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Robotic on-orbit servicing (OOS) is expected to be a key technology and concept for future

sustainable space exploration. This paper develops a novel semi-analytical model for OOS

system analysis, responding to the growing needs and ongoing trend of robotic OOS. An OOS

infrastructure system is considered whose goal is to provide responsive services to the random

failures of a set of customer modular satellites distributed in space (e.g., at the geosynchronous

orbit). The consideredOOS architecture comprises a servicer that travels and providesmodule-

replacement services to the customer satellites, an on-orbit depot to store the spares, and a

series of launch vehicles to replenish the depot. The OOS system performance is analyzed

by evaluating the mean waiting time before service completion for a given failure and its

relationship with the depot capacity. By uniquely leveraging queueing theory and inventory

management methods, the developed semi-analytical model is capable of analyzing the OOS

system performance without relying on computationally costly simulations. The effectiveness

of the proposed model is demonstrated using a case study compared with simulation results.

This paper is expected to provide a critical step to push the research frontier of analytical/semi-

analytical model development for complex space systems design.
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C = on-orbit depot spare capacity, in units of modules

D = spare demand, in units of modules per hour

L = lead time, in units of hours

N = number of customer satellite modules, in units of modules

S = service time, in units of hours

Sinbound = inbound travel time, in units of hours

Soutbound = outbound travel time, in units of hours

Srepair = repair time, in units of hours

Sstockout = extra service time due to stockout, in units of hours

Tl = launch interval, in units of hours

Ts = time until stockout, in units of hours

W = waiting time until service completion, in units of hours

Wq = waiting time in queue, in units of hours

α = mean individual module failure rate, in units of failures per hour

β = mean launch rate, in units of launches per hour

λ = mean system-level spare demand rate, in units of modules per hour

Φ = fill rate

Φreq = fill rate requirement

f· = probability density function

E [·] = expected value

{L ∗ ·} (θ) = Laplace-Stieltjes transform of a function

I. Introduction
Nowadays, there has been increasing interest in developing on-orbit infrastructure systems that enable sustainable

space exploration. Over the last several decades, research and development in autonomous and robotics systems have

significantly raised the technology readiness level of robotic on-orbit servicing (OOS) [1–3]. Engineers envision

space-based servicing infrastructures to provide refueling and repair services or to manufacture large structures directly

in orbit. The recent trend of satellite modularization is also enabling the concepts of “servicing-friendly” spacecraft

that are composed of multiple small structural modules with standardized interface mechanisms [4–7]. These OOS

infrastructure systems and serviceable satellite designs are expected to be game-changing technologies for the satellite

industry [8–12].
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Traditionally, most OOS concepts studied in the literature have assumed a dedicated robotic spacecraft to repair or

refuel the customer satellites [13–15]. The servicer would visit a predefined set of satellites and be discarded once the

mission is over. The advantage of this concept is that the flight path of the servicer can be optimized before launch to

provide the best value to the service operation. However, although such a “disposable" servicer may be a favorable

concept in the near term, it is not a sustainable solution for OOS in the longer term.

Alternatively, a more sustainable concept is to use a permanent reusable servicing infrastructure that responds to

random failures [11, 16]. One example of such a concept would include a servicer replacing defective modules with

new module spares, an on-orbit depot storing the spare modules, and a series of launch vehicles supplying new modules

from Earth to the depot on a regular basis. When a module fails on a satellite, the OOS system dispatches a servicer with

a new spare to that satellite to replace the failed module with the spare. This concept can provide timely and responsive

services to the random failures spontaneously and thus enable sustainable space exploration.

However, despite the potential advantage of a permanent responsive OOS infrastructure system, its design and

operations planning are substantially more complex and challenging compared with the traditional dedicated servicer

concepts. This is because the analysis of a responsive OOS system would need to consider the interactions between the

infrastructure elements as well as the full supply chain of the spare modules, including the queue of the services and the

inventory of the spare depot. We need an efficient model to analyze the design of such a complex OOS system.

In response to this background, we develop a novel semi-analytical model to evaluate the OOS system design

and analysis. Given a set of distributed modular satellites (i.e., customer satellites) with random failure rates, the

proposed model can analyze the performance of the servicing system considering the spares’ supply chain. Specifically,

it can evaluate the mean waiting time before service completion for a given customer satellite failure and its tradeoff

relationship with the depot capacity.

The developed semi-analytical model uniquely leverages queueing theory and inventory management methods.

