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Probabilistic Robust Small-Signal Stability

Framework using Gaussian Process Learning
Parikshit Pareek, and Hung D. Nguyen⋆

Abstract—While most power system small-signal stability as-
sessments rely on the reduced Jacobian, which depends non-
linearly on the states, uncertain operating points introduce
nontrivial hurdles in certifying the systems stability. In this
paper, a novel probabilistic robust small-signal stability (PRS)
framework is developed for a power system based on Gaussian
process (GP) learning. The proposed PRS assessment provides
a robust stability certificate for a state subspace, such as that
specified by the error bounds of the state estimation, with a
given probability. With such a PRS certificate, all inner points
of the concerned subspace will be stable with at least the
corresponding confidence level. To this end, the behavior of the
critical eigenvalue of the reduced Jacobian with state points in a
state subspace is learned using GP. The proposed PRS certificate
along with the Subspace-based Search and Confidence-based
Search mechanisms constitute a holistic framework catering to
all scenarios. The proposed framework is a powerful approach to
assess the stability under uncertainty because it does not require
input uncertainty distributions and other state-specific input-to-
output approximations. Further, the critical eigenvalue behavior
in a state subspace is analyzed using an upper bound of the
eigenvalue variations and their inferences are discussed in detail.
The results on three-machine nine-bus WSCC system show that
the proposed certificate can find the robust stable state subspace
with a given probability.

Index Terms—Probabilistic Robust Small-Signal Stability
(PRS), Gaussian Process (GP) Learning, Stability under Uncer-
tainty

I. INTRODUCTION

The small-signal stability is an integral part of power

system stability assessment, referring to the system’s capacity

to withstand small-disturbances and remain in synchronism

[1], [2]. Further, stability assessment under uncertainty is a

crucial issue with the recent trend of integration of uncertain

renewable sources and mobile electric vehicle loads. The

necessary and sufficient condition for small-signal stability is

that all eigenvalues of reduced system Jacobian must have a

negative real part. This method of stability assessment requires

evaluation of all or a set of eigenvalues of reduced Jacobian,

which involves a matrix inverse. The reduced Jacobian based

stability assessment works for a specified operating state, but

becomes inapplicable in the presence of state uncertainties,

mostly due to the non-linearity induced from the power flow

Jacobian matrix inversion. Some important, relevant works on

DAE and stability are presented in [3]–[10].
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The probabilistic small-signal stability (PSSS) assessments

have been developed to deal with the issue of stability under

uncertainty [11]–[13]. The core idea is to derive the probability

density function (pdf ) of an uncertain system output, PSSS

measure like critical eigenvalue or minimum damping ratio

(MDR), based on a known uncertainty of input state [14]. The

methods of PSSS assessment broadly fall under two categories:

i) numerical methods, and ii) analytical methods.

In numerical approaches, the Monte Carlo simulations

(MCS) can be employed to determine the pdf of the various

stability indices [15]–[17]. To improve computational perfor-

mance, methods such as quasi-Monte Carlo [18] have also

been used to assess PSSS. Nevertheless, an essential require-

ment of a large number of simulations leads to computational

burden too high to be implemented for detailed probabilistic

studies.

Analytical methods, free from the imposition of parametric

output distributions, are also used for PSSS assessment. These

methods include probabilistic collocation method (PCM) [19],

point estimate methods (PEMs) [20], analytical cumulant-

based approaches [21]. A comprehensive comparative study

is presented in [14]. These methods suffer from issues related

to complex formulation and inaccurate first and second-order

approximations of sensitivities of eigenvalues. The detailed

review of these techniques and approaches can be found in

[22]–[25]. Regardless of the method employed, all these PSSS

assessment methods tried to solve specific uncertainty issues

considering a typical pdf for uncertainties in the wind, solar,

or load. The modeling error in input uncertainty descriptions

and effects of assumptions taken get propagated to output

pdf . Further, these methods do not provide insight into critical

eigenvalue behavior in state-space and are mostly limited to

one or two-dimensional subspace at a time.

