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Resin Transfer Molding (RTM), which has attracted

much attention in the last years for lightweight manufactur-

ing, represents an important challenge in terms of control

technology. During the process, a resin fills the cavity where

a reinforcement fabric has previously been layered. This

resin undergoes a chemical reaction which is thermically ac-

tivated. Therefore, assuring a proper reaction requires a pre-

cise control of temperature in the entire mold cavity. Three

factors make this control problem especially hard: the cou-

pling among the large number of actuators and sensors, the

variability of the test conditions and the power limitations

of the electric actuators which do not offer cooling capabil-

ity. The present work describes an optimized Model Predic-

tive Control (MPC) architecture capable of handling these

difficulties and also achieving the tight control requirements

needed in the application. The thermal distribution inside

the mold cavity is included into the controller by a simpli-

fied Reduced Order Model (ROM). This representation is ob-

tained by data from an experimentally validated Finite El-

ement Model (FEM), using AutoRegressive model with eX-

ogenous terms (ARX) identification. In order to maintain

the simplicity of this linear representation, the time-varying

model parameters are estimated by using a perturbation ob-

server. Additionally, the performance of the basic algorithm

is improved: firstly, an augmented observer to estimate the

temperature distribution of an extended spatial resolution;

and secondly, a symmetry condition in the calculation of the

control commands. The developed architectures have suc-

cessfully been implemented in a RTM tool with the fulfillment

of the control requirements.

1 Introduction

The production of lightweight parts for the automotive

industry has continuously been gaining importance in recent

years for fulfilling the more and more restrictive require-

ments of low fuel consumption and improved range in ICE

and electric vehicles. In this connection, technologies like

injection and compression molding, which allow a high vol-

ume production of parts, are extensively used in the indus-

try. Specifically, Resin Transfer Molding (RTM) offers better

structural capabilities compared to the former ones by virtue

of the better control of the fiber alignment and the use of long

fibers [1]. One important factor in the RTM process is the

temperature control during the process as it directly affects

the resin viscosity and highly influences the impregnation

and the pressure injection. A poor control causes defects like

fiber wash-out, preform misalignment and race-tracking [2].

The present paper describes the development of a tem-

perature controller for a RTM tool heated by distributed car-

tridge resistances. In this case, the mold will be used for

research activities on the filling and curing processes. In con-

sequence, the normally strict temperature control required in

RTM tools is even more important in the case under analysis.

Specifically, two conditions have to be fulfilled: firstly, the

spatial homogeneity of the temperature inside the mold cav-

ity all along the process; and secondly, the accurate tracking

of the temperature levels during the rise-up and maintenance

phases of the tests. To do that, the controller has to handle

in an efficient manner the difficulties derived from the ther-

mal distribution in the cavity, the presence of time-varying

variables and internal perturbations (temperature dependent

convection cooling, the exothermic nature of the curing heat)

and the limited capabilities of the heaters.

Different types of molds are already widespread in the

industry and it is therefore possible to find commercial so-
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lutions for thermal control like [3]. These alternatives are

general developments and normally rely on standard PID

compensators [4]. Given its technical importance, more ad-

vanced solutions can also be found in the scientific bibliog-

raphy. These approaches add the knowledge of the system

in the controller itself for improving its performance. This

is the case of [5] and [6], which use fuzzy controls in plas-

tic injection molds, and [7], which applies neural networks

(NN). In [8], a decentralized PI-controller is combined with

a feedforward term calculated with a linearized model in a

vulcanization test bench. In the present work, MPC is used.

This type of controller includes a validated representation of

the system for optimizing the control commands also tak-

ing into account the characteristics of the actuators. The use

of MPC for controlling the temperature of different types of

molds has already been reported in the literature. [9] and [10]

used this technology in plastic injection applications. In the

first case, MPC and IMC are compared for controlling the

barrel of a plastic injection machine. To do that, a simplified

mold representation based on different transfer functions de-

pending on the operation point are used. In the second case,

three simple linear models describe the system dynamics us-

ing data directly extracted from a running machine. The

controller proposed in the present paper uses a different ap-

proach partly due to the different process technology (RTM).