Queueing theory is the mathematical theory of waiting in lines; it models real-world queueing systems using distributions

of customer arrival, service time, and queue discipline [17]. Inventory management refers to the process of ordering,

storing, and using inventory, such as raw materials, components, and end products; inventory control methods can be

applied to find an order policy that balances inventory cost and demand shortage [18]. Based on these theories, the

developed model for the OOS system contains a set of coupled submodels: (1) a queueing submodel that models the

mean waiting time before service completion for a module failure; and (2) an inventory control submodel that models

the replenishment of the on-orbit depot from the ground. The results from the semi-analytical model are compared with

simulation results for different real-world cases, and the accuracy of the proposed model is demonstrated.

A few remarks need to be made about the value and contribution of the semi-analytical model developed in this

paper. Conventionally, the analysis of space systems with random failures and repairs (e.g., OOS systems) has been

performed using computationally costly discrete-event or agent-based simulations [11, 13, 16, 19–21]. However, as space
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systems become complex, designing and evaluating their performance using only simulations becomes computationally

challenging. While simulations are effective for detailed design, there is a growing need for the development of more

efficient, yet rigorous, analysis methods to enable quick performance evaluation for systems design and trade space

exploration. Although analytical or semi-analytical models have been recently introduced gradually in space systems

design [22, 23], this research direction remains largely unexplored. This paper introduces the first semi-analytical

approach with an integrated queueing and inventory model for complex space systems analysis. The developed approach

enables the evaluation of the OOS system performance without relying on computationally costly simulations, reducing

the computational time from hours down to seconds. The model developed in this paper is expected to be a critical step

in pushing forward this research frontier of analytical/semi-analytical model development for space systems design.

The rest of the paper is organized as follows. Section II discusses the overview of the considered OOS architecture.

Section III explains the main contribution of the work: a semi-analytical model for the OOS system. Section IV assesses

the results from the proposed model using simulations with a realistic application example, and Section V concludes the

paper.

II. Overview of On-Orbit Servicing Infrastructure
This paper considers an OOS architecture to provide module-replacement services to a set of customer satellites

distributed in space (e.g., at the geosynchronous orbit). The customer satellites are modular, where each module can fail

and be replaced independently. The servicing architecture comprises three main components: the servicer, the on-orbit

depot, and the launch vehicles. The on-orbit depot stores modules which are brought to customers by the servicer

when failures (i.e., demand for services) happen. The launch vehicles are used to refill the depot. An illustration of the

considered servicing architecture is shown in Fig. 1.

Fig. 1 Illustration of customer, servicer, and resupply architecture.

The overview of the concept of operations is as follows. The servicer remains docked to the depot while awaiting

a customer satellite module failure. Once a customer satellite module fails, the servicer performs a maneuver to the
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failed module. After the rendezvous and docking with the customer satellite, the servicer performs the repair operation,

defined as the replacement of a failed module with a spare module, and then returns to the depot via another maneuver.

Customers receive services in the order in which they failed. If a failure happens while the servicer is busy, it has to wait

until the servicer becomes available (i.e., completes all the previous services in the queue) to receive the service. The

servicer can only carry one spare module, and thus it must return to the depot to load a new spare and, if needed, refuel

itself prior to the next repair trip. The spare inventory in the depot is monitored regularly, and the launch vehicle visits

the depot for its resupply following a stochastic launch schedule.

III. Semi-Analytical Model
This section provides an overview of the problem statement, the details of the developed model, and the proposed

solution method based on the model.

A. Problem Statement

We develop a novel semi-analytical model to evaluate the OOS system design and analysis without relying on

computationally costly simulations. As the first step, this subsection converts the concept of operations of the considered

OOS system into a mathematical problem.

The overall concept of operations can be expressed in a schematic diagram in Fig. 2. Following the architecture

discussed in Section II, the model contains a set of customer satellite modules operated in orbit; when a failure happens

to a module, it is added to the queue for service operations and is processed on a first-come-first-served (FCFS) basis.

To sustain the service operations, the depot is replenished from the ground regularly. In this study, we consider all

modules to be identical for simplicity, and the failures of each module are assumed to follow a (mutually independent)

Poisson process.

Fig. 2 Schematic representation of the customer satellite modules and servicing architecture.
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The queue for the services needs to be analyzed rigorously to capture both the service time and the waiting time.

The service time is the time during which the servicer is dedicated to a service operation (i.e., from the moment when

the servicer becomes available for a service operation until it returns to the depot upon completion of that service). The

waiting time, on the other hand, is defined as the time that a customer satellite module failure (i.e., demand) has to wait

until it is serviced (i.e., from the moment when a failure happens until its repair service is completed by the servicer).