In this paper, we present a novel probabilistic robust small-

signal stability (PRS) framework for small-signal stability

assessment in a state subspace. This state subspace can be

defined based on measurement errors or the level of external

disturbances that move the system within such a sub-domain.

Further, we define PRS as follows. If all the inner points

of a subset of the state-space are small-signal stable with at

least a given level of confidence, then such a subset is called

probabilistic robust stable subspace with respect to such a

confidence level. In other words, PRS is concerned that for

a given uncertain state-subspace X in state space, what the

probability with that any state point x ∈ X is stable. To

the best of our knowledge, this is the first instance when the

PRS certificate has been developed and proposed using GP

learning for a power system. Different from some existing

Monte Carlo-based approaches, our proposed PRS framework
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does not characterize how many stable operating points in X .

Specifically, our goal is to quantify the probability with that

any operating point x ∈ X is stable. An advantage of this PRS

is that it provides a non-parametric, computationally efficient,

and less complex modeling alternative for probabilistic small-

signal stability assessment.

More importantly, the proposed PRS framework does not

require uncertainty modeling, such as a prior distribution of

uncertain inputs, and hence provides a generalized framework

for the stability under uncertainty. The main focus of this PRS

framework is providing a PRS certificate for a given state

subspace being PRS. Along with the certificate, we formulate

Subspace-based Search and Confidence-based Search prob-

lems for cases wherein PRS certification can not be verified.

The framework is built upon the Gaussian process upper

confidence bound (GP-UCB) search algorithm [26]. The GP-

UCB is used for sampling the state points inside state subspace

X to learn the behaviors of the critical eigenvalues, which are

closest to the imaginary axis for a small-signal stable system.

The main contributions of the work are as follows:

• Defining probabilistic robust small-signal stability (PRS)

and developing a certificate for a subspace to be PRS

with a given confidence level.

• Development of a PRS framework with Subspace-based

Search and Confidence-based Search for a state subspace

that is not satisfying the PRS certificate with a given

probability.

• Developing a novel and fast GP learning scheme to learn

and analyze the critical eigenvalue behavior in a multi-

dimensional state-subspace.

The objective of this work is to present the novel idea of

PRS for the power system. We first build up the background in

Section II by providing a brief review of small-signal stability

assessment, GP, and GP-UCBmethods. From this, we build

the PRS framework, which is presented in Section III. This

section includes the main results on PRS certificate with details

on the Subspace-based Search and Confidence-based Search

mechanisms. The simulations and discussions of results are

provided in Section IV while conclusions are drawn in Section

V with future scope. We use stability to refer to small-signal

stability for brevity.

II. BACKGROUND

The proposed PRS framework in this work has three

background building blocks. This section presents these three

blocks, namely: Power System Modeling and Stability Assess-

ment, GP and GP-UCB.

A. Power System Modeling and Stability Assessment

Consider the power system dynamics that can be expressed

as semi-explicit DAE as:

ẋ = f(x,y)

0 = g(x,y)
(1)

Here, x, y are dynamic and algebraic variable vectors respec-

tively and f(·) and g(·) are sets of differential and algebraic

equations respectively, expressing the power system’s behav-

ior. The DAE system can be linearized and expressed as:

δẋ = Aδx+B δy

0 = C δx+Dδy
(2)

Conventionally, to assess the stability of the DAE system,

we rely on the reduced Jacobian matrix obtained by eliminat-

ing the algebraic variables y [1]. With an invertible matrix

D, we have the reduced Jacobian Jr = A − BD−1C. The

linearized DAE system is small-signal stable at the base oper-

ating point x⋆ if and only if the reduced Jacobian evaluated at

x⋆ is a Hurwitz stable matrix, i.e., maxi (ℜ(λi(Jr))) < 0,

where λi(Jr) be the ith eigenvalue of Jr [27]. We use

λc(x) to denote the function describing the real part of the

maximum eigenvalue of Jr(x) as the state x varies. Therefore,

the behavior of this function λc(x) dictates the small-signal

stability of the system.

In the power system, some attempts have been made to learn

and estimate the movement of critical eigenvalue [28], [29].

