined as follows:

fc(Ki−1, Ri−1) = (Ki, Ri), with
TKi =TKi−1\ ({ (~q −→ ~q ′) = t ∈ TKi−1 | ~q ′ ∈ Ri−1 ∨ t is a request or offer } ∪ T̂Ki−1,Ri−1)

Ri=Ri−1 ∪ { ~q | (~q −→) ∈ TA is uncontrollable in Ki } ∪Dangling(Ki)
where, at each iteration i,

T̂Ki,Ri ⊆ Tbc = { (~q1
~a−→) ∈ TKi | ∃ ~q2 : (snd(~a) = j∧~q1(j) = ~q2(j))∧(~q2

~a−→) 6∈ TKi∧~q1, ~q2 6∈ Ri }
and whenever fc(Ki, Ri) = (Ki, Ri) then Tbc = ∅.

Theorem 4.5 (MSCA choreography). A choreography synthesis function fc is monotone on
the cpo (MSCA× 2Q,≤) and its least fixed point is:

(Ks, Rs) = sup({ fnc (K0, R0) | n ∈ N })
A choreography KA of A is:

KA =

{
〈 〉 if ~q0 ∈ Rs
〈Q \Rs, ~q0, A3, A2, Ao, TKs\ T ′, F \Rs〉 otherwise

9:16 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

where T ′ = { t = ~q −→ ∈ Ks | t is controllable in Ks, ~q ∈ Rs }.
Moreover, KA satisfies the branching condition.

Proof. The algorithm terminates because at each iteration either some transition is pruned
or a state becomes forbidden, and both sets of transitions and states are finite. We now
prove that the synthesised automaton is (i) non-blocking, (ii) controllable, (iii) strongly safe,
and (iv) satisfies the branching condition. In case KA = 〈 〉, the properties hold trivially,
thus we assume that the synthesised controller is non-empty.

For (i), trivially all dangling states are pruned, so it is always possible to reach a final
state. Similarly, bad states (i.e. states in the set Rs) are never traversed by construction, i.e.
transitions with target in Rs are pruned.

For (ii), by construction all uncontrollable transitions have source state in Rs, and
thus are not reachable. Note that by Definition 4.3 uncontrollable transitions are necessary
requirements that are not met and thus are always removed by the synthesis.

For (iii), all transitions eventually violating strong safety are requests or offers and are
pruned by the synthesis.

For (iv), the transitions violating the branching condition are

{ (~q1
~a−→) = t ∈ TKA | ∃ ~q2 : (snd(~a) = i ∧ ~q1(i) = ~q2(i)) ∧ (~q2

~a−→) 6∈ TKA }
and these are pruned by definition.

Returning to Example 4.2, the erroneously accepted case is removed because, during
the synthesis, the operation of pruning the transitions leading to bad states causes the
removal of the remaining transition. Thus, the obtained choreography is empty. Similarly,
the erroneously rejected case is not possible because, assuming that the output from the
initial state is necessary, this necessary action is not rendered as uncontrollable as long as
the output is matched by some other principal from the same initial state.

We now estimate also the complexity of the choreography synthesis. With respect to the
orchestration synthesis, in the choreography synthesis at each iteration a transition violating
the branching condition can be removed. In the worst case, deciding if a transition violates
the branching condition requires to check all other transitions. Hence, an upper bound of
the procedure for selecting a transition violating the branching condition is O(|T |2). Note
that, in the unlikely event that all transitions share the same source state, the upper-bound
complexity for computing the set of uncontrollable transitions is the same as in the case of
orchestration synthesis. Thus, a first upper bound of the complexity of the choreography
synthesis algorithm is O((|T |+ |Q|)× |Q|2 × |T |4). We can refine this first approximation
to O((|T | + |Q|) × |Q|2). Indeed, similar to the case of orchestration synthesis, at each
iteration in a single traversal of the automaton it is possible to compute the set of dangling
states, the set of uncontrollable transitions, and the set of transitions violating the branching
condition. Also in this case, as for the other syntheses, our complexity estimation refers to
the abstract specification of the algorithm resulting from Definition 4.4 and Theorem 4.5.
The implementation of the algorithm could be optimised to perform even better.

Example 4.6. We once more continue the running example by discussing the choreography
synthesis of the running example for the composition

A2 = Client⊗ PrivilegedClient⊗ Broker⊗ Hotel⊗ Hotel

The choreography of A2 is depicted in Fig. 8 and the time needed to compute A2 and its
choreography by using FMCAT is reported in Table 1. Note that differently from A1 in

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:17

c0
c′0
b0
h0
h′0

c0
c′1
b1
h0
h′0

c0
c′1
b2
h1
h′0

c0
c′1
b3
h2
h′0

c0
c′1
b4
h2
h′1

c0
c′1
b5
h2
h′2

c0
c′2
b6
h2
h′2

c0
c′3
b7
h2
h′2

c0
c′3
b8
h3
h′2

c0
c′3
b9
h3
h′4

c0
c′4
b10
h2
h′2

c0
c′4
b11
h4
h′2

c0
c′4
b12
h4
h′4


•
qry
qry
•
•

2


•
•
chk
chk
•

3


•
•
rsp
rsp
•

3


•
•
chk
•
chk

3


•
•
rsp
•
rsp

3


•
bst
bst
•
•

3


•
ok
ok
•
•

3


•

nok
nok
•
•

3


•
•
bk
bk
•

3


•
•
nbk
•
nbk

3


•
•
nbk
nbk
•

3


•
•
nbk
•
nbk

3

Figure 8: Choreography of Client⊗ PrivilegedClient⊗ Broker⊗ Hotel⊗ Hotel

Num. states
composition

Time
(ms)

Num. states
mpc

Time
(ms)

Num. states
orchestration

Time
(ms)

Num. states
choreography

Time
(ms)

A1 2934 65594 1 4070 37 715216 – –
A2 2934 66243 – – – – 13 459311

Table 1: Results of computing the compositions A1 and A2 and their syntheses.4

Example 2.5 and Example 3.4, in A2 there is a privileged client and no privileged hotel.
Indeed, PrivilegedHotel is not a valid contract for the choreography case. The choreography
does not need the overhead of interactions with the orchestrator and, most importantly,
the synthesis of choreography does not introduce any additional behaviour. Indeed, with
due adjustment of necessary transitions of PrivilegedClient and Hotel, the choreography
could be considered a sub-automaton of the orchestration.

