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Abstract— We consider an online ad network problem in
which an ad exchange auctions ad slots and intermediaries
called demand side platforms (DSPs) buy these ad slots for
their clients (advertisers). An intermediary represents multiple
advertisers. Different types of ad slots are auctioned by the
ad exchange, e.g., video ad, banner ad etc. We study repeated
posted price auctions for homogeneous and heterogeneous items
when there is an intermediary. In a posted price auction, the
auctioneer sets a fixed reserve price. The buyer can accept the
price and win the ad slot or reject the price.

We analyze the system from the auctioneer’s perspective and
show that the optimal reserve price is dynamic for heteroge-
neous items. We also investigate system from intermediary’s
perspective and devise algorithms for scheduling advertisers.
Often the advertisers have budget constraints and impression
constraints. We formulate a revenue optimization problem at
the intermediary and also consider the problem of scheduling
advertisers with budget and impression constraints. Finally, we
present a numerical study for the single seller and advertiser
model which considers various valuation distributions such as
uniform, exponential and lognormal.

I. INTRODUCTION

In the age of information and internet, users often visit

to different webpages for various goal, for example news

(www.thehindu.com), travel (www.irctc.co.in), etc. The web-

pages generate revenue from having ad display slots on

their page for advertisement. With increasing use of internet,

mobile internet and e-commerce platforms, the online ad

display market has grown significantly in last few years.

The total revenue generated from internet advertising in US

was $107.5 billion for 2018, [1]. The digital advertising

market in India was around $1.3 billion for 2018, [2]. This

is expected to grow further in coming years. Motivated

from these developments, in this paper we study an auction

mechanism for the online ad display market.

Various online content publishers have a large number of

webpages. The objective of these publishers is to maximize

their revenue via displaying ads. Publishers can enter into

contracts with advertisers to display ads in ad slots on

available on their webpages. Another way for publishers

to optimize their revenue from ads is by selling ad slots

using an auction mechanism, instead of fixed contracts with

advertisers. These auctions are conducted at Ad exchanges.

Examples of ad exchanges include Google’s Double Click,

OpenX, Yahoo!’s Right Media, etc.

We now briefly describe how online ad auctions work.

Consider a users arriving at a webpages. The publisher

approaches an ad exchange with ad display slots. Different

advertisers participate in an ad-slot auction held by the ad

Fig. 1. Online ad auction model

exchange. The publisher shares user information (from cook-

ies) with advertisers via the ad exchange. The advertisers that

match the user’s interests, participate in the auction and bid

(maximum willingness to pay) for the ad slot. This bid price

depends on their valuation for the ad slot. The auctioneer

runs the second price auction (SPA) mechanism, where ad

slot is allocated to advertiser with highest bid price and

the winner pays second highest bid price. This auction is

performed in a timescale of milliseconds. Each ad slot is

referred to, as an impression. Online ad auction model is

illustrated in Fig. 1.

Large auctioneers (ad exchanges) may sell billions of

impressions in a day using the SPA mechanism. When the

user clicks on an ad slot, (s)he is sent to the advertiser’s

webpage. The advertiser’s valuation for the ad slot depends

on user’s click-through probability. The goal of the auction-

eer is to maximize its long term revenue thorough optimal

reserve pricing. Whereas the objective of advertisers is to

determine the bid price for each auction such that their long

term revenue is maximized. In [3], different models of ad

exchanges are discussed.

Often advertisers participate in auctions through inter-

mediaries called as demand side platforms (DSPs). This

may be because most of the advertisers have low budget

and might incur additional cost for maintaining their ser-

vices and designing optimal bid strategies. Instead, a DSP

represents the multiple advertisers in online ad auctions.

These advertisers can enter into contracts with DSP for

buying impressions and displaying their ads. Advertisers may

have targeting constraints, budget constraints or impression

constraints. Sometimes, advertisers might prefer some types

of ads over others. For example, one may have preference

for video ads over banner ads. Further, advertisers may have

different willingness to pay for different types of ads. A

DSP can have few hundreds of advertisers. A DSP needs

a policy to schedule these advertisers in online ad auctions,

and, a bidding algorithm that maximizes its total utility while

meeting the requirements of the advertisers. In online ad
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auctions, there can be many DSPs participating in auctions.

This may influence the bid prices in auctions and affect

expected revenue of the auctioneer and the publishers.

In this paper we consider a single seller and buyer (DSP

or a advertiser) model. This is motivated from the ad auction

problem where an advertiser or a DSP participates in large

number of auctions. The SPA mechanism with a single buyer

and seller is called as posted price auction (PPA) mechanism.

In this mechanism, seller sets a reserve price on an item. The

buyer accepts the offer if the reserve price set by auctioneer

is lower than its own valuation, otherwise it rejects the offer.

Repeated auctions with posted price mechanism are referred

to repeated posted price auctions. This is a simplified model

of SPA mechanism.

A. Related work

We now discuss some relevant work on auctions, online

ad auctions and auction with intermediaries. A second price

auction mechanism is first introduced by Vickery in [4],

this is also referred to as Vickery auction. In SPA, there

is a seller and set of potential buyers. Each buyer values a

good differently and is willing to pay a different amount.

Each buyer knows their valuation for the good but does

not know the valuations of other buyers. The seller also

does not know the valuations of buyers. But the seller and

buyers know that their valuation is drawn from a probability

distribution function. This distribution is independent across

the buyers. This model is called as independent private

value (IPV) model. We further consider a symmetric buyer

valuation in which this probability distribution is identical.

The problem of optimal auction design for IPV model is

studied in [5]–[7]. Here, all buyers bid for a good. The

buyer with the highest bid price wins the auction and pays

the second highest bid price. In optimal auction design these

authors studied equilibrium bidding behavior. It is shown that

in equilibrium each buyer’s dominant strategy is to report

true valuation to seller. This is called as dominant strategy

incentive compatible (DSIC) auction. Further, the seller can

optimize revenue by setting an optimal reserve price for SPA

and it is independent of the number of buyers in SPA. For

more details on auctions, see [8].

