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Abstract—To understand the emergence and sustainment of
cooperative behavior in interacting collectives, we perform global
convergence analysis for replicator dynamics of a large, well-
mixed population of individuals playing a repeated snowdrift
game with four typical strategies, which are always cooperate
(ALLC), tit-for-tat (TFT), suspicious tit-for-tat (STFT) and al-
ways defect (ALLD). The dynamical model is a three-dimensional
ODE system that is parameterized by the payoffs of the base
game. Instead of routine searches for evolutionarily stable strate-
gies and sets, we expand our analysis to determining the asymp-
totic behavior of solution trajectories starting from any initial
state, and in particular show that for the full range of payoffs,
every trajectory of the system converges to an equilibrium point.
What enables us to achieve such comprehensive results is studying
the dynamics of two ratios

¯
of the state variables, each of which

either monotonically increases or decreases in the half-spaces
separated by their corresponding planes. The convergence results
highlight three findings that are of particular importance for
understanding the cooperation mechanisms among self-interested
agents playing repeated snowdrift games. First, the inclusion of
TFT- and STFT-players, the two types of conditional strategy
players in the game, increases the share of cooperators of the
overall population compared to the situation when the population
consists of only ALLC- and ALLD-players. This confirms findings
in biology and sociology that reciprocity may promote coopera-
tion in social collective actions, such as reducing traffic jams and
division of labors, where each individual may gain more to play
the opposite of what her opponent chooses. Second, surprisingly
enough, regardless of the payoffs, there always exists a set of
initial conditions under which ALLC players do not vanish in
the long run, which does not hold for all the other three types of
players. So an ALLC-player, although perceived as the one that
can be easily taken advantage of in snowdrift games, has certain
endurance in the long run. Third, the parametric framework
makes it possible to actually control the final population shares,
a challenging topic in population dynamics, by tuning the payoffs
of the base game.

I. INTRODUCTION

Game theory provides a framework for studying various
control problems such as robust control, distributed control and
optimization for traffic systems, communication networks and
multi-agent systems in general; in this context, the different
types of games that have been modeled and analyzed in the
literature include potential games [1]–[5], stochastic games
[6]–[8], constrained games [9], repeated games [10], [11],
matrix games [12], networked games [13], and others [14]–
[20]. More recently, evolutionary game theory has gained more
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attention since it is a powerful tool in understanding the evo-
lution of cooperation among selfish individuals as reported by
biologists, sociologists, economists, etc [21]–[26]. Researchers
have found that network topology [27], phenotypic interactions
[28], [29], punishment [30], population heterogeneity [31], as
well as other components in game setups can all affect the
success of cooperators in face of defectors. One stimulating
mechanism for the evolution of cooperation that is generally
believed to promote cooperation, especially in human societies
[32], is direct reciprocity [33]. This mechanism is captured by
repeated games where individuals play a base game repeatedly
and can base their action in each round of the game on that
of the opponent in the previous round, resulting in reactive
strategies.

Perhaps the most typical reactive strategy is the simple yet
successful tit-for-tat (TFT ) strategy where the player starts
with cooperation and cooperates if the opponent cooperated
and defects if the opponent defected in the last round. A more
defective version of the strategy is the suspicious tit-for-tat
(STFT ) strategy which is the same as TFT except that the
player starts with defection. In addition to these conditional
strategies, there are two unconditional ones which are the
two extreme strategies in repeated 2-strategy games: always-
cooperate (ALLC) and always-defect (ALLD). While much
research has been carried out to investigate the performance
of different reactive strategies under the prisoner’s dilemma
game, the cornerstone of game theory, [34]–[39], less has
been devoted to the anti-coordination snowdrift game [40]–
[42] despite the fact that the snowdrift game captures many be-
havioral patterns that cannot be well-modeled by the prisoner’s
dilemma game [43]. Moreover, the existing results on the
snowdrift game are mainly experimental or simulation based.
For example, in [41], based on human experiments the authors
postulate that iterated snowdrift games can explain high levels
of cooperation among non-relative humans. However, few
mathematical statements have been constructed to support such
claims [44]–[47].

The performance of different reactive strategies also remains
an open problem. Usually the strategies are compared using
2-strategy games, e.g., the two famous competitions conducted
by Axelord [48], [49] where strikingly, the simple TFT was
placed first in both (note that although TFT is known to be
successful mostly in the repeated prisoner’s dilemma, it has
also been reported to be successful in the repeated snowdrift
game [41], [50]). The situation would be different if more
than two strategies could be played in the game. Then the best
strategy can be decided by natural selection, which is captured
by evolutionary dynamics such as the well-known replicator
dynamics [51]–[54]. Due to nonlinearity, the replicator dy-
namics, however, may exhibit quite complex behaviors, as the
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dynamically-equivalent Lotka-Volterra Equations do [55]. In-
deed, except for a few cases [56] [57], the analysis is restricted
to only those modeled by planar dynamical systems [58].
This makes the performance investigation of more than three
reactive strategies generally challenging under the replicator
dynamics. However, the assumption of having just a small
number of available strategies may seem not to be realistic or
representative for many natural phenomena, particularly those
involving a wide range of mutations taking place. A research
line has consequently been established to study evolutionary
outcomes of repeated games with a large or possibly infinite
number of reactive strategies by limiting the analysis to finding
evolutionarily stable strategies and sets, which are known to
be asymptotically stable under many evolutionary dynamics
such as the replicator dynamics [24]. For example, the repeated
prisoner’s dilemma is shown to have no pure strategies that are
evolutionarily stable or that can form an evolutionarily stable
set [59], [60]. Although revealing (non)existence of stable sets
under the evolutionary dynamics, these works neglect other
possible long-run behaviors, such as a saddle point as the
simplest example. Thus, a considerable portion of equilibrium
states that can be favored by natural selection remains con-
cealed. Moreover, having many available reactive strategies is
not always a reasonable assumption, especially when complex
strategies are costly or uncommon [61]. So there is a need
for exhaustive asymptotic analysis of evolutionary dynamics
with typical and simple reactive strategies. The convergence
of large populations playing evolutionary games is of general
interest and has applications in control theory [46], [62]–[64].

We address both of the above issues in this paper. While
considering the snowdrift game as the base game, we study the
evolution of a large population of individuals playing the four
just mentioned strategies, ALLC, TFT , STFT and ALLD,
under the replicator dynamics. We consider a completely
parameterized payoff matrix with an arbitrary number of repe-
titions of the base game and reveal all asymptotic outcomes of
the resulting 3-dimensional dynamics. What enables us to ex-
pand our analysis beyond the routine search for evolutionarily
stable sets is studying the dynamics of two ratios of the state
variables. By dividing the simplex into four sections, in each of
which each ratio either monotonically increases or decreases,
we show that every trajectory of the system converges to an
equilibrium point, excluding the possibility of limit cycles or
chaotic behaviors. This approach can be applied to general
replicator dynamics with more than three strategies where one
or more ratios of the state variables monotonically increase
or decrease in some part of the simplex. Our analyses shed
light on the social dilemma in the snowdrift game, that is
why selfish individuals cooperate while they earn more if they
defect against their cooperative opponents. This is done by
showing that first of all, even in the presence of the very
defective strategy ALLD, for some range of payoffs and
initial population portions, the population evolves to the state
where all mutually cooperate. In other words, natural selection
disfavors individuals playing ALLD and instead chooses
those playing more cooperative strategies such as TFT and
even ALLC. Secondly, the convergence results postulate that
among the four types of players, ALLCs are surprisingly

the best in terms of survival and appearance in the long run,
explaining why selfish individuals may repeatedly cooperate
in a snowdrift social context. As a second contribution, due
to the parametric framework we provide, our convergence
analysis can be used to actually control the final state of
the replicator dynamics. By tuning the parameters, one can
control the final population portions of individuals playing
the reactive strategies. This is possible when a central agency
has control over the payoff matrix, e.g., tax regulations made
by the government. Moreover, for populations initially having
four co-existing types of players, by comparing those final
states in which one or two types of players die out to those
with all four, it becomes clear how adding a third or fourth
strategy can change the final population state. These results
lead to addressing the crucial question of how to control
portions of different types of individual in a decision-making
population?, which finds fascinating applications in repeated
snowdrift games, ranging from trading commodities to division
of labor.

The rest of the paper is organized as follows. In Section II,
we describe the replicator dynamics for repeated snow drift
games with the above four reactive strategies. In Section III,
we provide the global convergence results and discuss their
implications on the success of the strategies. We end with the
concluding remarks in Section IV.