We now use the example to discuss the differences between orchestration and choreography,
and in particular the requirement that the branching condition is satisfied. In the orchestration,
from the initial state either one of the two clients can interact. This decision is internally
taken by the orchestrator (whose communications are abstracted away in the orchestration).
On the converse, in the choreography only the PrivilegedClient is allowed to interact.
This is because the clients are not able to decide on their own which one of them should
start the interactions. This can be explained as follows. If both clients were allowed to
interact, a deadlock could be reached upon the following steps. Initially, PrivilegedClient
offers qry. Afterwards, for the interactions to continue such offer must be received by
some principal (i.e. the underlining choreographed model is synchronous [10]). In this case,
Broker receives the offer qry. At this point, Client is allowed to offer its qry message. The
interactions are now deadlocked, because Broker cannot receive such message, nor can any
other contract. This is an example of violation of the branching condition. Consider the
initial state ~q0 = (c0, c

′
0, b0, h0, h

′
0) and state ~q1 = (c0, c

′
1, b1, h0, h

′
0). In the orchestration, the

branching condition is violated because from state ~q0 the match (qry, •, qry, •, •) is allowed,
while it is not in state ~q1, and in both states Client is in c0. During the choreography
synthesis, the match (qry, •, qry, •, •) from state ~q0 is pruned. Likewise, in the choreography
the broker enquires the hotels in a fixed order, whereas in the orchestration all possible orders
are allowed, or else the branching condition would be violated.

4The evaluation was carried out on a machine with Processor Intel(R) Core(TM) i7-8500Y CPU at
1.50GHz, 1601Mhz, 2 Core(s), 4 Logical Processor(s) with 16GB of RAM, running 64-bit Windows 10.

9:18 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

Note that an alternative choreography can be obtained by swapping the order in which
the hotels are enquired by the broker. Indeed, from state ~q1 the orchestration allows both
matches (•, •, chk, chk, •) and (•, •, chk, •, chk). During the choreography synthesis, both
these outgoing matches are violating the branching condition. By pruning one of them,
the other is automatically amended, because the states causing violation of the branching
condition become dangling. In particular, the synthesis prunes the transition (•, •, chk, •, chk)
in favour of (•, •, chk, chk, •).

Finally, concerning semi-controllability, note that it is not possible to have a choreography
in which PrivilegedClient is not served in favour of Client, because the qry offer of
PrivilegedClient is necessary and thus must be matched.

5. Abstract Synthesis

In Section 2, Section 3, and Section 4, we have presented three slightly different synthesis
algorithms, and in the previous section we have illustrated their differences. As said before,
to bridge the gap between standard synthesis and orchestration and choreography syntheses,
the controllable and uncontrollable actions from SCT are related to permitted and necessary
modalities, respectively, of MSCA.

The main intuition for this is that the SCT assumption of an unpredictable environment
responsible for the uncontrollable transitions is not realistic in the case of coordination
of services whose behaviour is known and observable. As a result, necessary actions are
not in correspondence with uncontrollable actions, but rather require the introduction of
a milder notion of controllability. The condition under which a controllable transition
becomes uncontrollable varies depending on the particular synthesis algorithm (orchestration
or choreography). Conversely, in the standard mpc synthesis such information is local, i.e. a
transition is declared to be uncontrollable.

In this section, we discuss an abstract synthesis algorithm that generalises the previous
algorithms by abstracting away the conditions under which a transition is pruned or a
state is deemed bad, thus encapsulating and extrapolating the notion of controllability and
safety. These two conditions, called pruning predicate (φp) and forbidden predicate (φf)
are parameters to be instantiated by the corresponding instance of the synthesis algorithm
(e.g. orchestration or choreography). Predicate φp is used for selecting the transitions to be
pruned. Depending on the specific instance, non-local information about the automaton or
the set of bad states is needed by φp. Therefore, φp takes as input the current transition
to be checked, the automaton, and the set of bad states. If φp evaluates to true, then the
corresponding transition will be pruned. Predicate φf is used for deciding whether a state
becomes bad. The input parameters are the same as φp. However, φf only inspects necessary
transitions (T2). If φf evaluates to true, then the source state is deemed bad and added to
the set Ri. The abstract synthesis algorithm is formally defined below.

Definition 5.1 (Abstract synthesis). Let A be an MSCA, and let K0 = A and R0 =
Dangling(K0). Given two predicates φp, φf : T ×MSCA × Q → Bool, we let the abstract
synthesis function f(φp,φf) : MSCA× 2Q → MSCA× 2Q be defined as follows:

f(φp,φf)(Ki−1, Ri−1) = (Ki, Ri), with
TKi = TKi−1 \ { t ∈ TKi−1 | φp(t,Ki−1, Ri−1) = true }
Ri = Ri−1 ∪ { ~q | (~q −→) = t ∈ T2

A , φf (t,Ki−1, Ri−1) = true } ∪Dangling(Ki)

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:19

As in the previous cases, the mpc relative to the pair (φp, φf) is obtained by computing
the least fixed point (Ks, Rs) of f(φp,φf) and removing the states Rs from Ks.

Theorem 5.2 (Abstract controller synthesis). The abstract synthesis function f(φp,φf) is
monotone on the cpo (MSCA× 2Q,≤) and its least fixed point is:

(K(φp,φf)
s , R

(φp,φf)
s) = sup({ fn(φp,φf)(K0, R0) | n ∈ N })

The abstract controller of A for predicates (φp, φf), denoted by K(φp,φf)
A , is:

K(φp,φf)
A =

 〈 〉 if ~q0 ∈ R
(φp,φf)
s

〈Q \R(φp,φf)
s , ~q0, A

3, A2, Ao, T
K

(φp,φf)
s

, F \R(φp,φf)
s 〉 otherwise

Proof. The algorithm terminates because at each iteration either some transition is pruned
or a state becomes forbidden, and both sets of transitions and states are finite. We now prove
that the synthesised automaton is (i) non-blocking, (ii) controllable, (iii) most-permissive,
and (iv) safe. In case K(φp,φf)

A = 〈 〉, the properties hold trivially, thus we assume that the
synthesised controller is non-empty.

For (i), trivially all dangling states are pruned, so it is always possible to reach a final
state. Similarly, bad states (i.e. states in the set Rs) are never traversed by construction, i.e.
transitions with target in Rs are pruned.

