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Abstract— Mathematical modeling and real-time dynamics
identification of the mean arterial blood pressure (MAP)
response of a patient to vasoactive drug infusion can provide
a reliable tool for automated drug administration and there-
fore, reduce the emergency costs and significantly benefit the
patient’s MAP regulation in an intensive care unit. To this
end, a dynamic first-order linear parameter-varying (LPV)
model with varying parameters and varying input delay is
considered to capture the MAP response dynamics. Such
a model effectively addresses the complexity and the intra-
and inter-patient variability of the physiological response. We
discretize the model and augment the state vector with model
parameters as unknown states of the system and a Bayesian-
based multiple-model square root cubature Kalman filtering
(MMSRCKF) approach is utilized to estimate the model time-
varying parameters. Since, unlike the other model parameters,
the input delay cannot be captured by a random-walk process, a
multiple-model module with a posterior probability estimation
is implemented to provide the delay identification. Validation
results confirm the effectiveness of the proposed identification
algorithm both in simulation scenarios and also using animal
experiment data.

I. INTRODUCTION

Fast-acting vasoactive medications are often used as a
potentially vital medical intervention to address the patients’
hemodynamics instability and regulate the blood pressure to
a desired target value in numerous clinical and emergency
resuscitation procedures. The vasoactive drugs are divided
into two main categories: (1) vasodilator drugs that are
being administered to treat individuals with hypertension.
This type of drug widens blood vessels, and thereby, can
rapidly lower the blood pressure. One of the most effective
vasodilator drugs is sodium nitroprusside (SNP) which has
been used to treat elevated blood pressure in various clinical
scenarios such as post-surgical care, childbirth, and treating
the typical high blood pressure disorders [1], [2]. (2) Vaso-
pressor drugs such as phenylephrine (PHP), vasopressin, and
norepinephrine increase the blood pressure by stimulating
the depressed cardiovascular system causing vasoconstric-
tion. These medicines are being used to treat patients with
hypotensive symptoms in different medical scenarios such as
hemorrhage, traumatic brain injury, and septic shock [3].

Recently, the automated closed-loop administration of va-
soactive drugs for the mean arterial pressure (MAP) control
and regulation purposes, has gained significant attention
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in clinical care [2], [4]. The automated dosage adminis-
tration procedure utilizes the wealth of feedback control
and surpasses the manual drug infusion with a syringe, in
terms of accuracy, timeliness, cost efficiency, and reliability.
Nevertheless, in order to have an accurate automated drug
administration and to be able to implement robust model-
based control strategies, an explicit dynamical model that
accurately describes MAP response behavior to the drug
infusion is needed. However, based on experiments, there are
significant variations in the patient’s physiological response
to the drug infusion [5]. This pharmacological variation of
the patient’s MAP response to the drug causes the model
parameters to vary over time for an individual, as well
as, from patient-to-patient. Consequently, due to such intra-
and inter-patient physiological variations, a mathematical
model with fixed parameters cannot be adequate to capture
the patient’s complex MAP dynamics. Moreover, although
a robust controller design can guarantee the stability and
target MAP tracking of the patient’s varying closed-loop
system, other properties such as the settling time, rising
time, damping characteristics, and disturbance rejection can
significantly degrade when the patients parameters are off
the control parameters. In this regard, a real-time MAP
response modeling and efficient parameter estimation scheme
is essential.

There are multiple approaches for the estimation of dy-
namical system parameters. In the first approach, a lin-
earization of the dynamical system is used to perform the
parameter estimation. Extended Kalman filtering (EKF) is
one of the widely used methods. However, it is only ap-
plicable to systems with mild nonlinearities, and it requires
the Jacobian matrix computation. Moreover, numerical errors
due to truncation and convergence problems are likely in
EKF and other local approximation based estimators [6].
In the other approach, known as the sampling method, the
nonlinear representation of a system is used to estimate the
parameters via a filter such as the unscented Kalman filter
(UKF) which leads to more accurate estimation. In UKF, a
set of weighted sampling points propagates via the nonlinear
function of the system. However, for higher-order systems,
UKF is prone to numerical instability since the weights of
the sigma points may become negative [7]. Another sampling
method is particle filtering (PF) which is an iterative Monte
Carlo based method to compute the posterior probability
distribution of the state of a nonlinear system even with non-
Gaussian noise. PF requires a large set of randomly generated
particles to approximate the posterior probability density
function. Under an increase in the number of iterations,
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PF encounters particle degradation and depletion. In order
to overcome such issues, the authors in [6] have proposed
a Bayesian filtering framework known as cubature Kalman
filtering (CKF). The sample points in the CKF algorithm
propagate via equally valued cubature points which are twice
the size of the system nonlinear function. It uses a spherical-
radial cubature rule to generate the weighted sum of sampling
points to approximate the integrals in Bayesian estimation.
CKF demonstrates better nonlinear performance, stability,
and accuracy compared to EKF, PF, and UKF [7].