II. PROBLEM FORMULATION

We consider an infinitely large, well-mixed population of
individuals that are playing repeated games over time. Each
game has two players with two pure strategies: one is to
cooperate, denoted by C, and the other to defect, denoted by
D, and the payoffs of the game, described by the following
payoff matrix, are symmetric to both players

(C D

C R S
D T P

)
, (1)

where R, S, T and P are real numbers and sometimes in the
literature are called the reward, sucker’s payoff, temptation and
punishment respectively. We call this two-player, symmetric
game, the base game and denote it by G. When the payoffs
of the game satisfy

T > R > S > P, (2)

the game is called a snowdrift game (also known as the
hawk-dove or the chicken game). The game has two Nash
equilibria in pure strategies, both of which correspond to the
situation when the two players play opposite strategies, and
for this reason such a game is also called an anti-coordination
game, often used to study how players may contribute to
the accomplishment of a common task. In this study, we are
particularly interested in the case in which individuals play the
game repeatedly over time and adjust their strategies according
to what their opponents have played in the past. Formally,
a repeated game, denoted by Gm, m ≥ 2, with reactive
strategies is constructed from the base game G by repeating
it for m rounds, and limiting a player’s choice of strategies in



the current round to be based on the opponent’s choice in the
previous round. In fact, a reactive strategy s can always be
represented by the triple (p, q, r), where p is the probability
of cooperating in the first round, and q (respectively r) is
the probability of cooperating if the opponent has cooperated
(respectively defected) in the previous round. We consider the
following strategies:

• always-cooperate (ALLC), (1, 1, 1): always cooperates;
• tit-for-tat (TFT), (1, 1, 0): cooperates in the first round,

and then chooses what the opponent did in the previous
round;

• suspicious-tit-for-tat (STFT), (0, 1, 0): defects in the first
round, and then chooses what the opponent did in the
previous round;

• always-defect (ALLD), (0, 0, 0): always defects.

When two players play the repeated game Gm, the payoffs
for the reactive strategies can be calculated every m rounds,
leading to the payoff matrix A := [aij ] defined by

A =



ALLC TFT STFT ALLD

ALLC mR mR S + (m− 1)R mS

TFT mR mR dm2 eS + bm2 cT S + (m− 1)P

STFT T + (m− 1)R dm2 eT + bm2 cS mP mP

ALLD mT T + (m− 1)P mP mP

 .

To illustrate how the matrix A is obtained, we take the match
between TFT and ALLD as an example. In round one,
the TFT player cooperates and the ALLD player defects,
so their payoffs according to (1) are S and T respectively.
From round two, both TFT and ALLD players defect and
hence receive P . So over time the payoffs for the TFT
player are S, P , P , . . . while those for the ALLD player are
T , P , P , . . .. Summing up the payoffs over the m rounds, one
obtains the entries of a23 and a32 in A. Hence, the repeated
game Gm can be taken as a normal, symmetric two-player
game with the payoff matrix A and with the pure-strategy set
{ALLC, TFT, STFT,ALLD}.

Restricting the base game to be played m rounds with
the same opponent is an assumption that holds in many
natural systems and real-life scenarios. Birds in the same flock
migrating to winter quarters interact with each other during
periods of their migration; students in the same project group
collaborate with each other during the semester; and tenants
in the same apartment meet each other during their rental
period. Such interactions take place repeatedly with the same
individuals for a certain amount of time.

Having clarified how a pair of individuals play games with
each other, we now describe the evolutionary dynamics of the
whole population. Towards this end, we introduce replicator
dynamics, which is a standard model from evolutionary game
theory [23], [24].

Let 0 ≤ xi(t) ≤ 1, i = 1, 2, 3 and 4, denote the population
shares at time t of those individuals playing the pure strategies
ALLC, TFT , STFT and ALLD respectively. Since the four
types of players constitute the whole population, it follows that
for all t,

∑4
i=1 xi = 1. Define the population vector

x :=
[
x1 x2 x3 x4

]>
.

Then x ∈ ∆ where ∆ is the 4-dimensional simplex defined
by

∆ :=

{
z | z ∈ R4, zi ≥ 0, i = 1, . . . , 4,

4∑
i=1

zi = 1

}
. (3)

We use the unit vectors at the vertices of the simplex

p1 =


1
0
0
0

 , p2 =


0
1
0
0

 , p3 =


0
0
1
0

 , p4 =


0
0
0
1


to represent the population vectors corresponding to all ALLC
players, all TFT players, all STFT players and all ALLD
players respectively. Then the evolutions of xi, i = 1, . . . , 4,
are described by the replicator dynamics [23], [24]

ẋi = [u(pi, x)− u(x, x)]xi, (4)

where u(·, ·) is the utility function defined by

u(x, y) = x>Ay for x, y ∈ ∆

determining the fitness of a player. In essence, (4) indicates
that in an evolutionary process, the reproduction rate of the
strategy-i players is proportional to the difference between
the fitness of strategy-i players u(pi, x) and the average
population fitness u(x, x) as a consequence of the fact that
the more payoff an individual acquires when playing against
its opponents, compared to the average payoff of the whole
population, the more new offspring proportionally it produces.
Since u(pi, x) is the expected payoff of an i-playing indi-
vidual against a random other individual in the population,
the dynamics can be shown to be interpretable as follows
[24]. Over a continuous course of time, an individual in the
population (say a TFT player) randomly meets another (say
an ALLD player), plays the base game with her opponent
for m rounds, earns an accumulated payoff according to the
payoff matrix A (that is S + (m − 1)P ), and reproduces
offspring playing her same strategy (these are TFT players)
with a rate equal to her payoff. Indeed, there are two time
scales of fast and slow dynamics; the time it takes for two
players to play the repeated game goes much faster and in fact
neglectable compared to the reproduction time. The dynamics
can also be seen as the mean dynamic approximation of the
following process that takes place over a discrete sequence
of time [23]. At each time step, i) every individual plays
the base game for m rounds with every other individual in
the population and earns the payoff of the average, and ii)
a random individual updates her reactive strategy according
to the pairwise proportional imitation update rule, that is,
she randomly chooses another individual, say j, and if her
payoff is less than that of individual j, imitates his strategy
with a probability proportional to the payoff difference, and
otherwise, sticks to her own current strategy.

Since u(·, ·) is continuously differentiable in R4 × R4, (4)
has a unique solution for any x(0) ∈ ∆ [65, Theorem 7.1.1]. It
is easy to check that the solution indeed satisfies the constraints
0 ≤ xi(t) ≤ 1, i = 1, . . . , 4 for all t. Moreover, it can be
verified that for any t, if x(t) ∈ ∆, it holds that

∑4
i=1 ẋi(t) =



0. Hence,
∑4
i=1 xi = 1 is in force for all t given x(0) ∈ ∆.

Therefore, ∆ is invariant under (4) and hence the dynamical
system (4) is well defined on ∆.

We perform global convergence analysis of the replicator
dynamics (4). More specifically, for any given initial condition
x(0) ∈ ∆, we aim to determine the limit state of x(t) for (4).

III. GLOBAL CONVERGENCE RESULT

The main results of this paper are presented in this section.
First we find the equilibrium points of the system. Then for
the convergence results, we divide the analysis into several
parts using the notion of face defined as follows. A face of
the simplex is the convex hull of a non-empty subset H of
{p1, p2, p3, p4}, and is denoted by ∆(H). For simplicity, we
remove the braces when H is represented by its members. For
example, the face ∆(p1, p3, p4) is the convex hull of H =
{p1, p3, p4}. When H is proper, ∆(H) is called a boundary
face. Following convention, the boundary of a set S, denoted
by bd(S), is the set of points p such that every neighborhood
of p includes at least one point in S and one point out of S,
and the interior of S, denoted by int(S), is the greatest open
subset of S. The following result enables us to analyze the
evolution of a trajectory starting from bd(∆) separately from
that starting from int(∆).

Lemma 1: Each face of ∆ is invariant under the replicator
dynamics (4).

Proof: ∆ was already shown to be invariant in Section
II. So it remains to prove the lemma for the boundary faces.
This can be done based on the observation that if for some
i = 1, . . . , 4, xi(0) = 0, then xi(t) = 0 for all t ∈ R.

We start with analyzing the boundary of the simplex.
However, the boundary of the simplex itself consists of the
four planar faces ∆(p1, p2, p3), ∆(p1, p2, p4), ∆(p1, p3, p4)
and ∆(p2, p3, p4). Because of Lemma 1, we can also analyze
the dynamics (4) on each of these faces separately. Yet again,
the boundary of each of these planar faces consists of three
one-dimensional faces known as the edges of the simplex. For
example, the boundary of the face ∆(p1, p2, p3) consists of
the edges ∆(p1, p2), ∆(p1, p3) and ∆(p2, p3). On the other
hand, each of the edges are also invariant in view of Lemma
1. Therefore, we study separately trajectories starting from an
edge and those starting from the interior of a planar face. Then
we proceed to the interior of the simplex.

To simplify the analysis, we carry out on the matrix A some
operations that preserve the dynamics (4). Subtracting mR
from the entries of the first and second columns, and mS from
the entries of the third and fourth columns of A, we acquire
the following matrix

A′ := [a′ij ] =
0 0 S + (m− 1)R−mP m(S − P )
0 0 dm2 eS + bm2 cT −mP S − P

T −R dm2 eT + bm2 cS −mR 0 0
m(T −R) T + (m− 1)P −mR 0 0

. (5)

In view of Lemma 7 in Appendix A, the dynamics (4) are
unchanged with A′ in place of A. Since A′ is more structured
with zero block matrices, in what follows we focus on A′

instead of A.

A. Equilibrium points

To determine the equilibria of the system, we first look for
those on the boundary of the simplex, and then for those in
the interior.