For (ii) and (iv), the forbidden predicate φf codifies exactly when controllability or safety
is violated by a state. By construction, it is never the case that such a state is reached.

For (iii), by construction a state is deemed bad or a transition is pruned exactly when
either forbidden or pruning predicates are satisfied, respectively. Thus, maximality follows
by the fact that each controller greater than the one synthesised will admit some forbidden
state or transition.

In the remainder of this section, we show how to instantiate the abstract synthesis
function to the standard synthesis function, to the orchestration synthesis function, or to the
choreography synthesis function, and prove their correspondences.

Theorem 5.3 (Abstract mpc synthesis). The standard synthesis function of Definition 2.3
coincides with the instantiation of the abstract synthesis function of Definition 5.1 where, for
a generic transition t = (~q,~a, ~q ′), predicates φp and φf are defined as follows:

φmpc
p (t,K, R) = (~q ′ ∈ R) ∨ (~q is forbidden)
φmpc
f (t,K, R) = (~q ′ ∈ R)

Proof. Let Kmpc
A and Kabs

A be the controllers computed through Theorems 2.4 and 5.2,
respectively. The proof proceeds by induction on the fixed point iterations and by case
analysis.

For the base case, by definition Kmpc
0 = Kabs

0 = A and Rabs
0 = Rmpc

0 = Dangling(K0).
For the inductive case, let i be a fixed point iteration. Assuming Kmpc

i−1 = Kabs
i−1 and

Rmpc
i−1 = Rabs

i−1, we prove Kmpc
i = Kabs

i and Rmpc
i = Rabs

i .
The equivalence Kmpc

i = Kabs
i follows because at the ith iteration, φmpc

p detects exactly
the same transitions that are pruned by the mpc synthesis algorithm.

9:20 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

For the equivalence Rmpc
i = Rabs

i , we have Rmpc
i = Rmpc

i−1 ∪ Dangling(Kmpc
i) ∪ { ~q |

(~q,~a, ~q ′) ∈ T2
Kmpc
i

, ~q ′ ∈ Rmpc
i−1 } and Rabs

i = Rabs
i−1 ∪ Dangling(Kabs

i) ∪ { ~q | (~q a−→) = t ∈ T2
A ,

φmpc
f (t,Kabs

i−1, R
abs
i−1) = true}.

Since Kmpc
i = Kabs

i , also the dangling states are equivalent. It remains to prove that

{ ~q | (~q,~a, ~q ′) ∈ T2
Kmpc
i
, ~q ′ ∈ Rmpc

i−1 } = { ~q | (~q
a−→) = t ∈ T2

A , φ
mpc
f (t,Kabs

i−1, R
abs
i−1) = true}.

This equivalence is straightforward by the definition of φmpc
f and the inductive hypothesis.

Note that in Theorem 5.3 the predicates do not use any non-local information related to
the parameter K. For both orchestration and choreography, two different semi-controllability
conditions are used to decide whether a state has become forbidden. These conditions are
translated into the corresponding forbidden predicates.

Theorem 5.4 (Abstract orchestration synthesis). The orchestration synthesis function of
Definition 3.2 coincides with the instantiation of the abstract synthesis function of Defini-
tion 5.1 where, for a generic transition t = (~q,~a, ~q ′), predicates φp and φf are defined as
follows:

φorc
p (t,K, R) = (t is a request) ∨ (~q ′ ∈ R)
φorc
f (t,K, R) = @ (~q2

~a2−→ ~q2
′) ∈ T2

K : (~a2 is a match) ∧ (~q2, ~q2
′ 6∈ Dangling(K))

∧ (~q(i) = ~q2(i)) ∧ (~a(i) = ~a2(i) = a)

Proof (sketch). The proof is analogous to that of Theorem 5.3 but relying on Theorem 3.2
instead of Theorem 2.4. The full proof can be found in the appendix.

The pruning predicate of Theorem 5.4 does not use any information coming from the
global automaton K, whereas this is no longer the case for the forbidden predicate that indeed
specifies the semi-controllability condition for the necessary transitions of an orchestration
(cf. Definition 3.1).

Theorem 5.5 (Abstract choreography synthesis). The choreography synthesis function of
Definition 4.4 coincides with the instantiation of the abstract synthesis function of Defini-
tion 5.1, where given a generic transition t = (~q,~a, ~q ′), the predicates φp and φf are defined
as follows, where T̂K,R is defined in Definition 4.4:

φcor
p (t,K, R) = (t is a request or offer) ∨ (~q ′ ∈ R) ∨ t ∈ T̂K,R
φcor
f (t,K, R) = @ (~q ~a2−→ ~q2

′) ∈ T2
K : (~a2 is a match) ∧ (~q, ~q2

′ 6∈ Dangling(K))
∧ (~a(i) = ~a2(i) = a)

Proof (sketch). The proof is analogous to that of Theorem 5.3 but relying on Theorem 4.4
instead of Theorem 2.4. The full proof can be found in the appendix.

Notably, in Theorem 5.5 both predicates require global information on the whole au-
tomaton. Similarly to Theorem 5.4, the forbidden predicate codifies the semi-controllability
condition of Definition 4.3. Moreover, the pruning predicate removes all transitions violating
the branching condition (cf. Definition 4.1).

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:21

6. A Partial Order on Controllers

In Theorem 5.3, Theorem 5.4, and Theorem 5.5, we have proved that the three previously
presented synthesis algorithms are instantiations of the abstract synthesis algorithm of
Definition 5.1. This abstraction provides us the mean to formally relate the various algorithms
presented so far, as detailed in this section.

To begin with, we define a partial order on predicates. Intuitively, a pair (φp2 , φf2) is
greater than another pair (φp1 , φf1) if and only if (φp2 , φf2) is (pairwise) entailed by (φp1 , φf1).

Definition 6.1 (Partial order on predicates). Let A be an MSCA and let Pr be the set of
pairs of pruning and forbidden predicates of Definition 5.1 with (φp1 , φf1), (φp2 , φf2) ∈ Pr.
The partial order on predicates (Pr,≤) is defined as:
(φp1 , φf1) ≤ (φp2 , φf2) iff ∀i ∈ N . (φp1(t,K1

i , R
1
i)⇒ (φp2(t,K2

i , R
2
i) ∨ t 6∈ K2

i))

∧ (φf1(t,K1
i , R

1
i)⇒ (φf2(t,K2

i , R
2
i)) ∨ ~q ∈ Dangling(K2

i)),
where t = (~q,~a, ~q ′).