In [8], the authors have used a first-order model with
delayed measurements to describe the MAP dynamics in
response to hypotensive drugs. They have pre-identified the
parameters using dose-response characteristics induced by
a rectangular test signal while trying to avoid any adverse
effect on the patient. If the identified parameters are not
within the prescribed bounds, then the experiment will be
repeated. Nonetheless, in the case of outlying identification
results, the worst-case parameters are used. The output is
filtered by a constant filter which has been derived using trial
and error. The delay is determined via the response settling
characteristics. In another work, a generalized fuzzy neural
network framework has been studied for the estimation and
control of MAP dynamics in response to vasodilator drugs
[9]. The parameters have been assumed to be nonlinear
functions of the measured MAP. This method requires a
training dataset and an effective learning algorithm for the ar-
tificial scheme. Moreover, overparameterization and a proper
number of perceptrons remain as other obstacles. Based on
the time delay model introduced in [10], the authors in
[11] have proposed discrete-time parameters update laws.
However, the procedure of the parameters identification of
the original model has not been addressed. A bank of Kalman
filters (KFs) augmented with a posterior probability estimator
to match a candidate model to that of the patient has been
designed in [12]. Each KF is responsible for generating the
state vector updates for the next step, and the Kalman gain
is assumed to be generated a priori. Then, by calculating
the residual of the actual and generated output, the state
vector is updated accordingly. In order to capture the varying
time delay, which a conventional KF is not capable of, the
multiple-model (MM) approach has been adopted through
which five equally spaced delay blocks from 10s to 50s, each
is considered to be cascaded with the same bank of KFs.
The recursive posterior probability estimation is calculated
for each residual to update the input with the most likely
delay. In a similar approach, [2] has examined KF for the
estimation of the MAP dynamics parameters in hypertension.
In this work, authors have utilized the model introduced first
in [10]. They have discretized and transformed the infinite-
dimensional model into a linear one that accommodates an
input with three backward steps. Then, the parameters are
gathered in a vector that is updated through the KF approach.
The control parameters are updated using heuristic methods,
a condition on the updated sensitivity along with curve
fitting through polynomial regression. However, it should be
noted that the conventional KF algorithm’s convergence can

only be guaranteed in an ideal linear-Gaussian environment.
Reference [13] has addressed the marginalized PF design
in order to estimate the model parameters in the case of
hypertension under SNP administration. The method allows
considering linear and nonlinear states to be estimated sep-
arately to reduce the computational burden.

The present work utilizes a multiple-model square root
CKF (MMSRCKF) method to effectively estimate the non-
linear MAP model parameters in the case of hypotension un-
der a vasopressor drug injection. The patient’s MAP response
model is described by a first-order parameter-varying model
with a varying input delay. The multiple-model part ad-
dresses the hypothesis testing and the estimation of the input
delay. The square root (SR) algorithm employs the Cholesky
factorization of the error covariance matrix to guarantee its
positive definiteness during numerical operations [14]. For
the verification of the proposed method, data from animal
experiments is collected at the University of Texas, Medical
Branch (UTMB) at Galveston. The estimation results are
compared to that of MMEKF reported in [15].

The mathematical notation to be used in the paper is as
follows. t denotes the continuous-time domain, and k stands
for the discrete-time variable. For a stochastic process, xk,
E [xk] denotes its expected value and N {xk; x̂k|k,Pk|k}
represents a normal Gaussian probability distribution with
the mean of x̂k|k and the covariance of Pk|k.