Recently, repeated SPA has been studied in [9], [10] for

budget constrained online auction problem. Here, it is shown

that the optimal bidding behavior of buyer in equilibrium

is to shade their bid and set the bid price less than their

valuation. The buyers do not report true valuation and hence

this is not DSIC auction. The various issues in online ad

auction, and ad exchanges are mentioned in [3] and author

discusses the perspectives of the ad exchange, the advertiser,

the publisher, and, introduces the role of intermediaries

in the ad network. The role of reserve prices in auction

design using a field experiments are demonstrated in [11]. In

[12], dynamic reserve price based learning is introduced for

unknown value distribution function, in online ad auction,

and, incentive compatible constraints are also studied. A

variant of posted price auction model is investigated in [13]

and randomized auction model is studied.

In the domain of online ad display network, there are a

few works on ad auction with intermediaries (DSPs). This

study has become important due to resource constraints

put in by the advertisers while optimizing the online ad

auction target criteria. In [14], the author studies auctions

with intermediaries, where auctions are run at both the

seller and the intermediary. For auction at the seller, the

intermediaries are buyers and for auctions at intermediaries,

the advertisers are buyers. And, the equilibrium behavior is

studied. A single item auction with competing intermediary

is investigated in [15], [16]. A few variants of auctions with

intermediaries are studied in [17], [18] where the authors

discuss dynamic bidding strategies for budget constrained

advertisers. Dynamic pricing model for real time bidding in

online ad display is studied in [19]. Another direction of

research on auctions with intermediaries is studied in [20],

where authors introduce a multi-bidding concept.

None of the above models consider repeated posted price

auction with an intermediary, and the problem of advertiser-

scheduling faced by the intermediary.

B. Our contributions

In this paper, we study repeated posted price auction

mechanisms for the auction of homogeneous and hetero-

geneous items. We show that the optimal reserve price of

seller is fixed all round of auctions for homogeneous items

and the optimal reserve price of seller for heterogeneous

item is dynamic. Later, we use this insight to study an

online ad auction system with a DSP as an intermediary. We

provide optimization formulation as revenue maximization

and scheduling scheme for the advertisers at the DSP under

impression constraints and budget constraints. We provide

numerical examples for a single seller and advertiser model

for uniform, exponential and lognormal distribution on val-

uation of advertiser. We also illustrate numerical examples

with DSP model.

II. PRELIMINARIES AND MODEL

Consider an online ad auction system with a seller (ad

exchange) and a DSP. The seller has multiple units of K
types of items for sale and he auctions items sequentially1.

Suppose that there are T rounds of auctions. We index the

each round in the sequence by t and t = 1, 2, · · ·T. Ad-

vertisers participate in auctions through the DSP. The seller

uses posted price auction mechanism. The DSP schedules an

advertiser from its set of client advertisers in each round of

auction by accepting the price offered by the seller. The seller

knows the type of the item which is being autioned. The DSP

also has this information ( type of item being auctioned).

Users arrive at various websites sequentially. Different

websites have different types of ads slots available for

display2. Let pk be the probability that item of type k is

1Examples of different types of items include banner ad, video ad, etc.
The ad exchange can observe the types of ads that can be displayed at the
publisher’s site.

2Example: Youtube has video ad slots as well as display banner ad slots,
for the arriving user.



auctioned by seller in auction round t, and
∑K

k=1 pk = 1.
We assume that the type of items auctioned in each round are

independent of the other rounds. Let Xk,t be the indicator

random variable for round t, type k, with 1 ≤ k ≤ K and

1 ≤ t ≤ T. It takes value Xk,t = 1 if item of type k is

auctioned in round t; otherwise Xk,t = 0. Let qt be the

price set by seller in the round t. This price could depend

on type of item. We shall explicitly mention this dependence

of price qt on the type of item whenever necessary.

Suppose that the DSP has a set of N advertisers (clients)

denoted by N = {1, 2, · · · , N}. The advertisers are risk

neutral.

We assume that the seller does not know how much each

advertiser is willing to pay for different types of items. Let

ṽi,k,t be the value estimate of advertiser i for type k item in

round t, i.e., the maximum amount an advertiser is willing

to pay for an item. The seller’s uncertainty about the value

estimate of advertiser’s value is represented by a continuous

probability distribution function over a finite interval. Let

Fi,k be the probability distribution function for advertiser i′s
valuation given that type k item is auctioned.

We now discuss posted price auction mechanism.

A. Posted price auction mechanism

In the standard posted price auction, there is a seller and

a buyer. The buyer’s value estimate v is unknown to the

seller, but he knows the probability distribution of the value

estimate, say, F over [v, v]3. The seller sets a reserve price,

say q and announces it to buyer. If v > q, the buyer accepts

the offer, otherwise the offer is rejected. The revenue of the

seller is q when the offer is accepted; it is 0 otherwise. The

payoff of the buyer is v−q when the offer accepted, and zero

otherwise. This strategy of the buyer is dominant strategy

incentive compatible (DSIC). From the seller’s perspective,

the objective is to optimize the revenue by setting optimal

reserve price. This price is the solution of following problem.

q∗ = argmax
q

q × Pr(v > q) = argmax
q

q(1− F (q)).

Repeated posted price auction (RPPA) mechanism: In

this case there are T rounds of auctions. And each round

follows the PPA mechanism. Now consider RPPA with a

single buyer. Let vt be the valuation of the buyer for round

t; it is drawn from probability distribution F independently

for each round. Let qt be the reserve price set by the seller in

round t. The buyer accepts the offer whenever vt ≥ qt and

rejects it otherwise. The expected revenue of a buyer over T
rounds of auctions is

RB,PPA = E

[
T∑

t=1

(vt − qt)1{qt<vt}

]
. (1)

The strategy of the buyer is DSIC. The seller’s expected

revenue over T rounds of auctions is

RS,PPA = E

[
T∑

t=1

qt1{qt<vt}

]
. (2)

3We need to assume that F is regular; see assumption 1 in [5], [12]

The objective of a seller is to set an optimal reserve price to

maximize (2).

B. DSP’s problem in a repeated posted price auction

We now consider the problem from the perspective of the

DSP. It has N advertisers (clients). Let vk,jt be the valuation

of advertiser jt = i for item of type k in auction t. Suppose

that qk,t be the price set by seller for type k item in round

t. DSP uses algorithm A to schedule one of the advertisers

in each round of auctions. Let {at}Tt=1 be the scheduled

sequence of advertisers according to A and at ∈ N . The

strategy of the DSP is DSIC. The expected revenue of the

DSP under algorithm A over T rounds of auctions is

RA
D,PPA = E

A

[
T∑

t=1

K∑

k=1

(vk,at
− qk,t)Xk,t1{(qk,t<vk,at

)}

]
.