By Definition 5.1, we know that such predicates are used to refine an MSCA during the
synthesis. Indeed, states and transitions are removed when such predicates are satisfied by
them. The partial order on predicates induces an ordering on the various abstract controllers,
as the following result shows.

Proposition 6.2 (Ordering controllers). Let A be an MSCA and let (φp1 , φf1), (φp2 , φf2) ∈ Pr
be such that (φp1 , φf1) ≤ (φp2 , φf2). Then:

K(φp2 ,φf2)

A ⊆ K(φp1 ,φf1)

A

Proof. By Definition 5.1, both K(φp1 ,φf1)

A and K(φp2 ,φf2)

A are sub-automata of A, and they
only differ in the sets of states and transitions.

By contradiction, assume that there exists a transition t in T
K

(φp2 ,φf2
)

A
\ T
K

(φp1 ,φf1
)

A
. By

Definition 5.1, let i be the iteration where t is removed from TK1
i
. By hypothesis, it holds

that φp1(t,K1
i , R

1
i)⇒ φp2(t,K2

i , R
2
i) ∨ t 6∈ K2

i , hence by Definition 5.1, t must also have been
removed from TK2

i
or it is not present, a contradiction.

Similarly, assume that there exists a state ~q in Q
K

(φp2 ,φf2
)

A
\Q
K

(φp1 ,φf1
)

A
. By Definition 5.1,

let i be the iteration where ~q is added to RK1
i
. By hypothesis, it holds that φf1(t,K1

i , R
1
i)⇒

φf2(t,K2
i , R

2
i) ∨ ~q ∈ Dangling(K2

i), hence by Definition 5.1, ~q must also have been added to
RK2

i
. Finally, Q

K
(φp2 ,φf2

)

A
= QA \R2

s and RK2
i
⊆ R2

s, thus a contradiction is reached.

This result has an immediate application in performing abstraction of syntheses, in
the sense that the lesser the pair of predicates the more abstract (in refinement terms)
the corresponding synthesised automaton. This can be useful to perform partial syntheses
and skip unnecessary checks or even potentially undecidable computations. For example,
if K(φp1 , φf1) = 〈 〉, for a given pair (φp1 , φf1), then by Proposition 6.2 we know that for all
(φpi , φfi) such that (φp1 , φf1) ≤ (φpi , φfi) it will hold that K(φpi , φfi) = 〈 〉.

While the orchestration synthesis of Definition 3.2 is enforcing agreement, the mpc
synthesis of Definition 2.3 is enforcing a generic predicate modelled as forbidden states.
Whenever the mpc synthesis is also enforcing agreement, as an instantiation of Proposition 6.2,
we can prove that the two syntheses are related. Moreover, agreement identifies forbidden

9:22 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

transitions as those labelled by requests. On the converse, the mpc synthesis identifies
forbidden states rather than forbidden transitions. Therefore, to enable a comparison of the
mpc and the orchestration synthesis, we need to (i) transform the automaton such that the
predicate on forbidden transitions (i.e. agreement in this case) can be expressed by means of
forbidden states and (ii) instantiate the generic predicate expressed by forbidden states. For
point (i), the synthesis of the mpc is applied to the automaton A′ obtained from the original
automaton A by erasing controllable forbidden transitions. For point (ii), forbidden states
are those states that are sources of uncontrollable forbidden transitions. This is what the
following lemma states.

Lemma 6.3 (Orchestration vs. mpc synthesis). Given an MSCA A, let A′ be obtained from
A by removing all controllable request transitions and considering as forbidden the states of
A′ with outgoing uncontrollable request transitions. Let Korc

A and Kmpc
A′ be the orchestration

and mpc of Definitions 3.2 and 2.3, respectively. Then:

Kmpc
A′ ⊆ K

orc
A

Proof. By Theorems 5.4 and 5.3, Korc
A and Kmpc

A′ are equivalent to K
(φorc
p , φorc

f)

A and K
(φmpc
p , φmpc

f)

A′ ,
respectively. Moreover, both controllers are sub-automata of A, and they only differ in the
sets of states and transitions.

Recall that, given t = (~q,~a, ~q ′), φmpc
p (t,Kmpc

i , Rmpc
i) = (~q ′ ∈ Rmpc

i) ∨ (~q is forbidden),
φmpc
f (t,Kmpc

i , Rmpc
i) = (~q ′ ∈ Rmpc

i) and φorc
p (t,Korc

i , Rorc
i) = (t is a request) ∨ (~q ′ ∈ Rorc

i),

φorc
f (t,Korc

i , Rorc
i) = @ (~q2

~a2−→ ~q2
′) ∈ T2

Korc
i

: (~a2 is a match) ∧ (~q2, ~q2
′ 6∈ Dangling(Korc

i)) ∧
(~q(i) = ~q2(i)) ∧ (~a(i) = ~a2(i) = a).

We proceed by induction on i. For the base case, it holds that KA′0 ⊆ K0 and
Dangling(K0) ⊆ Dangling(KA′0). By hypothesis, φorc

p (t,Korc
0 , Rorc

0) is true. Then either
t is a request or ~q ′ ∈ Dangling(K0). If t is a request, then t has been already pruned.
Otherwise, ~q ′ ∈ Dangling(K0) (or both), and so it is in Dangling(KA′0) and the pruning
predicate of the mpc is satisfied. Similarly, by hypothesis φorc

f (t,Korc
0 , Rorc

0) is true. Since
no transitions have been pruned in K0, it must be the case that the source state of t is in
Dangling(K0), and so it is in Dangling(KA′0).

For the inductive step, the implication on the pruning predicate is satisfied by noticing
that Rorc

i−1 ⊆ R
mpc
i−1 . The implication on the forbidden predicate is satisfied because trivially

t 6∈ T2
Korc
i

, and hence t 6∈ T2
Kmpc
i

, and this is because either the target is dangling or the source
is forbidden. In both cases the forbidden predicate of the mpc is satisfied.

Thus, for example, given an MSCA A, from Korc
A = 〈 〉 we can conclude that Kmpc

A = 〈 〉
by Lemma 6.3, without actually computing it.

Example 6.4. Concluding the running example, one can observe that the mpc of A1 is a
sub-automaton (formed of only the initial and final state) of the orchestration of A1.