This paper is organized as follows. The MMSRCKF online
estimation algorithm is developed in Section II. Section
III introduces a first-order time-delayed dynamic model to
characterize the MAP response to the drug infusion. Section
IV presents the estimation results and evaluation of the per-
formance of the proposed MMSRCKF method in comparison
to MMEKF. Final remarks are provided in Section V.

II. ESTIMATION PRELIMINARIES AND METHODOLOGY

In this section, first, a derivative-free on-line sequential
state estimator known as the square root CKF (SRCKF)
algorithm is formulated for a general nonlinear discrete-time
stochastic system. Subsequently, we formulate the multiple-
model (MM) approach and couple it with the introduced
SRCKF algorithm for the time delay estimation of a system
with an input delay.

A. SRCKF Algorithm

The Bayesian-based CKF scheme aims at estimating the
states of a dynamical system using a probabilistic framework
[6]. The original CKF state estimation process is susceptible
to numerical problems such as indefinite error covariance ma-
trix, divergence phenomenon, and filter instability. In order to
tackle these obstacles, we enhance CKF with the square root
computation, i.e. the covariance matrix is decomposed using
a factorization method, such as the Cholesky factorization to
guarantee positive definiteness within numerical operations
[16]. The resulting square roots of the error covariance
matrices propagate through the sequential state estimation
process. Next, the third-degree spherical-radial rule is used
to approximate the multidimensional integrals involved in the



Bayesian filtering [17]. Let us consider a general nonlinear
discrete-time stochastic system as follows{

xk+1 = f(xk,uk) + wk,
yk = h(xk,uk) + vk, k = 0, 1, . . . , kf ,

(1)

where xk ∈ Rn stands for the unmeasured state vector of the
system, uk ∈ Rnu is the input vector, and yk ∈ Rny is the
measurement vector at the time k, and kf is the final time.
f(xk,uk) : (Rn,Rnu) 7→ Rn and h(xk,uk) : (Rn,Rnu) 7→
Rny are known general nonlinear vector mappings, and
wk ∈ Rn and vk ∈ Rny are statistically independent
zero-mean Gaussian process and measurement noise signals,
respectively. The probability distribution functions (PDFs) of
the noise vectors, namely p(wk) and p(vk) are known, as
well as, the initial state vector PDF p(x0).

SRCKF seeks to find the estimation of the state vec-
tor in the form of a conditional PDF, p(xk|yk), that has
the entire knowledge about the current state vector, xk,
given the entire measurement vectors sequence, i.e. yk =
[ y0 y1 . . . yk ]. However, in some cases, a Gaussian
approximation of the conditional PDF allows to only com-
pute the first two conditional moments, i.e. the mean x̂k|k =
E [xk|yk] and the error covariance matrix Pk|k = cov[xk|yk]
which results in p(xk|yk) ≈ N {xk; x̂k|k,Pk|k}.

By assuming Gaussian white noise vectors, the prediction
step (state prediction) and correction step (measurement
update) are carried out via integrating a nonlinear function
concerning a normal distribution, or

x̂k+1|k=E [xk+1|yk]=
∫
Rn
f(xk,uk)p(xk|yk)dxk

≈
∫
Rn
f(xk,uk)N {xk; x̂k|k,Pk|k}dxk, (2)

ŷk+1|k=E [yk+1|xk+1]=

∫
Rn
h(xk+1,uk+1)p(yk+1|xk+1)dxk+1

≈
∫
Rn
h(xk+1,uk+1)N {xk+1; x̂k+1|k,Pk+1|k}dxk+1. (3)

The third-degree spherical-radial rule is utilized to compute
the numerical approximation of the moment integrals (2)
and (3). Next, for an arbitrary function g(x) with Σ as the
covariance of x, the integral

I(g)=
√
2π|Σ|−

1
2

∫
Rn
g(x)exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
dx,

(4)
in the spherical coordinate system becomes

I(g) = (2π)−
n
2

∫ ∞
r=0

∫
Un
g(Crz + µ)dz rn−1e−

r2

2 dr, (5)

where x = Crz + µ with ‖z‖ = 1, µ is the mean and C is
the Cholesky factor of the covariance, Σ, and Un is the unit
sphere. Then, we used the symmetric spherical cubature rule
to further approximate the integral as

I(g) =
1

2n

2n∑
i=0

g(
√
n(Cξi + µ)), (6)

where ξi denotes the ith cubature point at the intersection of
the unit sphere and its axes. The main benefit of this scheme

is that the cubature points are obtained off-line using a third-
degree cubature rule [18]. We follow the steps introduced
next to compute the estimation of the state vector via the
SRCKF algorithm.