The expected revenue of the seller over T rounds of

auctions when DSP uses scheduling algorithm A is given

by

RA
S,PPA = E

A

[
T∑

t=1

K∑

k=1

qk,tXk,t1{(qk,t<vk,at
)}

]
.

The objective of DSP is to come up with a scheduling

algorithm to meet the criteria of the advertisers. The goal of

the seller is to set the optimal reserve price to maximize its

revenue.

III. ANALYSIS

In this section, we first analyze the repeated posted price

auction mechanism with a single buyer (advertiser). We

derive some properties of RPPAs. Later we study RPPAs

involving a DSP.

A. Repeated posted price auction with single buyer

1) Homogeneous RPPA: In a homogeneous RPPA the

seller auctions identical items in all rounds. We begin with

an example; suppose that the buyer has fixed valuation v
for each PPA (round). The best response of the buyer to

the seller’s reserve price q, is to accept the offer if v > q,
and reject the offer otherwise. In each round of auctions, the

buyer follows this strategy. The total revenue of the buyer

over T rounds is (v − q)T 1{v>q}. The seller’s revenue is

qT 1{v>q}. In this example the buyer does not have incentive

to lie and accept the offer when v < q, because the payoff

is negative and the seller uses fixed reserve price for all

T auctions. This strategy of the buyer is called dominant

strategy incentive compatible (DSIC).

When the buyer’s valuation in each round is drawn from

probability distribution F over [v, v]. Each round is an

independent PPA; hence, the buyer’s strategy is to accept

the offer when current valuation is higher than the reserve

price of the seller. We make the following assumption on

probability distribution function F.
Definition 1 (Assumption): The distribution function F

with density f is regular and
(
v − 1−F (v)

f(v)

)
is strictly

increasing in v over [v, v].



We present the following proposition which is simple variant

of [5].

Proposition 1: In homogeneous RPPA, the seller sets a

single optimal reserve price q∗. The optimal revenue of the

seller over T rounds of auctions is

Tq∗Pr(v > q∗), (3)

and the optimal revenue of the buyer over T rounds of

auction is

TE[(v − q∗)1{v>q∗}]. (4)

Sketch of the proof: In repeated PPA, each round is PPA,

where seller can determine the optimal reserve price and it

has a unique solution because F is regular. Taking derivative

of q(1 − F (q)) with respect to q, and equating it to 0, we

get the optimal reserve price q∗. This is a solution of

q − 1− F (q)

f(q)
= 0. (5)

Buyer accepts PPA with probability Pr(v > q∗). Then,

we obtain optimal revenue of the seller from T rounds of

auctions as Tq∗Pr(v > q∗).
The buyer accepts an offer if value vt drawn from F in

auction t is higher than q∗. The identical items are auctioned

in round. Thus, the optimal revenue of the buyer is TE[(v−
q∗)1{v>q∗}].

2) Heterogeneous RPPA: Here, the seller has different

types of items for auction. In each round one type of item is

auctioned. Both the seller and buyer know the type of item

that is put in for auction. Our objective here is to show that,

in heterogeneous RPPA, the optimal strategy for a seller is

to have dynamic reserve price. To gain insight into this, let

us look at the following example.

Example: Consider a buyer and seller model with two

types of items to be auctioned by the seller. Suppose that

v1 and v2 are valuations of the buyer for these two types

of items; and v1 < v2. In auction t, the item of type i is

auctioned with prob. pi, and 0 < p1, p2 < 1, p1 + p2 = 1.
Now suppose that the seller sets a reserve price q1, for all

T round of auctions and q1 < v1 < v2. The revenue of the

seller over T rounds of auction under reserve price q1 is that

q1T. If seller sets reserve price higher than v2, then clearly

seller’s revenue is 0. If the seller sets the reserve price q2 for

all T and v1 < q2 < v2, then clearly there is no revenue of

the seller from type 1 items auction because reserve price is

higher than valuation but the seller can have revenue from

type 2 item. Thus the revenue of the seller is q2p2T. Now

suppose the seller has a dynamic reserve price such that,

when item of type i is auctioned, the reserve price set is qi,
and q1 < v1 < q2 < v2. Total revenue of the seller under

dynamic reserve price is (p1q1 + p2q2)T. Clearly, we have

(p1q1 + p2q2)T > q2p2T and (p1q1 + p2q2)T > q1T. Thus,

the seller uses dynamic reserve price for multi-type of items.

We now extend this to K-different types of items. Their

valuation is drawn from distribution Fk with density fk over

support [vk, vk] and vk−1 < vk.
Proposition 2: In heterogeneous RPPA, the optimal re-

serve price of the seller is dynamic. The optimal revenue

of a seller using dynamic reserve price over T rounds of

auctions is

T∑

t=1

K∑

k=1

pkq
∗
kPr(vt > q∗k).

Sketch of the proof: In auction t item of type k is

auctioned with probability pk,
∑K

k=1 pk = 1. The buyer has

valuation vt which is drawn from probability distribution Fk

over [vk, vk], given that type k item is auctioned. The optimal

reserve price set by the seller is q∗k which is solution of

qk − 1−Fk(qk)
fk(qk)

= 0. The seller’s revenue conditioned on type

k item is q∗kPrFk
(v > q∗k). For K different type of items,

there are different optimal reserve prices. q∗ = [q∗1 , · · · , q∗K ]
is vector of optimal reserve prices for K type of items. The

optimal revenue from a auctions is

K∑

k=1

pkq
∗
kPrFk

(vt > q∗k).

Thus total revenue over T rounds of auctions is

T∑

t=1

K∑

k=1

pkq
∗
kPrFk

(vt > q∗k).

From the buyer’s perspective, the revenue from auc-

tion t conditioned on the auction of item of type k, is

EFk

[
(vt − q∗k)1{vt>q∗

k
}

]
Therefore, buyer’s total revenue

over T rounds is

T∑

t=1

K∑

k=1

pkEFk

[
(vt − q∗k)1{vt>q∗

k
}

]
.