7. Related Work

Our contributions to bridging the gap between SCT and coordination of services concern
adaptations of the classical synthesis algorithm from SCT in order to synthesise orchestrations
and choreographies of service contracts formalised as MSCA. In the literature, there exist
many formalisms for modelling and analysing (service) contracts, ranging from behavioural

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:23

type systems, including behavioural contracts [21, 1, 36] and session types [17, 32, 27, 20,
40], to automata-based formalisms, including interface automata [26] and (timed) (I/O)
automata [39, 2, 25]. Foundational models for service contracts and session types are surveyed
in [44, 7, 33].

The MSCA formalism used in this paper differs fundamentally from these models,
which typically study notions of contract compliance involving only two parties, since MSCA
primitively support multi-party compliance of contracts that compete on offering or requesting
the same service. Furthermore, the above models do not consider modalities of services
whereas MSCA provide primitive support for permitted and necessary service actions, which
resulted in the introduction of a novel notion of semi-controllability in the context of SCT.
Modal Transition Systems (MTS) and their extensions [35], as adopted for instance in
Software Product Line Engineering (SPLE [42, 3]), like modal I/O automata [38] and MTS
with variability constraints [47], do natively distinguish may and must modalities, but the
other differences remain. In particular, they cannot explicitly handle dynamic composition
by allowing new services that join composite services to intercept already matched actions.

We are only aware of two other applications of SCT to MTS. In [24], there is no direct
relation between may/must and controllable/uncontrollable, and the modal automaton (i.e.
MTS with final states) is seen as a predicate that is satisfied if the plant automaton (i.e.
the system to be refined against the predicate) is a sort of alternate refinement of the
predicate. Similarly, in [28], the control objectives (i.e. the predicate) is a modal automaton,
non-blockingness is not considered, and another modal automaton describes which actions
are controllable and which are uncontrollable in the plant automaton. In this paper, the
predicate is an invariant (i.e. forbidden states and forbidden transitions are given), the modal
automaton (i.e. MSCA) is the plant, and a necessary transition induces different notions of
controllability according to the adopted coordination paradigm.

SCT was first applied to SPLE in [48] by showing how the CIF 3 toolset [50] can
automatically synthesise a single (global, family) model representing an automaton for each
of the valid products of a product line from (i) a feature constraint with attributes (e.g.
cost), (ii) behavioural component models associated with the features, and (iii) additional
behavioural requirements like state invariants, action orderings, and guards on actions
(reminiscent of the Featured Transition Systems of [22]). The resulting CIF 3 model satisfies
all feature-related constraints as well as all given behavioural requirements. Since CIF 3
allows the export of such models in a format accepted by the mCRL2 model checker [23],
the latter can be used to verify arbitrary behavioural properties expressed in the modal
µ-calculus with data or its feature-oriented variant of [46]. An important advantage is that
both CIF 3 and mCRL2 can be used off-the-shelf, meaning that no additional tools are required.
Differently from our approach, all actions are controllable and orchestration is not considered.
In [9], the prototypical tool CAT supporting orchestration synthesis for CA is presented.

The only approach by others to bridge the gap between SCT and coordination of services
that we are aware of is that of [5], where services are formalised as so-called Service Labelled
Transition Systems (SLTS), which are a kind of guarded automata with data. To this
aim, SCT is adapted to deal with conditions and variables as well as with a means to
enforce services based on runtime information. However, service composition through SLTS
is based on the standard synchronous product, whilst the contract composition expresses
competing contracts. More importantly, in [5], input actions are considered uncontrollable
whereas output actions are controllable, in the standard view of a service interacting with the
environment. Our contribution induces novel notions of controllability to express necessary

9:24 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

requirements that are semi-controllable. The standard controller synthesis algorithm is used
in [30] to synthesise adapters between services. These adapters act like proxies and are used to
enforce properties such as deadlock-freedom. Compared to our work, the interactions between
services are driven by their contracts rather than by adapters. The standard controller
synthesis algorithm cannot be applied to synthesise a correct composition of contracts.

We conclude this section by describing two recent extensions of MSCA, developed for
different purposes, and for which we also defined adapted synthesis algorithms. In [12], we
presented Featured Modal Contract Automata (FMCA). Technically, we extended MSCA
with a variability mechanism concerning structural constraints that operate on the service
contract, used to define different configurations. This reflects the fact that services are
typically reused in configurations that vary over time and need to dynamically adapt to
changing environments [51]. Configurations were characterised by which service actions are
mandatory and which forbidden. The valid configurations were defined as those respecting
all structural constraints. We followed the well-established paradigm of SPLE, which aims
at efficiently managing a product line (family) of highly (re)configurable systems to allow
for mass customisation [42, 3]. To compactly represent a product line, i.e. the set of valid
product configurations, we used a so-called feature constraint, a propositional formula ϕ
whose atoms are features [15], and we identified features as service actions (offers as well
as requests). A valid product then distinguishes a set of mandatory and a set of forbidden
actions. Consequently, we defined an algorithm to compute the FMCA KAp as the mpc
for a valid product p of an FMCA A. The main adaptation of the synthesis algorithm for
MSCA was to consider as bad states also those that cannot prevent a forbidden action to
be eventually executed and to discard the transitions labelled with actions forbidden by p.
Moreover, if some action that is mandatory in p is unavailable in the automaton that results
from the fixed point iteration, then the mpc results empty. In [12], we also presented an
evaluation of FMCA with the prototypical tool FMCAT. Building on CAT [9], FMCAT can
synthesise the orchestration of an FMCA in terms of its mpc. The results clearly show the
gain in expressiveness due to the notion of semi-controllability, as well as the reduction of
the number of configurations needed to compute the orchestration due to the introduction of
a partial order of products of FMCA. This inspired us to consider semi-controllability also
in MSCA and to develop a partial order of controllers for MSCA in this paper.

In [13], we presented Timed Service Contract Automata (TSCA) as an extension of the
FMCA from [12] with real-time constraints. Formally, a configuration of a TSCA is a triple
consisting of a recognised trace, a state, and a valuation of clocks. The (finite) behaviour
recognised by a TSCA are traces of alternating time and discrete transitions, i.e. in a given
configuration either time progresses (a silent action in the languages recognised by TSCA) or
a discrete step to a new configuration is performed. Consequently, we defined an algorithm
to compute the orchestration synthesis of TSCA. To respect the timing constraints, we used
the notion of zones from timed games [4, 19]. The resulting synthesis algorithm resembles a
timed game, but it differs from classical timed game algorithms [4, 19, 25] by combining two
separate games, viz. reachability games (to ensure that marked states must be reachable)
and safety games (to ensure that forbidden states are never traversed). A TSCA might be
such that all bad configurations are unreachable (i.e. it is safe), while at the same time no
final configuration is reachable (i.e. the resulting orchestration is empty).