SRCKF algorithm:
1) Initialization: The state initial condition is given by

x0|0 ≡ x0 with x̂0 = E [x0] where the initial covariance
matrix is P0|0. We decompose it as P0|0 = S0|0S

T
0|0

through the Cholesky factorization, i.e.

S0|0 = chol{[x0 − x̂0][x0 − x̂0]T}.

Then, generate the cubature points, ξi, for the initia

state vector and the fixed weights, wi = w =
1

2n
, for

i = 1, 2, . . . , 2n.
2) Time update (Prediction) (k = 1, 2, . . . , kf ):

a) Evaluation of the cubature points

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1. (7)

b) Evaluation of the propagated cubature points via the
system dynamics

X∗i,k|k−1 = fk(Xi,k−1|k−1,uk−1). (8)

c) Evaluation of the predicted states based on the gen-
erated weights and propagated points

x̂k|k−1 =

2n∑
i=1

wiX
∗
i,k|k−1. (9)

d) Evaluation of the square root of the covariance matrix
of the predicted state error covariance

Sk|k−1 = triangle
{

[χ∗k|k−1,SQk−1
]
}
, (10)

where χ∗k|k−1 is a centered weighted matrix, i.e.

χ∗k|k−1 =
1√
2n

[X∗1,k|k−1 − x̂k|k−1

X∗2,k|k−1 − x̂k|k−1 · · · X∗2n,k|k−1 − x̂k|k−1 ],

(11)

and SQk−1
is the square-root of the the process noise

such that Qk−1 = SQk−1
ST
Qk−1

. Moreover, B =
triangle{A} stands for a general triangularization
algorithm, e.g. QR decomposition, where B is a lower
triangular matrix. If C is an upper triangular matrix
obtained through the QR decomposition of AT, then
the lower triangular matrix is given by B = CT.

3) Measurement update (Correction) (k = 1, 2, . . . , kf ):
a) Evaluation of the cubature points using the predicted

square root matrix, Sk|k−1,

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1. (12)

b) Evaluation of the propagated cubature point via the
output dynamics

Yi,k|k−1 = h(Xi,k|k−1,uk). (13)



c) Estimation of the predicted measurement vector

ŷk|k−1 =

2n∑
i=1

wiYi,k|k−1. (14)

d) Evaluation of the square root of the innovation co-
variance matrix

Syy,k|k−1 = triangle
{

[Yk|k−1,SRk
]
}
, (15)

where Yk|k−1 is a centered weighted matrix, i.e.

Yk|k−1 =
1√
2n

[Y1,k|k−1 − ŷk|k−1

Y2,k|k−1 − ŷk|k−1 · · · Y2n,k|k−1 − ŷk|k−1 ].
(16)

SRk
is also the square-root of the the measurement

noise such that Rk = SRk
ST
Rk

.
e) Evaluation of the cross-covariance matrix

Pxy,k|k−1 = χk|k−1Y
T
k|k−1, (17)

with the centered weighted matrix χk|k−1 given by

χk|k−1 =
1√
2n

[X1,k|k−1 − x̂k|k−1

X2,k|k−1 − x̂k|k−1 · · · X2n,k|k−1 − x̂k|k−1 ].
(18)

f) Evaluation of the SRCKF filter gain

Wk = Pxy,k|k−1S
−T
yy,k|k−1S

−1
yy,k|k−1. (19)

g) Evaluation of the corrected state update based on the
measurement

x̂k|k = x̂k|k−1 + Wk(yk − ŷk|k−1). (20)

h) Evaluation of the square-root of the corrected error
covariance matrix

Sk|k = triangle
{

[χk|k−1 −WkYk|k−1,WkSRk
]
}
.

(21)
The state estimation process continues iteratively from the
second step of the algorithm, i.e. the time update (prediction)
by setting k = k + 1.