B. Repeated posted price auction with a DSP

1) Homogeneous RPPA: There is a seller and a DSP. The

seller auctions identical items in each round of auctions.

DSP has N advertisers (clients). We first study the DSP’s

problem of advertiser scheduling, assuming perfect hindsight

of valuation for advertisers. vn,t is the valuation of advertiser

n and q∗ is the reserve price set by the seller. A naive

scheduling scheme based on highest valuation is described

in Algorithm. 1. The advertiser with the highest valuation in

round t is scheduled if it is higher than reserve price q∗. We

denote the allocation matrix as {xn,t}; xn,t = 0 if vn,t < q∗,
for n ∈ N , 1 ≤ t ≤ T and xn,t ∈ {0, 1} if vn,t ≥ q∗, for

n ∈ N , 1 ≤ t ≤ T. If two or more advertisers share the

highest valuation, then one of them is scheduled randomly.

When the valuation of the advertiser vn,t = v for all

1 ≤ t ≤ T and all n ∈ N then advertisers are scheduled

uniform randomly. If v1,t > maxn∈N ,n6=1 vn,t, for all 1 ≤
t ≤ T, then according to Algorithm 1, DSP schedules only

advertiser 1. Algorithm 1 is not a suitable choice for the

DSP as it is not fair; some advertisers are disproportionately

favored. Advertisers often have impression constraints, i.e.,

they want to display their ad for a fixed number of times. To

account for this, we formulate the following problem under



Algorithm 1: DSP Scheduling algorithm for advertisers.

Input: The valuations of the advertisers, vn,t for all

n ∈ N , 1 ≤ t ≤ T and seller’s reserve price q∗.
Output: Allocation matrix xn,t

for 1 ≤ t ≤ T do
vmax,t = maxn∈N vn,t
at = argmaxn∈N vn,t
xn,t = 1 if at = n, & vmax,t ≥ q∗

xn,t = 0 else

end
end

perfect hindsight of valuation of advertiser.

maxx G(x) =
∑T

t=1

∑N

n=1 [(vn,t − q∗)xn,t]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T∑T
t=1

∑N
n=1 xn,t ≤ T∑T

t=1 xn,t ≥ ∆n for n ∈ N
xn,t = 0 if vn,t < q∗, for n ∈ N , 1 ≤ t ≤ T
xn,t ∈ {0, 1} if vn,t ≥ q∗, for n ∈ N , 1 ≤ t ≤ T.

(P1)

Note that problem (P1) is a linear program with integer

constraints. The first constraint is that only an advertiser can

be scheduled, the second is a constraint on the total number

of auctions won by the DSP, the third constraint presents the

demand of impressions from the advertiser, ∆n, we assume

that ∆n < T. Fourth and fifth constraints are on the values

of allocation variable xn,t. The solution of the problem can

be approached using Lagrangian relaxation method. This

provides an upper bound on the solution of problem (P1),

[21, Chapter 10]. One can further relax the integer constraint;

this is the relaxed Lagrangian problem. Then, a subgradient

scheme can be used to update the Lagrangian variable.

We now suppose that the valuations of advertisers are

drawn from identical distribution F with density f and

follow the regularity property. Then, the seller can set optimal

reserve price q∗. Note that this reserve price is fixed for all

the rounds of auctions. The DSP sequentially schedules an

advertiser from the set of advertisers. It solves the following

optimization problem.

maxx
∑T

t=1

∑N

n=1 EF

[
(vn,t − q∗)1{vn,t>q∗}xn,t

]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T
xn,t = 0 with prob. F (q∗) for all n, t
xn,t ∈ {0, 1} with prob. 1− F (q∗) for all n, t

(P2)

In this optimization formulation, the expectation is w.r.t.

distribution F. The first constraint indicates that only one

advertiser can be scheduled in each round. The condition

in the second constraint implies that vn,t < q∗ and hence

xn,t = 0. This occurs with prob. F (q∗). The third condition

implies that vn,t ≥ q∗ and hence xn,t ∈ {0, 1}. This occurs

with prob. 1− F (q∗).

A simple strategy for the DSP would be to schedule the

advertiser with maximum valuation in the current round if

it is higher than optimal reserve price, otherwise reject the

offer of the seller. This allocation mechanism is randomized

because the valuation of each advertiser is drawn according

to F from [v, v]. This is described in Algorithm 2.

Algorithm 2: DSP’s randomized scheduling algorithm

for advertisers.

Input: Seller’s reserve price is q∗.
Output: Allocation matrix xn,t

for 1 ≤ t ≤ T do
Draw vn,t according to F from [v, v]
vmax,t = maxn∈N vn,t
at = argmaxn∈N vn,t
xn,t = 1 if at = n and vmax,t > q∗

xn,t = 0 else
end

The probability of scheduling an advertiser in round t is
given by

Pr(max
n

vn,t > q
∗) = 1− Pr(max

n
vn,t ≤ q

∗)

= 1−
N
∏

n=1

Pr(vn,t ≤ q
∗)

= 1− (F (q∗))N .

The expected number of impressions (auctions) won over

T rounds of auctions is T (1 − (F (q∗))N ). Hence, the

expected number of impressions assigned to an advertiser

is
T (1−(F (q∗))N )

N
.

The advertisers may also have different demands for
impressions. Thus, the DSP may need to consider the fol-
lowing impression constraint optimization problem, where
constraints are on expected impressions.

maxx

∑T
t=1

∑N
n=1 EF

[

(vn,t − q∗)1{vn,t>q∗}xn,t

]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T

EF

[

∑T
t=1 1{vn,t>q∗}xn,t

]

≥ ∆n for n ∈ N
xn,t = 0 with prob. F (q∗) for all n, t
xn,t ∈ {0, 1} with prob. 1− F (q∗) for all n, t.

(P3)

Here, second condition gives the expected demand con-

straints from advertisers. Again, solution to problem (P3)

can be obtained using Lagrangian relaxation approach.

2) Heterogeneous RPPA: We now analyze the DSP’s

advertiser scheduling problem for a heterogeneous RPPA. At

the beginning of each round, the DSP and seller know the

type of item that is put in for auction. Using this information,

the seller sets an optimal reserve price and it is dependent

on type of item.