The numerical results of these works indicate that eigenvalues

of power system Jacobian are continuous in continuous system

state space. An important research direction related to these

numerical approaches is based on eigenvalue sensitivities with

respect to states [28], [29]. The downsides of this direction

have been discussed in [27] and others. This paper, however,

does not rely on sensitivities but attempts to learn the function

representing the critical eigenvalues when the states change.

The learned function can benefit other operating procedures in

power systems concerning eigenvalues.

In order to apply GP, we rely on the fact that the eigenvalues

of a matrix are continuous functions of its entries. This

property is shown in Theorem 5.2 [30]. The details and

discussion on continuity of eigenvalues can also be obtained

from Section 5.2.3 of [30]. An intuitive argument can be found

in [31]. The roots of a polynomial equation are shown to

depend continuously on coefficients of the polynomial [32].

The eigenvalues are in fact roots of Characteristic Polynomial

of a matrix M and given as h(λ) = det{λI −M}, a monic

polynomial. Further, the coefficients of h(λ) can be expressed

in terms of the sum of principal minors of M . Each of these

principle minors depend on the coefficient mij of matrix M
establishing the continuous dependency of roots of h(λ) on

entries mij of matrix M . Therefore, roots of Characteristic

Polynomial, i.e., eigenvalues are a continuous function of

entries of the matrix. As the maximum operator over a set

of continuous values is continuous, the critical eigenvalue of

the matrix Jr is continuous with variations in matrix entries.

It is essential to note the following. In the present work,

we are interested in exploring the neighborhood subspace of

an operating point. This subspace can be taken as continuous

as the abrupt state changes are not under consideration of

this work. In various power system operations and conditions,

the state-space cannot be considered as continuous. These

situations arrive mainly during discrete changes such as con-

tingencies or instances of controller saturation. Identification

of continuous subspace is critical in such cases before applying

the proposed method.
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The reduced Jacobian is a non-linear function of states

Jr(x), and so is critical eigenvalue λc(x). Due to involvement

of the matrix inverse, obtaining analytical expression for λc(x)
is not possible. Further, in the situation where the state vector

x is uncertain and can vary in a state subspace X , the λc(x)
will be uncertain and more difficult to estimate. Therefore, we

propose this GP learning based method to learn the behavior

of λc(x) with x ∈ X .

B. Gaussian Process Regression

In the Bayesian optimization paradigm, where the exact

objective function is not known, the Gaussian process is used

extensively as a modeling tool. The GP is developed as an

extension of multi-variate Gaussian and can be considered as a

distribution over random functions [33]. The Gaussian process

is a non-parametric method, hence suitable as a modeling

method for probability distributions over functions.

In power systems, the use of GP has been restricted to

the forecasting applications for power and load. The GP has

been applied for wind power forecast [34]–[36], solar power

forecast [37], and electricity demand forecast [38]–[40]. Other

then these forecasting works, the idea of using GP to learn the

dynamics and stability index behavior has not been explored

by the power system research community.

First, we define a general framework for GP regression. Let,

a training data set D = {x(i), λ̂c(x
(i))}mi=1 where λ̂c(x

(i)) is

the observed function value for input vector x(i) ∈ Rn at the

ith step. Then the GP regression model can be given as [33]:

λ̂c(x
(i)) = λc(x

(i)) + ǫ(i), i = 1 . . .m (3)

Here, ǫ(i) are independent and identically distributed noise

variable with zero-mean, σn standard deviation normal dis-

tribution
(

N (0, σ2
n)
)

. Interested reader can look into [33] for

details of GP fundamentals.

In this work, the unknown critical eigenvalue func-

tion is approximated by GP regression. The covariance

or kernel function k(x,x′), brings our understanding and

assumptions about the function into GP. A sample set

λ̂cm = [λ̂c(x
(1)), . . . , λ̂c(x

(m))]T at operating points Dm =
{x(1), . . . ,x(m)} with Gaussian noise ǫ, and the analytic

formula set can be obtained for posterior distribution corre-

sponding to (3).