As it has to assure the temperature homogeneity inside the

cavity, a discretized model in different geometrical regions

is used. This model also considers the couplings between

the sensors and the actuators. Apart from that, the model

faces the nonlinearities in the system by using a perturbation

observer therefore simplifying the reference model, which

remains linear and independent from the operation point.

The present paper extends the results from [11] where

the basic MPC controller was described and includes the

improvements obtained by adding an observer for increas-

ing the resolution of the temperature estimation in the cavity

and including the symmetry effects in the optimization pro-

cess. In overall, the proposed controller is capable of dealing

with complex and realistic industrial geometries by combin-

ing ARX models with validated FE simulations. The con-

trollers described in the present paper have been successfully

implemented on a real mold.

This paper is structured as follows: system description

(section 2), thermal model of the mold and its reduced or-

der representation (section 3), design of the control architec-

tures (section 4), experimental analysis (section 5) and con-

clusions (section 6).

2 System description

In this section, the main features of the RTM tool and its

control hardware are briefly described (Fig. 1).

The RTM tool consists on two steel blocks separated by

a spacer which defines the height of the cavity where the

reinforcement fabrics are placed and the resin is injected.

The cavity is designed to produce composite material panels

of 400x300mm with a thickness that can be adjusted using

spacers of different height (commonly 2, 3 or 5 mm).

Fig. 1. RTM tool and control hardware and software

For heating the tool, the system has 16 internal cartridge

resistances (8 in the upper and 8 in the lower part) and 4

lateral heating belts (one per lateral face) as it appears in Fig.

2. The maximum power that the actuators can supply is 500

W for the cartridge resistances (from U1 to U16), 750 W for

the 2 large heater belts (U17−U18) and 550 W for the 2

short heater belts (U19−U20). The power of the 20 heaters

can be independently commanded by PWM signals.

Fig. 2. RTM tool sketch. Position and numeration of the heaters.

6 permanent thermocouples (also called control sensors

in this paper) are embedded in the mold cavity (4 in the upper

and 2 in the lower cavity) in order to measure the tempera-

ture, which is afterwards used by the controller for calculat-

ing the required actuation in the heaters. The homogeneity

of the temperature distribution in the cavity, and therefore

the control performance, is evaluated with 8 additional (also

called auxiliary) thermocouples. Figure 3 shows the position

of the permanent and auxiliary thermocouples on the cavity

surfaces.

In addition, the heat losses are reduced by insulation

panels. They have a thickness of 6 mm in the upper and

lower faces and 7 mm in the lateral ones.

The MPC controller is implemented in LabVIEW

using control algorithms previously developed in MAT-

LAB/Simulink.

The configuration of resistances, sensors and insulation

has been selected based on prior thermal analysis combining

simulation and experimental validations.



Fig. 3. Sketch for the position of the permanent (black dots) and

auxiliary (red dots) thermocouples on the surfaces of the upper cavity

(left) and lower cavity (right). Dashed line represents the composite

material panel.

3 System modeling

The detailed FE model of the thermal system is de-

scribed in section 3.1 and its reduced order representation

appears in section 3.2.

3.1 Continuous model

The mathematical description of the mold is formulated

by applying the principle of energy conservation. The result-

ing model has the form of a PDE model and its numerical

solution is addressed by adopting a Finite Element Model

(FEM) discretization method.

The thermal model is discretized in 76952 nodes and

the considered heat transfer mechanisms are conduction and

convection. The later is represented by effective convection

coefficients in the external surfaces of the mold. Figure 4

shows the FE discretization of the geometry in a quarter of

the mold.

Fig. 4. FEM discretization of the geometry in a quarter of the mold.

The material of the steel mold is assumed to be homo-

geneous and isotropic. Its thermal properties are contained

in table 1.