We assume that DSP has perfect hindsight of valuation

for advertisers. Let vn,k,t be the valuation of advertiser n if

item of type k is auctioned in round t. Let q∗k be the optimal

reserve price for type k item, set by the seller. As before,

we first study a naive scheduling scheme based on highest

valuation; this is given in Algorithm. 3. The advertiser with

the highest valuation in round t is scheduled if its valuation

is higher than reserve price q∗k. If two or more advertisers

share the highest valuation, then one of them is scheduled



Algorithm 3: DSP Scheduling algorithm of heteroge-

neous items for advertisers.

Input: The valuations of the advertisers, vn,k,t for all

n ∈ N , 1 ≤ t ≤ T. and {bt}Tt=1

Output: Allocation matrix xn,t

for 1 ≤ t ≤ T do
Type of item for auction is obsereved, i.e., k
vmax,t = maxn∈N vn,k,t
at = argmaxn∈N vn,t
Seller sets the optimal reserve price bt = q∗k
xn,t = 1 if at = n, & vmax,t ≥ bt
xn,t = 0 else

end
end

randomly. We use {bt}Tt=1 to denote the sequence of the type

of item auctioned; bt ∈ {q∗1 , · · · q∗K}.
The advertisers can have constraints on number of im-

pressions. Also, each advertiser may prefer different types

of items with different frequency. Hence, the DSP considers

the following optimization formulation.

maxx
∑T

t=1

∑N
n=1

∑K
k=1

[

(vn,k,t − bt)xn,t
]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T
∑T

t=1 1{vn,k,t>q∗
k
}xn,t ≥ yn,k for n ∈ N , 1 ≤ t ≤ T

∑T
t=1 xn,t ≥ ∆n for n ∈ N

xn,t = 0 if vn,k,t < bt, for n ∈ N , 1 ≤ t ≤ T
xn,t ∈ {0, 1} if vn,k,t ≥ bt, for n ∈ N , 1 ≤ t ≤ T.

(P4)

Note that all constraints in problem (P4) are similar to

earlier problem (P1), except the second constraint which in-

dicates demands of advertisers for the number of impressions

for different types of items.

We next study heterogeneous RPPA when valuation of the

advertisers is a realization drawn from fixed distributions.

An item of type k is auctioned in slot t with probability

pk. The seller and DSP has knowledge of type of items

at the beginning of every auction. The DSP can schedule

advertisers based on the highest valuation. The probability

of scheduling an advertiser in round t given that type k item

is auctioned, is given by

Pr(max
n

vn,k,t > q∗k | type k item ) = 1− (Fk(q
∗
k))

N .

The expected number of impressions (auctions) won over T
rounds of auctions are T

∑K

k=1 pk(1 − (Fk(q
∗
k))

N ). Hence,

the expected number of impressions assigned to an advertiser

are
T

∑K
k=1

pk(1−(Fk(q
∗
k))

N )

N
.

The advertisers may have an expectation constraint on the

number on impressions. In this case the DSP considers the

following impression constraint optimization problem.

maxx
[

∑T
t=1

∑N
n=1

∑K
k=1 pkEFk

[

(vn,k,t − q∗k)1{vn,k,t>q∗
k
}xn,t

]]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T

EFk

[

∑T
t=1 1{vn,k,t>q∗

k
}xn,t

]

= yn,k for n ∈ N , 1 ≤ t ≤ T
∑T

t=1

∑K
k=1 EFk

[

1{vn,k,t>q∗
k
}xn,t

]

≥ ∆n for n ∈ N

xn,t = 0 with prob.
∑K

k=1 pkFk(q
∗
k) for all n, t

xn,t ∈ {0, 1} with prob. 1−
∑K

k=1 pkFk(q
∗
k)) for all n, t.

(P5)

Here, conditioned on type of item k is auctioned in round

t, xn,t = 0 with prob. Fk(q
∗
k). Hence unconditional this,

xn,t = 0 with prob.
∑K

k=1 pkFk(q
∗
k). Similarly, xn,t ∈ {0, 1}

with prob. 1−∑K

k=1 pkFk(q
∗
k).

IV. BUDGET CONSTRAINED ADVERTISERS

Let us now look at the budget management strategy for

advertiser, i.e., buyer’s perspective in posted price auction.

Here, the seller sets a fixed reserve price, say q. To gain

insight into this, consider a single advertiser and seller model

with posted price mechanism. Let v be the fixed valuation of

advertiser with total budget B and he is interacting with the

seller over T rounds. Let v > q. If total budget B > Tq, then

the advertiser can win all impressions. Suppose that B < Tq,
the advertiser can win a fraction M of impressions from T,
i.e., M = B

q
. A simple strategy of the advertiser could be to

buy the first M impressions out of T. But, this may not be

suitable for an advertiser who wants to display ads uniformly

over T auctions. Hence, the advertiser uses a probabilistic

throttling scheme in which he participates in each round of

auctions with probability ξ, and 0 < ξ < M
T

< 1. This

simple scenario suggests that an advertiser with tight budget

would prefer to participate in auctions selectively.

Now consider a DSP with clients who are budget con-

strained. Let us now look at the problem of budget-

constrained-advertiser scheduling at the DSP in a homo-

geneous RPPA. Also, the advertisers have distinct budget

constraints. Let Bn be the budget of advertiser n. For

simplicity assume that all advertisers have the same valuation

v and this is higher than seller’s reserve price q. And,∑N

n=1 Bn ≤ Tq. The DSP can use probabilistic throttling

scheme in which it schedules advertiser n in each round

with probability 0 < ξn < Bi

q
< 1, and

∑N

n=1 ξn = 1.

For the case where valuation changes for every round,

the DSP considers following budget constrained optimization

problem under perfect hindsight of valuation of advertisers.

maxx
∑T

t=1

∑N

n=1 [(vn,t − q∗)xn,t]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T∑T
t=1 xn,t ≤ Bn

q∗
for n ∈ N

xn,t = 0 if vn,t < q∗, for n ∈ N , 1 ≤ t ≤ T
xn,t ∈ {0, 1} if vn,t ≥ q∗, for n ∈ N , 1 ≤ t ≤ T.

(P6)

Note that in the above formulation, Bn is budget of

advertiser n, and the second constraint indicates the budget

constraint of that advertiser.