µm(x) = km(x)T (Km + σ2
nI)

−1qm (4a)

km(x,x′) = k(x,x′)− km(x)T (Km + σ2
nI)

−1km(x′) (4b)

σ2
m(x) = km(x,x) (4c)

Here, µm(x) is mean, km(x,x′) is covariance and variance

is indicated by σ2
m(x). The x and x′ are two sample operating

points from set Dm. The km(x) = [k(x(1),x), . . . ,x(m),x)]
and Km = [k(x,x′)]. In this work, we infuse our prior

knowledge about critical eigenvalue function as the squared

exponential covariance function with zero mean and unit

characteristic length.

C. GP-UCB

The Gaussian process upper confidence bound (GP-UCB)

algorithm is an intuitive Bayesian method [41] for sampling.

For a given δ ∈ (0, 1), in a state subspace X , our goal is

to learn the mean µ(x) for critical eigenvalue function λc(x)
with least standard deviation σ(x) and confidence level 1− δ.

A combined strategy to strike the balance between exploration

and exploitation can be used for sampling the point x(i). With

βi taken independent of state vector the sampling strategy will

be:

x(i) = argmax
x
(i)∈X

{

µi(x) +
√

βi+1σi(x)
}

(5)

Here, (5) suggests that xi is selected where µi(x) +

β
1/2
i+1σi(x) maximizes. The µi(x) contributes to enlarging the

level set of critical eigenvalue while σi(x) helps in minimizing

the uncertainty. Interested reader can obtain the details of this

sampling strategy and GP-UCB from [41].

III. MAIN RESULT: PRS FRAMEWORK

In this section, we will present the main result for devel-

oping the PRS framework. Prior to this result, we note that

various works have been proposed under the generic name

probabilistic robust control to perform robust control under

stochastic uncertainties [42]. The system performance is said

to be robustly satisfied (with a fixed probability) if a guarantee

is provided against almost all of the possible uncertainties [43].

A similar analogy in the context of power system small-signal

stability can be used here for the PRS framework.

Given δ ∈ (0, 1), if all the points in a subspace are stable

with the probability of at least 1 − δ, then that subspace

is called PRS subspace. For developing the basis of PRS

certificate, we first present a result on regret bound, i.e., error

bound, in Theorem 1 for GP-UCB represented in (5).

Theorem 1. Let λc(x) be the critical eigenvalue function in

state x with the noise ǫ bounded by σn. Then the following

holds with the probability of at least 1− δ with δ ∈ (0, 1)

|λc(x)− µm(x)| ≤
√

βm+1 σm(x), ∀x ∈ X . (6)

Here X is the sample space wherein the states x lie, and

m is the number of sampling points. βm = 2‖V ‖2k +
300γm ln3 (m/δ) defined in [26].

Proof. The results follow directly from Theorem 6 in [44] and

Theorem 1 in [26].

Most importantly, following Theorem 1, we obtain a prob-

abilistic robust stability certificate as the following.

Theorem 2. (PRS certificate) For a given δ ∈ (0, 1), the

linearized DAE system (2) is probabilistic robust small-signal

stable (PRS) in a state subspace X with probability 1− δ if

pm(x, δ) < 0 (7)

where pm(x, δ) = maxx∈X

{

µm(x) +
√

βm+1 σm(x)
}

with

m sampling points.

Proof. The definition of PRS certificate pm(x, δ) < 0 can be

obtained directly from Theorem 1.
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The PRS certificate pm(x, δ) < 0 verifies that with the

probability 1−δ any state vector x in the given state subspace

X is small-signal stable. This idea does not quantify the

number of points that are stable in a subspace but gives the

probability with that any inner point is stable in the considered

subspace.

Based upon Theorem 2, we continue the PRS framework,

which covers various conditions as:

1) If the PRS certificate holds or pm(x, δ) < 0:

The state subspace X is probabilistic robust stable with

the confidence level of 1− δ.