Mathematically, we can define the service time S and the waiting time W as follows:

S = Sstockout + Soutbound + Srepair + Sinbound (1)

W = Wq + Sstockout + Soutbound + Srepair (2)

where Sstockout is the delay of the service when the depot is found to be out of stock∗; Soutbound and Sinbound are the

outbound and inbound (i.e., return) travel times; Srepair is the repair time; and Wq is the waiting time in the queue.

Here, Soutbound and Sinbound can be found from the (known) distribution of the positions of the customer satellites; these

times can also include the time for the operations needed before and/or after each repair trip (e.g., loading a new spare,

refueling). Srepair is assumed to be a fixed value in this paper but can be varied if needed. The evaluation of the remaining

terms requires an integrated queueing and inventory control analysis; Sstockout is an output from the inventory control

analysis, and Wq is an output from the queueing analysis. Note that Wq depends on the service times of all the previous

repairs in the queue, and the length of the queue itself is also probabilistic. This coupled relationship makes the problem

challenging.

The considered inventory control strategy of the depot can be modeled as a modified version of the order-up-to

policy [24]. Namely, over every exponentially distributed time interval Tl ∼ ε(β), we review the inventory and order

C − (I + I ′) units from the ground, where C is the capacity of the depot, I is the current inventory level, and I ′ is the

replenishment on the way (i.e., orders being processed). Here, the inventory level I is defined as the number of units

physically in stock minus the number of backorders, where the backorders are used to track the unmet demand due to

stockout so that it can be delivered at subsequent opportunities. The review frequency is driven by the launch frequency

of the rocket with a mean launch rate β. The exponential distribution for the launch interval has been shown to be a

good approximation; see Appendix of Ref. [22]. A constant lead time L is added between the review opportunity and

the actual delivery of the spares in order to account for the processing of the order, the manufacturing of the units, the

loading of the units onto the rocket, and the flight time to the depot. Fig. 3 summarizes the considered inventory control

policy.

A key consideration for the inventory performance is the fill rate Φ, representing the percentage of the spare demand
∗Technically speaking, Sstockout is not a service time, but we consider it as part of the service time so that the queueing and inventory control

methods can be coupled naturally.
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Fig. 3 Order-up-to policy for the depot inventory control.

that is met without stockout. We assume that we are given a fill rate requirement Φreq (typically close to one), and our

goal is to analyze the mean waiting time E [W] and the depot capacity C. The tradeoff between E [W] and C corresponds

to a cost-performance tradeoff. We prefer a low-cost and high-performance OOS system, which can be interpreted as a

system with a small C and a small E [W]; however, as shown later, a smaller C typically indicates a larger E [W], and

thus the tradeoff between these two needs to be considered. Particularly, we are interested in the behavior of E [W] vs.

C around the knee region of the curve†, which represents the depot capacity C above which little additional saving is

expected in the mean waiting time E [W]. In practice, this indicates the solution point beyond which it is not worth

investing more on expanding the depot capacity considering the small performance gain (i.e., waiting time reduction);

the definition of that exact solution would depend on the cost model for the depot and the (monetary) penalty model for

the waiting time, both of which are application-dependent. In this paper, instead, we aim to develop a general method to

efficiently evaluate the solutions around that knee region rather than specifying the exact point. This concept is shown in

Fig. 4. Note that this knee region corresponds to where Φreq is close to one; therefore, in later numerical examples, we

particularly focus on the solutions around Φreq = 0.95 or above, which is true for a realistic reliable OOS system.

B. Proposed Model

This subsection introduces the proposed model to analyze the performance of the OOS system. The developed

model leverages queueing theory and inventory control methods; the integrated queueing and inventory model is
†There are multiple definitions of the knee point/region in the multi-objective optimization literature [25, 26]; in this paper, we use the concept of

"the knee of the curve" to represent the region around the point of diminishing returns.
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Fig. 4 Solutions around the knee region of the curve of mean waiting time vs. depot capacity

summarized in Fig. 5. The inputs to the model include the probability distributions of the travel and repair times

( fSoutbound, fSrepair, fSinbound ), the individual module failure rate α, the number of modules N , the length of lead time L, the

mean launch rate β, and the required fill rate Φ. The integrated queueing and inventory control model takes those inputs

and derives the mean waiting time E [W] and the depot capacity C. The queueing and the inventory control submodels

interact as follows: the queueing submodel generates the spare demand (i.e., module failure) distribution fD , which

is fed into the inventory control submodel to calculate the probability distribution of the extra servicing time due to

stockout fSstockout ; this distribution is fed back into the queueing submodel. Since it is difficult to analytically handle

the spare demand distribution fD due to its state-dependent nature, we approximate this by a Poisson process with the

corresponding mean demand rate λ. In this way, fD can be characterized using only λ, which is part of the output from

the queueing submodel. (Note that this value is not just the consolidation of the individual module failure rate α because

the system failure rate is state-dependent; see Section III.B.1.) This approximation is demonstrated to perform well in

later numerical simulations.