Table 1. Thermal properties of steel

Property Value

Density, ρ(kg/m3) 7850

Specific heat, c (J/kgK) 520

Thermal conductivity, (W/mK) 33-35.5

In order to obtain the real values of the convection and

the insulation conduction coefficients, an extensive set of ex-

perimental tests and simulations has been carried out. This

identification and validation process considers the thermal

behavior of the empty mold in stationary state at different

temperature levels.

The fitted thermal conductivity coefficients for the insu-

lation panel 1 and 2 are, respectively, 0.53 W/mK and 0.26

W/mK.

The evolution of the convection coefficients of the upper

and lower faces has been fitted with Eq.(1). The coefficient

of the lateral faces has been adjusted with Eq.(2). The iden-

tified values of the coefficients (a, b and c) are shown in the

table 2. According to them, the range of values of the convec-

tion coefficients for the different surfaces are: 6-18 W/m2K

on the upper face, 1-8 W/m2K on the lower face and 2-12

W/m2K on the lateral faces. Out of the analyzed tempera-

ture range (below 25◦C and above 180◦C), the coefficients

are assumed to be constant.

h = a(∆T − b)c
(1)

h = a(b− e−c∆T) (2)

Table 2. Values of the convection coefficients in the mold surfaces

(h in W/m2K and ∆T in K).

a b c

Upper 4.120 23.567 0.317

Lower 0.942 22.937 0.533

Lateral 20.160 0.395 0.041

Additionally, the thermal model takes into account the

heat released by the exothermic curing process of the com-

posite material panel. The curing kinetic of the resin has

been modeled by means of the Kamal-Sourour equation.

The whole FEM model has been implemented in the

software Abaqus/Standard.



3.2 Reduced Order Model (ROM)

The previous FE representation is complex and compu-

tationally expensive to be run in real time as it is required by

the Model Predictive Controller. Therefore, a Reduced Order

Model based on ARX is built using the data obtained from

FE transient simulations. For these virtual tests, the tempera-

ture of the mold cavity measured by the 6 permanent sensors

(y, outputs) is registered when heating power is supplied by

the 20 actuators (u, inputs). Equation (3) shows the definition

of the ARX model.

yt+1 = ∑r−1
i=0 aiyt−i +∑s

i=0 biut−i (3)

Where a and b are the parameters of the model, and r

and s are the regression order for the outputs and inputs, re-

spectively.

A limitation of the ARX description is its linear nature,

which cannot handle the time-varying nature of the convec-

tion parameters. In consequence, an initial ROM is obtained

using FE results with constant convection coefficient: 15

W/m2K is selected as a mean reference value for natural

convection. Significant temperature differences are obtained

when this initial ROM is compared with the validated FE

model, which includes variable convection coefficients ac-

cording to Eq.(1) and Eq.(2). The identification errors may

reach up to 13% (Fig. 5). In order to predict and compensate

these deviations, a perturbation observer based on a Kalman

filter is implemented.

The ARX model in Eq.(3) can be written as the state

space representation in Eq.(4):

Xt+1 = AXt +BUt

Yt = CXt
(4)

Where,

Xt = [Yt ;Yt−1;Yt−2; ...;Ut−1;Ut−2;Ut−3; ...]

This model assumes constant convection coefficient (15

W/m2K). If convection coefficients are not constant, the ef-

fect can be described as perturbations in the Eq.(5).

Xt+1 = AXt +BUt +BpPt

Yt = CXt
(5)

Where Pt represents the convection heat differences be-

tween 15 W/m2K constant coefficient and variable coeffi-

cients according to Eq.(1) and Eq.(2). The state-space repre-

sentation is then updated by introducing the perturbations Pt

as additional state variables:

Xm,t = [Yt ;Yt−1;Yt−2; ...;Ut−1;Ut−2;Ut−3; ...;Pt ]

The final state-space representation is:

Xm,t+1 = AmXm,t +BmUt

Ym,t = CmXm,t
(6)

Where,

Am =

(

A Bp

0 1

)

Bm =

(

B

0

)

Cm =
(

C 0
)

The Kalman filter algorithm is applied to the Eq.(6)

state-space, described in Eq.(7-11).