B. Multiple-Model SRCKF for Input Delay Estimation

Time delay estimation introduces a challenge in the param-
eter identification framework since the variable delay is not
transformable to an equivalent random walk process. Ratio-
nal approximations of the delay such as Padé approximation
can be considered as alternative solutions; however, the
introduced truncation error may be significant and problem-
atic, especially for large and time-varying delays. Thus, to
obtain a more accurate delay estimation, the aforementioned
SRCKF algorithm is equipped with a multiple-model (MM)
framework cascaded with a hypothesis testing module [19].

The underlying idea of the MMSRCKF method is to use a
bank of N identical SRCKFs in a parallel setting, as shown
in Fig. 1. Every SRCKF uses the same measurement and
input data, but a different delay is assigned to each filter.

...

...

SRCKF with τi

SRCKF with τ1

SRCKF with τN

Hypothesis Testing
uk

yk

X̂1
k

X̂i
k

X̂N
k

τ̂MMk

Fig. 1: Bank of N parallel SRCKFs for delay estimation

The ith element in the bank provides us with a state vector
estimation Xi

k together with the residuals rik = yk− ŷik. By
having this information, a hypothesis testing block can then
be used to estimate the value of the delay. Specifically, if the
delay matches the one assigned to the ith SRCKF element,
then the corresponding residual is essentially a zero-mean
white noise process, i.e. E [rik] = 0, and its covariance is
given by

E [rik(rik)T] = HPi
kH

T + R , Ri
k, (22)

where H = [1 0 0 1], Pi
k denotes the estimation covariance

at the kth step, and R denotes the measurement noise co-
variance. The conditional probability density function of the
ith SRCKF element measurement can be computed through

f(ŷik|yk) =
1

(2π)
m
2 |Ri

k|
1
2

exp
{
− 1

2
(rik)T(Ri

k)−1rik

}
, (23)

where m is the dimension of available measurements at
each time step. Then, the conditional probability of each
hypothesis is

pik =
f(ŷik|yk)pik−1
N∑
j=1

f(ŷjk|yk)pjk−1

, (24)

where pik can be interpreted as the normalized conditional
probability of the case when the delay equals the assigned

value to the ith filter, i.e.
N∑
j=1

pjk = 1. Now, it is possible

to estimate the delay according to the filter, which has
the highest probability. However, to obtain a more accurate
delay estimation and to avoid large fluctuations, instead of
choosing the block with most likely delay estimation, we
treat the hypotheses resulting as weights and blend them
to improve the delay estimation. In other words, we can
estimate the time delay as

τ̂MM
k =

N∑
j=1

pjkτ
j
k , (25)

where τ jk is the delay estimation of the ith filter. In the next
section, we will present the mathematical model describing
the dynamics of the MAP response to the PHP drug infusion.



Fig. 2: Typical MAP variations in response to PHP step
injection [15]

III. MAP RESPONSE MODELING

The following first-order model with an input delay has
been broadly considered and implemented in the literature
to characterize the patient’s MAP response to the infusion
of a vasoactive drug, such as phenylephrine (PHP) [4], [15],
[20]:

T (t) · ˙∆MAP (t) + ∆MAP (t) = K(t) · u(t− τ(t)), (26)

where ∆MAP (t) stands for the MAP changes in mmHg
from its baseline value, i.e. ∆MAP (t) = MAP (t) −
MAPb(t), u(t) is the drug injection rate in ml/h, K(t)
denotes the patient’s sensitivity to the administered drug,
T (t) is the lag time describing the uptake, distribution and
biotransformation of the drug [21], and τ(t) is the time
delay for the drug to reach the circulatory system from
the injection site. This model structure seems to adequately
describe a patient’s physiological response to the PHP drug
injection. Fig. 2 presents a typical MAP response due to
a step PHP infusion versus a matched response of (26).
This figure also illustrates the interpretation of the model
parameters K(t), T (t), τ(t), MAPb(t) which have been
obtained to fit the MAP response using a least-squares
optimization method. Although the proposed model structure
(26) is qualitatively able to represent the characteristics of
the MAP response to the infusion of PHP, experiments
show that the model parameters vary significantly over time
due to patients’ pharmacological variability subject to the
vasoactive drug infusion. That is, the model parameters and
delay could vary remarkably from patient-to-patient (inter-
patient variability), as well as, for a given patient over time
(intra-patient variability) [21], [22]. For the implementation
of recursive sequential estimation tools, we discretize the
continuous-time model (26) at the sampling rate of Ts as
follows  xk+1 =