1) boundary equilibrium points: Let ∆o and ∆oo denote
the set of equilibrium points of the replicator dynamics (4)
that belong to ∆ and bd(∆), respectively. Depending on
the payoffs, ∆oo will be a combination of the unit vectors
p1, p2, p3, p4, the vectors

x14 =


S−P

S−P+T−R
0
0

T−R
S−P+T−R

 , x23 =


0

dm2 eS+b
m
2 cT−mP

m(T+S−P−R)
dm2 eT+bm2 cS−mR
m(T+S−P−R)

0

 ,

x13 =


S+(m−1)R−mP

T+S+(m−2)R−mP
0

T−R
T+S+(m−2)R−mP

0

 , x24 =


0

S−P
T+S+(m−2)P−mR

0
T+(m−1)P−mR

T+S+(m−2)P−mR

 ,
and the sets

X 12 = {αp1 + (1− α)p2 : α ∈ [0, 1]},
X 34 = {αp3 + (1− α)p4 : α ∈ [0, 1]},
X 123 = {x ∈ int(∆(p1, p2, p3)) | a′31x1 + a′32x2 − a′13x3 = 0}

where a′ij’s are the entries of A′ defined in (5). Here, the
superscript ij in xij (resp. X ij) simply means that xij (resp.
X ij) belongs to the edge ∆(pi, pj). The following proposition
determines ∆oo.

Proposition 1: Assume (2) holds. It follows that
1) if S < R < T+(m−1)P

m , then

∆oo = X 12 ∪ {x13, x14, x23, x24} ∪ X 34;

2) if T+(m−1)P
m ≤ R < T+S

2 , or if m = 2n+1, n ≥ 1 and
T+S
2 < R < (n+1)T+nS

2n+1 , then

∆oo = X 12 ∪ {x13, x14, x23} ∪ X 34;

3) if m = 2n+ 1, n ≥ 1 and R = T+S
2 , then

∆oo = X 12 ∪ {x13, x14, x23} ∪ X 34 ∪ X 123;

4) if m = 2n, n ≥ 1 and R = nT+(n−1)S
2n−1 , then

∆oo = X 12 ∪ {x13, x14} ∪ X 34 ∪ X 123;

5) if max
{
dm−2

2 eS+b
m
2 cT

m−1 ,
dm2 eT+bm2 cS

m

}
< R < T , or if

m = 2n, n ≥ 1 and T+S
2 ≤ R < nT+(n−1)S

2n−1 , then

∆oo = X 12 ∪ {x13, x14} ∪ X 34.

For the proof, we need to take a closer look at the payoff
matrix A′. The order in the magnitudes of the entries in each
column of A′, clarified in the following lemma, proves useful
both in the determination of the equilibria and the asymptotic
behavior of the replicator dynamics (4).

Lemma 2: Assume (2) holds. Consider the payoff matrix
A′ and denote the maximum positive, positive, negative and
minimum negative entries of each column by ‘++’, ‘+’ ,



‘−’ and ‘−−’, respectively. Then A′ has the following sign
structure

1)


0 0 + ++
0 0 ++ +
+ ++ 0 0

++ + 0 0

 when S < R < T+(m−1)P
m ;

2)


0 0 + ++
0 0 ++ +
+ ++ 0 0

++ 0,− 0 0

 when T+(m−1)P
m ≤ R < T+S

2 ;

3)


0 0 ++ ++
0 0 ++ +
+ ++ 0 0

++ − 0 0

 when m = 2n + 1, n ≥

1, and R = T+S
2 ;

4)


0 0 ++ ++
0 0 + +
+ ++, 0 0 0

++ − 0 0

 when m = 2n + 1, n ≥

1, and T+S
2 < R ≤ (n+1)T+nS

2n+1 ;

5)


0 0 + ++
0 0 ++ +
+ 0,− 0 0

++ −− 0 0

 when m = 2n, n ≥

1, and T+S
2 ≤ R < nT+(n−1)S

2n−1 ;

6)


0 0 ++ ++
0 0 ++ +
+ − 0 0

++ −− 0 0

 when m = 2n, n ≥ 1, and R =

nT+(n−1)S
2n−1 ;

7) and


0 0 ++ ++
0 0 + +
+ − 0 0

++ −− 0 0

 when

max
{
dm−2

2 eS+b
m
2 cT

m−1 ,
dm2 eT+bm2 cS

m

}
< R < T.

Here, when an entry takes both 0 and one other sign (separated
by a comma), 0 takes place if the equality sign of the R
condition holds, and otherwise the other sign is valid.

Proof: The sign of the elements of A′ are determined by
(2). First note that T > R implies a′31 > 0. On the other
hand, since m ≥ 2, we have that a′41 > a′31 > 0. Hence, due
to the fact that the third and fourth entries of the last column
of A′ are zero, a′41 and a′31 are denoted by ‘++’ and ‘+’,
respectively. Similarly S > P implies a′14 > a′24 > 0 and
hence a′14 and a′24 are denoted by ‘++’ and ‘+’, respectively.
Since T , S > P implies

dm
2
eS+bm

2
cT > dm

2
eP+bm

2
cP ⇒ dm

2
eS+bm

2
cT > mP,

it follows that a′23 > 0. Additionally,

R > P, S > P ⇒ (m− 1)R+ S > mP,

which implies a′13 > 0. Similarly T , S > P yields

T + dm−22 eT + bm−22 cS + S > T + dm−22 eP + bm−22 cP + P

⇒ dm2 eT + bm2 cS > T + (m− 2)P + P = T + (m− 1)P.

Hence, a′32 > a′42. It remains to determine the signs of a′42
and a′32 and also the ordering of a′13 and a′23. Since m ≥ 2,

division by m− 1 is valid, and hence the following hold

a′42 > 0 ⇐⇒ R <
T + (m− 1)P

m
, (6)

a′32 > 0 ⇐⇒ R <
dm2 eT + bm2 cS

m
, (7)

a′23 > a′13 ⇐⇒ R <
dm−22 eS + bm2 cT

m− 1
. (8)

The average of T , P , . . . , P︸ ︷︷ ︸
m−1

is less than both the

average of T , T , . . . , T︸ ︷︷ ︸
dm2 e−1

, S, . . . , S︸ ︷︷ ︸
bm2 c

and the average of

T , T , . . . , T︸ ︷︷ ︸
bm2 c−1

, S, . . . , S︸ ︷︷ ︸
dm−2

2 e

. Thus,

T + (m− 1)P

m
<
dm2 eT + bm2 cS

m
,
dm−22 eS + bm2 cT

m− 1
.

Hence, when (6) holds, so do (7) and (8). This proves the
first case of the lemma. Now we compare d

m−2
2 eS+b

m
2 cT

m−1 and
dm2 eT+bm2 cS

m . In general, it holds that

dm−22 eS + bm2 cT
m− 1

=


(n− 1)S + nT

2n− 1
m = 2n

nS + nT

2n
m = 2n+ 1

,

dm2 eT + bm2 cS
m

=


nT + nS

2n
m = 2n

(n+ 1)T + nS

2n+ 1
m = 2n+ 1

.

Due to the fact that T > S, we obtain

dm2 eT + bm2 cS
m

<
dm−22 eS + bm2 cT

m− 1
m = 2n,

dm−22 eS + bm2 cT
m− 1

<
dm2 eT + bm2 cS

m
m = 2n+ 1.

(9)

Hence,

min

{dm2 eT + bm2 cS
m

,
dm−22 eS + bm2 cT

m− 1

}
=
T + S

2
. (10)

The above equation results in cases 2) and 3) of the lemma.
The remaining cases can be verified similarly using (9) and
(10).

The boundary of ∆ is the union of the boundary faces
∆(p1, p2, p3), ∆(p1, p2, p4), ∆(p1, p3, p4) and ∆(p2, p3, p4).
So in order to find the equilibria on bd(∆), we can investigate
each face separately. The interior equilibria of each face is
determined in the following proposition, the proof of which
follows from the convergence results and methods in [66].

Proposition 2: Assume (2) holds. The interiors of the faces
∆(p1, p2, p4), ∆(p1, p3, p4) and ∆(p2, p3, p4) do not contain
an equilibrium point of the dynamics (4). If m = 2n+1, n ≥ 1
and R = T+S

2 , or m = 2n, n ≥ 1 and R = nT+(n−1)S
2n−1 , then

the interior of the face ∆(p1, p2, p3) contains the continuum
of equilibrium points X 123, and does not contain any other
equilibrium. For all other values of m and the payoffs, the
interior of ∆(p1, p2, p3) does not contain an equilibrium point.

Now we prove Proposition 1.



Proof of Proposition 1: In view of Proposition 2, there is
no equilibrium point in the interior of any of ∆(p1, p2, p3),
∆(p1, p2, p4), ∆(p1, p3, p4) and ∆(p2, p3, p4), except for
Cases 3) and 4) where X 123 appears. Hence, all of the
rest of the boundary equilibrium points are located on the
6 edges of the simplex. The edges ∆(p1, p2) = X 12 and
∆(p3, p4) = X 34 are always a continuum of equilibrium
points. The vertices p1, p2, p3, p4 are also always equilibrium
points, but they are included in X 12 and X 34. Hence, the rest
of the equilibrium points can be determined by investigating
the dynamics in the interior of the remaining four edges,
leading to the conclusion (see [55]). �

The local stability of the equilibrium points generally de-
pends on the payoffs in A, and can be determined based on
the convergence results in this section. However, the following
result guarantees the asymptotic stability of x14 for all payoffs
satisfying (2).