Next, suppose that the valuations of advertisers are drawn

from identical distribution F with density f and seller sets



the optimal reserve price q∗. The DSP sequentially sched-

ules budget constrained advertisers by solving the following

optimization problem.

maxx EF

[∑T

t=1

∑N

n=1

[
(vn,t − q∗)1{vn,t>q∗}xn,t

]]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T

EF

[∑T

t=1 1{vn,t>q∗}xn,t

]
≤ Bn

q∗
for n ∈ N

xn,t = 0 with prob. F (q∗) for all n, t
xn,t ∈ {0, 1} with prob. 1− F (q∗) for all n, t

(P7)

Second constraint indicates that the expected budget con-

straint on each advertiser.

In heterogeneous RPPA, single seller and an advertiser

problem is non trivial. The advertiser may have preferences

for different type of items. Hence he would like balance bud-

get for distinct items. This is again constrained optimization

problem. Finally, we consider DSP with budget constrained

advertisers and DSP solves the following budget constrained

optimization problem.

maxx
∑T

t=1

∑K
k=1 pk

∑N
n=1 EFk

[

(vn,k,t − q∗k)1{vn,k,t>q∗
k
}xn,t

]

s.t.
∑N

n=1 xn,t ≤ 1, for 1 ≤ t ≤ T

EFk

[

∑T
t=1 1{vn,k,t>q∗

k
}xn,t

]

≥ yn,k for n ∈ N , 1 ≤ t ≤ T
∑T

t=1

∑K
k=1 pkEFk

[

q∗k1{vn,k,t>q∗
k
}xn,t

]

≤ Bn for n ∈ N

xn,t = 0 with prob.
∑K

k=1 pkF (q∗k) for all n, t

xn,t ∈ {0, 1} with prob.
∑K

k=1 pk(1 − F (q∗k)) for all n, t.
(P8)

We note that in above formulation, second constraint

indicated different demands for different type of items and

the third constraint represent the expected budget constraint.

V. NUMERICAL RESULTS

In this section, we first provide numerical examples for a

single seller and single buyer model. We obtain the optimal

reserve price when the valuation of the buyer is a random

variable with uniform , exponential, and lognormal distribu-

tion. Also, we compute the expected revenue of the buyers

over T rounds of auctions. Next we consider a numerical

example for the DSP under impression constraints. Finally,

we provide simulations for a DSP with multiple budget

constraint advertisers.

• Uniform distribution U [v, v], then cdf is

F (v) =





0 if v < v
v−v

v−v
if v ∈ [v, v)

1 if v > v.

and pdf is

f(v) =

{
1

v−v
if v ∈ [v, v]

0 Otherwise

Then using eqn. (5), we obtain

v −
1− v−v

v−v

1
v−v

= 0.

and hence we can have optimal reserve price q∗ = v
2 .

In the example U [0, 1], optimal reserve price 1/2. From

Eqn. (3) and (4), the expected revenue of a seller is T
4

and expected revenue of a buyer is T
8 .

• Exponential distribution Exp[λ], then cdf is

F (v) = 1− e−λv for v ∈ [0,∞).

and pdf is

f(v) = λe−λv

Then using eqn. (5), we obtain

v − 1− (1− e−λv)

λe−λv
= 0.

and hence we can have optimal reserve price v∗ = 1
λ
.

Then

Pr(v∗ >
1

λ
) = 1− Pr(v∗ ≤ 1

λ
)

= 1−
(

1− e
−λ× 1

λ

)

= 1− 1 + e
−1 = e

−1

Thus the seller’s revenue is T/λe. Buyers expected
revenue is

T

∫ ∞

1/λ

(

x− 1

λ

)

λe
−λx

dx =
T

λe
.

Note that mean of exponential random variable is µ =
1
λ
. This suggest that the higher the mean implies higher

expected revenue for both buyer and seller.

• Lognormal distribution: The cdf with mean µ and

variance σ is

F (v) = Φ

(
ln v − µ

σ

)
,

where Φ is the cumulative distribution function of the

standard normal distribution (i.e. N(0, 1)). The proba-

bility density function is

f(v) =
1

vσ
√
2π

exp

(
− (ln v − µ)2

2σ2

)
.

Then using eqn. (5), we get

v − 1− Φ
(

ln v−µ
σ

)

1

vσ
√
2π

exp
(

− (ln v−µ)2

2σ2

) = 0.

After further simplification we get

1

σ
√
2π

exp

(

− (ln v − µ)2

2σ2

)

− 1 + Φ

(

ln v − µ

σ

)

= 0.

Analytical solution of this equation is difficult to obtain.
We compute the solution using numerical methods
and get the optimal reserve price q∗. Buyers expected
revenue is

T

∫ ∞

q∗
(v − q

∗)
1

σv
√
2π

exp

(

− (ln v − µ)2

2σ2

)

dv.

Seller’s expected revenue is

Tq
∗
(

1− Φ

(

ln v − µ

σ

))

.

It is difficult to write the above expressions in closed

form. Hence, we provide results through numerical



TABLE I

THE OPTIMAL RESERVE PRICE, EXPECTED REVENUE OF SELLER

(SELLER R) AND EXPECTED REVENUE OF BUYER (BUYER R) FOR

DIFFERENT µ.

µ σ q∗ Seller R Buyer R

0 1 1.4 0.5156T 0.7512T
0.25 1 1.8 0.8380T 0.9175T
0.5 1 2.3 1.23T 1.18T
2 1 10.1 9.61T 5.37T

methods, in Table I. From Table I observe that as

mean µ increases, the optimal reserve price of the seller

increases. This means, the sellers expected revenue also

increases. Further, the expected revenue of buyer also

increases with µ.

A. DSP Problem

We present numerical example for RPPA with a DSP, and

use the naive scheduling scheme (see Algorithm 1) when

the valuations of advertisers are known in hindsight. We

use following parameters: number of auctions T = 10000,
N = 5. We use fixed valuation vn,t and generate [[vn,t]]
using lognormal distribution with mean µ = 0 and variance

σ = 1. For different reserve prices q, we provide simula-

tions to illustrate effect of reserve price on the expected

revenue of seller (

∑
T
t=1

q1{maxn vn,t>q}

T
), the expected revenue

of buyers (
∑

T
t=1

(vn,t−q)xn,t

T
),and number of impressions win

(
∑T

t=1 xn,t). The results are summarized in the tables below

The above numerical examples suggests that, setting of

Reserve price q q = 1 q = 2 q = 4
Seller’s revenue 0.9727 1.5104 1.3812

q = 1 q=2 q=4

Adv. Impressions Revenue Imp. Rev Imp. Rev.