2) Otherwise:

a) Subspace-based Search:

Find X ′ ( X such that pm(x, δ) < 0, ∀x ∈ X ′.

b) Confidence-based Search:

Find δ′ > δ such that pm(x, δ′) < 0, ∀x ∈ X .

The rationale behind the second step of the PRS framework

is that in case the PRS certification cannot be established for

a given set X , one can proceed with two alternative searches.

Subspace-based Search results into a subspace X ′, of state

space, which is PRS with probability 1− δ. This X ′ is also a

subspace of the original state subspace X . The other alternative

Confidence-based Search results in a lower confidence level

1 − δ′, by which the original subspace X is PRS. Therefore,

with the PRS certificate and two alternative searches, the PRS

framework is complete as it caters to all possible scenarios.

Remark. The existence of X ′ in Subspace-based Search is

guaranteed if ∃x⋆ ∈ X such that maxi (ℜ(λi(Jr(x
⋆)))) < 0.

In many cases, x⋆ is selected as the base stable operating

point around that the subspace X is constructed. Therefore,

we can at least find X ′ containing the stable base point.

For Confidence-based Search, by increasing δ to δ′, we

obtain a lower confidence level 1 − δ′. However, we do not

guarantee that the new confidence level 1 − δ′ can be large

enough for any practical meaning.

Within our PRS framework, it is important to determine

when the GP-UCB search can be terminated or the search is

completed. As the GP-UCB attempts to minimize the learning

uncertainty related to σm(x) in (5), the change in values of

σm(x) indicates the level of learning errors with increasing

number of training samples m. Further, this learning level

will also be reflected in variation of pm(x, δ) while increasing

m. Therefore, either of the two indicators, i.e., σm(x) and

pm(x, δ), can be used to decide whether the GP-UCB search

for learning λc(x) completes. Moreover, we propose to use

the real part of critical eigenvalue as a stability index instead

of minimum damping ratio (MDR) in this work. Although,

the proposed framework can be extended to accommodate any

stability index such as MDR.

IV. SIMULATIONS AND DISCUSSIONS

In this work, we have used IEEE three-machine nine-bus

system [45] for testing and validation of the proposed PRS

framework. The system has three PV buses with conventional

generators at bus number 1, 2, and 3. The generator 1 is

considered as slack bus and has the highest inertia constant.

0.96 1 1.04 1.08
|V

3
|

-0.04

-0.02

0

0.02

0.04

c(|
V

3|)

 95% Confidence region
 

m
(|V

3
|)

 Training Data

Fig. 1. An illustration on GP-UCB working on 1-D state subspace of |V3|.
The blue line denotes mean values of the unknown function λc(|V3|), and
the gray shade describes the 95% confidence interval. The three red triangles
represent three different sampling points.

1.0 1.2 1.4 1.6 1.8 2.0
P

g1

1.0

1.5

2

Q
g1

 

PRS Subspace
Base Point

Fig. 2. PRS certificate testing for X1 = {0.909 ≤ Pg1 ≤ 2.119; 0.852 ≤
Qg1 ≤ 1.988} indicated with black dashed rectangle

We construct the reduced system Jacobian (Jr) and test PRS

certificate and framework for various PV bus subspaces. As

the PRS framework, in Section III, is developed for a general

n-dimensional space vector, the extension to the load bus

subspace is straight forward. We use |Vi| to indicate the node

voltage magnitude at ith bus, while Pgi and Qgi to indicate

real and reactive power output of generator connected to ith

bus. All numerical values are in per unit (pu). A general set

describing a subspace is indicated with X while a set for which

the PRS certificate (Theorem 2) can be satisfied is indicated

with Xc. The values of the small-signal stable base point are

given in Appendix Table II.