1. Prediction:

X̃m,t = AmX̂m,t−1 +BmUt (7)

P̃k,t = AmPk,t−1At
m +Cq (8)

2. Update:

Kt = P̃k,tC
t
m(CmP̃k,tC

t
m +Cs)

−1 (9)

X̂m,t = X̃m,t +Kt(zt −CmX̃m,t) (10)

Pk,t = (I −KtCm)P̃k,t (11)

Where Cq y Cs are the uncertainties of the estimation model

and the sensors respectively; P is the covariance of the esti-

mated state; K is the gain of the Kalman filter; and z is the

temperature measurement of the sensors.



After compensating the perturbations, temperature er-

rors lower than 6% are achieved in the ROM validation. Fig-

ure 5 shows the improvement in the ROM validation once

perturbations are compensated.
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Fig. 5. ROM validation with respect to Finite Element Model, before

and after the implementation of Kalman filter perturbation estimator

4 Control architectures

In this section, three different architectures are described

for the temperature control of the RTM tool:

1. Standard MPC controller in section 4.1.

2. Extended domain MPC controller: an augmented ob-

server has been implemented for estimating the temper-

ature of additional points of the mold cavity, in section

4.2.

3. Symmetric actuation MPC controller: in addition to the

previous approaches, symmetry condition in the power

commands is included, in section 4.3.

4.1 Standard MPC controller

A MPC controller is designed for commanding the op-

timal power to the heaters in order to minimize the temper-

ature differences into the mold cavity. To do that, the ROM

and the perturbation observer are used. The input signal of

the MPC controller is the state estimation of the system af-

ter compensating the perturbations Pt by the Kalman filter

estimator described in the previous section. The control ar-

chitecture is shown in Fig. 6.

Fig. 6. Control architecture: MPC controller and perturbation esti-

mator.

The MPC controller includes two algorithms: firstly, the

estimation of the system evolution predicted by the ROM up

to a time horizon defined by Np; and secondly, the calculation

of the heating powers by the Hildreth optimization algorithm.

The state-space representation shown in Eq.(5) has been

adapted for its implementation: the inputs are power incre-

ments (∆Ut =Ut −Ut−1) and the outputs are integrated inside

the state vector itself, according to the Eq.(12).

Xe,t = [∆Xm,t ;Ym,t ] (12)

Where ∆Xm,t = Xm,t −Xm,t−1

Then an extended state-space representation is obtained:

Xe,t+1 = AeXe,t +Be∆Ut

Ye,t = CeXe,t
(13)

Where,

Ae =

(

Am 0

CmAm 1

)

Be =

(

Bm

CmBm

)

Ce =
(

0 1
)

For the construction of the MPC state-space, the evolu-

tion of the following states until the temporal horizon Np is

considered according to the Eq.(14).

Y = FX +G∆U (14)

Where,

X = Xe,t

Y = [Ye,t+1;Ye,t+2;Ye,t+3; ...;Ye,t+Np ]

∆U = [∆Ut ;∆Ut+1;∆Ut+2; ...;∆Ut+Np−1]
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
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
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CeA2
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...

CeA
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













G =














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









The optimization function J depends on two terms ac-

cording to Eq.(15): quadratic error between the reference

and the measured temperature at the control sensors, and

quadratic term for the power consumption, weighted by Q

and R matrices respectively.

J = (Re f −Y)T Q(Re f −Y)+∆UT R∆U (15)

Where Re f is the vector of reference temperatures until

temporal horizon Np.

The Hildreth method is an analytical approach for solv-

ing the constrained quadratic optimization problem, based on

the resolution of Eq.(16):

∂J
∂∆U

= 0 (16)

Taking Eq.(16), and adapting Eq.(14) and Eq.(15), the

value of the optimal power increments can be obtained by

means of Eq.(17).