Proposition 3: Assume (2) holds. Then x14 is asymptotically
stable.

Proof: The proof follows Proposition 7 and Lemma 8 in
Appendix B.

2) Interior equilibrium point: The dynamics (4), may or
may not possess an interior equilibrium depending on the
payoff matrix A. As shown in the following proposition, if
the dynamics have an interior equilibrium, it is unique and
equal to

xint =


(a′42 − a′32)(a′13a

′
24 − a′14a′23)

(a′31 − a′41)(a′13a
′
24 − a′14a′23)

(a′24 − a′14)(a′31a
′
42 − a′32a′41)

(a′13 − a′23)(a′31a
′
42 − a′32a′41)

 /r
where a′ij are the entries of A′ in (5), and

r = (a′13a
′
24 − a′14a′23)(a′31 − a′41 + a′42 − a′32)

+ (a′31a
′
42 − a′32a′41)(a′13 − a′23 + a′24 − a′14) > 0. (11)

The positiveness of r can be derived from (2). Define the
following constants based on the entries a′ij of A′:

b1 = −a
′
13 − a′23
a′14 − a′24

=
dm−2

2 eS+b
m
2 cT−(m−1)R

(m−1)(S−P ) ,

b2 = −a
′
42 − a′32
a′41 − a′31

=
dm−2

2 eT+bm2 cS−(m−1)P
(m−1)(T−R) .

Proposition 4: Assume (2) holds. It follows that
1) if S < R < T+S

2 or if m = 2n, n ≥ 1 and T+S
2 ≤

R < nT+(n−1)S
2n−1 , then the dynamics (4) possess exactly

one interior equilibrium point xint that is a hyperbolic
saddle with two negative eigenvalues; additionally, for
all initial conditions on the open line segment

Lint = {x ∈ int(∆) |x1 = b2x2, x4 = b1x3} ,

the solution trajectory converges to xint;
2) otherwise, the dynamics have no interior equilibrium

point.
For the proof, we study the evolution of the ratios x1

x2
and

x4

x3
, which due to the block anti-diagonal structure of the payoff

matrix A′, are crucial in determining the asymptotic behavior
of the replicator dynamics and are explained as follows.

Lemma 3: Let x(0) ∈ int(∆). Then d
dt

(
x1

x2

)
is greater than

(resp. equal to, resp. less than) 0 if and only if x4

x3
is greater

than (resp. equal to, resp. less than) b1. Similarly, d
dt

(
x4

x3

)
is

greater than (resp. equal to, resp. less than) 0 if and only if
x1

x2
is greater than (resp. equal to, resp. less than) b2.

Proof: In view of Lemma 1, x(0) ∈ int(∆) implies
x(t) ∈ int(∆) for all t. Hence, 0 < xi(t) < 1, i = 1, . . . , 4, for
all t. So it is possible to define the ratio xi

xj
(t), i, j = 1, . . . , 4

and calculate its time derivative using [24, Eq. 3.6] as

d

dt

(xi
xj

)
= [u(pi, x)− u(pj , x)]

xi
xj
.

Consider the payoff matrix A′ and let i = 1, j = 2 and i =
3, j = 4 to obtain the following two equations

d

dt

(x1
x2

)
= [(a′13 − a′23)︸ ︷︷ ︸

a′3

x3 + (a′14 − a′24)︸ ︷︷ ︸
a′4

x4]
(x1
x2

)
, (12)

d

dt

(x4
x3

)
= [(a′41 − a′31)︸ ︷︷ ︸

a′1

x1 + (a′42 − a′32)︸ ︷︷ ︸
a′2

x2]
(x4
x3

)
.

In view of Lemma 2, a′1, a
′
4 > 0. Hence, because of (12),

d

dt

(x1
x2

)
> 0⇔ a′3x3 + a′4x4 > 0

a′4>0⇐=⇒ x4
x3

> −a
′
3

a′4
= b1,

d

dt

(x4
x3

)
> 0⇔ a′1x1 + a′2x2 > 0

a′1>0⇐=⇒ x1
x2

> −a
′
2

a′1
= b2.

This proves the “ greater than” cases. The “ equal to” and “
less than” cases can be proven similarly.

Determining the signs of b1 and b2 will prove useful, and
is clarified in the following lemma.

Lemma 4: It holds that b2 > 0. Moreover, b1 > 0 (resp.
b1 = 0 and b1 < 0) if and only if a′13 < a′23 (resp. a′13 = a′23
and a′13 > a′23) where a′ij are the entries of A′ in (5).

Proof: In view of Lemma 2, a′32 > a′42 and a′41 > a′31.
Hence, b2 > 0 regardless of the payoffs in A′. Moreover, the
inequality a′14 > a′24 also always holds, which leads to the
proof.

Now we proceed to the proof of Proposition 4.
Proof of Proposition 4: Consider Case 1). In view of

Lemma 4 and Lemma 2, b1, b2 > 0. Then each of the following
two sets define a plane in the simplex

P1 =

{
x ∈ ∆ | x4

x3
= b1

}
, P2 =

{
x ∈ ∆ | x1

x2
= b2

}
.

In view of Lemma 3, on each side of the plane P1 (resp.
P2), the quantity x1

x2
(resp. x4

x3
) either increases or decreases.

Hence, if an interior equilibrium point exists, it has to lie on
the interior of the intersection of the two planes P1 and P2,
which is the open line segment Lint. According to Lemma
3, Lint is invariant under the replicator dynamics (4). The
dynamics of x2 on Lint can be expressed as

ẋ2 = k(fx2 − g)(rx2 − s)x2 (13)



where

k =
1

(a′41 − a′31)2(a′13 − a′23 + a′24 − a′14)
> 0,

f = a′32 − a′42 + a′41 − a′31 > 0,

g = a′41 − a′31 > 0, s = (a′13a
′
24 − a′14a′23)(a′31 − a′41) > 0,

and r is defined in (11). The equilibrium points of (13) are
x∗2 = 0, sr ,

g
f , which are easily proven to be unstable, stable

and unstable, respectively. On the other hand, x∗2 = 0 and
x∗2 = g

f correspond to equilibrium points on the boundary of
∆. Hence, for any initial condition on Lint, the trajectory
x(t) converges to x∗ ∈ Lint where x∗2 = s

r . By using
the constraints

∑4
i=1 x

∗
i = 1 and x∗ ∈ Lint, we get that

x∗ = xint. Hence, xint is an interior equilibrium, and for
all x(0) ∈ Lint, x(t) → xint. Now the eigenvalues of xint

are determined. Consider the replicator dynamics (4). Replace
the vector x by x̂ =

[
x1 x2 x3 1− x1 − x2 − x3

]>
, and

eliminate the differential equation for ẋ4 to get a 3rd order
system. Then, the characteristic equation of the corresponding
Jacobian matrix about xint is λ3 + aλ2 + bλ + c = 0 where
a, b, c,∈ R. It can be verified that c = ab and a > 0 > b, c.
Hence, the corresponding eigenvalues of xint are −a,±

√
−b,

which completes the proof of this case.
Now consider Case 2) where a′13 ≥ a′23. Hence, b1 ≤ 0 in

view of Lemma 4. Hence, P1 does not intersect ∆ implying
that the ratio x4

x3
is always greater than b1. Hence, in view of

Lemma 3, x1

x2
monotonically increases in int(∆). Hence, there

is no interior equilibrium point in this case. �

B. Trajectories starting on an edge

Due to invariance, the convergence analysis of the dynamics
(4) on an edge ∆(pk, pj), k, j ∈ {1, 2, 3, 4}, k 6= j, can
be reduced to the analysis of the following 2-dimensional
replicator dynamics

ẋi = [(pi)>Âx̂− x̂>Âx̂]xi, i = k, j

where

x̂ =

[
xk
xj

]
, Âkj =

[
akk akj
ajk akk

]
.

See [24, Section 3.1.4], [55] or [66] for the analysis of these
dynamics.

C. Trajectories starting in the interior of a planar face

We limit this section to the following convergence result
that can be proven using the findings in [55], [66], [67].

Proposition 5: If x(0) belongs to one of the faces
∆(p1, p2, p3), ∆(p1, p2, p4), ∆(p1, p3, p4) or ∆(p2, p3, p4),
then x(t) converges to a point in that face as t→∞.

D. Trajectories starting in the interior of the simplex

1) Dynamics in the four sections made by the two ratios:
When b1 and b2 are positive, the ratios x1

x2
and x4

x3
divide the

simplex into the four following zones:

D14 =

{
x ∈ int(∆) | x1

x2
> b2,

x4
x3

> b1

}
,

D23 =

{
x ∈ int(∆) | x4

x3
< b2,

x4
x3

< b1

}
.

Y14 =

{
x ∈ int(∆) | x1

x2
> b2,

x4
x3

< b1

}
,

Y23 =

{
x ∈ int(∆) | x1

x2
< b2,

x4
x3

> b1

}
.

We investigate interior trajectories of the simplex by studying
the dynamics in the above zones and start by D14 and D23.

Lemma 5: D14 and D23 are positively invariant under (4).
Proof: First D14 is shown to be positively invariant.