(
1− Ts

Tk

)
xk +

KkTs
Tk

u(k− τkTs )
,

yk = xk +MAPbk ,
(27)

where xk = ∆MAPk = MAPk − MAPbk at the kth
time instant. In (27), we augment the state vector with the

parameters to be estimated, namely Kk, Tk, and MAPbk by
assuming local random-walk dynamics. In other words

XT
k=[X1

k X
2
k X

3
k X

4
k ]=[∆MAP k Kk Tk MAPbk ]. (28)

Since model parameters are all time-varying and assumed to
be a priori unknown, (27) represents a nonlinear equation
with regards to the state vector, Xk, that can be expressed
as the following nonlinear dynamics{

X1
k+1 = fk(Xk, uk) + wk,

yk = hk(Xk) + vk,
(29)

with f1k (Xk, uk) =
(
1− Ts

X3
k

)
X1
k +

TsX
2
k

X3
k

u(k− τkTs )
,

hk(Xk) = X1
k +X4

k .
(30)

The process noise, wk, and the measurement noise, vk, are
both assumed to be additive and statistically independent
zero-mean Gaussian processes with covariances given by Qk

and Rk, respectively. Although such an augmentation facili-
tates the estimation procedure, the time-varying input delay
neither can be included in the augmented state vector nor be
captured by a random walk process. Thus, the time delay is
estimated through a multiple-model (MM) hypothesis testing
process along with the SRCKF, discussed in Section II.

Next, we test the proposed MMSRCKF estimation algo-
rithm in a simulation where the patient’s model parameters
are generated by nonlinear functions based on clinical obser-
vations. Then, we validate the verified estimation framework
using the experimental data from animal experiments.

IV. MAP RESPONSE ESTIMATION RESULTS AND
VALIDATIONS

In order to validate the proposed parameter estimation
method, first, we need to build a realistic simulation model of
an individual’s MAP response to the drug infusion with some
known model parameters. Adopting (26), we generate the
patient’s nonlinear time-varying model parameters, i.e. K(t),
T (t), τ(t), and MAPb(t) based on clinical observations as
follows [4]

akK̇(t) +K(t) = k0exp{−k1i(t)},

T (t) = sat [Tmin,Tmax] {bT
∫ t

0

i(t) dt},{
aτ,2

...
τ (t) + aτ,1τ̈(t) + τ̇(t) = bτ,1i̇(t) + i(t), t ≥ ti0 ,

τ(t) = 0, otherwise,

(31)

where i(t) is the drug injection and ak, k0, k1, bT , aτ,2, aτ,1,
and bτ,1 are uniformly distributed random coefficients given
in Table I [1]. Also, the MAP baseline value, MAPb(t), is
assumed to be constant and equal to 70mmHg for the con-
sidered nonlinear patient. As per (31), the model parameters
K(t), T (t), and τ(t) are nonlinear functions of the drug
infusion rate, i(t). Fig. 3 demonstrates the general structure
of the nonlinear patient parameter generation process. The
model parameters are generated based on the given infusion



TABLE I: Probabilistic distributions of coefficients in (31)

Parameter Distribution
ak U(500, 600)
k0 U(0.1, 1)
k1 U(0.002, 0.007)
bT U(10−4, 3× 10−4)
aτ,1 U(5, 15)
aτ,2 U(5, 15)
bτ,1 U(80, 120)

Fig. 3: Structure of nonlinear patient parameter generation

TABLE II: Estimation root mean square errors (RMSEs)

RMSE
Parameter MMSRCKF EKF

K 0.061 0.095
T 8.370 24.917

MAPb 0.188 0.706
τ 3.128 9.114

MAP 0.008 0.202

rate, i(t), while the parameter estimation tool estimates
the model parameters sub-optimally, using the input drug
infusion rate and measured output MAP. Fig. 4 shows the
piecewise constant PHP drug infusion profile, that is used
to generate the nonlinear patient parameters. Using the
generated model parameters, we evaluate the performance
of the proposed MMSRCKF method in estimating them,
and the estimation results are compared to the previously
reported EKF algorithm [15]. Figs. 5, 6, 7, and 8 show
the estimation results for the model parameters, namely the
sensitivity K(t), time constant T (t), MAP baseline value
MAPb(t), and time delay τ(t), respectively. As we can see,
the implemented MMSRCKF method outperforms the EKF
in terms of accuracy and the convergence speed. The MMSR-
CKF online estimation results show better matches with the
generated nonlinear patient reference parameters. It should
be noted that the computation complexity of both CKF and
EKF algorithms equally grows as n3 where n denotes the
system size where the former filter is more accurate and
numerically more stable. Table II further compares the root
mean square errors (RMSEs) of the model parameters and
estimated MAP response in both algorithms by which the
error reduction is obvious using MMSRCKF.