∆U = (GT G+R)−1GT (Re f −FX) (17)

During the optimization, the control commands cannot

exceed the maximum values admitted by the resistances and

must be higher than zero. In case that the optimization vari-

ables do not fulfill the constraints, the algorithm recalculates

the commands by the iterative procedure described in [12].

4.2 Extended domain MPC controller

The MPC controller described in the previous section

only considers the temperature of the control sensors. How-

ever, no information is known from the rest of the mold

cavity. In order to improve the temperature homogeneity

in the whole domain, an augmented Kalman filter estima-

tor is added to the algorithm for estimating the temperature

of some cavity points. It includes 8 more points, which will

be called virtual nodes hereinafter. The locations of these

points correspond with the ones measured by the auxiliary

thermocouples (Fig. 3).

In this way, the MPC controller calculates the optimal

heating powers based, not only on the temperature of the 6

control sensors, but also on the temperature estimation of

these 8 virtual nodes (T̂nodes). The optimization function J

is augmented according to Eq.(18).

J = (Re f −Y )T Q(Re f −Y)+ ...
+(Re f − T̂nodes)

T Q(Re f − T̂nodes)+∆UT R∆U
(18)

4.3 Symmetric actuation MPC controller

Despite the extended temperature domain approach de-

scribed in the previous section, the temperature differences

of some cavity areas could be still minimized. In the present

section, the symmetry of the mold is used for obtaining a

higher homogeneity in areas where the control sensors are

not present. To do that, the commanded heating power of

the resistances at symmetrical positions with respect to the

central line of the mold are forced to be the same. The con-

ditions are applied to the power demands as constraints in

the optimization method. According to the numeration fol-

lowed in Fig. 2, the expressions described in Eq.(19) are

implemented.

U1 =U8 U2 =U7 U3 =U6 U4 =U5

U9 =U16 U10 =U15 U11 =U14 U12 =U13

U17 =U18 U19 =U20

(19)

5 Experimental analysis

The previous MPC controllers have been implemented

on a real mold and the obtained results are described in this

section. In order to compare the performance, two different

conditions are used:

1. Temperature control of an empty mold (section 5.1).

2. Temperature control in molding conditions (section 5.2).

For this analysis, the controller updates the power com-

mands each 200s and Np is fixed to 6. This means that the

estimation horizon for the MPC is 1200s. Regarding the op-

timization function, the weight of matrix R is two orders

of magnitude lower than the weight of matrix Q (Q = 1,

R = 0.01) as temperature homogeneity is the critical indi-

cator for this application.

The obtained results from the experimental analysis are

compared in section 5.3.

5.1 Experimental analysis in empty mold

The three developed MPC controllers are compared

when controlling the temperature of the mold cavity in empty

conditions. The test sequence is the following one: firsty, the

mold is heated from room temperature (23◦C) up to 120◦C



at 2◦C/min rate; at 120◦, the temperature remains constant

until t=10000s; then the mold is heated again up to 180◦C at

2◦C/min rate; at 180 ◦C, temperature remains constant until

t=20000s.

5.1.1 Standard MPC controller

Figure 7 shows the temperature evolution measured by

the 6 control sensors when the heating powers calculated by

the standard MPC controller are commanded. In Fig. 8 and

Fig. 9, the temperatures measured by the control sensors

and by the auxiliary thermocouples at 180◦C reference are

displayed respectively.
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Fig. 7. Temperature tracking by the control sensors (upper) and

power commands (below) for standard MPC controller.
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Fig. 8. Temperatures measured by the control sensors at 180◦C

reference (standard MPC controller).

5.1.2 Extended Domain MPC controller

Figure 10 shows the temperature evolution measured by

the 6 control sensors when the heating powers calculated by

the extended domain MPC controller are commanded. In
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Fig. 9. Temperatures measured by the auxiliary thermocouples at

180◦C reference (standard MPC controller).

the Fig. 11 and Fig. 12, the temperatures measured by the

control sensors and by the auxiliary thermocouples at 180◦C

reference are displayed respectively.
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Fig. 10. Temperature tracking by the control sensors (upper) and

power commands (below) for extended domain MPC controller.
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Fig. 11. Temperatures measured by the control sensors at 180◦C

reference (Extended domain MPC controller).
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Fig. 12. Temperatures measured by the auxiliary thermocouples at

180◦C reference (Extended domain MPC controller).