Assume the contrary, i.e., a trajectory x(t) starts from some
point in D14 at t = t0 but does not belong to D14 at some time
t∗ > t0. Due to the continuity of the trajectory, there exists
some time t1 ∈ (t0, t∗) at which the trajectory intersects the
boundary of D14. Hence, at least one of the followings happen

x1
x2

(t1) = b2,
x4
x3

(t1) = b1.

Without loss of generality, assume the first case happens. Then
x1

x2
(t1) < x1

x2
(t0). Hence, d

dt

(
x1

x2

)
must be negative at some

time t2 ∈ (t0, t1). Hence, due to the continuity of the time-
derivative of x1

x2
, d
dt

(
x1

x2

)
is zero at some time t3 ∈ (t0, t2).

Hence, in view of Lemma 3, x4

x3
(t3) = b1. This implies that the

trajectory has intersected the boundary of D14 at some time
earlier than t1, a contradiction. Hence, if a trajectory starts in
D14 at some time t = t0, it remains there afterwards. Similarly
the positive invariance of D23 can be shown.

Proposition 6: Consider a trajectory x(t) of the dynamics
(4) that passes through x0 at some time t0. If x0 ∈ D14, then
one of the following cases happen

lim
t→∞

x(t) = x14 or lim
t→∞

x(t) = x∗ ∈ X 12 ∩∆NE .

If x0 ∈ D23, then

lim
t→∞

x(t) = x∗ ∈ ({x23} ∪ X 12) ∩∆NE .

Proof: Consider the case when x0 ∈ D14. In view of
Lemma 5, x(t) ∈ D14 for all t ≥ t0. Hence, both inequalities
x1

x2
(t) > b2 and x4

x3
(t) > b1 hold for all t ≥ t0. Hence, in view

of Lemma 3, both ratios x4

x3
and x1

x2
monotonically increase

with time. Hence, each ratio converges to either a constant or
∞. In case one of the ratios, e.g., x1

x2
, converges to a constant,

that constant must be strictly positive. This follows from the
fact that x1

x2
(t0) > 0 and that x1

x2
monotonically increases. In

general, one of the following cases may occur:
1) x1

x2
→ α > 0 and x4

x3
→ β > 0. Thus, x converges to the

following line segment

Lα,β = {x ∈ ∆ |x1 = αx2, x4 = βx3} .

In view of Theorem 5 in Appendix D, x → Lα,β ∩ ∆o. In
what follows, it is shown that int(Lα,β) ∩ ∆o = ∅. First



note that α > b2. This can be proven by contradiction:
Assume that α ≤ b2. Since x(t0) ∈ D14, it holds that
x1

x2
(t0) > b2. Hence, x1

x2
(t0) > b2 ≥ α. Then, due to the

continuity of the trajectory, there exists some time t1 > t0

such that x1

x2
(t1) = b2. Hence, x(t1) 6∈ D14, which contradicts

the invariance property of D14. So α > b2. Now note that
int(Lα,β) ⊆ int(∆). On the other hand, in view of Lemma 4,
the only interior equilibrium of the system (if there exists any),
belongs to the plane

{
x ∈ ∆ | x1

x2
= b2

}
. However, as it was

discussed above, x1

x2
→ α > b2. Hence, int(∆) ∩∆o = ∅. So

int(Lα,β)∩∆o = ∅. Thus, x→ bd(Lα,β)∩∆o. The boundary
of Lα,β consists of the following two points, each of which
is an equilibrium:

xα =
[
α

1+α
1

1+α 0 0
]> ∈ X 12,

xβ =
[
0 0 1

1+β
β

1+β

]>
∈ X 34.

According to Lemma 9 in Appendix C, if x converges to a
point, it must belong to ∆NE . However, xβ 6∈ ∆NE in view
of Lemma 10 in Appendix C. Hence, x 6→ xβ implying that
x → xα. On the other hand, xα ∈ X 12 and xα must belong
to ∆NE . Hence, x→ x∗ ∈ X 12 ∩∆NE .

2) x1

x2
→ α > 0 and x4

x3
→ ∞. Hence, x converges to the

following line segment

Lα,∞ = {x ∈ ∆ |x1 = αx2, x3 = 0} .

Due to Theorem 5, x converges to an equilibrium or a
continuum of equilibria on Lα,∞. On the other hand, Lα,∞
lies on the face ∆(p1, p2, p4), and in view of Proposition 2, no
interior equilibrium exists on this face. Hence, x converges to
the intersection of Lα,∞ with the boundary of ∆(p1, p2, p4)
which is {xα, p4}. However, p4 6∈ ∆NE and hence x 6→ p4 in
view of Lemma 9. Hence, x→ xα. So, similar to the previous
case, x→ x∗ ∈ X 12 ∩∆NE .

3) x1

x2
→∞ and x4

x3
→ β > 0. Similar to the previous case,

it can be shown that x→ xβ or x→ p1. However, neither xβ

nor p1 belongs to ∆NE . Hence, this case never happens.
4) x1

x2
→ ∞ and x4

x3
→ ∞. Hence, x converges to the

following line segment

L∞,∞ = {x ∈ ∆ |x2 = 0, x3 = 0} = ∆(p1, p4).

Due to Theorem 5, x→ ∆(p1, p4) ∩∆o = {p1, x14, p4}. On
the other hand, p1, p4 6∈ ∆NE . Hence, x → x14 in view of
Lemma 9.

Summarizing the above four cases completes the proof for
when x0 ∈ D14. Now let x0 ∈ D23. By following the
procedure for when x0 ∈ D14, it can be shown that both
ratios x4

x3
and x1

x2
converge either to a positive constant or to

0. In general, one of the following cases may occur:
1*) x1

x2
→ α > 0 and x4

x3
→ β > 0. Similar to when

x0 ∈ D14, this case results in x→ x∗ ∈ X 12 ∩∆NE .
2*) x1

x2
→ α > 0 and x4

x3
→ 0. Hence, x converges to the

following line segment

Lα,0 = {x ∈ ∆ |x1 = αx2, x4 = 0} .

In view of Theorem 5, x → Lα,0 ∩ ∆o. Clearly Lα,0 ⊆
∆(p1, p2, p3). On the other hand, according to Proposition 2,

int(∆(p1, p2, p3)) ∩ ∆o either is empty or equals to X 123.
In view of Theorem 1, the second case only happens when
m = 2n+1, n ≥ 1 and R = T+S

2 , or m = 2n, n ≥ 1 and R =
nT+(n−1)S

2n−1 . However, for both of these values of R, it can be
verified that b1 < 0. Hence, D23 = ∅, which contradicts the
assumption x0 ∈ D23. Hence, int(∆(p1, p2, p3))∩∆o = ∅. So
int(Lα,0) ∩∆o = ∅ and x→ bd(Lα,0). Thus, x→ {xα, p3}.
However, p3 6∈ ∆NE and hence x 6→ p3, in view of Lemma
9. Hence, x→ xα resulting in x→ x∗ ∈ X 12 ∩∆NE .

3*) x1

x2
→ 0 and x4

x3
→ β > 0. Hence, x converges to the

following line segment

L0,β = {x ∈ ∆ |x1 = 0, x4 = βx3} .

Similar to the previous case, it can be shown that x →
{xβ , p2}. Hence, in view of Lemma 9, x→ {xβ , p2}∩∆NE .
So x → {p2} ∩ ∆NE since xβ 6∈ ∆NE . On the other hand,
p2 ∈ X 12. Hence, x→ x∗ ∈ X 12 ∩∆NE .

4*) x1

x2
→ 0 and x4

x3
→ 0. Hence, x converges to the

following line segment

L0,0 = {x ∈ ∆ |x1 = 0, x4 = 0} = ∆(p2, p3).

Due to Theorem 5, x→ ∆(p2, p3) ∩∆o = {p2, x23, p3}. On
the other hand, p3 6∈ ∆NE . Hence, x→ {x23, p2} ∩∆NE in
view of Lemma 9. Since p2 ∈ X 12, it can be concluded that
x→ x∗ ∈ (X 12 ∪ {x23}) ∩∆NE .

By summarizing the above cases, the proof for when x0 ∈
D23 is complete.

Lemma 6: Consider a trajectory x(t) of the dynamics (4)
that passes through x0 at some time t0. If x0 ∈ Y14, then
either x(t) leaves Y14 after some finite time, or

lim
t→∞

x(t) = xint or lim
t→∞

x(t) = x∗ ∈ X 12 ∩∆NE .

If x0 ∈ Y23, then either x(t) leaves Y23 after some finite time,
or

lim
t→∞

x(t) = xint or lim
t→∞

x(t) = x∗ ∈ (X 12∪X 123)∩∆NE .