Fig. 4: Profile of piecewise constant PHP drug injection

Fig. 5: Nonlinear patient sensitivity estimation

Fig. 6: Nonlinear patient lag time estimation

In the next step, we implemented the MMSRCKF al-
gorithm on the collected data from an actual animal ex-
periment. The input PHP drug infusion rates and output
MAP measurements for a 55 kg anesthetized swine were
recorded at the Resuscitation Research Laboratory at the
Department of Anesthesiology, UTMB at Galveston, Texas.
Precisely speaking, an intramuscular injection of ketamine
was used to sedate the swine which were maintained under
anesthetic conditions by the continuous infusion of propofol.
A Philips MP2 transport device with a sampling frequency
of 20Hz was used to monitor the blood pressure response
over a 6-hour experiment, while the PHP drug was being
infused through a bodyguard infusion pump. Fig. 9 shows



Fig. 7: Nonlinear patient baseline MAP estimation

Fig. 8: Nonlinear patient input delay estimation

the piecewise constant PHP drug infusion profile versus the
corresponding measured raw blood pressure response and the
MAP response over time. We then utilized this dataset for
the validation of the estimation of the MAP dynamic model
parameters using the proposed MMSRCKF methodology.
The experimental dataset was re-sampled at the sampling
frequency of 0.2Hz. Regarding the multiple-model part of
the MMSRCKF algorithm for the delay estimation, the esti-
mation accuracy versus the algorithm speed of convergence
triggered a trade-off which needed to be addressed with care;
hence, it was essential to choose an appropriate number of
the bank of SRCKFs constructing the MMSRCKF structure.
In this work, we examined a bank of 11 SRCKFs with
the delay interval of τ ∈ [0 100]s. Consequently, the time
gridding for the evenly distributed filters was equal to 10s.
The MAP estimation of the proposed MMSRCKF algorithm,
as well as the clinically acquired MAP measurements, are
illustrated in Fig. 10, which suggests that the proposed
identification method is capable of accurately capturing the
MAP response of the swine to the injection of the PHP drug.
Additionally, the estimation of the model parameters, namely
the sensitivity K(t), time constant T (t), MAP baseline value
MAPb(t), and time delay τ(t), are depicted in Figs. 11,
12, 13, and 14, respectively. The estimated parameter values
followed the expected trends, as discussed in detail in [4].
Furthermore, the delay estimation in Fig. 14 demonstrated a
sharp initialization peak right after the initial injection of the

Fig. 9: Instantaneous blood pressure and MAP response to a
piecewise constant PHP drug injection in animal experiments

Fig. 10: MAP estimation results in animal experiments

Fig. 11: Sensitivity estimation in animal experiments

drug and followed a slowly decaying trend during the rest
of the experiment as anticipated [1].

V. CONCLUSION

Precise estimation of hemodynamics characteristics and
mean arterial blood pressure in response to vasoactive drug
administration is pivotal to design an effective controller
to meet closed-loop physiological response requirements
in various clinical scenarios. Real-time estimation of such
dynamic models was examined in this paper. Due to the inter-
and intra-patient variability, a parameter-varying model with



Fig. 12: Lag time estimation in animal experiments

Fig. 13: Baseline MAP estimation in animal experiments

Fig. 14: Time delay estimation in animal experiments

varying input delay was deemed to account for model pa-
rameter variations. A Bayesian estimation scheme known as
cubature Kalman filter was used because of its convergence
speed, nonlinear system handling, and numerical stability.
The varying parameters of the nonlinear system corrupted by
noise were estimated through the proposed framework. Since
the input delay cannot be captured via a random-walk pro-
cess, the filter was augmented with a multiple-model module.
Delay and parameters estimation results in comparison to
classical extended Kalman filter were demonstrated which
verified the advantage of the utilized Bayesian approach.
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