First, we discuss the GP learning process in one - dimen-

sional voltage magnitude |V3| state subspace. Figure 1 shows

the learning mechanism for λc as a function of |V3| with three

sampling points shown as red triangles (m = 3). The mean

µm(|V3|) is shown in blue and ± 2 σm(|V3|) is indicated with

gray area covering 95% confidence interval. It is clear that for

|V3| ≥ 1.04, the uncertainty is higher, leading to a larger gray

area for achieving the 95% confidence level. Therefore, it can

be concluded that with a sufficiently large number of sampling

points, the uncertainty in learning λc(x) can be decreased to an

acceptable level. Further, the objective of the PRS framework

is to certify a neighborhood state subspace of a stable base
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2.6 3.0 3.4
P

g2

0.95

1.15

1.35

Q
g2

PRS Subspace
Base Point

Fig. 3. PRS certificate testing for X2 = {2.338 ≤ Pg2 ≤ 3.503; 0.895 ≤
Qg2 ≤ 1.341} indicated with black dashed rectangle

point. It is not tasked to certify or evaluate the stability in

the entire state space. This allows minimizing the uncertainty

values efficiently with less number of sampling points.

For power system stability, the state space with real and

reactive power variables is crucial as they reflect the generator

dynamics impact directly. Further, different generators have

a different level of inertia, thus leading to a different stable

subspace around the base point. To study PRS with real and

reactive power variations, the PRS certificate verification is

done for each generator for different subspace. The Figures

2, 3 and 4 shows results for PRS testing in power subspace

corresponding to generators 1, 2 and 3 respectively. The black

rectangle indicates the region covered by different subspace

set X1, X2 and X3 while the region covered by blue line is

subspace for which µm(x) + 2 σm(x) ≤ 0. All these figures

highlight the difference in the PRS subspace of different

generators. The higher area covered by the blue line in

Figure 2 is indicative of the fact that generator 1 can handle

higher variations in power before leading into instability. As

pm(x, δ) ≮ 0 for sets X1, X2 and X3, we can perform

Subspace-based Search to find a PRS subspace.

The Figure 5 shows two different subspace where PRS

certificate validation is performed in Pg1 − |V1| subspace.

Further, it shows a subspace in blue dash line for which

pm(x, δ) < 0. Therefore, every state point inside the blue

rectangle has a 95% chance of being stable. This PRS subspace

is obtained using Subspace-based Search. Here, we use a

subspace description with rectangular geometry for conveying

the main idea, although any set description can be used with

the proposed PRS framework. Figure 5 also suggests that a

maximum PRS subspace can also be found, which will have

a lesser range in |V1| and higher in Pg1 state dimension. This

result is also indicative of the fact that the PRS subspace

is non-unique, and there exist multiple such subspaces in

state space varying in descriptions. Therefore, Subspace-based

Search can be tasked to find the maximum range in the

dimension which is most uncertain or exhibit larger variations

than other states. This paper is focused on presenting the PRS

framework idea; therefore, such customization is not in scope.

Similar to the result shown in Figure 5, the Table I contains

1.1 1.3 1.5 1.7 1.9
P

g3

0.40

0.60

0.80

Q
g3

PRS Subspace
Base Point

Fig. 4. PRS certificate testing for X3 = {1.143 ≤ Pg3 ≤ 1.914; 0.354 ≤
Qg3 ≤ 0.824} indicated with black dashed rectangle

1 1.5 2
P

g1

1.03

1.038

1.046

|V
1|

 0.80  P
g1

  2.20

P
g1

=1.51, |V
1
|=1.040

1.00  P
g1

  1.94

 1.030  |V
1
|  1.049

Fig. 5. Pg1 − |V1| subspace X such that pm(x, δ) ≮ 0∀x ∈ X with red
line and subspace Xc ( X such that pm(x, δ) < 0∀x ∈ Xc with blue line

the dimensions of different Xc for different variables. We

observed that |V | is the limiting variable and has the least

acceptable variations in comparison to the power subspace.

Here, the objective is again to show that the PRS framework

has been able to obtain meaningful Xc in different dimensions

and variable subspace and Xc is not indicating largest possible

subspace in Table I.