Fig. 5 Integrated queueing and inventory model for the OOS system.

The following subsubsections introduce the details of the queueing submodel and inventory control submodel in the
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integrated model as well as their mathematical coupling.

1. Queueing Submodel

The queueing part of the OOS problem can be modeled using a finite-source queue. A finite-source queue represents

the case where the number of customer satellite modules is finite. Consequently, as the number of failed modules

increases, the number of active modules decreases, thus decreasing the system-level failure rate. This fact makes the

failure rate state-dependent (i.e., the failure rate depends on the number of active modules), and thus makes the problem

challenging.

Using Kendall’s notation [27, 28], the considered queue is written as M/G/1/N/N (or M/G/1//N depending on

the literature [29]). The meaning of each letter is as follows:

• M: The arrival process is Markovian (Poisson process).

• G: The service time distribution is general.

• 1: The number of servicers is one.

• N: The number of failures allowed in the queue is N .

• N: The size of the source population is N .

The general solution for the M/G/1/N/N queue can be found using the Laplace-Stieltjes transform of the service

time distribution. Denoting the Laplace-Stieltjes transform of a function f as {L ∗ f } (θ), the mean spare demand rate

λ becomes:

λ =
1 − P0
E [S] (3)

where

P0 =

[
1 + NE [S]α

N−1∑
n=0

(
N − 1

n

)
Bn

]−1

(4)

Bn =


1 if n = 0∏n

i=1

(
1−{L∗ fS }(iα)
{L∗ fS }(iα)

)
if n = 1, 2, ..., N − 1

(5)

The mean waiting time E [W] is:

E [W] = N
λ
− 1
α
− E [Sinbound] (6)

The derivation of the above equations can be found in Refs. [30] and [31]‡. Here, the mean and the probability

distribution of the service time, E [S] and fS , can be found using Eq. (1), where the distributions of Soutbound, Srepair, and

Sinbound are known and the distribution of Sstockout can be found using the inventory analysis (see Eq. (12)). Also, λ in
‡The last term of Eq. (6) (i.e., the subtraction of E [Sinbound]) is added to accommodate our definition of the waiting time.
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Eq. (3) is used to generate the demand distribution fD with a Poisson assumption as discussed above:

fD(i; λ, t) =
λitie−λt

i!
(7)

This fD is then fed into the inventory control analysis.

Note that an implicit assumption for this queueing analysis is that, since the servicer’s return travel time Sinbound is

included as part of the service time, the replaced module does not resume normal operation (i.e., module failure process

does not restart) until the servicer returns to the depot after its service. This approximation is reasonable in practice

especially when the module’s mean time between failures (MTBF) is sufficiently long, as demonstrated in the later

comparison with simulations.

2. Inventory Control Submodel

The inventory control analysis for the OOS problem contains two parts: finding C given Φreq and finding fSstockout .

For the order-up-to policy [24], the fill rate Φ is defined as follows:

Φ = 1 −
∫ ∞
0

∑∞
i=1 max(0, i − C) fD(i; λ, t + L) fTl (t; β)dt∫ ∞

0
∑∞

i=1 i fD(i; λ, t) fTl (t; β)dt

= 1 − β

λ

∫ ∞

0

∞∑
i=1

max(0, i − C) fD(i; λ, t + L) fTl (t; β)dt

(8)

where the exponential launch interval distribution is as follows:

fTl (t; β) = βe−βt (9)

and the demand distribution fD can be found in Eq. (7). The numerator of the second term in Eq. (8) is the expected

backorder over a launch interval and a lead time, whereas the denominator is the expected demand over a launch

interval. The reason why the numerator considers both the launch interval and the lead time (instead of only the launch

interval) can be intuitively explained with the following example. Consider a case where an order is made at a point

when the inventory level is I units, and there is no other replenishment order on the way. In this case, the order would be

delivered after L time steps when the inventory level is I − IL units, where IL is the additional units of demand during

the lead time L. Because the order only delivers C − I units using the information when the order was made, the actual

inventory right after the replenishment delivery is (I − IL) + (C − I) = C − IL instead of the full capacity C. Therefore,

a stockout (and thus a backorder) happens when the demand between this delivery and the next delivery (i.e., over one

launch interval), denoted as II, exceeds C − IL; this corresponds to when the summation of the demand over an interval

(II) and the demand over the lead time (IL) exceeds C. This explains why the fill rate computation needs to take into
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consideration the backorder over both the launch interval and the lead time. For a more rigorous derivation of the fill

rate expression in Eq. (8), see Ref. [24].