5.1.3 Symmetric actuation MPC Controller

Figure 13 shows the temperature evolution measured by

the 6 control sensors when the heating powers calculated by

the symmetric actuation MPC controller are commanded. In

Fig. 14 and Fig. 15, the temperatures measured by the con-

trol sensors and by the auxiliary thermocouples at 180◦C ref-

erence are displayed respectively.
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Fig. 13. Temperature tracking by the control sensors (upper) and

power commands (below) for symmetric actuation MPC controller
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Fig. 14. Temperatures measured by the control sensors at 180◦C

reference (Symmetric actuation MPC controller).
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Fig. 15. Temperatures measured by the auxiliary thermocouples at

180◦C reference (Symmetric actuation MPC controller).

5.2 Experimental analysis in molding conditions

The molding of a composite material panel has been

carried out by applying the symmetric actuation MPC con-

troller, which is the best approach for minimizing tempera-

ture differences in the entire mold cavity. Due to the curing

process, an internal heat source from the chemical reactions

affects to the temperature controller as a perturbation.

The evolution of the reference temperature for this test

is the following one: firstly, the mold is heated from room

temperature (23◦C) up to the injection temperature (120◦C)

at 2◦C/min rate; once the technician detects a stable station-

ary level, the resin is injected; the mold is heated up to curing

temperature (185◦C) at 2◦C/min rate; finally the curing of the

resin is ensured maintaining at 185◦C during two hours.

Figure 16 shows the temperature evolution measured by

the 6 control sensors. Figure 17 shows the temperatures at

185◦C reference. In this case, it is not possible to measure

the temperature of other cavity points by the auxiliary ther-

mocouples because of the resin injection. Figure 18 shows

the formed composite material panel, where no defects or

visible variations in superficial appearance are detected.

5.3 Comparative of results and discussion

The objective of the controller is the tracking of a refer-

ence temperature homogeneously in the entire mold cavity.

In order to analyze and compare the experimental results, the

temperature domain homogeneity and the tracking error are

treated as independent indicators. Additionally, these indi-

cators are obtained for the transient state (during the curing

process) and for the stationary state (2 hours after the curing

temperature is demanded, t f ).

1. Stationary indicator of temperature homogeneity

(RMSEavg,stat): Root mean squared error of temperature

by permanent and auxiliary thermocouples (Ti) with

respect to their average value (Tavg) at t f , obtained by

Eq.(20).

RMSEavg,stat =
√

1
n ∑n

i=1(Ti,t f
−Tavg,t f

)2 (20)

2. Stationary indicator of the reference temperature track-

ing (RMSEre f ,stat): Root mean squared error of tempera-
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Fig. 16. Temperature tracking by the control sensors (upper) and

power commands (below) for composite material panel forming.
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Fig. 17. Temperatures measured by the control sensors at 185◦C

reference (composite material panel forming).

Fig. 18. Composite material panel formed by applying MPC con-

troller.

ture by permanent and auxiliary thermocouples (Ti) with

respect to reference temperature value (Tre f ) at t f , ob-

tained by Eq.(21).

RMSEre f ,stat =
√

1
n ∑n

i=1(Ti,t f
−Tre f ,t f

)2 (21)

3. Global indicator of temperature homogeneity

(RMSEavg,global): Root mean squared error of tem-

perature by permanent and auxiliary thermocouples

(Ti) with respect to their mean value (Tavg) from the

beginning of the heating process up to the curing

temperature (ti=10000s) to t f , obtained by Eq.(22).