The proposed GP learning method can be used to understand

the behaviour of λc(x). The Figure 6 depicts variations in

µm(x) +
√

βm+1σm(x) in |V2| − |V3| subspace around the

base point. From Theorem 1, it is clear that Figure 6 represents

upper bound of critical eigenvalue with probability 1−δ. This

upper bound, in this subspace, is smooth and an edge near

|V2| = |V3| = 1.05 cross the stability boundary. Further, from

Theorem 1 it can be concluded that if learning uncertainty is

very less i.e. max{σm(x)} ≪ 1 ∀x ∈ X , then even with

higher value of βm+1 the difference between actual λc(x)
and its estimated mean µm(x) will be very small. The Figure

6 indicate one such situation with max {σm(x)} ∼ 10−8.

Therefore, in this situation, the plane shown very closely

represent λc(x).
Time Consumption Report: All simulations in this work

are performed using GPML [46] with MATLAB 2018b on

a machine with Intel Xeon E5-1630v4 having 3.70 GHz clock



6

TABLE I
PRS CERTIFIED SUBSPACE Xc TYPE AND DIMENSIONS IN pu

Space Type Variables Minimum Maximum ∆

|V | Space

3-Dimensional

|V1| 1.032 1.048 0.017

|V2| 1.017 1.033 0.016

|V3| 1.017 1.033 0.016

Pg Space

3-Dimensional

Pg1 1.478 1.554 0.076

Pg2 2.849 2.995 0.146

Pg3 1.486 1.562 0.076

Pg −Qg Space

6-Dimensional

Pg1 1.478 1.554 0.076

Pg2 2.849 2.995 0.146

Pg3 1.486 1.562 0.076

Qg1 1.385 1.457 0.071

Qg2 1.092 1.148 0.056

Qg3 0.576 0.605 0.030

Pg −Qg − |V | Space

9-Dimensional

Pg1 1.478 1.554 0.076

Pg2 2.849 2.995 0.146

Pg3 1.486 1.562 0.076

Qg1 1.385 1.457 0.071

Qg2 1.092 1.148 0.056

Qg3 0.576 0.605 0.030

|V1| 1.035 1.045 0.010

|V2| 1.020 1.030 0.010

|V3| 1.020 1.030 0.010

Fig. 6. Critical eigenvalue (λc) upper bound plane in two-dimensional |V2|−
|V3| subspace with 95% confidence level, with max {σm(x)} ∼ 10−8

speed and 16.0 GB of RAM. It takes approximately 2.3 sec
to obtain results of Figure 6 while PRS certificate is verified

in approximately 2.5 sec in Figure 5. The time consumption

depends on the initial sampling point and can be improved

using better initialization strategies, which are not in the scope

of this work. Further, for higher dimensions and larger data

sets, sparse Gaussian processes [47] can be used for less time

consumption.

V. CONCLUSION

In this paper, we present a novel probabilistic robust small-

signal stability (PRS) framework based on the non-parametric

Gaussian process to learn the behavior of the critical eigen-

value of the reduced Jacobian. In particular, we use GP to

estimate the real-part of the critical eigenvalue by learning

its upper bound and thus assess the system stability. The

robustness of system stability is verified in the state subspace

with a given probability by establishing a PRS certificate. In

case the PRS certificate is not satisfied, we propose Subspace-

based Search and Confidence-based Search to complete PRS

framework. The simulation results on the WSCC network il-

lustrates the performance of the proposed method in certifying

the PRS certificate and learning the critical eigenvalues.

The present work opens up a new dimension in the area

of probabilistic stability assessment of the power system. The

certificate presented here can be applied to larger test systems

and can be further optimized, for example, to be less time-

consuming. The learning of the critical eigenvalue behavior

can provide a refined understanding of the stability under

uncertainty. There also exists a potential for solving problems

to find the largest PRS subspace for a given confidence level.

Based on this work, one can design a general PSSS assessment

method that neither require the pdf of input uncertainty nor

rely on state-specific approximations. These ideas will be

explored further in upcoming works.
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APPENDIX

TABLE II
SMALL-SIGNAL STABLE BASE POINT

Bus Number

1 2 3

Real Power (Pg) 1.515 2.922 1.523

Reactive Power (Qg) 1.421 1.119 0.590

Voltage Magnitude (|V |) 1.040 1.025 1.025
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