Proof: Consider the case when x0 ∈ Y14. If x leaves Y14

after some finite time, the conclusion can be drawn directly.
So let Y14 be invariant. Then the inequalities in the definition
of Y14 hold for all t ≥ t0. Hence, in view of Lemma 3, x1

x2

monotonically decreases and hence converges to a constant
α ≥ b2, and x4

x3
monotonically increases and hence converges

to a constant β ≤ b1 as t → ∞. Hence, x(t) converges to
the line segment Lα,β = {x ∈ ∆ |x1 = αx2, x4 = βx3}.
So based on Theorem 5 in Appendix D, x(t) converges to
Lα,β∩∆o. On the other hand, ∆o includes at most one interior
equilibrium point xint according to Lemma 5. Hence, either
x(t)→ xint or x(t)→ Lα,β ∩∆oo. The first case leads to the
conclusion directly, so consider the second case. First note that
α > 0 since b2 > 0 in view of Lemmas 4 and 2. Moreover,
β > 0 since x4

x3
monotonically increases from x4

x3
(0) > 0

to β. Hence, α, β > 0. So on the set Lα,β ∩ bd(∆), either
x1 = x2 = 0 or x3 = x4 = 0 holds. Then Lα,β∩bd(∆) equals
a point x∗ ∈ X 12 ∪ X 34. On the other hand, ∆oo ⊆ bd(∆).
Hence, since X 12 ∪ X 34 ⊆ ∆oo it holds that Lα,β ∩ ∆oo =
x∗ ∈ X 12 ∪ X 34. Thus, in view of Lemma 9 in Appendix
C, x(t) → x∗ ∈ (X 12 ∪ X 34) ∩ ∆NE . On the other hand,



X 34 ∩ ∆NE = ∅ according to Lemma 10 in Appendix C.
Hence, x(t)→ x∗ ∈ X 12 ∩∆NE , which completes the proof
of this part.

Now consider the case when x0 ∈ Y23 and Y23 is invariant
(otherwise, the result is trivial). Hence, in view of Lemma 3,
x1

x2
monotonically increases and hence converges to a constant

α ≤ b2, and x4

x3
monotonically decreases and hence converges

to a constant β ≥ b1 as t → ∞. So similar to the previous
case, either x(t)→ xint or x(t)→ Lα,β∩∆oo. Again the first
case leads to the conclusion directly, so consider the second.
It must be true that α > 0 since x1

x2
monotonically increases

from x1

x2
(0) > 0 to α. If β is also positive, then the same as

when x0 ∈ Y14 takes place, which makes the result trivial. So
let β = 0. Then Lα,β = {x ∈ ∆ |x1 = αx2, x4 = 0}. Hence,
in view of Theorem 1, Lα,β∩∆oo = x∗ ∈ {x13}∪X 12∪X 123.
So in view of Lemma 9 and 11 in Appendix C, x(t)→ x∗ ∈
(X 12 ∪ X 123) ∩∆NE , which completes the proof.

2) Global results: We proceed to the global convergence
analysis. As one would expect, the convergence results depend
on the payoffs and to some extent also on m. We provide the
results from small to large R via the following four theorems.

Theorem 1: Assume (2) holds. Let x(0) ∈ int(∆). Denote
the 2-dimensional stable manifold of xint by W s(xint). If
S < R < T+S

2 , then
1) x(0) ∈W s(xint)⇒ lim

t→∞
x(t) = xint;

2) x(0) 6∈W s(xint)⇒ lim
t→∞

x(t) = x14 or x23;

3) x14 and x23 are asymptotically stable and their basins
of attraction are separated by W s(xint);

4) x(0) ∈ D14 ⇒ lim
t→∞

x(t) = x14 ;

5) x(0) ∈ D23 ⇒ lim
t→∞

x(t) = x23.

Proof: Case 1) of the theorem is a direct result of
Theorem 4. Now we proceed to Case 2). According to Lemma
4 and Lemma 2, b1, b2 > 0. Hence, the interior of the simplex
can be written as

int(∆) = D14∪D23∪Y14∪Y23∪Lint∪P̂11∪P̂12∪P̂21∪P̂22

(14)
where Lint is defined in Theorem 4 and

P̂11 =

{
x ∈ int(∆) | x4

x3
= b1,

x1
x2

> b2

}
, (15)

P̂12 =

{
x ∈ int(∆) | x4

x3
= b1,

x1
x2

< b2

}
,

P̂21 =

{
x ∈ int(∆) | x1

x2
= b2,

x4
x3

> b1

}
,

P̂22 =

{
x ∈ int(∆) | x1

x2
= b2,

x4
x3

< b1

}
.

Hence, x(0) belongs to one of the sets on the right hand side
of (14). If x(0) ∈ D14, then in view of Proposition 6, x(t)
converges to either x14 or a point in X 12∩∆NE . However, in
view of Lemma 10 in Appendix C, X 12 ∩∆NE = ∅. Hence,
x(t) → x14. This proves Case 4). Similarly Case 5) can be
shown. Now consider the case when x(0) ∈ Y14. In view of
Lemma 6, if x(t) remains in Y14, it converges to a point in
X 12∩∆NE . However, in view of Lemma 10, X 12∩∆NE = ∅,
which implies x(t) leaves Y14 after some finite time. Hence,

x(t) enters one of the sets Lint, P̂11, or P̂22 at some time t1 >
0. If x(t1) ∈ Lint, then x(t) → xint in view of Proposition
4. If x(t1) ∈ P̂11, then x(t) enters D14 after t = t1 since
x1

x2
> b2 in P̂11 and hence in view of Lemma 3, x4

x3
increases

at P̂11. So x(t) → x14 in view of Case 4). Similarly, it can
be shown that if x(t1) ∈ P̂22, then x(t) → x23. Hence, if
x(0) ∈ Y14, then x(t) converges to one of the points x14, x23

or xint. The same can be shown for when x(0) ∈ Y23 since
X 123 6⊆ ∆oo when R < T+S

2 . Moreover, the cases when
x(0) belongs to one of the sets Lint, P̂11, P̂12, P̂21 or P̂22 are
already included in the arguments for Y14 and Y23. Hence,
x(t) converges to one of x14, x23 or xint. On the other hand,
only for x(0) ∈ W s(xint), x(t) → xint. Hence, Case 2) is
proven.

Both x14 and x23 are asymptotically stable thanks to Propo-
sition 7 and lemma 8. Denote their corresponding basin of
attractions by B14 and B23. Clearly B14 and B23 are disjoint.
Define B̂14 := bd(B14)∩int(∆) and B̂23 := bd(B23)∩int(∆).
Consider a point x∗ ∈ B̂14. The solution x(t) with the
initial condition x∗, converges to one of x14, x23 or xint as
it was shown above. However, x(t) 6→ x14 since x∗ 6∈ B14.
Moreover, x∗ 6∈ B23 since x∗ ∈ bd(B14) and B14 ∩ B23 = ∅
and B23 is open. Hence, x(t) → xint. So xint lies on B14.
The same can be shown for B23. Now both B̂14 and B̂23 are 2-
dimensional invariant manifolds, and for any initial condition
located on them, x(t) → xint. On the other hand, xint is
hyperbolic in view of Theorem 4, and hence W s(xint) is the
unique 2-dimensional invariant manifold passing through xint.
Hence, B̂14 and B̂23 coincide and are equivalent to W s(xint).
This proves Case 3) and hence the whole.

An example of the two-dimensional stable manifold men-
tioned in Theorem 1 is shown in Figure 1. For intermediate
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Fig. 1. An example of the two-dimensional stable manifold mentioned in
Theorem 1 for payoff values T = 6, R = 4, S = 3, P = 2 and the number
of repetitions m = 8. The cyan points are samples of the stable manifold
W s(xint).

values of R, the convergence results depend on whether m is
odd or even. Therefore, two separate theorems are dedicated
to these values.

Theorem 2: Assume (2) holds. Let x(0) ∈ int(∆). Assume
m = 2n, n ≥ 1. It follows that

1) if R = T+S
2 , then

lim
t→∞

x(t) = x∗ ∈ {x14, xint, p2};



2) if T+S
2 < R < nT+(n−1)S

2n−1 , then

lim
t→∞

x(t) = x∗ ∈ {x14, xint} ∪ (X 12 ∩∆NE);

3) if R = nT+(n−1)S
2n−1 , then

lim
t→∞

x(t) = x∗ ∈ {x14} ∪ X 123 ∪ (X 12 ∩∆NE).

Proof: In view of Lemma 4, b1, b2 > 0 in Cases 1) and 2).
Hence, by following the same steps as in the proof of Theorem
1, it can be shown that x(t)→ x∗ ∈ {x14, x23, xint}∪(X 12∩
∆NE). However, x23 6∈ ∆o in view of Theorem 1 and hence
x(t) 6→ x23. Then in view of Lemma 9, Case 2) is proven.
Moreover, the fact that X 12 ∩ ∆NE = {p2} for R = T+S

2 ,
proves Case 1). For Case 3), b2 > 0, but b1 = 0 in view of
Lemma 4. Hence, int(∆) can be written as follows

int(∆) = D14 ∪ Y14 ∪ P̂11

where P̂11 is defined in (15). Then similar to the proof of
Theorem 1, we arrive at the conclusion.