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:25

8. Conclusion

This paper presents our recent efforts, originally published in [14], concerning bridging the
gap between the most permissive controller synthesis from Supervisory Control Theory
with synthesis algorithms of orchestrations and choreographies for a formal model of service
contracts called Modal Service Contract Automata. This includes a novel algorithm capable of
synthesising a safe non-blocking composition of service contracts that is directly translatable
into a choreographed formalism. A further contribution is an abstract synthesis algorithm
that generalises the synthesis of the choreography, as well as that of the orchestration and that
of the most permissive controller. This paper includes the proofs of all statements from [14].
Furthermore, it contains a formal demonstration that the different synthesis algorithms are
related through a notion of refinement, which allows us to formally prove that, under mild
assumptions, the orchestration synthesis is an abstraction of the mpc synthesis. Finally, the
paper includes an extensive running example from the service domain that illustrates our
contributions.

The properties to be enforced in the algorithms presented in this paper are all invariants
specified through either forbidden states or forbidden transitions. Future work is needed
to investigate the abstract syntheses under other non-invariant properties. Another avenue
for future research is to investigate the different features of micro-services with respect to
services, and to study what is needed to adapt the formalism of (timed/modal service)
contract automata and our results to deal with micro-services.

Acknowledgments

We acknowledge useful comments from the reviewers and funding from the MIUR PRIN
2017FTXR7S project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

[1] L. Acciai, M. Boreale, and G. Zavattaro. Behavioural contracts with request-response operations. Sci.
Comp. Program., 78(2):248–267, 2013. doi:10.1016/j.scico.2011.10.007.

[2] R. Alur and D. Dill. A Theory of Timed Automata. Theoret. Comp. Sci., 126(2):183–235, 1994.
doi:10.1016/0304-3975(94)90010-8.

[3] S. Apel, D. S. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013. doi:10.1007/978-3-642-37521-7.

[4] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis for Timed Automata. IFAC Proc.
Vol., 31(18):447–452, 1998. doi:10.1016/S1474-6670(17)42032-5.

[5] F. Atampore, J. Dingel, and K. Rudie. Automated Service Composition Via Supervisory Control Theory.
In WODES, pages 28–35. IEEE, 2016. doi:10.1109/WODES.2016.7497822.

[6] S. Azzopardi, G. J. Pace, F. Schapachnik, and G. Schneider. Contract automata: An operational
view of contracts between interactive parties. Artif. Intell. Law, 24(3):203–243, 2016. doi:10.1007/
s10506-016-9185-2.

[7] M. Bartoletti, T. Cimoli, and R. Zunino. Compliance in Behavioural Contracts: A Brief Survey. In
Programming Languages with Applications to Biology and Security, volume 9465 of LNCS, pages 103–121.
Springer, 2015. doi:10.1007/978-3-319-25527-9_9.

[8] D. Basile, P. Degano, and G. L. Ferrari. Automata for Specifying and Orchestrating Service Contracts.
Log. Meth. Comp. Sci., 12(4:6):1–51, 2016. doi:10.2168/LMCS-12(4:6)2016.

[9] D. Basile, P. Degano, G. L. Ferrari, and E. Tuosto. Playing with Our CAT and Communication-
Centric Applications. In FORTE, volume 9688 of LNCS, pages 62–73. Springer, 2016. doi:10.1007/
978-3-319-39570-8_5.

https://doi.org/10.1016/j.scico.2011.10.007
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1109/WODES.2016.7497822
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5

9:26 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

[10] D. Basile, P. Degano, G. L. Ferrari, and E. Tuosto. Relating two automata-based models of orchestration
and choreography. J. Log. Algebr. Meth. Program., 85(3):425–446, 2016. doi:10.1016/j.jlamp.2015.
09.011.

[11] D. Basile, F. Di Giandomenico, S. Gnesi, P. Degano, and G. L. Ferrari. Specifying Variability in Service
Contracts. In VaMoS, pages 20–27. ACM, 2017. doi:10.1145/3023956.3023965.

[12] D. Basile, M. H. ter Beek, P. Degano, A. Legay, G. L. Ferrari, S. Gnesi, and F. Di Giandomenico.
Controller synthesis of service contracts with variability. Science of Computer Programming, 187, 2020.
doi:10.1016/j.scico.2019.102344.

[13] D. Basile, M. H. ter Beek, and A. Legay. Timed service contract automata. Innovations Syst. Softw.
Eng., 2020. doi:10.1007/s11334-019-00353-3.

[14] D. Basile, M. H. ter Beek, and R. Pugliese. Bridging the Gap Between Supervisory Control and
Coordination of Services: Synthesis of Orchestrations and Choreographies. In COORDINATION, volume
11533 of LNCS, pages 129–147. Springer, 2019. doi:10.1007/978-3-030-22397-7_8.

[15] D. S. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC, volume 3714 of LNCS,
pages 7–20. Springer, 2005. doi:10.1007/11554844_3.

[16] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G. Neiat, S. Mistry, B. Benatallah,
B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H. Wang, D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik,
A. Erradi, Y. Wang, B. Blake, S. Dustdar, F. Leymann, and M. Papazoglou. A Service Computing
Manifesto: The Next 10 Years. Commun. ACM, 60(4):64–72, 2017. doi:10.1145/2983528.

[17] R. Bruni, I. Lanese, H. C. Melgratti, and E. Tuosto. Multiparty Sessions in SOC. In COORDINATION,
volume 5052 of LNCS, pages 67–82. Springer, 2008. doi:10.1007/978-3-540-68265-3_5.

[18] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2006. doi:
10.1007/978-0-387-68612-7.

[19] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient On-the-Fly Algorithms for
the Analysis of Timed Games. In CONCUR, volume 3653 of LNCS, pages 66–80. Springer, 2005.
doi:10.1007/11539452_9.

[20] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On Global Types and Multi-Party Sessions. Log.
Meth. Comp. Sci., 8(1:24):1–45, 2012. doi:10.2168/LMCS-8(1:24)2012.

[21] G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. ACM Trans.
Program. Lang. Syst., 31(5):19:1–19:61, 2009. doi:10.1145/1538917.1538920.