A closed-form expression for Φ (Eq. (8)) can be derived as follows:

Φ = 1 − β

λ

∫ ∞

0

∞∑
i=1

max(0, i − C) fD(i; λ, t + L) fTl (t; β)dt

= 1 − β

λ

∫ ∞

0

∞∑
i=1

iβe−βt
λC+i(t + L)C+ie−λ(t+L)

(C + i)! dt

= 1 − β

λ

e−λL
(

λ

β + λ

)C
λ

β

C∑
j=0

{(β + λ)L} j

j!
+ Lλ

1 − e−λL
C−1∑
j=0

(λL)j
j!

 +
(
λ

β
− C

) 1 − e−λL
C∑
j=0

(λL)j
j!




This expression allows us to evaluate the fill rate Φ given a depot capacity C. With this expression, we can find the

minimum C that satisfies a given fill rate requirement Φreq:

min C (10)

s.t. Φ ≥ Φreq (11)

Since Φ is a monotonically increasing function of C, the solution to this problem can be found simply by iteratively

incrementing C until Φ ≥ Φreq is satisfied.

Using the depot capacity C, we can derive the expression for the additional service time due to stockout Sstockout,

which is then fed back to the queueing analysis. Sstockout corresponds to the extra "service" time that the first repair

finding the depot to be out of stock needs to wait before the servicer can depart for the repair service. The impact of this

extra service time then propagates to the remaining repairs through their waiting times in the queue Wq . To derive the

expression for Sstockout, we consider the following two cases. If the time it takes to have C + 1 units of demand (i.e.,

failures), denoted as Ts, is the same or longer than the sum of the launch interval and the lead time (Tl + L), then no extra

service time is added to the repairs in that interval. If that is not the case (Tl + L > Ts), then we add an extra service time

Sstockout corresponding to Tl + L −Ts to the first unit of repair demand that finds the depot to be out of stock. Considering

that only one out of λ 1
β units of repair demand on average in each launch interval can potentially be affected, Sstockout

can be written as follows:

Sstockout =


max(Tl + L − Ts, 0) with p = β

λ

0 with p = 1 − β
λ

(12)

where Tl and Ts themselves are also random variables following the probability density functions fTl (t; β) and

fTs (t; λ,C + 1), respectively. fTl (t; β) can be found using Eq. (9), and fTs (t; λ,C + 1) can be expressed with an Erlang
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distribution because of the Poisson demand approximation:

fTs (t; λ,C + 1) = λC+1tCe−λt

C!
= fD(C; λ, t)λ (13)

Note that this is a conservative approximation; in reality, Sstockout can be shorter because the impact of stockout does not

take effect until all the ongoing repairs in the queue with the in-stock spares are completed.

One comment about the assumption behind the inventory control submodel needs to be added: the considered

model does not have an upper limit on the number of units a rocket can carry even when there are a large number of

backorders; although we have a rocket capacity constraint in reality, this assumption is reasonable when the solutions

are near the knee region, where a stockout happens rarely. In later simulations, a rocket capacity constraint up to C units

is enforced, and the proposed model is demonstrated to approximate the simulation results well nevertheless.

3. Coupling between the Queueing and Inventory Control Submodels

We next look at how the queueing submodel and the inventory control submodel are mathematically coupled.

First, we consider the queueing submodel and derive the expressions for λ and E [W] for a given distribution of

Sstockout. Examining Eqs. (3)-(6), we can see that the only complication for this process is obtaining the expressions for

E [S] and {L ∗ fS} (θ). E [S] can be expressed as:

E [S] = E [Sstockout] + E [Soutbound] + E
[
Srepair

]
+ E [Sinbound] (14)

Similarly, leveraging the convolution theorem for the Laplace-Stieltjes transform, {L ∗ fS} (θ) can be expressed as:

{L ∗ fS} (θ) =
{
L ∗ fSstockout

}
(θ)

{
L ∗ fSoutbound

}
(θ)

{
L ∗ fSrepair

}
(θ)

{
L ∗ fSinbound

}
(θ) (15)

The terms for Soutbound, Srepair, and Sinbound in Eqs. (14)-(15) can be derived using orbital mechanics; deriving this

analytical expression is trivial because we know the exact locations of the customer satellites. Thus, if we are given the

closed-form expressions for E [Sstockout] and
{
L ∗ fSstockout

}
(θ) from the inventory control submodel, λ and E [W] can be

found analytically.