Theorem 3: Assume (2) holds. Let x(0) ∈ int(∆). Assume
m = 2n+ 1, n ≥ 1. It follows that

1) if R = T+S
2 , then

lim
t→∞

x(t) = x∗ ∈ {x14, x23} ∪ X 123;

2) if T+S
2 < R ≤ (n+1)T+nS

2n+1 , then

lim
t→∞

x(t) = x14;

Proof: In view of Lemma 4, b2 > 0 ≥ b1 in all
cases. Hence, by following the same steps as in the proof
of Case 3) of Theorem 2, it can be shown that x(t) → x∗ ∈
{x14, x23}∪(X 12∩∆NE)∪X 123 where X 123 shows up only in
Case 1) according to Proposition 1. Then according to Lemma
10 in Appendix C, X 12 ∩ ∆NE = ∅, which proves Case 1)
and Case 2) except for when R equals (n+1)T+nS

2n+1 . When the
equality happens, X 12 ∩∆NE = {p2} in view of Lemma 11
in Appendix C. However, in view of Lemma 3, b1 ≤ 0 implies
that x1

x2
monotonically increases. Hence, x1

x2
(t) > x1

x2
(0) for all

t > 0. On the other hand, x1

x2
(0) > p2 since x(0) ∈ int(∆).

Hence, x(t) 6→ p2, which completes the proof.
Theorem 4: Assume (2) holds. Let x(0) ∈ int(∆). If

max
{
dm−2

2 eS+b
m
2 cT

m−1 ,
dm2 eT+bm2 cS

m

}
< R < T , then

lim
t→∞

x(t) = x∗ ∈ {x14} ∪ (X 12 ∩∆NE).

Proof: The proof is similar to that of Case 2) in Theorem
3.

Note that each equilibrium on X 34 performs as an α-
limit point in the case of Theorem 4. The integration of the
convergence results when the initial condition is in the interior
of the simplex and when it is on the boundary of the simplex,
yields the following corollary.

Corollary 1: Assume (2) holds. For any initial condition
x(0) ∈ ∆, the solution x(t) of the replicator dynamics (4),
converges to a point in ∆ as time goes to infinity.

Therefore, no limit cycle or strange attractor can take place
in the dynamics, and we always have convergence to a point.

E. Discussion

Now that we know the asymptotic behavior of the replicator
dynamics (4) for all range of payoffs, we can proceed to the
interpretation of the results in terms of the individuals playing
the four types of strategies. We use two performance measures
to compare the population at different states x. The first one
is average population payoff x>Ax. The second is average
number of times cooperation is played in the population, which
we call the average cooperation level and denote by

xC :=
∑

i,j∈{1,...,4}

xixj
Cij
2m

where Cij is the number of times cooperation is played in
the m rounds when two individuals playing the strategies
corresponding to indices i and j are matched to play the
repeated game Gm. As an illustration, C11 = 2m, as both
matched ALLC players cooperate in every m rounds, and
C14 = C41 = m as only the ALLC player cooperates
when matched with an ALLD player. Moreover, the average
cooperation level at x14 is S−P

S−P+T−R since only ALLC
players cooperate, and reaches 1 at any state in X 12 since
both ALLC and TFT players cooperate.
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Fig. 2. Average population payoff at the equilibria as a function of R.
Other parameters are set to be T = 3, S = 1, P = 0 and m = 6.

Now consider a population where the portions of individuals
playing ALLC, TFT , STFT and ALLD are all nonzero.
For small values of R, i.e., less than the average of T and
S, almost always the population converges to one of the
following states: i) x14 that is a mixed population of ALLC
and ALLD players or ii) x23 that is a mixed population of
TFT and STFT players. Both states are evolutionary (and
hence asymptotically) stable (see Appendix-B). Therefore,
evolutionary forces select against any mutant population at
these two states. Moreover, for a zero-measure set of initial
states, the population converges to xint where all four types
of players are present. However, xint is unstable and small
perturbations can lead the population to one of x14 and x23.



Between the two, x23 has a higher average population payoff
since

(x23)>Ax23 − (x14)>Ax14

=

{
m(S−T )2

4(T−R+S−P ) > 0 m = 2n, n ≥ 1
(m2−1)(S−T )2

4m(T−R+S−P ) > 0 m = 2n+ 1, n ≥ 1

(see Figure 2) as well as a higher cooperation level since

x23C − x14C =

{
T−S

2(T−R+S−P ) > 0 m = 2n, n ≥ 1
(m−1)(T−S)

2m(T−R+S−P ) > 0 m = 2n+ 1, n ≥ 1
.

Now if the base game is repeated for even number of times,
as R increases, the state x23 moves towards p2 where only
TFT players are present. When R equals the average of
T and S, x23 coincides with p2, and hence STFT players
stand out (except for those zero-measure initial conditions that
lead to xint). As R further increases, the single equilibrium
state p2 is expanded to the set of a continuum of equilibria
X 12∩∆NE . Therefore, the population either converges to x14

where ALLC and ALLD players coexist or to a state where
ALLC and TFT players coexist. As one would expect, any
equilibrium xα ∈ X 12 ∩ ∆NE outperforms x14 in terms of
both average population payoff and average cooperation level
as

(xα)>Axα − (x14)>Ax14 =
m(T −R)(R− S)

(T −R+ S − P )
> 0,

and that xα has the highest possible average cooperation level
xαC = 1.

At the same time, xint is moving towards the face
∆(p1, p2, p3), and when R equals nT+(n−1)S

2n−1 , xint lies on
X 123 where ALLC, TFT and STFT players coexist.

If the base game is repeated for odd number of times,
STFT players survive for a greater range of R. This time
for R being equal to T+S

2 , xint lies on X 123. Then suddenly,
by a small increment in R, the set X 123 disappears, and
no population converges to x23. Therefore, starting from any
initial condition, the population converges to the polymorphic
population of ALLC and ALLD players x14. This is the only
situation where both conditional strategies TFT and STFT
are wiped out of the population, and is continued up to when
R equals (n+1)T+nS

2n+1 . It can be verified that both the average
population payoff and cooperation level at x14 monotonically
increase in R. Therefore, as expected, increasing R results in
a more profitable and cooperative long-term population.

When R further increases, the behavior of the system is
almost the same for both odd and even m. The population
either converges to x14 where ALLC and ALLD players
coexist or to an equilibrium on X 12∩∆NE where ALLC and
TFT players coexist. So the suspiciousness of STFT players
wipes them out from the population. Moreover, as R increases,
x14 gets closer to p1 where all individuals are ALLC players.

In general, perhaps STFT can be considered as the worst
strategy in terms of survival especially for R > T+S

2 .
Conversely, regardless of the payoffs, there always exists
a set of initial conditions for which ALLC players show
up in the long run. Moreover, in addition to x14, all the
limit states in X 12 ∩ ∆NE (except for p2) have a nonzero

portion of ALLC players. This, surprisingly, makes the simple
unconditional ALLC strategy perhaps the most robust in terms
of survival and appearance in the long run. This may explain
the existence of individuals who unconditionally cooperate in
real-life scenarios that can be captured by repeated snowdrift
games.

Interestingly, x14 is always an evolutionary (and asymptot-
ically) stable state of the system, regardless of the payoffs.
This state consists of S−P

S−P+T−R ALLC players that can
be considered as cooperators and T−R

S−P+T−R ALLD players
that can be considered as defectors. On the other hand, the
unique evolutionarily stable state of the base game consists
of S−P

S−P+T−R C players, i.e., cooperators, and T−R
S−P+T−R D

players, i.e., defectors. Thus, the repetition of the base game
and the introduction of the two conditional strategies TFT and
STFT , does not eliminate or even change this evolutionarily
stable mixture of cooperators and defectors, but adds some
new more-cooperative final states such as those on X 12.

Moreover, since x14C = S−P
S−P+T−R and xαC = 1 for any

xα ∈ X 12, adding enough TFT players to a population
of ALLC and ALLD players can dramatically increase the
average level of cooperation, if R is large enough. The claim
does not change when STFT players are also present in the
population. More specifically, if R is greater than the lower
bound provided in Theorem 4, and x2(0), the initial portion
of TFT players is large enough so that x(0) belongs to the
basin of attraction of X 12, then the population state converges
to a point on X 12 that has a higher average population payoff
and cooperation level.

The convergence analysis also reveals how the average
cooperation level changes as R increases. Particularly, in the
presence of the four types of players, increments in R make
the final population more probable to become completely
cooperative.

IV. CONCLUDING REMARKS

Our analysis highlights repetition as a mechanism that
promotes cooperation among selfish individuals in snowdrift
social dilemmas. Unlike the trend of research on repeated
games that allows for a wide range of complicated and uncom-
mon reactive strategies, we have limited them to four typical
ones. This provides a more realistic setup for human societies
[61]. On the other hand, we have modelled the evolutions of
the players’ population portions by replicator dynamics which
well approximate the behavior of well-mixed large populations
governed by the proportional imitation update rule [23]. Given
all this, we show that for large well-mixed populations of
imitative individuals who play snowdrift games, repeating the
game and the introduction of the conditional strategy TFT
promotes cooperation. However, this is not because TFT
players are long-term dominants as often reported in repeated
prisoner’s dilemma, but because they lead to more-cooperative
final population states which are also more profitable. This
promotion of cooperation is preserved even if some of the
TFT players start their interactions suspiciously and defect
initially; that is, if there are also some STFT players in the
population. Indeed, for low values of reward R, such players



survive, yet for high rewards they become extinct. Finally,
those who always cooperate regardless of their opponents’
moves have a high chance of survival, which may explain
the observation of such behaviors in real life.