RMSEavg,global =
√

1
n(t f −ti)

∑
t f

t=ti ∑n
i=1(Ti,t −Tavg,t)2

(22)

4. Global indicator of the reference temperature tracking

(RMSEre f ,global): Root mean squared error of tempera-

ture by permanent and auxiliary thermocouples with re-

spect to reference temperature value (Tre f ) from the be-

ginning of the heating process up to curing temperature

(ti=10000s) to t f , obtained by Eq.(23).

RMSEre f ,global =
√

1
n(t f −ti)

∑
t f

t=ti ∑n
i=1(Ti,t −Tre f ,t)2

(23)

The values of the indicators for the applied control al-

gorithms are summarized in the table 3 and some points are

highlighted.

Table 3. Indicators for the analyzed control algorithms

RMSEavg,stat RMSEre f ,stat RMSEavg,global RMSEre f ,global

Empty mold

Standard MPC Controller 2.09 2.44 2.27 4.73

Extended domain MPC controller 2.00 2.43 2.08 3.81

Symmetric actuation MPC Controller 0.69 0.76 1.48 2.95

Molding of a composite material panel

Symmetric actuation MPC Controller 0.27 0.35 1.17 3.34

From the comparison of the three MPC controllers for

the empty mold cavity, it is concluded that successive im-

provements in the standard algorithm make that the track-

ing of the reference temperature is more accurate. Using

the ROM for estimating the temperature of virtual nodes has

the effect of reducing the RMSE from 4.73 ◦C to 3.81 ◦C

during the curing process, and from 2.44 ◦C to 2.43 ◦C for

the stationary state. Additionally, if symmetry is applied in

the power commands of the heaters, the RMSE is reduced

to 2.95 ◦C during the curing process and to 0.76 ◦C for the

stationary state.

The improved algorithms also minimize temperature

differences in the entire cavity: the RMSE during the curing

process is reduced from 2.27 ◦C to 2.08 ◦C for the extended

domain approach and to 1.48 ◦C when symmetry is also con-

sidered. This reduction is found in the stationary state too:

the RMSE decreases from 2.09 ◦C to 2.00 ◦C and to 0.69 ◦C

respectively.

For this mold geometry, applying symmetric power

commmands achieves higher temperature homogeneity in

the mold cavity than extending the domain by estimating the

temperature of virtual nodes.



For the molding of a composite material panel, the last

MPC controller approach is analyzed only considering the

RMSE in the control sensors as auxiliary thermocouples can

not be disposed. The tracking error is 3.34 ◦C during the cur-

ing process and 0.35 ◦C for the stationary state; and deviation

in temperature homogeneity is 1.17 ◦C during the curing pro-

cess and 0.27 ◦C for the stationary state. These results fulfill

the maximum allowed deviations for RTM processses, which

normally range between 2 and 3C.

6 Conclusions

The present paper describes three possible approaches

for controlling the temperature in a RTM tool by using MPC

controllers. The results show how the use of ROM with a

perturbation observer permits reducing the complexity of the

model. In combination with that, the inclusion of state ob-

servers and symmetrical conditions contributes to improve

the homogeneous temperature distribution inside the mold

cavity. All the developed algorithms have been experimen-

tally analyzed.

As a summary of the obtained results in empty condi-

tions, the standard MPC controller shows a maximum error

between the reference and the measured temperature of 2.27
◦C. Improving this algorithm by means of the temperature

estimation of 8 virtual nodes and applying symmetry condi-

tions to the power demands reduces the deviations to 1.48
◦C. For this improved approach, 0.69 ◦C RMSE value is ob-

tained once the stationary state is reached.

This controller has also been analyzed during molding

conditions. Tight tracking and temperature homogeneity into

the mold have been achieved, resulting in the forming of a

panel without visible discontinuities or defects.

In order to improve these results, the redefinition of the

number and optimal distribution of sensors and actuators

could be addressed in future developments. Adaptive model

parameters and failure diagnosis based on detailed models

could also be explored as more complex control approaches.

In addition, the described methodology in this paper could

be applied to other processes, for instance, fluid heating or

hybrid systems.
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