1 2004 0.6449 1551 0.4651 707 0.2506
2 1906 0.5951 1484 0.4226 683 0.2137
3 1882 0.5759 1457 0.4060 643 0.2050
4 1950 0.6125 1517 0.4363 735 0.2221
5 1985 0.6239 1543 0.4454 685 0.2316

optimal reserve price by the seller impacts its expected

revenue. High reserve price may lead to low revenue. And,

too low reserve price also leads to low revenue. But by setting

optimal reserve price, a seller can optimize its revenue. As

reserve price of seller increases, the number of impressions

won by DSP for advertiser decreases and also the expected

revenue of advertisers decreases.

More simulation results are provided in [22].

VI. CONCLUDING REMARKS

This paper has studied repeated posted price auction

(RPPA) in online advertising. We considered the problem of

a single seller and an advertiser where items are auctioned

sequentially. This was studied for both homogeneous and

heterogeneous items. We also computed the optimal reserve

price for seller under homogeneous items. We have shown

that for heterogeneous items, the seller’s optimal reserve

price is dynamic. Later, we studied an RPPA involving

a DSP, and devised a simple scheduling scheme under

assumption of hindsight on valuation for repeated auctions.

We also formulated the advertiser scheduling problem of

the DSP when the advertisers have impression and budget

constraints. This was again done for both homogeneous and

heterogeneous items. Finally, we presented some numerical

examples for a single seller and advertiser model with

PPA and considered various valuation distributions such

as uniform, exponential and lognormal. We also provided

numerical examples for a single seller and DSP model with

a naive scheduling scheme based on valuation of advertisers.
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VII. APPENDIX

A. Numerical Example and Extension of Table I

In this, we provide a numerical example of a single seller

and advertiser model with lognormal distribution function for

different values of variance σ. This is given in Table II.

TABLE II

THE OPTIMAL RESERVE PRICE, EXPECTED REVENUE OF SELLER

(SELLER R) AND EXPECTED REVENUE OF BUYER (BUYER R) FOR

DIFFERENT σ.

µ σ q∗ Seller R Buyer R

0 0.25 0.76 0.07T 0.28T
0 0.5 0.78 0.2T 0.41T
0 1 1.36 0.5T 0.73T
0 2 23.2 10.05T 3.57T

We observe that as variance σ increases, expected revenue

of the seller and advertiser increases. Further, the seller’s

expected revenue increase is significantly higher because the

reserve price q∗ increase is steep.

B. Numerical Example of DSP Problem

We here present additional numerical examples with a

single seller and DSP problem. We use the same parame-

ters as in Section V-A. Here, we study a round-robin and

randomized policy for scheduling of advertiser.

In round-robin (RR) policy, DSP selects an advertisers

are selected in round-robin fashion, and are scheduled for

participation in auction if their valuation is higher than the

reserve price. Otherwise they are not scheduled. Numerical

results are presented in Table III and IV. Since, in some

auctions no advertiser is scheduled, advertisers win fewer

number of impressions as compared to given in Sec. V-A.

Here, as the reserve price increases, the expected revenue of

the seller and of the advertisers decreases.

TABLE III

THE SELLER’S REVENUE FOR DIFFERENT RESERVE PRICE WHEN DSP

USES ROUND ROBIN POLICY

Reserve price q q = 1 q = 2 q = 4
Seller’s revenue 0.502 0.4954 0.3324

TABLE IV

ADVERTISER’S REVENUE FOR DIFFERENT RESERVE PRICE WHEN DSP

USES ROUND ROBIN POLICY

q = 1 q=2 q=4

Adv. Impressions Revenue Imp. Rev. Imp. Rev.

1 993 0.1713 499 0.1011 164 0.0440
2 1016 0.1813 483 0.1104 165 0.0524
3 994 0.1748 482 0.1062 154 0.0504
4 1003 0.1787 514 0.1073 175 0.0481
5 1014 0.1825 499 0.1115 173 0.0513

We now study a randomized policy. In this policy, DSP

selects advertisers in uniform random fashion. These ran-

domly selected advertisers are scheduled for participation in

auctions if their valuation is higher than the seller’s reserve

price q. Numerical examples with different reserve price

values are given in Table V and VI. In this policy, if DSP

selects an advertiser whose valuation is smaller than the

reserve price, no advertiser is scheduled in auction. Observe

that as reserve price increases, expected revenues of the seller

and the advertisers decrease.

TABLE V

THE SELLER’S REVENUE FOR DIFFERENT RESERVE PRICE WHEN DSP

USES UNIFORM RANDOMIZED POLICY

Reserve price q q = 1 q = 2 q = 4
Seller’s revenue 0.493 0.482 0.3364

TABLE VI

ADVERTISER’S REVENUE FOR DIFFERENT RESERVE PRICE WHEN DSP

USES UNIFORM RANDOMIZED POLICY

q = 1 q=2 q=4

Adv. Impressions Revenue Imp. Rev Imp. Rev.

1 961 0.183 489 0.1027 160 0.0528
2 1017 0.18 459 0.0846 189 0.0543
3 960 0.17 476 0.1072 134 0.0432
4 948 0.16 480 0.1033 192 0.0577
5 1042 0.185 506 0.1054 166 0.0442

The performance of this policy is very similar to round

robin policy In both these policies, in some fraction of

auctions, selected advertisers are not scheduled because their

valuation is lower than the reserve price.

It is possible that one can modify these policies in the

following manner. The set of advertisers is selected in auction

based on their valuation, i.e., if their valuation is higher than

reserve price. Later, round robin or randomized policy can be

used to select and schedule one advertiser for each round of

auction. Now, it can be expected that the DSP wins more

number of impressions for advertisers. This increases the

expected revenue of both the seller and the advertisers.

C. Impression constraint advertisers at DSP

Using Lagrangian relaxation approach for problem (P1),

we obtain

L(x, λ) =

T∑

t=1

N∑

n=1

(vn,t − q)xn,t +

N∑

n=1

λn

(
T∑

t=1

xn,t −∆n

)
.