Our main technical contribution is the study of the ratios of
the state variables of the replicator dynamics and to show their
monotonicity over time. Such a technique has the potential to
be applied to other replicator dynamics whose payoff matrix
has repeated entries. We, finally, emphasize that all payoffs
and even the number of repetitions are parameters, which not
only gives rise to the above outcomes, but more importantly
provides a parametric framework to control the final average
population payoff and cooperation level. This simply can be
done by tuning the parameters according to the convergence
results in Theorems 2 to 4.

APPENDIX

A. Lemma 7
Lemma 7: The replicator dynamics (4) are invariant under

the addition of a constant to all of the entries of a column of
the payoff matrix A.

Proof: See [24, Section 3.1.2].

B. Evolutionary Stability: Proof of Proposition 3
A state x ∈ ∆ is said to be an evolutionarily stable state

(strategy) (ESS) of A if it satisfies the following two conditions
[23, pp. 81]:

x>Ax ≥ y>Ax ∀y ∈ ∆, (16)

[x>Ax = y>Ax and y 6= x]⇒ x>Ay > y>Ay. (17)

The set of all evolutionarily stable states is denoted by ∆ESS .
Lemma 8 (Proposition 3.10 in [24]): Every x ∈ ∆ESS is

asymptotically stable under the replicator dynamics (4).
Proposition 7: x14 ∈ ∆ESS . Moreover, x23 ∈ ∆ESS if

R < T+S
2 .

Proof: The result for x14 is proven in the following, and
that for x23 can be done similarly. Consider

Ax14 =
1

a′14 + a′41

[
a′14a

′
41 a′24a

′
41 a′14a

′
31 a′14a

′
41

]>
.

In view of Lemma 2, a′41 > a′31 ≥ 0 and a′14 > a′24 ≥ 0.
Hence, a′14a

′
41 > a′24a

′
41, a

′
14a
′
41, implying that the maximum

element of Ax14 is a′14a
′
41. Hence, any y ∈ ∆ satisfying

y2, y3 = 0 maximizes y>Ax14. So x14>Ax14 is the maximum
of y>Ax14, which implies that (16) is in force. On the other
hand, if for some y ∈ ∆, x14>Ax14 = y>Ax14, then y
maximizes y>Ax14. Such a y satisfies y2, y3 = 0, which
results in

y>Ax14 =
a′14

2
y4 + a′41

2
y1

a′14 + a′41
, y>Ax14 = (a′14 + a′41)y1y4.

(18)
On the other hand,

[y4(a′14 + a′41)− a′41]2 ≥ 0

⇐⇒ a′14
2
y4 + a′41

2
(1− y4) ≥ (a′14 + a′41)2y4(1− y4)

⇐⇒ a′14
2
y4 + a′41

2
y1

a′14 + a′41
≥ (a′14 + a′41)y1y4.

Hence, in view of (18), x14>Ay ≥ y>Ay. However, the
equality holds only when

[y4(a′14 + a′41)− a′41]2 = 0

⇒ y4 =
a′41

a′14 + a′41
, y1 =

a′14
a′14 + a′41

⇒ y = x14.

Hence, x14>Ax14 > y>Ax14 for all y 6= x14. So (17) is true,
implying x14 ∈ ∆ESS .

C. Nash equilibria and their relation to convergence points

Call a trajectory x(t) an interior trajectory, if x(0) ∈
int(∆). When investigating the final state (convergence point)
of an interior trajectory, several equilibrium points often show
up as possible candidates. In what follows, a known game the-
oretical result is reviewed to confine the possible candidates.
Define ∆NE , the subset of strategies (states) that are in Nash
equilibrium with themselves [24, Section 1.5.2], by

∆NE =
{
x ∈ ∆ |x>Ax ≥ y>Ax ∀y ∈ ∆

}
.

Lemma 9: ([24, Proposition 3.5]) If an interior trajectory
x(t) converges to a point x∗, then x∗ ∈ ∆NE .

Similar to Lemma 7, it can be easily verified that ∆NE is
invariant under the addition of a constant to all of the entries
of a column of the payoff matrix A. Hence, we change A in
the definition of ∆NE with the more simple-structure payoff
matrix A′ in future derivations. The following lemma reveals
those points of X 12 and X 34 that belong to ∆NE .

Lemma 10: Assume (2) holds. Then X 34 ∩ ∆NE = ∅.
Moreover,
• if S < R < T+S

2 or m = 2n + 1, n ≥ 1 and T+S
2 ≤

R < (n+1)T+nS
2n+1 , then

X 12 ∩∆NE = ∅;

• if m = 2n + 1, n ≥ 1 and R = (n+1)T+nS
2n+1 , or m =

2n, n ≥ 1 and R = T+S
2 , then

X 12 ∩∆NE = {p2};

• if m = 2n + 1, n ≥ 1 and (n+1)T+nS
2n+1 < R < T , or

m = 2n, n ≥ 1 and T+S
2 < R < T , then

X 12 ∩∆NE ={
αp1 + (1− α)p2

∣∣∣α ∈ [0,min
{
mR−dm2 eT−b

m
2 cS

T−R , mR−T−(m−1)Pm(T−R) , 1
}]}

.

Proof: Let x ∈ X 34. Then A′x =[
a′13x3 + a′14x4 a′23x3 + a′24x4 0 0

]>
. So based on

the definition of ∆NE ,

x ∈ ∆NE ⇐⇒ a′13x3 + a′14x4 ≤ 0 and a′23x3 + a′24x4 ≤ 0.

However, in view of Lemma 2, a′13, a
′
14, a

′
23, a

′
24 > 0. Hence,

because of x3 + x4 = 1 and x3, x4 ≥ 0, it can be concluded
that x 6∈ ∆NE . Now let x ∈ X 12. Then

A′x =
[
0 0 a′31x1 + a′32x2 a′41x1 + a′42x2

]>
.

Then based on the definition of ∆ESS , we have

x ∈ ∆NE ⇐⇒ a′31x1 + a′32x2 ≤ 0 and a′41x1 + a′42x2 ≤ 0.



Moreover, a′41, a
′
31 > 0 in view of Lemma 2. So

x ∈ ∆NE ⇐⇒ x1 +
a′32
a′31

x2 ≤ 0 and x1 +
a′42
a′41

x2 ≤ 0

⇐⇒ 0 ≤ x1 ≤ min

{
−a
′
32

a′31
,−a

′
42

a′41

}
, x1 ≤ 1.

Hence, if min
{
−a
′
32

a′31
,−a

′
42

a′41

}
< 0, then x 6∈ ∆NE . Otherwise,

x = αp1 + (1 − α)p2 where α ∈
[
0,min

{
−a
′
32

a′31
,−a

′
42

a′41
, 1
}]

.
Substituting the values of a′ij from A′ in the above equation
completes the proof.

The following lemma reveals those singleton boundary
equilibria that belong to ∆NE .

Lemma 11: x13, x24 6∈ ∆NE and x14 ∈ ∆NE . Moreover, if
S < R < T+S

2 , or m = 2n + 1, n ≥ 1 and R = T+S
2 , then

x23 ∈ ∆NE . Otherwise, x23 6∈ ∆NE .
Proof: The sign-structure of A′x13 is of the form[

+ + + ++
]>

. Hence, (p4)>A′x13 > x13
>
A′x13.

Hence, x13 6∈ ∆NE by definition. Similarly x24 6∈ ∆NE

can be shown. Now the result for x23 is proven and that
for x14 can be done similarly. Define z := A′x23 =[
a′13x3 a′23x3 a′32x2 a′42x2

]>
. Let S < R < T+S

2 or
m = 2n + 1, n ≥ 1 and R = T+S

2 . In view of Lemma 2,
a′32 > a′42 and hence z3 > z4. Similarly, z2 ≥ z1. Moreover, it
can be verified that z2 = z3. Hence, z2, z3 = maxi∈{1,...,4} zi.
Hence, any x ∈ ∆(p2, p3), maximizes x>z = x>A′x23 over
∆. Hence, since x23 ∈ ∆(p2, p3), it holds that x23>A′x23 ≥
y>A′x23 for all y ∈ ∆. Hence, x23 ∈ ∆NE . For all other pay-
offs, either x23 6∈ ∆ or z1 > z2. The first case clearly implies
x23 6∈ ∆NE . For the second case, (p1)>A′x23 > x23

>
A′x23,

which rules out x23 from ∆NE .

D. Convergence to a line segment implies convergence to a
(set of continuum) stationary point(s)

In the analysis of Section III-D1, we often face the situation
where we know that the trajectory converges to a line segment.
However, for completeness of our convergence results, we
need to know whether the omega limit set of the trajectory
is the whole line segment or just some parts of it. For
this purpose, we use a theorem showing that if a trajectory
converges to a line segment, it converges to an equilibrium
point or a continuum of equilibria on that line segment.
Consider the function y : R → Rn and the set S ⊆ Rn.
The expression y(t) → S implies that for any ε > 0, there
exists some M > 0 such that t > M ⇒ infs∈S ‖y(t)−s‖ < ε
where ‖ · ‖ denotes an arbitrary norm in Rn.

Theorem 5 (reformulation of Corollary 1 in [68]): Consider
the Cr, r ≥ 1, vector field ẏ = f(y), y ∈ Rn. If y(t) con-
verges to a compact simple open curve L, then y(t) converges
to an equilibrium point or a continuum of equilibrium points
on L.
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