Next, we examine the terms for Sstockout in Eqs. (14)-(15), E [Sstockout] and
{
L ∗ fSstockout

}
(θ), through the inventory

control submodel. These terms can be analytically expressed using C (obtained from Eqs. (10)-(11)) and λ. We first

derive
{
L ∗ fSstockout

}
(θ) and use that to find E[Sstockout].

{
L ∗ fSstockout

}
(θ) = β

λ

{
L ∗ fmax(Tl+L−Ts,0)

}
(θ) +

(
1 − β

λ

)
(16)
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Focusing on
{
L ∗ fmax(Tl+L−Ts,0)

}
(θ),

{
L ∗ fmax(Tl+L−Ts,0)

}
(θ)

=

∫ ∞

0

(∫ tl+L

0
e−θ(tl+L−ts)βe−βtl

λC+1tCs e−λts

C!
dts

)
dtl +

∫ ∞

0

(∫ ∞

tl+L
βe−βtl

λC+1tCs e−λts

C!
dts

)
dtl

=
β

β + θ

(
λ

λ − θ

)C+1
e−θL

[
1 −

C∑
n=0

e−(λ−θ)L
(β + θ)(λ − θ)n
(β + λ)n+1

n∑
i=0

{(β + λ)L}i

i!

]
+

C∑
n=0

e−λL
βλn

(β + λ)n+1

n∑
i=0

{(β + λ)L}i

i!

(17)

Thus, we have obtained a closed-form expression for
{
L ∗ fSstockout

}
(θ). Using

{
L ∗ fSstockout

}
(θ), E[Sstockout] can be

found as follows:

E[Sstockout]

= − d
dθ

{
L ∗ fSstockout

}
(θ)|θ=0

=
β

λ

[
L +

1
β
− C + 1

λ
+

C∑
n=0
(C + 1 − n)e−λL βλn−1

(β + λ)n+1

n∑
i=0

{(β + λ)L}i

i!

]
(18)

As we can see in the resulting expressions, the terms needed for the expressions of λ and E [W] depend on the

distribution of Sstockout (i.e., through the queueing analysis), and this distribution of Sstockout depends on λ (i.e., through

the inventory control analysis). Therefore, this system of equations needs to be solved concurrently§.

C. Solution Method

With the proposed coupled queueing and inventory control submodels, our goal is to find the solution of the mean

waiting time E [W] and the depot capacity C for a given fill rate requirement Φreq that is close to one (i.e., around the

knee region of the E [W] vs. C curve). The coupled equations for these two submodels generally cannot be solved fully

analytically; a standard numerical solver such as the fsolve function in MATLAB can be leveraged. The solution of

these coupled equations enables us to find both E [W] (i.e., from the queueing analysis) and C (i.e., from the inventory

analysis) for a given Φreq.

The performance of solving a set of coupled equations depends on the initial value. As the initial value for solving

our problem, we propose to use the no-stockout case, i.e., by setting Sstockout = 0. In this case, fSstockout is not needed for

the queueing analysis, and therefore the loop between the queueing and inventory control submodels is decoupled. Thus,

we can independently find the mean waiting time E [W] and mean demand rate λ via Eqs. (3)-(6). For highly reliable

realistic OOS applications (i.e., Φreq ≈ 1), this solution is expected to be close from the true solution, and thus serves as
§A comment on the practical implementation: some terms in the derived equations can span many orders of magnitude (e.g., the first term of

Eq. (17)), which can potentially cause numerical instability. One technique to avoid such an issue is to implement the multiplications in those terms as
additions in the log-domain.

13



a good initial value for the fsolve function.

IV. Application Example
This section applies the proposed method to an example case with realistic parameters and assesses the accuracy of

the proposed model with simulations. The considered example case contains 10 customer satellites with 5 modules each

that are evenly distributed over the geosynchronous orbit, and the depot is collocated with one of these satellites. The

outbound and inbound travel times are computed based on the phasing maneuver between the depot and the satellite

with the failed module, and the operations needed between each repair trip (e.g., loading a new spare, refueling) are

assumed to be near-instantaneous¶. See Appendix for the specific phasing maneuver strategy chosen in this example.

The values of the key parameters are listed in Table 1. Three cases for the module MTBF are considered.

Table 1 Simulation Parameters. MTBF stands for the mean time between failures.