Here, λn ≥ 0 is Lagrangian variable associated with demand

of advertiser n. After simplification, we have

L(x, λ) =

T∑

t=1

N∑

n=1

(vn,t + λn − q)xn,t −
N∑

n=1

λn∆n.

We represent the additional constraint as follows.

C =

{
x

∣∣∣∣
N∑

n=1

xn,t ≤ 1, 1 ≤ t ≤ T ;

xn,t ∈ {0, 1} for n ∈ N , 1 ≤ t ≤ T} .



We have following inequality Opt(P1) ≤ maxx∈C L(x, λ)
and Let

h(λ) = max
x∈C

L(x, λ)

= max
x∈C

[
T∑

t=1

N∑

n=1

(vn,t + λn − q)xn,t

]
−

N∑

n=1

λn∆n.

Moreover DSP may schedule nth advertiser if vn,t+λn−q ≥
0, otherwise DSP does not that advertiser. This is because,

for not scheduling, the payoff is zero instead of negative. This

gives us an intuition that, higher demand of nth advertiser

may correspond to higher values of λn. This boosts the

valuation to (vn,t + λn). This introduces aggressive bidding

behavior of advertisers with high demand of impressions and

hence these advertisers are scheduled more frequently than

others.

Note that this is a linear program with integer constraints.

Thus, it is difficult to solve. An approach is to further relax

the integer constraints and consider 0 ≤ xn,t ≤ 1. Intro-

duction of this relaxation increases the size of constraints.

Hence, we can have

C̃ =

{
x

∣∣∣∣
N∑

n=1

xn,t ≤ 1, 1 ≤ t ≤ T ;

0 ≤ xn,t ≤ 1 for n ∈ N , 1 ≤ t ≤ T , } .

and C ⊂ C̃. Then relaxed Lagrangian problem is

hR(λ) = max
x∈C̃

L(x, λ)

= max
x∈C̃

[
T∑

t=1

N∑

n=1

(vn,t + λn − q)xn,t

]
−

N∑

n=1

λn∆n.

Also, h(λ) ≤ hR(λ). Then, Lagrangian dual of the relaxation

of problem (P1) is given by

hR
LD = min

λ≥0
hR(λ).

Note that hR(λ) is piece-wise linear and convex in λ. Then

subgradient algorithm for λ is as follows.

λk+1
n = max

{
0, λk

n + sk

(
T∑

t=1

xn,t(λ
k)−∆n

)}
,

for n = 1, 2, · · · , N. Here, sk is step sizes. The convergence

of subgradient algorithm is obtained for suitably selected

step sizes. More detail on step size selection is given in [21,

Chapter 10, page no. 502].

1) Numerical examples: We next present few numerical

examples with simple heuristic greedy algorithms. In the

first example, we consider the valuation of all advertisers

to be equal and it is constant for all rounds of auctions.

Moreover, this valuation is higher than reserve price q. We

use the following parameters. v = 2.5, q = 1, N =
5 and T = 10000 and demand for impressions ∆ =
[400, 800, 4800, 400, 1600]. Define ξn = ∆n∑

N
n=1

∆n
. Then

ξ = [0.05, 0.1, 0.6, 0.05, 0.2]. We use a greedy algorithm in

TABLE VII

ADVERTISER’S REVENUE WITH FIXED VALUATION v = 2.5, q = 1 AND

IMPRESSION DEMAND

q = 1
Adv. Impressions Revenue

1 485 0.07
2 984 0.15
3 6002 0.91
4 498 0.07
5 2031 0.3

which an advertiser is selected according to their demand,

i.e., advertiser n is selected with prob. ξn. Table VII shows

the expected revenue of seller and the number of impressions

for different advertisers. Expected revenue of the seller is

1. Notice that a simple greedy algorithm at DSP meets the

demands of all advertisers.

TABLE VIII

ADVERTISER’S REVENUE WITH FIXED VALUATION ACCORDING TO

LOGNORMAL DISTRIBUTION FUNCTION AND IMPRESSION DEMAND

q = 1
Adv. Impressions Revenue

1 260 0.04
2 519 0.09
3 2981 0.52
4 235 0.04
5 1000 0.17

In second numerical example, the valuation of advertisers

is fixed and it is drawn according to lognormal distribution

function. In this example, DSP selects advertiser n with prob.

ξn and it is scheduled in auction t if vn,t > q. Otherwise no

advertiser is scheduled in auction t. The expected revenue of

advertisers and number of impressions is given in Table VIII.

The seller’s expected revenue is 0.5. Observe that using this

policy, the impression demands of some advertisers are not

fulfilled.

TABLE IX

ADVERTISER’S REVENUE WITH FIXED VALUATION ACCORDING TO

LOGNORMAL DISTRIBUTION FUNCTION AND IMPRESSION DEMAND:

EXAMPLE-3

q = 1
Adv. Impressions Revenue

1 1024 0.19
2 1607 0.28
3 3749 0.64
4 1036 0.19
5 2317 0.40

In the third example we consider another variant of the

preceding algorithm. Here, advertisers with valuation above

the reserve price are selected. Then, DSP schedules adver-

tisers according to their demand of impressions. The results

are shown in Table IX. Now observe that the impression

demand of all advertisers is fulfilled, except advertiser 3
which is very higher than other advertisers. This simple

variation performs better than the preceding algorithm. Thus,



the expected revenue of advertisers is higher and the expected

revenue of a seller is 0.97.

TABLE X

ADVERTISER’S REVENUE WITH FIXED VALUATION ACCORDING TO

LOGNORMAL DISTRIBUTION FUNCTION AND IMPRESSION DEMAND:

EXAMPLE-4

q = 1
Adv. Impressions Revenue

1 814 0.1557
2 1177 0.1972
3 5046 0.8235
4 810 0.1534
5 1931 0.3342

In our final numerical example, we use the insight de-

veloped from Lagrangian relaxation of the problem. If the

demand of advertiser is high, then the valuation of that

advertiser is boosted by having higher Lagrangian multiplier.

Motivated from this, in this example the valuation of ad-

vertiser 3 is increase marginally for all auctions by adding

λ3 = 0.25 and for other advertisers λn = 0, n 6= 3. Here,

we use the algorithm studied in example 3. This is given

in Table X. The seller’s expected revenue is 0.98. Note that

using this simple variation, DSP can fulfill the impression

demand of all advertisers.
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