[22] A. Classen, M. Cordy, P. - Y. Schobbens, P. Heymans, A. Legay, and J. - F. Raskin. Featured Transition
Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. Softw. Eng., 39(8):1069–1089, 2013. doi:10.1109/TSE.2012.86.

[23] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de Vink, W. Wesselink, and T. A. C.
Willemse. An Overview of the mCRL2 Toolset and Its Recent Advances. In TACAS, volume 7795 of
LNCS, pages 199–213. Springer, 2013. doi:10.1007/978-3-642-36742-7_15.

[24] P. Darondeau, J. Dubreil, and H. Marchand. Supervisory Control for Modal Specifications of Services.
IFAC Proc. Vol., 43(12):418–425, 2010. doi:10.3182/20100830-3-DE-4013.00069.

[25] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wąsowski. Timed I/O Automata: A Complete
Specification Theory for Real-time Systems. In HSCC, pages 91–100. ACM, 2010. doi:10.1145/1755952.
1755967.

[26] L. de Alfaro and T. Henzinger. Interface Automata. In ESEC/FSE, pages 109–120. ACM, 2001. doi:
10.1145/503209.503226.

[27] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and Session Types: An Overview. In WS-FM, volume
6194 of LNCS, pages 1–28. Springer, 2010. doi:10.1007/978-3-642-14458-5_1.

[28] G. Feuillade and S. Pinchinat. Modal Specifications for the Control Theory of Discrete Event Systems.
Discrete Event Dyn. Syst., 17(2):211–232, 2007. doi:10.1007/s10626-006-0008-6.

[29] S. T. J. Forschelen, J. M. van de Mortel-Fronczak, R. Su, and J. E. Rooda. Application of supervisory
control theory to theme park vehicles. Discrete Event Dyn. Syst., 22(4):511–540, 2012. doi:10.1007/
s10626-012-0130-6.

[30] C. Gierds, A. J. Mooij, and K. Wolf. Reducing Adapter Synthesis to Controller Synthesis. IEEE Trans.
Services Computing, 5(1):72–85, 2012. doi:10.1109/TSC.2010.57.

[31] P. Gohari and W. M. Wonham. On the complexity of supervisory control design in the RW framework.
IEEE Trans. Syst., Man, Cybern. B, Cybern., 30(5):643–652, 2000. doi:10.1109/3477.875441.

https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/2983528
https://doi.org/10.1007/978-3-540-68265-3_5
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/11539452_9
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.3182/20100830-3-DE-4013.00069
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/s10626-006-0008-6
https://doi.org/10.1007/s10626-012-0130-6
https://doi.org/10.1007/s10626-012-0130-6
https://doi.org/10.1109/TSC.2010.57
https://doi.org/10.1109/3477.875441

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:27

[32] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL, pages
273–284. ACM, 2008. doi:10.1145/1328438.1328472.

[33] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. - M. Deniélou, D. Mostrous,
L. Padovani, A. Ravara, E. Tuosto, H. Torres Vieira, and G. Zavattaro. Foundations of Session Types
and Behavioural Contracts. ACM Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

[34] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto. Web Services Choreogra-
phy Description Language v1.0. https://www.w3.org/TR/ws-cdl-10/, 2005.

[35] J. Křetínský. 30 Years of Modal Transition Systems: Survey of Extensions and Analysis. In Models,
Algorithms, Logics and Tools, volume 10460 of LNCS, pages 36–74. Springer, 2017. doi:10.1007/
978-3-319-63121-9_3.

[36] C. Laneve and L. Padovani. An algebraic theory for web service contracts. Form. Asp. Comp., 27(4):613–
640, 2015. doi:10.1007/s00165-015-0334-2.

[37] J. Lange, E. Tuosto, and N. Yoshida. From Communicating Machines to Graphical Choreographies. In
POPL, pages 221–232. ACM, 2015. doi:10.1145/2676726.2676964.

[38] K. G. Larsen, U. Nyman, and A. Wąsowski. Modal I/O Automata for Interface and Product Line Theories.
In ESOP, volume 4421 of LNCS, pages 64–79. Springer, 2007. doi:10.1007/978-3-540-71316-6_6.

[39] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI Q., 2:219–246, 1989. URL:
https://ir.cwi.nl/pub/18164/18164A.pdf.

[40] J. Michaux, E. Najm, and A. Fantechi. Session types for safe Web service orchestration. J. Log. Algebr.
Program., 82(8):282–310, 2013. doi:10.1016/j.jlap.2013.05.004.

[41] C. Peltz. Web Services Orchestration and Choreography. IEEE Comp., 36(10):46–52, 2003. doi:10.
1109/MC.2003.1236471.

[42] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005. doi:10.1007/3-540-28901-1.

[43] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes. SIAM J.
Control Optim., 25(1):206–230, 1987. doi:10.1137/0325013.

[44] M. H. ter Beek, A. Bucchiarone, and S. Gnesi. Web Service Composition Approaches: From Industrial
Standards to Formal Methods. In ICIW. IEEE, 2007. doi:10.1109/ICIW.2007.71.

[45] M. H. ter Beek, J. Carmona, R. Hennicker, and J. Kleijn. Communication Requirements for Team
Automata. In COORDINATION, volume 10319 of LNCS, pages 256–277. Springer, 2017. doi:10.1007/
978-3-319-59746-1_14.

[46] M. H. ter Beek, E. P. de Vink, and T. A. C. Willemse. Family-Based Model Checking with mCRL2. In
FASE, volume 10202 of LNCS, pages 387–405. Springer, 2017. doi:10.1007/978-3-662-54494-5_23.

[47] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. Modelling and analysing variability in product
families: Model checking of modal transition systems with variability constraints. J. Log. Algebr. Meth.
Program., 85(2):287–315, 2016. doi:10.1016/j.jlamp.2015.11.006.

[48] M. H. ter Beek, M. A. Reniers, and E. P. de Vink. Supervisory Controller Synthesis for Product
Lines Using CIF 3. In ISoLA, volume 9952 of LNCS, pages 856–873. Springer, 2016. doi:10.1007/
978-3-319-47166-2_59.

[49] R. J. M. Theunissen, D. A. van Beek, and J. E. Rooda. Improving evolvability of a patient communication
control system using state-based supervisory control synthesis. Adv. Eng. Inform., 26(3):502–515, 2012.
doi:10.1016/j.aei.2012.02.009.