Parameter Value
Repair time Srepair 4 hours
Launch lead time L 2160 hours
Mean launch interval 1/β 1213.4 hours
MTBF per module 1/α 20000, 10000, 4000 hours

For the considered application case, the developed semi-analytical model is used to derive the mean waiting time

vs. depot capacity curve‖. To assess the accuracy of the proposed semi-analytical model, we use the depot capacity

derived from the analysis and evaluate the corresponding waiting time of the system via simulations; the mean waiting

time results from the simulations are compared with those from the semi-analytical model. For each given set of the

MTBF and the depot capacity, 500 simulation runs are performed over a time horizon of 200000 hours (i.e., ∼ 22.8

years). The simulation methods used in this paper are based on Ref. [16]. As discussed previously, to reflect the

reality, the simulations enforce a rocket capacity constraint that prevents the replenishment rocket from delivering

more units than the depot capacity even when there are backorders. We evaluate the cases with fill rate requirements

Φreq = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999, and expect the proposed model to perform well (i.e., approximate the

simulation results accurately) when Φreq is close to one.

The results of the semi-analytical model and the simulations are shown in Figs. 6-8. For the simulation results,

the averaged waiting times over the time horizon for each 200000-hour run are evaluated for the corresponding depot

capacities and are shown as individual black dots in Figs. 6-8; additionally, their means over the 500 simulations for

each depot capacity are connected by a black solid line. The semi-analytical results for each fill rate are shown as
¶The spare loading and refueling operations are assumed as near-instantaneous while the repair operations are not because the former are

generally routine operations with a cooperative target (i.e., depot), whereas the latter include additional dedicated and involved operations with a
non-cooperative target (i.e., failed customer satellites). This assumption can be easily relaxed by including additional corresponding service times.

‖For this illustrative example, the fsolve function in MATLAB is used with the function tolerance of 10−4, the optimality tolerance of 10−4, and
the step tolerance of 10−4.
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crosses connected by a blue dashed line in Figs. 6-8. In addition, we derive the mean waiting time with no stockout (i.e.,

infinite capacity), shown as a horizontal red dash-dot line in Figs. 6-8.

Fig. 6 Mean waiting time vs. depot capacity for mean time between failure = 20000 hours. The cases with
various fill rate requirements Φreq = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 are shown (from left to right) as crosses.
The no-stockout case is also shown for reference.

Fig. 7 Mean waiting time vs. depot capacity for mean time between failure = 10000 hours. The cases with
various fill rate requirements Φreq = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 are shown (from left to right) as crosses.
The no-stockout case is also shown for reference.
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Fig. 8 Mean waiting time vs. depot capacity for mean time between failure = 4000 hours. The cases with
various fill rate requirements Φreq = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 are shown (from left to right) as crosses.
The no-stockout case is also shown for reference.

The quantitative comparison of the results from the model and simulations is also shown in Table 2. Note that the

error between the model and the simulations is caused by both the approximation made in the model and the randomness

in the simulations due to the finite number of runs.

From the results, we can observe that the proposed method explores the relationship between the mean waiting time

and the depot capacity around the knee region. Its evaluation of the mean waiting time achieves an accuracy of < 5%

when Φreq ≥ 0.95. Note that, in practice, the OOS system would be designed to have a high fill rate (i.e. Φreq ≥ 0.95) in

order to achieve reasonable waiting times for service; therefore, the approximation in the developed model serves a

purpose. Additionally, we can also observe that the no-stockout solution serves as an optimistic lower bound on the

mean waiting time. This no-stockout case corresponds to an ideal OOS system with infinite depot capacity and can be

used as a first-order approximation of the mean waiting time. Overall, the results demonstrate the accuracy and utility of

the proposed semi-analytical model for the considered OOS application.

One benefit of the proposed model is that it does not require computationally costly simulations for evaluation. For

the considered example, the simulations take more than 15 hours to complete the evaluation of all cases with Python 3.6,

whereas the semi-analytical model only takes approximately 5 seconds in total with MATLAB R2019a∗∗. Although the

exact computational time depends on the implementation details, the substantial computational cost saving provided by

the developed model is evident. The developed model provides an efficient high-level design analysis and optimization
∗∗All tests were performed on an Intel Core i7-8650U CPU @ 1.90GHz platform with 16GB RAM.
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Table 2 Comparison between the semi-analytical results Wsemi-analytical and the simulation results Wsimulation.
The no-stockout mean waiting time is also included for reference. The error in E [W] is evaluated as�� (E [

Wsemi-analytical
]
− E [Wsimulation]

)
/E [Wsimulation]

��.
MTBF, hours Φreq C E

[
Wsemi-analytical

]
hours E [Wsimulation], hours Error in E [W]

20000

0.8 12 306.1 406.4 24.7%
0.85 13 232.1 278.5 16.7%
0.9 15 140.5 151.9 7.5%
0.95 17 91.5 94.2 2.9%
0.99 23 41.3 42.1 2.0%
0.995 25 36.6 36.6 0.0%
0.999 31 31.6 31.4 0.8%

no-stockout – 30.5 – –

10000

0.8 22 330.1 437.9 24.6%
0.85 24 245.7 315.9 22.2%
0.9 27 171.3 185.0 7.4%
0.95 32 96.6 96.0 0.5%
0.99 42 48.4 47.5 1.8%
0.995 47 41.4 40.9 1.4%
0.999 57 36.8 36.5 0.6%

no-stockout – 35.5 – –

4000

0.8 48 449.4 603.9 25.6%
0.85 54 323.5 399.9 19.1%
0.9 61 233.6 271.6 14.0%
0.95 73 143.4 149.7 4.2%
0.99 98 81.7 81.0 0.9%
0.995 109 73.5 72.9 0.8%
0.999 134 67.2 68.8 2.3%

no-stockout – 65.8 – –

method with sufficient accuracy for early-stage systems design, complementing the existing costly simulation techniques

for detailed design.

V. Conclusion
This paper develops a novel semi-analytical model for OOS system analysis based on queueing theory and inventory

management methods. We consider an OOS system that provides responsive services to the random failures of a

number of modular customer satellites in orbit. The considered OOS architecture comprises a servicer that provides

module-replacement services to the customer satellites, an on-orbit depot that stores the spare modules, and a series of

launch vehicles to refill the depot. The developed model is capable of analyzing the queue of the service operations as

well as the logistics of the spares, evaluating the mean waiting time before service completion for a given failure and its

relationship with the depot capacity. The case study shows that the results from the semi-analytical model approximate
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the solution well without computationally costly simulations.

Although this paper uses a simple OOS application case to demonstrate the value of the developed model, the

developed general approach can be applied to more complex OOS problems with reasonable modifications. Possible

extensions include: (1) employing a servicer that can carry multiple spares (i.e., servicing multiple customers in

one trip); (2) considering multiple types of spares, repair operations, or even servicer spacecraft; and (3) applying

alternative inventory control policies for the depot. We expect that this paper opens up a broad range of applications of

semi-analytical models to OOS system design.
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Appendix: Assumption on Phasing Maneuver in the Application Example
This appendix summarizes the assumption on the phasing maneuvers at the geosynchronous orbit used in the

example in this paper. Note that although this particular maneuver strategy is chosen as an example, the proposed

method is compatible with other maneuver strategies as well.

The travel time for each phasing maneuver over an angular separation ∆Θ (defined as the initial phasing angle of the

servicer with respect to the target) at a circular orbit of radius rtarget (∼ 42160 km in the case of the geosynchronous

orbit) is determined in the following way. We first define two integer parameters k1 ≥ 1 and k2 ≥ 0, where k1 is the

number of orbits the servicer travels in the phasing orbit and k2 is the number of orbits the target travels in its circular

orbit before the rendezvous. Using the definition of k2, the travel time can be expressed as:

ttravel = (∆Θ + 2πk2)

√
r3
target

GME
(19)

where G is the universal gravitational constant and ME is the mass of the Earth. Furthermore, using the definition of k1,

we can find the relationship between the travel time and the semimajor axis of the phasing orbit a:

ttravel = 2πk1

√
a3

GME
(20)
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Combining Eqs. (19)-(20) to an expression for a using k1 and k2:

a =
(
∆Θ + 2πk2

2πk1

) 2
3

rtarget (21)

In the considered example, the values of k1 and k2 are chosen so that they minimize the travel time while satisfying

the following requirement:

a ≥
rtarget + RE + hcrit

2
(22)

where RE is the radius of the Earth, and hcrit is the minimum altitude for the phasing orbit. In the numerical example,

hcrit = 10000 km is used. This minimum altitude is applied to ensure minimum interference of the servicer with the

environment at lower orbits (e.g., atmospheric drag, orbital debris, other satellites). Note that the minimum travel time

indicates the minimum feasible k2 according to Eq. (19); therefore, our goal is equivalent to finding the minimum

possible integer k2 ≥ 0 that yields a feasible integer k1 ≥ 1 with respect to the constraint in Eq. (22). Such a solution

can be found by using a simple iterative process.
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