[50] D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. M. van de Mortel-Fronczak,
and M. A. Reniers. CIF 3: Model-Based Engineering of Supervisory Controllers. In TACAS, volume
8413 of LNCS, pages 575–580. Springer, 2014. doi:10.1007/978-3-642-54862-8_48.

[51] Q. Yi, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying and managing Web services: issues, solutions,
and directions. VLDB J., 17(3):735–572, 2008. doi:10.1007/s00778-006-0020-3.

Appendix A. Proofs

We provide the proofs of Theorem 5.4 and Theorem 5.5 only sketched in Section 5.

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
https://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/s00165-015-0334-2
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-540-71316-6_6
https://ir.cwi.nl/pub/18164/18164A.pdf
https://doi.org/10.1016/j.jlap.2013.05.004
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1137/0325013
https://doi.org/10.1109/ICIW.2007.71
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1016/j.aei.2012.02.009
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/s00778-006-0020-3

9:28 D. Basile, M.H. ter Beek, and R. Pugliese Vol. 16:2

Theorem 5.4 (Abstract orchestration synthesis). The orchestration synthesis function of
Definition 3.2 coincides with the instantiation of the abstract synthesis function of Defini-
tion 5.1 where, for a generic transition t = (~q,~a, ~q ′), predicates φp and φf are defined as
follows:

φorc
p (t,K, R) = (t is a request) ∨ (~q ′ ∈ R)
φorc
f (t,K, R) = @ (~q2

~a2−→ ~q2
′) ∈ T2

K : (~a2 is a match) ∧ (~q2, ~q2
′ 6∈ Dangling(K))

∧ (~q(i) = ~q2(i)) ∧ (~a(i) = ~a2(i) = a)

Proof. The proof is analogous to that of Theorem 5.3 but relying on Theorem 3.2 instead of
Theorem 2.4. The full proof follows.

Let Korc
A and Kabs

A be the controllers computed through Theorems 3.2 and 5.2, respectively.
The proof proceeds by induction on the fixed point iterations and by case analysis.

For the base case, by definition Korc
0 = Kabs

0 = A and Rabs
0 = Rorc

0 = Dangling(K0).
For the inductive case, let i be a fixed point iteration. Assuming Korc

i−1 = Kabs
i−1 and

Rorc
i−1 = Rabs

i−1, we prove Korc
i = Kabs

i and Rorc
i = Rabs

i .
The equivalence Korc

i = Kabs
i follows because at the ith iteration φorc

p detects exactly the
same transitions that are pruned by the orchestration synthesis algorithm.

For the equivalence Rorc
i = Rabs

i , we have Rorc
i = Rorc

i−1 ∪ { ~q | (~q −→) ∈ T2
A is un-

controllable in Korc
i } ∪ Dangling(Korc

i), and Rabs
i = Rabs

i−1 ∪ Dangling(Kabs
i) ∪ { ~q | (~q a−→) =

t ∈ T2
A , φ

orc
f (t,Kabs

i−1, R
abs
i−1) = true}.

Since Korc
i = Kabs

i , also the dangling states are equivalent. It remains to prove that { ~q |
(~q −→) ∈ T2

A is uncontrollable in Korc
i } = { ~q | (~q −→) = t ∈ T2

A , φ
orc
f (t,Kabs

i−1, R
abs
i−1) = true}.

This equivalence is straightforward by the definition of φorc
f , Definition 3.1, and the inductive

hypothesis.

Theorem 5.5 (Abstract choreography synthesis). The choreography synthesis function of
Definition 4.4 coincides with the instantiation of the abstract synthesis function of Defini-
tion 5.1, where given a generic transition t = (~q,~a, ~q ′), the predicates φp and φf are defined
as follows, where T̂K,R is defined in Definition 4.4:

φcor
p (t,K, R) = (t is a request or offer) ∨ (~q ′ ∈ R) ∨ t ∈ T̂K,R
φcor
f (t,K, R) = @ (~q ~a2−→ ~q2

′) ∈ T2
K : (~a2 is a match) ∧ (~q, ~q2

′ 6∈ Dangling(K))
∧ (~a(i) = ~a2(i) = a)

Proof. The proof is analogous to that of Theorem 5.3 but relying on Theorem 4.4 instead of
Theorem 2.4. The full proof follows.

Let Kcor
A and Kabs

A be the controllers computed through Theorems 4.4 and 5.2, respectively.
The proof proceeds by induction on the fixed point iterations and by case analysis.

For the base case, by definition Kcor
0 = Kabs

0 = A and Rabs
0 = Rcor

0 = Dangling(K0).
For the inductive case, let i be a fixed point iteration. Assuming Kcor

i−1 = Kabs
i−1 and

Rcor
i−1 = Rabs

i−1, we prove Kcor
i = Kabs

i and Rcor
i = Rabs

i .
The equivalence Kcor

i = Kabs
i follows because at the ith iteration φcor

p detects exactly the
same transitions that are pruned by the choreography synthesis algorithm (and takes the
same non-deterministic choices).

Vol. 16:2 SYNTHESIS OF ORCHESTRATIONS AND CHOREOGRAPHIES 9:29

For the equivalence Rcor
i = Rabs

i , we have Rcor
i = Rcor

i−1 ∪ { ~q | (~q −→) ∈ T2
A is un-

controllable in Kcor
i } ∪ Dangling(Kcor

i), and Rabs
i = Rabs

i−1 ∪ Dangling(Kabs
i) ∪ { ~q | (~q a−→) =

t ∈ T2
A , φ

cor
f (t,Kabs

i−1, R
abs
i−1) = true}.

Since Kcor
i = Kabs

i , also the dangling states are equivalent. It remains to prove that { ~q |
(~q −→) ∈ T2

A is uncontrollable in Kcor
i } = { ~q | (~q −→) = t ∈ T2

A , φ
cor
f (t,Kabs

i−1, R
abs
i−1) = true}.

This equivalence is straightforward by the definition of φcor
f , Definition 4.3, and the inductive

hypothesis.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Background
	2.1. Contract Automata
	2.2. Supervisory Control Theory

	3. Synthesis of Orchestrations
	3.1. On encoding semi-controllability.

	4. Synthesis of Choreographies
	5. Abstract Synthesis
	6. A Partial Order on Controllers
	7. Related Work
	8. Conclusion
	Acknowledgments
	References
	Appendix A. Proofs

